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ABSTRACT

Graph Convolutional Networks (GCNs), a neural network-based classification model on graphs, 
have been shown to outperform other state-of-the-art models. However, one major limitation of the 
GCN is that it assumes at a particular lth layer of the neural network model only the lth order 
neighbourhood nodes of a social network are influential. Furthermore, the GCN has been evaluated 
on citation and knowledge graphs, but not especially on friendship-based social graphs. Moreover, 
the drawback associated with the dependencies between layers and the order of node neighbourhood 
for the GCN can be more prevalent for friendship-based social graphs. The evaluation of the full 
potential of the GCN on friendship-based social network requires openly available datasets in larger 
quantities. However, most available social network datasets are not complete (i.e. represent a subset 
of the original networks, not the entire graph or do not include the entire set of node features). On top 
of that, the majority of the available social network datasets not only do not contain any features but 
also ground truth labels. To address the need for good quality synthetic social network data with 
ground truth labels and features we firstly provide a guideline on how to simulate dynamic social 
networks, with ground truth labels and features, both coupled with the topology of the network. 
Secondly, we introduce an open-source Python-based social network simulation library with GPU 
computation and multiprocessing 1. In our social network simulation, we argue that the topology of 
the network is driven by a set of latent variables, termed as the social DNA (sDNA). We consider the 
sDNA as labels for the nodes, mimicking the real-world social network scenario. Finally, by 
evaluating on our simulated datasets, we propose four new variants of the GCN, mainly to overcome 
the limitation of dependency between the order of node-neighbourhood and a particular layer of the 
model. We then evaluate the performance of all the models and our results show that on 27 out of the 
30 simulated datasets our proposed GCN variants outperform the original model.

Keywords Graph Mining · Node Classification · Social Network Mining · Deep Learning on Graphs · Social Network
Simulation

1https://github.com/AkandaAshraf/VirtualSoc
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1 Introduction

One major limitation of a neural network-based learning systems is that they requires a large amount of data for
training. This is one of the biggest differences between human intelligence and artificial non-general intelligence like
an artificial neural network. Unlike a deep learning (i.e. deep neural network) model, a human can learn from a very
limited number of examples, whereas a deep learning model requires to see a substantially larger number of samples
to learn from. Thus, it is essential to have access to a large number of training data instances to unlock and evaluate the
full potential of the neural network-based model. A straightforward technique to solve this problem of insufficiency of
the real-world datasets for neural network-based learning systems is to simulate high quality real-world alike synthetic
data and use it to train the model. Additionally, if not for training, simulated datasets are particularly useful to evaluate
the models’ performance, i.e. during the testing phase. In many cases, it is far more convenient to simulate test cases
representing exceptional situations than collecting data for those situations in the real world. In fact, for some real-
world scenarios, it might not even be possible to get a dataset describing some exceptional scenario due to the rarity
of the event or ethical constraints.

It is however crucial to test the trained model in those exceptional scenarios because the cost of failure for those
unlikely situations can be significantly higher than a regular situation. One such area where high quality simulated
and augmented data is extensively being used are in the neural network-based learning systems for self-driving cars.
Almost all the advanced autonomous vehicle technologies use simulated datasets. For example, Nvidia has developed
the Nvidia Drive Constellation, a Virtual Reality Autonomous Vehicle Simulator [1]. Billions of miles have been driven
in the simulated environment by Google’s Waymo [2] etc. Similar to the self-driving cars, in many other applications
of deep learning, high quality simulated datasets are now in high demand. One such important application of deep
learning, which is the focus of this study, is in the area of social networks, where graph specific deep learning models
are ever-increasingly being developed and evaluated [3]. With the advancement of graph specific neural network-based
models, the demand for such datasets is growing rapidly. Furthermore, it is becoming more and more difficult to have
access to complete (i.e. inclusive of node attributes) datasets representing social networks mainly due to user privacy
concerns that we discuss later in this section.

Social network datasets are very complex in nature, thus, they can be difficult to simulate and there is a lack of
comprehensive guidelines on how to simulate social network datasets with both the features and ground truth labels.

As mentioned earlier, graph data mining has become a very important research area due to the recent advancement and
popularity of social networks [4, 5], especially the online ones. Advancements in graph-based predictive modelling or
graph community detection algorithms require datasets with ground truth labels for evaluation purposes [6]. However,
majority of the available social network datasets do not contain labels. Moreover, real-world social network datasets
contain high dimensional features (node attributes and features are used interchangeably in this paper) [7] that repre-
sent information about both nodes and relationships. For example, a Facebook user generates variety of information
such as posts he/she likes, photos, status updates, etc. Even in citation networks, there are features such as domain,
authors’ affiliations, documents with thousands of words, etc [8]. In publicly available datasets, such features are
rarely included. For a small number of datasets, these node attributes could be included but then usually the complete
structure of the network is not; instead only its subset (mainly ego networks) are available [9, 10, 11]. This is due
to the fact that during the anonymisation process of networked data, in most cases we need to get rid of majority of
features as these could be used to identify individuals [12], potentially raising ethical concerns. De-identification of
network datasets is particularly difficult because of the unique topological structure a network may have. In a 2011
Kaggle link prediction competition, the most successful team won by de-anonymising most of the network data [13].
On top of that, nowadays, even such graph datasets are becoming very difficult to obtain due to the aftermath of the
notorious usage of real-world dataset from social networks for the purpose of political influence [14, 15].

To ensure user’s personal data is only used with explicit consent, governments and political unions are increasingly
putting pressure on the technology companies [16]. Additionally, new regulations such as the European General Data
Protection Regulation (GDPR) on the usage of personal data, has already come into force in many countries such as the
UK [17]. Unquestionably, such regulations are essential to guarantee user privacy. However, due to those, getting hold
of datasets from social media is becoming increasingly challenging. Maintaining the advancement of the research in
social networks requires good quality real-world datasets. One solution is to supplement the real-world social network
datasets with synthetic, good quality, real-world alike data.

The demand for graph datasets is further on the rise, due to the advancement of graph-based machine learning, as
traditional learning and data mining algorithms are being adopted for graph mining. Machine learning tasks for non-
relational datasets only consider features and labels. However, graph datasets also contain edges between instances.
These relationships have the ability to provide additional predictive power for a machine learning model. As a result,
including these relations along with features in a predictive model is vital for prediction based on graph-structured
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datasets. To include relationships, one may capture these relational links between instances through graph embedding
and then train any traditional machine learning model for the task of classification or regression [18, 19]. However,
besides this indirect consideration of relations or links, there are developments in the area of graph mining which
directly encode a relational component of a graph dataset into a deep artificial neural network, termed as Graph
Convolutional Networks (GCNs) [20]. In this approach, the topology of a graph is directly translated into the layers
of a deep learning model. In GCN, the features of the graph are multiplied with filters of a neural network in the
spectral domain (i.e. graph Laplacian) of the graph, thus resulting in a direct convolutional operation. Apart from
node classification which is one of the most researched problems in machine learning, an important research area in
graph mining is link prediction. A difficulty encountered when analysing any link prediction technique is not being
able to get enough, open, dynamic (time-dependent snapshots) social networks with features and labels. Typically, a
link prediction algorithm is tested based on its predictive power on a future snapshot of the network. A supervised
link prediction algorithm should ideally utilise both the topology and available node attributes [21, 7]. For example,
Scellato et al. [22] found that including features such as places and other related user activity improves the accuracy of
link prediction considerably. Most of the developments in link prediction have been based on a single snapshot of the
network, although, incorporating evolution of the graph may result in better performance in link prediction as shown
by Tylenda et al. [23] and Xu et al. [24].

GCN is a semi-supervised classification model shown to outperform other state-of-the-art graph classification ap-
proaches based on as little as 0.07% of labelled nodes per class [20]. In the paper where GCN is introduced, datasets
considered in the experiment were citation networks and knowledge graphs with explicitly defined class labels [20].
However, defining class labels for Facebook, Twitter, LinkedIn like social networks is not trivial. As discussed earlier,
the difficulty is mainly associated with obtaining real-world graph datasets with labels and node attributes. One ap-
proach to evaluate such graph mining algorithms is by simulating graphs containing features. In this work, we propose
that the preference of each node in a social network is the strongest, useful and meaningful candidate for label in a
social graph.

2 Related work

A straightforward way to simulate graphs is to generate them using well-established network models [25]: (1) Barabási-
Albert model for the scale-free network [26], (2) Watts-Strogatz small-world model for the small-world network [27],
(3) Erdős-Rényi model for the random graph network [28, 29, 30, 31], (4) Forest-fire Model model [32, 33].

Random-graph Model: In the random graph network model, one creates a network with some properties of interest
(specific degree distribution) and otherwise random. Although random graph model was first studied by Solomonoff
and Rapoport [28] this model is mainly associated with Paul Erdős and Alfréd Rényi [29, 31].

Scale-free Model: The scale-free model shows power law node degree distribution P (k) ∼ k−α (where k is the node
degree and typically 2 < α < 3) for a social network. This kind of distribution was first discussed by Price [34]. Price,
in turn, was inspired by Herbert Simon, who discusses power law in a variety of non-network economic data [35].

Small-world Model: Transitivity measured by the network clustering coefficient despite being extensively studied, is
still one of the least understood properties in network analysis according to Newman [36]. Another important property
we observe in real networks is the small-world effect – all nodes are connected with each other by relatively short
paths. To model these two properties Watts and Strogatz introduced a small-world network model [27].

Forest-fire Model: In this model the new node, i, connects to another existing node j, and then again makes a
connection with the adjacent node j1 of the newly connected node j0. The node i then carries on making connections
with a probability p based on adjacent nodes [32, 33]. For example, in citation networks, an author finds a paper and
cites it. He or she then cites more papers through that paper recursively [32]. In a social network, a friend j may
introduce someone i with his/her mutual friend and then the friend circle grows for the person i [32]. The model is
named as forest fire because it imitates self-organising behaviour of a forest fire [33].

These quintessential network models are one of the most important contribution towards understanding and modelling
complex networks. However, these mathematical models are solely driven by the topology of a network. For example,
the Scale-free model considers the degree of a node and the Small-world model considers mutual friends. Neither
features nor labels of nodes and/or connections are mimicked by those models. However, one can generate synthetic
social networks with features is to find similarities/correlations between randomly assigned n number of features and
let those similarities define connections [37, 38, 39]. For obvious reasons, this naïve approach is not ideal due to
several limitations. Firstly, correlations between feature vectors do not consider the network topology. Secondly,
a common correlation metric would assume every person in a social network views and prefers a potential friend’s
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features equally in a linear fashion. Finally, it is often not obvious what the node labels are, which is an issue we
discuss in detail in Section 3.

However, there are some recent developments in agent and event-based social network modelling which are discussed
below.

Agent-based modelling: Bruch and Atwell [40] provide a guideline on the agent-based modelling of social networks.
In the paper by Bruch and Atwell [40], it is argued that the interplay between the micro and macro level characteristics
is complex, and the macro level characteristics are not emergent solely from the simple aggregation of micro level
characteristics or low level entities such as social network users [41]. Instead, micro and macro level behaviour or
characteristics form a feedback loop, resulting in a nonlinear interaction. From a social network point of view, the
graph level and node level characteristics could be thought of as macro and micro level characteristics of the network
respectively.

However, to simulate the modelling approach specific to social networks, one should consider the well-studied graph
properties such as preferential attachment, mutual friend preferences etc., and provide instructions on how to account
for these properties in the simulation. In the research article of Granovetter [41], these social network properties are
considered, but implicitly included in terms of the macro and micro level characteristics. In summary, this study
by Granovetter [41] provides a generic guideline to model social networks but a detailed and specific mathematical
modelling instruction and analysis of the social network properties are not discussed.

In another work by Kavak et al. [42], the authors have argued that modelling should be performed by explicitly using
available real-world dataset. In their experiment, they have simulated human mobility model based on 826,021,868
twitter messages. Furthermore, they have uncovered the Geolocation of 92,296 users for the purpose of modelling.
However, the purpose of our simulation is to produce synthetic good quality graph structured datasets when real-world
data is not available, which is increasingly the case as discussed in Section 1.

Event based modelling: One recent interesting development in modelling dynamic event-based graph is the
Cognition-driven Social Network (CogSNet) model [43]. The CogSNet models social network-based on the human
memory model. Authors argue that, similar to the human memory, a social event is strengthened by repeated exposure
to a similar event and weakens by deprivation of that event. Although CogSNet proposes a new paradigm in social
network modelling, it does not provide an explicit explanation modelling features within the dynamic event based
graph. Providing open source social network datasets with labels, features, and graph or topological characteristics is
the primary goal of this study.

To address the issues discussed above, i.e., 1) lack of guidelines on implementing both the well-studied network proper-
ties in social networks and features, 2) insufficient research on simulating dynamic social networks with node features,
3) lack of rigorous study providing directions on defining node labels in social networks, we propose a framework
for social graph simulation. In our model, the simulated networks have the following characteristics based on un-
derstanding of Facebook-type social networks, along with well-studied social network properties such as preferential
attachment.

• Node features are evaluated by other nodes before connecting. If two nodes are forming a connection, the
decision of forming a link is taken by both of the nodes, thus both parties should evaluate each other’s features.

• The decision of forming a connection is based on the preferences of nodes, which are consist of a set of latent
variables. These preferences are not directly linked with users’ features. For example, two people could live
in any state or county, but the preference towards a particular political party could be same, thus resulting in
different features but common preferences.

• People have common preferences. For example, a group of people in social network may prefer a common
ideology or political view.

• The node and graph level characteristics should both be taken into account while modelling a network. Node
level characteristics consist of features (i.e. node attributes such as age, gender, etc.), individual preferences
(latent variables such as preference towards a particular type of people, discussed in more detail in the Sec-
tion 3), node degree (i.e. preferential attachment). Whereas, graph level characteristics is e.g. smaller path
length preference, i.e. connecting with friends who are nearer in terms of the graph topology.

3 Proposed approach

The proposed simulation is based on preferences (i.e. a set of latent variables) of nodes, which can be interpreted
as social rules. Node preference represents the preference of a person in a social network, and at the same time the
network-based projection of personality and behaviour. This in turn translates into the network topology. For example,
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one of network-based behaviours might be to only connect with people with many mutual friends, shaping the topology
of the ego network.

We identify the types of preference a node can have based on their topological and non-topological characteristics.
The preferences/behaviours emerge from the following phenomena:

• Feature-based (non-topological): From node/user point of view, a combination of variable preferences to-
wards the features of other nodes/users acts as a deciding factor for who they wish to connect with. For
example, someone may prefer to connect with people who live near in terms geographic location (e.g. city,
town), thus similar location feature is preferred. Whereas, for some other features such as gender, being
opposite or same, could be preferred. Thus, for this particular node, preference towards geographic location
in combination with gender is considered while connecting.

• Topology-based: Besides node features, the local topological characteristics may also play important role,
e.g. someone may prefer to connect with other people with whom he/she has mutual friends, whereas others
may be more open. Secondly, some people may still prefer to connect with someone who has many friends,
i.e. popular nodes. Both of these preferences are solely based on the graph topology and could be mostly
identified via the topological properties of the social graph.

• Hybrid feature and topology based (combination of topological and non-topological features): People in
social networks may prefer someone who is nearer to them in terms of geographic location and has similar
age, education level and has many mutual friends. In this scenario, we have a combination of both the feature-
based and topology-based preferences. Someone may also only connect with a politician who has many
friends, only if, he or she has similar political views.

All three types of human preferences are reflected in both non-topological features of a node and the topology of a
graph. Although the first, feature-based preference, solely emerges from the non-topological component of a node,
once the connections are made, these preferences are also reflected or encoded within the topology of the graph.
Without the consideration of the graph or relations between nodes, the predictive model will not be able to capture
these complex patterns, which may negatively influence model performance. As a result, by including node attributes
in graphs we can achieve higher predictive power.

We propose that the labels of social networks in supervised or semi-supervised classification will capture patterns
resulting from the preferences discussed above. We name these preferences or behaviours for a particular node as their
social-DNA (sDNA). Although most people in a social graph have different features, many people have a similar sDNA
(i.e. they share preferences). As a result, the sDNA is the most valuable and meaningful candidate for class labels for
grouping nodes in a graph. However, these labels may not be explicitly defined for a given node classification problem.
For example, a classification task may require identifying a group of nodes who may prefer to buy a certain type of
product, for marketing purposes. The label for the class who have bought the products should capture a certain group
of people with similar preferences in the social network. In semi-supervised classification, if we have a dataset for only
a few people who may have bought the product, the classification model would associate a certain type of sDNA in the
social network as the most likely group to buy that product. In addition, if we do not have any historical information
which tells us who have bought the product, it may be possible that a group of people with similar sDNA may prefer
the product more often than others. However, a person or node itself in a social network, may not entirely know his or
her preferences or sDNA. As a result, finding these preferences (i.e. labels) in terms of sDNA is a nontrivial task. One
solution to this problem could be to define a few randomly selected nodes with different labels. These labels could
also be selected based on a strategy of focusing on the features of nodes. For example, selecting a few nodes with
very different features from each other. After labelling, the semi-supervised classification algorithm, such as GCN
will infer other nodes with similar preferences/sDNA. Even if no prior knowledge is available, randomly selected
nodes with different class labels could be used with only one label per class. GCN is shown to be powerful enough to
accurately classify nodes with only one label per class [20].

4 Graph Formation

Let’s assume that we have |N | = n number of nodes with f features each. Each element or feature in the f could be
unbounded or bounded. Each and every node subscribes to an sDNA. There is a total of y different sDNAs, such that
y <= n. Nodes which subscribe to the same sDNA have the same preference, thus the same label. Each sDNA consists
of two vectors of length f (i.e. the same as the number of node features). These two vectors are, 1) w̃, which defines

the strength or weight of a particular feature’s preference and ranges between 0 and 1, and 2) l̃, which defines whether

similar or dissimilar features are preferred with a binary attribute 1 or −1. Although l̃ could be incorporated into w̃
as its sign, to make the preference standout separately for user readability and its contribution in the sDNA mutation
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process discussed in Section 7 for dynamic graphs, the vector l̃ is used. This also allows to have a separate label for
the preferences within the sDNA, which could be learned using machine learning algorithms from the graph enabling
a more in-depth predictive analysis. The feature-based scores between two nodes i and j are calculated as (where ⊙
is the Hadamard product):

Φi→j = |fi − fj |
⊤(w̃i ⊙ l̃i) (1)

Equation 1 gives feature-based score which entails if node j is a potential friend for node i. In this case, node i
evaluates if it wants to connect with node j or not, as we consider only i’s sDNA. In many social networks, mainly
for the undirected ones, the final connection or friendship decision is made by both of the nodes. We can introduce
two-way evaluation simply by adding node j’s sDNA based score in Equation 1.

Φi↔j = Φi→j +Φj→i (2)

If both the i and j subscribe to the same sDNA then Φi↔j = 2Φi→j . However, Equation 2 does not prefer similar
sDNA over different sDNA or vice versa. In a social network, the preference or sDNA is a set of latent variables. It may
well be that two people have a similar preference and this results in a lower score. For example, if two social network
users prefer to connect with the opposite gender more often, then if they have the same gender then they are less likely
to connect.

Figure 1: Two types of sDNA subscribed by 5 nodes (The lines do not represent edges in the graph and sDNAs are not
nodes. The arrows define subscription or common preferences of different nodes as sDNAs)

Equation 2 does not consider topological (i.e. graph based geometric features) of the nodes while calculating the score.
In social networks, popularity, i.e. the degree of the nodes is a common topological feature with a significant effect
on the growth of the network. Typically, people tend to prefer other people who have large number of connections.
This is why famous people tend to get more connections. This phenomenon is well studied and known as preferential
attachment [26]. To add the preferential attachment effect, we can simply add the degree of the connected nodes to the
score. If node j has mj degree or connections, then from i’s perspective, the popularity-based score can be calculated
as follows:

δi→j = mj (3)

However, the preference for nodes with higher degrees varies from person to person. We can incorporate this variability
by including sDNA’s preferential attachment parameter while calculating the score, resulting in:

∆i→j = mj d̃i (4)

Equation 4 only considers score of i and j from i’s perspective (i.e. i’s sDNA). For an undirected graph, we can use
the following Equation 5 to calculate preferential-attachment-based score from both i and j’s perspective by adding
both of their scores from each other’s perspective:

∆i↔j = ∆i→j +∆j→i (5)
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A social network user tends to prefer people who are nearer to them in terms of the graph topological distance [44].
Creating a connection with somebody who is friend-of-our-friend is usually more likely than starting a relationship
with someone who is further away from us in the structure. However, this preference is also subjective and varies
among social network users. As a result, we add this variability of path length preferences subjective to a user by

using sDNA’s k̃ = k̃2, k̃3, ....k̃q variables, where q is the longest path-length in the graph that the model is considering,

and k̃2 > k̃3 > .... > k̃q . The sDNA’s k̃ vector has a length of (q − 1).

[Ax[i, j]] =

{

0 Ax[i, j] = 0

1 Ax[i, j] > 0

Πi→j = [A2[i, j]]k̃(i, 2), [A
3[i, j]]k̃(i, 3),

...., [An[i, j]]k̃(i, q)
(6)

In Equation 6, [Ax[i, j]] is a generalised Kronecker delta function in the Iverson bracket where A is the adjacency
matrix of the graph. The value of [Ax[i, j]] is one, if a path of length x between i and j exists, and zero otherwise.
This function of path length introduces non-linearity in the score. Equation 6 gives the score of j when i is evaluating
j’s potential to be able to connect or become friends with i. This is done by using i’s sDNA parameter to calculate
the score of J . This imitates the behaviour, firstly, i may find someone j interesting to send him a friend request on
Facebook. Secondly, the final connection will be made if j also finds i interesting. Equation 6 accounts for the first
case and the following Equation 7, similar to score based on features in Equation 2 accounts for the score from j’s
point of view for i. The final score function based on path topology is:

Πi↔j = Πi→j +Πj→i (7)

Equation 7 is required if were to simulate a directed graph. For an undirected graph, we only consider Equation 6.

Finally, we add all three scores, i) feature based from Equation 2, ii) popularity based from Equation 5, and iii)
shortest path length based from Equation 7 (directed) or 6 (undirected) to calculate the final score s. We consider
an undirected graph where both i and j make mutual decision to connect with each other. In case of an undirected
graph, for i connecting with j, we can simply consider Equations 1, 4, and 6. For simplicity we are not including the
subscript i↔ j in the final score function s.

s(Φ,∆,Π) = Φ +∆+Π (8)

Equation 8 gives the score between any two nodes. The scores are weighted or modified according to the sDNA a node
belongs to. To further enforce some global graph level control in the effects of feature-based, popularity-based, and
shortest-path scores we introduce two hyperparameters. This global control is useful in many situations, for example,
one may wish to generate networks where strong preferential attachment phenomena exist. To be able to control this
global weighting, we introduce r and c global weighting factors in Equation 8. c is a vector of length q − 1, where
q − 1 is the number of shortest path length considered starting from length two.

s(Φ,∆,Π) = Φ + r∆+ c⊤Π (9)

Equation 9 contains sDNA = {w̃, l̃, d̃, k̃} variables from Φ, ∆, and Π. These do not come from the nodes directly
but from their sDNAs, which in turn expresses their behaviour in the network. Equation 9 is one possible linear
combination of Φ, ∆, and Π, however, other possible nonlinear combination functions may be used depending on the
target domain.

5 Simulation Process

The link formation process for a graph with n nodes is given in Algorithm 1. Each node subscribes to exactly one of y
different types of sDNA (Figure 1) and contains f features. In Line 2 the algorithm generates all pairs of nodes. In case
of an undirected graph, the pairwise permutation (without repetition) is considered. Furthermore, if self-connection is
desired then self pairwise combination is also included. Social network users do not necessarily explore all potential
friends whom they might connect with. For example, a Facebook user does not explore all existing Facebook users
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to connect with. As a result, the simulation process selects a pair of nodes to calculate scores with the exploration
probability p (Line 6), much like how connections are made in a random graph. p = 1 will result in calculation of
scores for all possible pairs, while for p = 0, no score will be calculated between any pair of nodes. The exploration
probability p incorporates controlled stochasticity. In order to determine the minimum score a pair of nodes should
have to connect, we define a cut-off point t.

To sum up, first, we calculate scores between pairs selected based on the exploration probability p and then we sort
these scores in descending order. After that, we connect t fraction of pairs of nodes in the entire graph. Smaller
values of t will result in a social network where the users are very particular about with whom they connect. On
the other hand, very high values of t will result in a network where users do not care about features or topological
properties while connecting. Thus the latter will be close to a random graph model with probability of edge occurring
being equal to p, i.e. t = 1 will result in a pure random graph model with p probability of edges formation. In
Line 4 and 5, from all sets of pairs we select a pair for score calculation with probability, p. In Line 5, r(0, 1) is a
random number generator function which returns a random number from 0 to 1 from uniform distribution. In Line 6,
we use Equation 9 to calculate a score between the selected pairs of nodes. Afterwards, the stopping length based on
the suggested fraction of node pairs to be connected is calculated (Line 11). In Line 12 we sort the selected pairwise
nodes’ scores in descending order. Afterwards, in Line 14, we connect the first t fraction pairs of nodes’ for which we
have calculated scores in Scors, in Line 12, thus, pairs with higher scores will have a higher likelihood of forming
connections.

Algorithm 1 Socialise algorithm

1: procedure SOCIALISE(N, p, t)
2: Pairs← PairCombination(N)
3: i← 0
4: for all pair in Pairs do
5: if r[0, 1] ≤ p then
6: Scores[i]← s(pairs)
7: i++
8: end if
9: end for

10: i← 0
11: StoppingLen← ⌊t× Length(Pairs)⌋
12: Scores← sort(Scores, descending = True)
13: for all score in Scores do
14: Connect(pairs)
15: if i ≥ StoppingLen then break
16: end if
17: i++
18: end for
19: end procedure

6 Curse of Dimensionality in Networks

Real-world social networks contain high dimensional features. If we consider a Facebook user’s posts, likes, photos,
comments, etc. as features, then we have thousands of features for each of the node. One problem with nodes with
high dimensional features is the linear increase of computational complexity for the simulation process discussed
in Section 5. To overcome this problem, GPU computation can be used to calculate Scores in Equation 9. In our
simulation library, we have enabled GPU computation and Figure 2 shows computation time with 300 nodes with
increasing number of features.

7 Dynamic graph

Real social networks evolve over time and are dynamic in their nature. However, dynamic graph datasets are very
rare to find, especially with ground-truth labels and node attributes. These datasets are crucial in the field of dynamic
graph research, but also essential for the evaluation of a link prediction, which usually deals only with static graphs
or a snapshot of a graph at time t. The link prediction problem is to identify new links that will be present in the
network at time t+ 1 [45, 46]. Assuming the network has a set N of nodes and set E of edges at time t expressed as
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Figure 2: CPU vs GPU computation time with varying number of features. (CPU: Intel(R) Xeon(R) W3680 @
3.33GHz 6 cores and 12 threads, system memory: DIMM DDR3- 20 GB, GPU: NVIDIA GeForce GTX 1080Ti)

G(N,Et), and that a link between a pair of vertices i and j is denoted by L(i, j), the goal of link prediction is to predict
whether L(i, j) ∈ Et+1, where L(i, j) /∈ Et. The prediction is performed by using topological and/or non-topological
information about node characteristics and their relationships. Thus, to evaluate or test the performance of a link
prediction method, a future snapshot at t + 1 time is required. Additionally, machine learning based link prediction
algorithms require a future snapshot of the network at time t + 1 as ground truth for training purposes. Interestingly,
by using multiple runs of Algorithm 1 we can already get dynamic graphs, i.e. a future snapshot of the network. Every
time we socialise the graph using Algorithm 1 containing pairs of nodes which are not yet connected, we will get new
connections occurring within the graph. However, this is perhaps not the best simulation of the dynamic nature of real
social networks. The reason is that by running Algorithm 1 multiple times we are forcing each of the social network
users to make consideration and connect with people which they didn’t find interesting enough in the previous run(s)2.
What we really want is not to force the users in the graph to make new connections but allow the users’ interest and
preference to change and then run the Socialise Algorithm 1. This will result in a concept drift in the user preferences,
which can be achieved via changing values of the variables in the sDNA’s of the nodes. This changes in the sDNA
reflect the phenomenon that, the rules that govern social networks can and do change over time. This change of
preference can be achieved via the sDNA Mutation given in Algorithm 2. The intensity of mutation can be controlled

by mutation intensity parameter z, which results in changing values of the variables in sDNA = {w̃, l̃, d̃, k̃}. A lower
value of z would change only few of the w̃. As a result, the user’s preference towards a potential friend’s feature f
would change. In case the value of the mutation intensity parameter z is defined larger, this would result in changes

to the entire preference vector l̃. In Algorithm 2, in Line 1, the procedure takes all y existing sDNAs from the graph,
and mutatePreference, a boolian parameter to determine if l should also be changed. In Line 2 we iterate trough

each of the sDNAs, one at a time. For the given sDNA, we then iterate trough each of the elements in w̃ and l̃ in
Line 3. We than reassign the value of w̃ with the probability z (Line 5). In Line 7 we check if the mutatePreference
is set True. If so, then we also reassign the value of l̃, 1 or −1, with a probability of z (Line 9). The selection between

1 or −1 selected randomly from uniform random distribution. In Line 14 we reassign the d̃ parameter of sDNA, which
is for preferential attachment strength. Afterwards, in Line 16, q number of random numbers are generated, for each

path length preference in Equation 6. The intervals are selected such that it satisfies, k̃2 > k̃3 > .... > k̃q . Afterwards,

in Line 20, we again iterate through each elements of k̃ and reassign from the already generated random numbers in
Line 16.

An interesting observation is, generally people’s behaviours or preference changes are correlated with time. This
change in behaviour, for social network users, contributes to change in the topology of the social network. In our
simulation strategy, a snapshot to snapshot time difference then should also be correlated with the change of the users’
behaviour or preferences, i.e. sDNAs. The parameter z in Algorithm 2 defines this intensity of mutation in sDNA or
intensity of social network users change in behaviour. As a result, the value of z is proportional to the time between
two snapshots of the network. For example, if one wishes to run the Socialise algorithm (Algorithm 1), it will produce
a social network with the first snapshot, snapshot− 1. Then running the Mutation algorithm (Algorithm 2) will result
in change in preferences with a particular value of the parameter z, and then rerunning the Socialise algorithm will

2Here, we are assuming no arrival of new nodes or a constant number of nodes. In case of new nodes, we can easily run
Algorithm 1 with the new nodes and include them in the graph.
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result in another snapshot of the network in a forward time dimension, snapshot− 2. A high value of z will result in
higher time difference between these two snapshots, snapshot− 1 and snapshot− 2.

One may wish to generate event based dynamic networks, i.e. time-stamped link formation. This can also be achieved
by setting the ‘fraction of nodes to be connected’ parameter t from the Socialise Algorithm 1 such that only one link
is formed. A repeated run of Algorithm 1 will result in edge stream with timestamp for each of the edges. As we have
discussed earlier in the section, the time between each of the edge appearing could also be manipulated by changing
the value of parameter z.

Algorithm 2 Mutation algorithm

1: procedure MUTATE(z, sDNA,mutatePreference)
2: for all sDNA in sDNA do
3: for all w̃, l̃ in w̃,̃l do
4: if r(1) ≤ z then
5: w̃ ← r(1)
6: end if
7: if mutatePreference then
8: if r(1) ≤ z then

9: l̃← rand(−1|1)
10: end if
11: end if
12: end for
13: if r(1) ≤ z then

14: d̃← r(1)
15: end if
16: K_r ← r[1, q−1

q
), r[ q−1

q
, q−2

q
), ..., r[ 1

q
, q−q

q
)

17: i← 0
18: for all k̃ in k̃ do
19: if r(1) ≤ z then

20: k̃ ← K_rand[i]
21: i++
22: end if
23: end for
24: end for
25: end procedure

8 How to validate simulation

In order to assess if the desired integration of features, labels, and topology is achieved, we measure and compare
different trained model’s predictability of the labels of the nodes. This comparison is done by designing different
setups of the models such that, the models are able to perform predictions with the entire set of information (features,
labels, and topology) as well as with partial information.

Here we discuss the validation setup. The predictability of the label of a node, i.e. sDNA, can be performed via the
following configurations of an ideal machine learning model:

1. Predictability of nodes’ sDNAs with features combined with the graph topology

2. Predictability of nodes’ sDNAs using features only

3. Predictability of node’s sDNA using topology only

We can expect for an ideal machine learning model to fully capture and learn patterns both from the topological and
feature based information from the network without over-fitting or being susceptive to the noise or stochasticity in the
network. Needless to say, such an ideal model is not currently available in the real-world. However, we should at
least use a machine learning model which can directly utilise both the topological and non-topological information, i.e.
features.

In our case we use the GCN [20] to analyse sDNA predictability of the simulated networks, which can be regarded as
one of the best models to directly combine both the topological and non-topological information of the graph [47].
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8.1 Graph Convolutional Networks (GCNs)

GCN is a multi-layer graph based neural network. In each layer, the features are multiplied with the topology of a
graph in the spectral domain (i.e. symmetric normalised Laplacian matrix [20]). Weights of connections (edges/links
by which the features of a node are passed, considered or summed) are learned using backpropagation. However, as
most of the real-world social networks are not regular graphs, one single weight is learned for all links of a particular
node.

The layer-wise propagation rule for the l’th layer is:

H(l+1) = σ(GH(l)W (l)) (10)

In Equation 10, W (l) are the trainable weight matrices for each layer. H(0) = X (the feature matrix) and G is a graph
representative matrix that we discuss in more detail in Section 8.2. G is fed in every layer of the model until the output
layer. Finally, σ denotes a nonlinear activation function.

For this model, the receptive field grows with the depth of the network [20]. In the first layer, only friends’ features are
considered, and in the second layer friend of friends’ features are also considered, i.e. summed before passing through
a non-linearity. This is because the summarised friends’ information is already gathered in the first layer.

The direct translation from a graph to the structure of the neural network3 is achieved via the graph representative
matrix G. Symmetric normalised Laplacian matrix of the adjacency matrix A has been used in the original formulation

of GCN, i.e. G = ˜Lsym [20].

L̃sym = D̃− 1

2 ÃD̃− 1

2 (11)

Ã = A+ IN (12)

In Equation 12, IN adds the self-connections for each of the nodes in A, D̃ is the degree matrix of the adjacency matrix,

and Ã is the adjacency matrix with added self-connections. The addition of self-connections facilitates incorporation
of self-features of the nodes for better predictability. For example, a social network user’s friends may give away his
or her preference or class label (i.e. predictability based on the labels of the connected nodes), but additionally, his or
her own features (i.e. self-connections in the graph) are also important to consider to predict his or her preference.

In Equation 10, the main transformation to the neural network from a graph is performed through G = ˜Lsym. If

the adjacency matrix A in ˜Lsym (Equation 11) is replaced with a different representative function of the graph, the
structure of the neural network itself will change. However, this does not change the input feature matrix X . As a
result, this is not exactly data preprocessing technique but rather a change in the architecture of the neural network.
We discuss this usage of different graph representatives later in Section 8.2.

Using the GCN we calculate the three mentioned setups for node label predictions in Section 8 by changing the
propagation rule in Equation 10 as follows:

1. Prediction of nodes’ sDNA with both the features and graph topology using propagation rule of Equation 10

for the first layer, where G = L̃sym, and H0 = X , where X is the feature matrix:

H
(1)
(Φ,∆,Π) = σ(L̃symXW (0)) (13)

This is the straightforward GCN model proposed by Kipf and Welling [20]. Here, the graph representative

G = L̃sym is fed in every layer of the model, but the feature matrix X is fed only in the first layer.

2. Prediction of nodes’ sDNA with features excluding graph topology with the following propagation rule:

H
(1)
(Φ) = σ(IAXW (0)) (14)

In this first layer propagation rule in Equation 14, IA is the identity matrix of the adjacency matrix A. IA
is fed into the model until the output layer. Thus, only features of each node are considered and the graph
topology does not play any role for label or sDNA predictions.

3In this paper when we talk about a graph (i.e. a social network) we mention it as a ‘graph’ or a ‘network’ but when we talk
about a neural network it is written in its full form.
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3. Prediction of node’s sDNA excluding the features but solely with the graph topology:

H
(1)
(∆,Π) = σ(L̃symIXW (0)) (15)

In this propagation rule in Equation 15, IX is the identity matrix of the feature matrix X . As a result, only the
graph topology is considered, and features do not play any role in the model. Here, the graph representative

G = L̃sym is fed in each layer of the model until the output layer of the model, however H0 = IX is fed
only in the first layer of the model.

We assume that during the simulations, the first setup will produce more accurate results than the remaining two. This
hypothesis is represented through the following inequality:

(

Acc(H(Φ,∆,Π)) > Acc(H(Φ))
)

∧
(

Acc(H(Φ,∆,Π)) >

(

Acc(H(∆,Π)) ∨ Acc(H(∆,Π))
)

) (16)

where Acc is the test accuracy of the trained neural network model for four different setups, based on four different
propagation rules in Equations 13, 14, 15, and 26. However, the assumption of GCN is that for a lth layer of the model,
only the lth order neighbourhood nodes are influential [20, 47]. To work around this problem, we develop a strategy of
replacing the adjacency matrix A in the Laplacian transformation in Equation 11 graph representative function G, with
three different existing node-similarity measures. In social networks, not all connected nodes have the same influence
and in fact, some non-directly connected nodes in the graph may have greater influence over a node in question than
the directly connected ones. As a result, usage of the adjacency matrix A as a graph representative G may not always
entail the best performance of the neural network.

8.2 Node-similarities as Graph Representatives for GCN

In social networks, the adjacency matrix represents direct links between nodes. In GCN the features propagate through
those links. Thus, a node’s label is predicted by utilising patterns on the surrounding connected nodes’ features and
labels. However, in social networks, not all the connections of a given node have same or even similar effect on this
node. It can be assumed e.g. that the influence that one node has on its neighbour will increase with the number of
their mutual friends. In a similar way, it may happen that a friend of a friend of node i can influence node i more than
a directly connected node (a not influential node, e.g. does not have any common friend with the node i). As a result,
this effectively changes the representation of the network so one can incorporate these relationship characteristics as
a form of social node-similarity-based matrix for the GCN. One way to extract and represent these types of social
relationship (not necessarily direct ones) strengths and other information between nodes is to use a matrix which
describes the similarity between nodes instead of an adjacency matrix. For example, the Katz similarity measurement
considers the number of all direct paths from node i to j [48]. Thus, more mutual friends would result in a higher
number of paths, resulting in a higher value of the Katz score. In this study, we replace the adjacency matrix A with

the three different types node-similarity matrices, Â as they encompass richer information about underlying structure
than traditional adjacency matrix. Following are the three node-similarity measures we have considered:

• Katz, which considers the number of all the paths from node i to j [48]. The shorter paths have bigger
weight (i.e. are more important), which is damped exponentially with the increase of the path length and the
β parameter (A is the adjacency matrix):

Similarity(i, j) = βA+ β2A2 + β3A3 + · · · (17)

The above similarity in Equation 17 will result in the following graph representative Gkatz = L̃sym
katz

L̃sym
katz = D̃− 1

2 ÃkatzD̃
− 1

2 (18)

Ãkatz = Âkatz + IN (19)

• Rooted PageRank (RPR) is used by search engines to rank websites. In graph analysis it ranks nodes by
the probability of each node being reached via random walk on the graph [49]. The Similarity(i, j) is
calculated using the stationary probability distribution of the degree matrix D in a random walk. The random
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walk returns to i with probability α at each step, moving to a random neighbour with probability 1− α. This

results in the following graph representative GRPR = L̃sym
RPR:

L̃sym
RPR = D̃− 1

2 ÃRPRD̃
− 1

2 (20)

ÃRPR = ÂRPR + IN (21)

• Graph Gravity (GG), Inspired by the Newton’s law of universal gravitation, this node-similarity measure
uses degree centrality as the mass of the nodes, while the lengths of shortest paths between them act as
distances [44, 50]. The above analogy leads to the following formula for calculating the score between two
nodes:

Similarity(i, j) =
CD(i)× CD(j)

SP (i, j)2
, (22)

where CD denotes the degree centrality, SP is the shortest path. Node-similarity in Equation 22 will result

in the following graph representative GGG = L̃sym
GG :

L̃sym
GG = D̃− 1

2 ÃGGD̃
− 1

2 (23)

ÃGG = ÂGG + IN (24)

For all the above three node-similarity measures, each Â, L2 represents the nodes-similarity matrix (only for all
possible links) which has been preprocessed and reconfigured further which is discussed in Section 9.1.

8.3 Weighted Feature Matrix

GCN is a powerful model for node classification, and it has been shown to perform well even only with the graph
topology, i.e. without the feature matrix Kipf and Welling [20]. The reason for such a good predictability without the
features could be due to two reasons. Firstly, when our focus is on node classification for graph-structured datasets, the
preferred features of the nodes should be reflected in the topology of the graph as we have discussed in our simulation
process in Section 4. The fact that these features are encoded in the topology may result in a good predictability even
when the features are not directly considered in the model. Additionally, this better predictability based on feature
only or topology only may vary from node to node. For some nodes, the topology only may have better predictability
when compared with the node’s feature. This could be due to the fact that topological position of a node overshadows
the importance of the features.

Secondly, the good performances solely based on topology could be because, similar to real-social network users, we
have defined our sDNA for nodes such that it results in some of the features of other nodes being preferred and some
others not (Section 4). In other words, not all the features play similar roles when it comes to the predictability of the
sDNA. As a result, in the entire graph, some of the features may be disliked or not preferred by the majority of the
nodes when forming graph connections. This is why an additional learnable common weight for a particular feature
for all the nodes may result in better predictability. In our analysis, we have found that adding this additional weight,
which defines the weight for each of the features for all the nodes, seems to perform best, and this is what we present in
Section 10. To introduce this relative importance of features we use one additional weight vector in the GCN model.
We use a common weight for a particular feature for all the nodes. If we have a network with 1, 000 nodes and 50
different features each, for each feature of all the 1, 000 nodes a common (i.e. across all the nodes) weight is used to
learn the strength of each feature. This additional feature weight matrix is the size of the number of features and is
used only in the first layer of the model. Hence all the input features, X are weighted before passing to the hidden
layers.

This additional weight vector results in the following first layer propagation rule based on the Equation 10:

H(2) = σ(G((1S) ⊙X)W (1)) (25)

where S1×|f | is the matrix containing the unbounded learnable parameters to define strength of the feature matrix

X |N |×|f |. 11×|f | is an all one matrix. ⊙ defines the Hadamard product between the feature matrix X and the dot
product of 1 and S.
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9 Experimental Setup

In the experiments, we simulate 30 social networks, with 1, 000 nodes each. Each of the networks has four different
types of sDNAs with 250 nodes subscribing to a single type. We take three different snapshots of the same network,
resulting from an initial 10 networks to a total of 30 networks (i.e. three snapshots of the same network). Each of the
nodes has 50 features, each set of features of a node is generated from a uniform distribution. All the variables for
the sDNA (described in Figure 1 and Section 4) are also generated from uniform distributions. For all the models, we
have four graph convolutional layers. All layers except the output layer use rectified linear units (ReLU) as nonlinear
activation functions. The output graph convolutional layer contains softmax activation and categorical cross entropy
loss is calculated for the four types of sDNAs or node labels. Each of the layers, except for the output layer contains
32 units of neurons, and the output layer has 1, 000 units, the same as the number of nodes that need to be classified.
Finally, we used Adam optimiser, a first-order gradient-based algorithm for our differentiable neural network model
to learn the weights (i.e. to optimise the loss function). Each and every model is evaluated with the same setup. On
every network, 10-fold cross-validation is performed and the average accuracy is reported. Additionally, the standard
deviation of the accuracy is reported for the best accuracy and the original GCN in Table 2. All the hyperparameters
are kept fixed for all the models. We have used the learning rate of 0.01, L2 kernel regularisation (i.e. weight decay)
for all the hidden layers with the decay rate of 0.0005, and a dropout layer after each hidden layer with p = 0.5, i.e
50% of the randomly selected neurons are trained in each training iteration.

Model Description Graph representative G Eq.

FTVanilla Original GCN, feature + toplogy G = ˜Lsym 10

T Original GCN, topology only G = ˜Lsym 15

TLR Original GCN, topology only G = ˜Lsym 26

F Original GCN, feature only N/A 15

FTKatz Feature + Katz based toplogy Gkatz = L̃sym
katz 18

FTRPR Feature + RPR based toplogy GRPR = L̃sym
RPR 20

FTGG Feature + GG based toplogy GGG = L̃sym
GG 22

Table 1: Models used along with the original GCN. All of the models with features are trained twice, once with the
weighted feature matrix in Equation 25 and once without

In Table 1, for the topology only model, T (Equation 15), the weight matrix contains more trainable parameters
compared with the the model in FTVanilla (Equation 13). This is because we have 1000 nodes per network with 50
features each. As a result for the model with both the topology and feature matrix model, FTVanilla the dimension

of the first layer weight matrix w(0) needs to be 50 × 32, where 32 is the hyperparameter for the number of units

we consider in all the models, i.e. L̃sym,1000×1000X1000×50W (0),50×32, and the resulting matrix has a dimension of
1000 × 32, while the output from the first layer has a dimension of 1000 × 32. Whereas for the topology only T, in

Equation 15, where the feature matrix is only an identity matrix, IX , the weight matrix w(0) is directly multiplied with

the graph representative, i.e. the graph topology, L̃sym,1000×1000. As a result the dimension of the weight matrix is a

lot higher (1000× 32), i.e. L̃sym,1000×1000W (0),1000×32 , and the resulting output from the first layer has a dimension
of 1000×32. As we can see there are more trainable parameters in the T model compared with FTVanilla, i.e. 50×32
vs 1000 × 32. If we were to compare both of the models’ performance, T vs FTVanilla, to test if the Inequality 16
holds as a validation of the feature and topology integration process, the total number of trainable parameters for the
both the models should be as close as possible. To make both the models comparable, we introduce another setup for
the topology only model to keep the number of parameters at the similar level to the model using both the features and
topology.

H
(1)

(∆,Π)
= σ(L̃symIXW (a0)W (b0)) (26)

In Equation 26, weight matrix W (0),1000×32 is split into two matrices W (a0)1000×1 W (b0)1×32 to keep the number of
trainable parameters roughly in line with the FTVanilla model.
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9.1 Augmented node-similarity matrix

For ÂGG (Equation 24), the similarity scores for all the non-existing links are calculated and then all the scores are
normalised between zero and one. Afterwards, the adjacency matrix A is summed with the calculated scores for all

the non-existing links. As a result, all the existing links for ÂGG has a value of one and for the non-existing links, the

value ranges from zero to one. For Âkatz and ÂRPR, the path-based similarity scores are calculated for all possible
links. For all the networks, to calculate Katz score, with the highest exponent of five for the adjacency matrix A
(i.e. A5 in Equation 17) and the β = 0.005 is used. As for the RPR, the α parameter is set to 0.85. For each of the

calculated similarity matrices (ÂGG, Âkatz and ÂRPR ), the row is normalised for each of the non-zero elements using

the L2 norm. Moreover, on the similarity-based adjacency matrices (i.e. Âkatz , ÂRPR, and ÂGG), several thresholds
are used. The thresholds are applied on the L2 row normalised matrices. The thresholds are set in a way that, if the
value in the similarity-based matrix is less than or equal to the first threshold then it is set to zero. Whereas for the
second threshold point, if the value is greater than the threshold, it is set to one. If the thresholds are set as zero and
one respectively, then none of the values is changed in the matrix. Also, for some set of thresholds, if they are not
the same, the elements in the matrix which are in between the two thresholds, are unaltered in the matrix. The sets
of thresholds are selected based on empirical analysis, i.e. cross-validation accuracy of the model. However, we also
select a threshold based on the mean value of the elements of the matrix. The mean value threshold hold is applied
such that, if a non-zero element in the matrix is less than or equal to the mean value then it is set to zero and one
otherwise.

In GCN, for the lth layer, only the lth path length neighbouring nodes are considered [20]. Thus, it limits the scope of
the receptive field of the node in each layer and also the maximum receptive field is limited by the maximum number
of layers used in the model. This limitation has also been pointed out in the paper where GCN was first introduced [20].
However, using node-similarity measures along with the augmentation process we describe here allows the model to
consider a three-path distant node j even in the first layer (i.e. a direct connection) for the classification of the node i,
assuming that they have a high node-similarity score. As a result, this augmented node-similarity measure solves the
limitation of layer-wise node-neighbourhood dependencies for the GCN.

10 Results and Discussion

In Figure 3, we show accuracy for all the models that we have tested on 30 simulated networks. All the results are
10-folds cross-validated and average accuracy is reported. In Figure 3 and Table 2, we observe that according to the
hypothesis of Equation 16, the accuracy of the model which uses node features only, i.e. F , is very low. In fact, the
predictability is not better than random chance (the accuracy is around 0.25 and we have four equally represented
labels or sDNA types to predict). Additionally, from Figure 3 and Table 2 we can see that for the majority of the
datasets (except only three networks) models which utilise both the topology and features of the graph perform better
than the two other setups where topology and features are considered independently. When only topology is used
(i.e. T), the model T performs the best in three networks. Two of them are a third snapshot(i.e. the 3rd run of the
Algorithm 1) of a network (networks 1-2 and 6-2), and the third one is the second snapshot of the network (2-1). This
can be due to the fact that as we run Algorithm 1 multiple times, the patterns of preferences get encoded within the
network topology so that the topology only model performs better. This is something we also expect in real world
networks i.e. as a person makes more connections, their connection making patter becomes eminent.

Amongst methods using node-similarity matrices instead of the node adjacency matrix, we see that the choice of
threshold seems to have a significant effect on the model-performance. However, we can also see that using the mean
value of the L2 normalised node-similarity matrix as a threshold (described in Section 9.1) performs quite well. In
fact, on seven networks with the setup of using mean value as a threshold on the node-similarity matrix (discussed in
Section 9.1) outperforms all the other models (Table 2). The models with the mean value as thresholds are written as
‘auto’ in Table 2.

If we do not consider differences between thresholds and usage of the vector S on the node-similarity measures, Katz
significantly outperforms the original GCN (i.e. FTvanilla) and two other node-similarity measures (RPR and GG)
based on the results in Table 2. On five networks, RPR performs the best and GG on one network. However, on
the basis of average best-performing models on all the datasets from all the 20 different models, following models
performs best: 1) FTGG0.0− 1.0, 2) SFTkatz0.0− 0.5, and 3) FTkatz0.0− 0.5. Thus, on average, GG performs
best across all the datasets.

The results also show that, the usage of a trainable parameter S based on Equation 25 gives us a better model for
many datasets than when not using it. In 15 out of 30 datasets, using S on the first layer of the model outperforms
the other models (Table 2). Furthermore, models with S which perform best are mainly not the original GCN but the
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node-similarity-based models, except for one dataset. However, this may not imply that the use of additional weights
in the first layer based on Equation 25 only performs well on node-similarity-based models. This is because the usage
of node-similarity may have better predictability in general than the adjacency matrix.

From Figure 3 and Table 1 we can see that the performance of a node-similarity-based model varies depending on
the network the model is trained on. This is because all the networks are simulated with different rules, and no two
networks are exactly the same. We can expect to see the same in real-world networks as well. Thus, the choice of
a node-similarity method could be based on empirical analysis. However, one may also use the mean value of the
normalised node-similarity matrix, especially with GG as we have discussed earlier in this section.

The results in Figure 3 show that we can achieve high accuracy (in fact higher than using only the adjacency matrix)
on node classification when a node-similarity-based graph topology is used. This is particularly useful for very dense
networks. The training time that is required for a very dense network is extremely high for GCN. Many real-world
datasets, such as face-to-face interaction networks, tend to be very dense. Thus, the similarity-based matrices can be
used (with a suitable threshold to reduce the number of connections as per Section 9.1) in such scenario to reduce
training time.
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Figure 3: Accuracy from different Models (average from 10-fold cross-validation). Models written as, F - feature only,
T - topology only, FT - both the feature and topology, FTvanilla - the original GCN. Models with S in the right box
represents if an additional feature weight matrix in the first layer (Equation 25). The left box shows results for models

that use graph representative G = ˜Lsym, Equation 10 (i.e. adjacency matrix). The middle box uses GNS = L̃sym
NS ,

where NS is a node-similarity (Katz, RPR, and GG) measure with different thresholds ( Equation 18, 20 and
, 22). Similarity-based G is preprocessed based on Section 9.1. The preprocessing threshold auto implies automatic

selection of a threshold based on the mean value of the Â (Section 9.1). All the networks are represented in terms of
snapshots. For example, 0-0, is the first network’s first snapshot, 0-1 is the first network’s second.
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Networks FTvanilla([20]) Acc (SD) Max Acc (SD) Max Acc Model

0-0 0.721 (0.011) 0.732 (0.007) FTRPRauto

0-1 0.71 (0.022) 0.762 (0.011) SFTkatzAuto

0-2 0.699 (0.032) 0.739 (0.012) SFTkatzAuto

1-0 0.741 (0.013) 0.753 (0.012) SFTkatz0.1-1.0

1-1 0.736 (0.034) 0.767 (0.007) SFTvanilla

1-2 0.754 (0.027) 0.767 (0.033) T

2-0 0.507 (0.045) 0.559 (0.009) SFTkatz0.0-0.5

2-1 0.599 (0.044) 0.618 (0.074) T

2-2 0.671 (0.017) 0.675 (0.014) SFTRPRauto

3-0 0.554 (0.018) 0.576 (0.009) SFTkatz0.0-0.5

3-1 0.517 (0.027) 0.553 (0.013) SFTGG0.0-1.0

3-2 0.515 (0.045) 0.555 (0.016) SFTRPRauto

4-0 0.49 (0.011) 0.508 (0.006) FTRPR0.0-0.5

4-1 0.51 (0.010) 0.532 (0.013) SFTkatz0.0-0.5

4-2 0.506 (0.010) 0.545 (0.009) FTkatz0.0-1.0

5-0 0.701 (0.028) 0.741 (0.005) FTkatz0.1-1.0

5-1 0.758 (0.010) 0.783 (0.005) SFTkatz0.1-1.0

5-2 0.756 (0.044) 0.807 (0.004) FTRPRauto

6-0 0.686 (0.009) 0.709 (0.010) FTkatz0.0-0.5

6-1 0.701 (0.030) 0.748 (0.018) SFTkatzAuto

6-2 0.726 (0.035) 0.759 (0.015) T

7-0 0.757 (0.010) 0.762 (0.008) SFTkatz0.0-0.5

7-1 0.738 (0.013) 0.764 (0.010) FTkatz0.0-0.5

7-2 0.731 (0.015) 0.761 (0.013) FTkatzAuto

8-0 0.677 (0.016) 0.724 (0.007) FTkatz0.0-0.5

8-1 0.717 (0.028) 0.752 (0.007) SFTkatz0.1-1.0

8-2 0.731 (0.016) 0.742 (0.013) SFTkatz0.0-0.5

9-0 0.699 (0.014) 0.747 (0.011) FTkatz0.0-1.0

9-1 0.68 (0.012) 0.726 (0.019) FTkatz0.0-0.5

9-2 0.627 (0.012) 0.726 (0.006) FTkatz0.1-1.0

Table 2: Accuracy (ACC) and standard deviation (SD) of the best vs original GCN model. Models written as: F -
features only, T - topology only, FT - both features and topology,FTvanilla - the original GCN. S in the right column

denotes usage of an additional feature weight matrix in the first layer (Equation 25). The models that use GNS = L̃sym
NS ,

where NS is a node-similarity (Katz, RPR, and GG) measure with different thresholds (Equation 18, 20 and, 22)
are represented in the last column with the corresponding node-similarity matrix (e.g. katz for the model FTkatz0.0-
0.5). All the similarity-based G are preprocessed and reconfigured based on Section 9.1. The preprocessing threshold
auto implies automatic selection of a threshold based on the mean value of the normalised node-similarity matrix (as
per Section 9.1). Networks are represented in terms of snapshots, e.g. 0-0: first network’s first snapshot, 0-1: first
network’s second snapshot etc.
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11 Conclusions and Future Work

In this work, we have evaluated the performance of GCN on simulated friendship-based social network datasets. One
limitation of the GCN is that it is limited to the number of neighbourhood path by the number of layers used in the
model. We argued that using the node-similarity matrix as a graph representative allows us to solve this dependency
between the lth layers and the lth order of the neighbourhood nodes. Additionally, our approach with the node-
similarity measures may perform well enough with only a few layers compared with the original GCN due to the less
dependency between the highest number of layers used in the model and the highest order of node neighbourhood
considered. The GCN or any deep learning model is prone to overfitting when a large number of layers are used [20],
and our approach may get around this problem and achieve higher accuracy only with a few layers. It has also been
empirically shown that most of the models with the augmented node-similarity measures outperform the original GCN.

In total we have proposed four new variations of the GCN model. Three of them are primarily based on the Katz, RPR,
and GG scores as a form of the graph topology encoding. The fourth model is where we add learnable parameters for
each of the features independent of the nodes for the entire graph, allowing the model to ignore the input features if it
so chooses. This variation of the model can be used with the adjacency matrix as well as with the Katz, RPR or GG
scores, and its primary motivation was the observation that for some datasets using the topology only, gives superior
results. The results show that these new variations outperform the original GCN model in terms of accuracy.

For the node-similarity-based matrices, we have proposed a reconfiguration technique. This reconfiguration results
in augmentation of the graph represented by the node-similarity matrix. This is particularly important as for node
classification task with GCN-like models, we only have one graph sample to train the model. The augmentation
technique can be used to better train the model on the same graphs with several different augmented node-similarity
matrices (with different thresholds and similarity measurements). Several representations of the same graph topology
can also work as a regularisation technique to prevent overfitting of the model.

We argued that a node in Facebook-type social networks can be defined in terms of a set of preferences (which we
coined as the sDNA) of a node). Based on the sDNA, our simulation strategy provides a comprehensive guideline
on how to generate dynamic networks with features, and ground truth labels, particularly useful to train and test the
neural network-based learning systems. We have validated the integration of features and topology of the simulated
graphs based on the predictability of the GCN. If the integration process is good enough, the GCN should not perform
better on a model with topology only, compared with a model with both the topology and feature. However, we have
found that a large number of models would perform better with only the topology of the network. We have concluded
that this is because not all the features play a similar role in the graph. To include such variation of importance for
each of the features for all the nodes, we have introduced the weighted feature matrix for the GCN. The new variant
of the GCN with weighted feature matrix, have shown to have great potential. With the weighted feature matrix, the
majority (except in three datasets) of the models perform better with both the feature and topology compared with the
topology only. This not only produces a new variant of the GCN model but also shows that our integration process of
the topology and features is successful.

The three cases where topology only performs better could be due to significantly more learnable parameters the
model has compared with the feature and topology model that we have discussed. To solve this problem of an unequal
number of learnable parameters, we have introduced another variation for the topology only model, where the number
of learnable parameters is reduced by using a low-rank approximation of the weight matrix. The reduced parameter
model for the topology only also performs well compared with the model with more parameters. A further inspection
of those datasets may reveal the underlying reason why the topology only models perform well for them. However, it
could be possible that for those three datasets, the features are reflected within the topology so well that the topology
only model becomes more powerful and adding features simply results in redundancy.

We have used a few empirically selected thresholds for the augmented node-similarity matrix. A more effective way
to select optimal thresholds is another future direction to explore.

We also provide an opensource library for social network simulation written in Python with GPU computation support
for high dimensional features. We aim to incorporate more features in the future for the simulation library.
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