Using the Forensic Case Generator

in a Group-based CSI

MICHAEL JONES

The Assignment Context

- Computing Framework with 4 pathways
 - One of which is Forensic Computing & Security (FCS)
- Common year 2 unit theme: 'integration'
 - o Common element: project management
 - o Pathway-specific element: chosen by pathway leader
- FCS specific element: Group-based CSI
- Organisation:
 - o 2 weeks full-time at end of second term
 - o Group size − 5 or 6

Pathway Specific Element

- Tools available: FTK, EnCase, ...
- Activities
 - Seizure *
 - Capture
 - Investigation
 - o Report writing (witness, expert witness)
 - Simulated court event

o * in week prior

Aims of the Assignment

- To make the students think
 - What are we looking for?
 - Where could it be (hidden)?
 - What does it mean?
- To provide challenges for all students
- To provide limited guidance, assistance
- To provide lots of routine activities

The Cases

- Cases for each group are unique, but share a common theme
- (possibly) the same crime
 - o In this case: terrorist plot linked to the Olympics
 - Each case linked to different events in London
- Similarity means:
 - Students can collaborate
 - o Collusion, copying are more difficult
 - o Commissioning?

The Data

- Contacts
 - Names, mobile phone numbers
- Locations
 - Meeting and target
 - Actual and triangulated
- Times and dates
 - o Rehearsal, warning, target (zero)
- 'labelling'

Data Sources

• Examples:

- String
- o 'regular' expression
- o File
- Directory

• Examples:

- 0 07[0-9]{9}
- \$namesDirectory?column=firstName

GPS Data Manipulation

- Options
 - None
 - Triangulation
 - Translation
- Triangulation
 - Four points generated from the target location
 - Endpoints of two intersecting lines
- Translation
 - Location 'moved' a short distance

Data 'Labels'

- 'label' (attribute) associated with each data item
- Example:
 - o Data: 07123456789
 - o Label: Contact 1 of 3 Mobile
- Labelling options:
 - o 'of N' included/omitted
 - Label included/omitted
 - Clues to omitted labels included/omitted

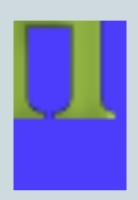
Encoding

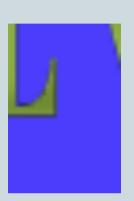
- Plaintext can be easily found using tools
- Example encodings used: base64, hexadecimal
 - Can be combined
 - o Can be applied to: label, value, 'all'
 - o Example rule:
 - base64|hex=30-50% & base64+hex= & loops=1-2

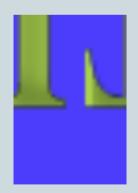
Steganography

- 20+locations associated with files
- Examples:
 - Metadata
 - o Body
 - ➤ E.g., LSB, HTML/XML comments
 - x E.g., as sounds
 - x E.g., across multiple files
 - Appended
 - o Generated file(s)

Groups


- Multiple file systems produced
 - o 4 devices involved per group
 - o Mobile phone, SD cards, memory sticks
- Many file types involved
- 'Graded' steganography
 - JPG metadata
 - Simple 'non-tools' example: image tiling
 - o 'Programming' example:
 - Embedding single characters in HTML tags within a thousand+ files


Image Tiles



Transcript

14

```
Attribute: Driver 1 of 1
value: Disco Stu
encoding regime
encoded
    all: Driver 1|Disco Stu
    attribute: Driver 1
    value: Disco Stu
data embedded
    all: <!-- Driver 1|Disco Stu -->
    attribute: Driver 1
    file: 03/Hermione/35_Mathilda.jpg
    file type: docx
    location: xml file body
    original file: Generated Latin (0017) docx
```

The Experience

- Each case:
 - 80+ data items to locate
 - Around 20 techniques involved
 - o 'of N' omitted from labels
- Some techniques employed had not been covered before
 - o E.g., image 'tiles'
 - E.g., finding terror organisation

The Terror Organisation

- Organisation name encoded
- Embedded in JPG metadata
 - o In one image in a sequence of photographs
- File appended to another JPG in the sequence
- Bytes modified at the 'join point'
- Modified file placed in directory along with others from the image sequence

The Results

- Data Retrieval
 - o Each group found (almost) all the data
- Report Writing
 - o (reasonably) thorough and well-written
- Crime Inferring
 - Moderate
- Reflection on Experience
 - o Fair

Errors in Inferring Crimes

• Example 1:

- o Found: location, date, time
 - Lord's cricket ground August 2012
- o Conclusion: no association with Olympics

• Example 2:

- Incorrect GPS triangulation -> near Florence, Italy
- o Conclusion: 'Mafia' involvement

• Example 3:

 Conclusion: no crime and no suggestion of other lines of enquiry or other data sources that might be consulted

Conclusions

- Good student engagement
 - Throughout the two weeks
 - Throughout the groups
- Effective collaboration
 - Techniques communicated to other groups
- Limitations in data analysis highlighted

Commentary

- 'Shallow' problem solving
 - Limited dependencies
 - Multiple techniques involved
 - Abstraction may be more challenging
- Development: linking to other databases
 - Example: stealing cars to order
 - × Additional database: 'DVLA' database