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Abstract. Over the past decades, there has been an increasing interest
in spine kinematics and various approaches have been proposed on how
to analyse spine kinematics. Amongst all, emphasis has been given to
both the shape of the individual vertebrae as well as the overall spine
curvature as a mean of providing accurate and valid spinal condition
diagnosis. Traditional invasive methods cannot accurately delineate the
intersegmental motion of the spine vertebrae. On the contrary, capturing
and measuring spinal motion via the non-invasive fluoroscopy has been
a popular technique choice because of its low incurred patient radiation
exposure nature. In general, image-based 3D reconstruction methods fo-
cus on static spine instances. However, even the ones analysing sequences
yield in unstable and jittery animations of the reconstructed spine. In
this paper, we address this issue using a novel approach to robustly re-
construct and rigidly derive a shape with no inter-frame variations. This
is to produce animations that are jitter free across our sequence based
on fluoroscopy video. Our main contributions are 1) retaining the shape
of the solid vertebrae across the frame range, 2) helping towards a more
accurate image segmentation even when there’s a limited training set.
We show our pipeline’s success by reconstructing and comparing 3D an-
imations of the lumbar spine from a corresponding fluoroscopic video.

1 Introduction

In orthopaedics, identifying and accurately reconstructing 3D spine has always
been of a great interest. Accurate shape and motion of the spine is essential to
both physicians, medical students and patients. It’s important because it’s the
means of understanding, assessing and providing a spinal condition diagnosis.
Spine shape and kinematics reconstruction has been extensively studied [27, 28]

Many studies focus on individual vertebrae surface reconstruction or use pre-
defined rigid models (usually from CT scans) for the quantification of in vivo
inter-vertebral motion. They are fitted to sequences of images and rotoscoped
and registered on the target frames or on each subsequent frame in video se-
quences [27, 28]. From an animation point of view, these approaches are limited
in a sense that potential video sequences would be reconstructed statically per
frame. Hence the per frame errors would result in jittery and unstable recon-
structed animations. These methods lack shape representation as they assume
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the vertebrae shapes stay solid throughout the captured image sequence, not
accounting for projection noise across a sequence. This is not always the case,
even though spine vertebrae are theoretically solid, and it’s mostly because of
the presence of noise in the target images. To address issues such as incorrect
model initialization, segmentation and tracking error accumulation, a number of
successful techniques have been developed to minimize the resulting errors for
both surface reconstruction and kinematic analysis [19, 3]. The majority of them
are solving temporal coherency based on some sort of interpolation method as
in [27]. Many, such as Prabhu et al. [18], have used Kalman Filtering (KF) to
smooth the fitted landmarks after fitting. Others used either the current shape
parameters and (KF) to update the view space per frame or even used convolu-
tional neural networks (CNN) to accurately track and reconstruct [10, 17].

Fig. 1. Animation Reconstruction Pipeline

Crivellaro et al. [8] estimate the pose in a given frame, and then add it as a
component of the pose prior for the next frame using KF for smoothing. Liao
et al. [14] apply 3D score maps on a per CT slice basis (for the same frame).
Hence leaving out the over time segmentation information whereas [2, 1] work on
neighbour slices only and consecutive frames. Wand et al. [24] achieve the global
smoothness over time by iteratively merging geometry from adjacent frames.
The work in [12] is based on as rigid as possible (ARAP) principle presented
in [21]. It assumes there’s a slight deformation model that is guided from frame
to frame. In [26] CNN are employed however as it’s obvious from the results,
the final tracking is jittery. Salzmann et al. [20] smooth out predictions over a
predefined set of frames to alleviate jitter.

Despite the above mentioned methods applied time varying analysis filters
to smooth out and improve tracking accuracy, they usually suffer from 2 ma-
jor problems. At first, they are sensitive to outliers. Secondly, inevitably the
smoothing applied amongst the shapes between frames derives slightly differ-
ent per frame morphologies for the final tracked objects. This is unwanted, as
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the aim is to rigidly segment from pose to pose and across all frames based on
the underlying image information so as to produce a realistic animation with
minimal jitter. Our method addresses the above by relying on random forests
(RF) for the selection of displacements for all shapes’ correction across the frame
range simultaneously. More analytically, we used the whole target frame range,
such that each next iteration prediction, for each shape of the sequence, is based
on a collection of RF predictions across the whole frame range from the previous
iteration. This way we can improve segmentation, as wrongly chosen individual
landmark displacements obey a global per iteration displacement factor. Thus
they can’t severely affect the next frame segmentation in case of accumulated
errors. Possible shape deviations are corrected as part of a more general drag
towards the most significant displacements imposed to the rest of the shapes
across the frame range. In our method we applied RF over time across the test
frame range to fit the reconstructed 3D surface model to our video sequence. This
is a different approach compared to [15] where RF have been used to improve
individual image segmentation.

In our method, we used as a basis and extended the traditional active shape
model (ASM) [6]. ASM has been extensively used mostly because of it’s proven
robustness especially when dealing with large image inconsistencies and noise
variations which is what fluoroscopy produces. The main contributions of this
paper are:

– A novel approach which uses ASM allowing it to retain the shape of the
supposedly solid vertebrae across the frame range

– A more accurate image segmentation, as a consequence of the first contribu-
tion, even when there’s a limited training set because of global drag towards
the most significant displacements

2 Method Overview

In Figure 1 we present the pipeline of our method. We start with the input of
both target images and a generic 3D surface model for a particular vertebra.
These are then fed to the point correspondence step where we identify the 3D
model points that correspond to the 2D radiographic landmarks. Then, ASM
fitting is performed across the target frame range simultaneously for all frames
using RF for the choice displacement predictions and the derived new contours
are computed for each frame at this iteration. After having acquired the updated
contours, we update our initial surface model solution with the derived contours
and deform across all target frames for this iteration based on an adaptation
of the non stereo corresponding contour (NSCC) algorithm [13] and the cycle
continues.

3 Methods

In this section, we analytically present our method of extending ASM by itera-
tively fitting over time using RF voting (OTRF).
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3.1 Traditional ASM method

In ASM [6], a statistical shape model (SSM) framework, also named point distri-
bution model (PDM) is used to fit a shape contour to a 2D image by iteratively
deforming the initial shape instance according the PDM. Each shape is a vector
of 2D landmark points vi = {li1 ..lin}, where n is the total number of points of
the shape. For each shape in the training set a v vector is created and all vectors
are the aligned via principle component analysis (PCA) [6]. Shape alignment
results in a mean shape x̄ = 1

n

∑n
i=1 vi ,where n is the total number of training

shapes. Now, after PCA we can describe our model with the following:

x ≈ x̄+ Pb (1)

,where b is a vector of the most significant shape coordinate parameters of the
deformable model [6] and P is the covariance matrix of first t eigenvectors cal-
culated during PCA. This matrix contains eigenvectors and their corresponding
eigenvalues λi. The largest eigenvalue describes the most significant shape vari-
ation and only a few t eigenvalues are needed to describe most of the shape’s
variation [4]. Equation 1 is then re-written to the following:

b = P−1(xi − x̄) (2)

By varying the parameters of b within −3λi < bi < 3λi, we can vary the mean
shape towards the most significant eigenvectors of P matrix when fitting to a
target image. So, at first during training, for each of the landmarks of the shape,
we create SSM derivative profiles (see Figure 2) sampled along the normal of each
landmark across the frame range of images, dgij = [gij1 − gij0 , ..., gij2k+1

− gij2k ],

where dgij is each landmark’s derivative profile, k is the number of sampled
profile points on either side of the landmark along the normal, i refers to every
image of the training set and j to each landmark of the shape across images [4].
Their corresponding covariance matrices C are also computed

Ci =
1

n

n∑
i=1

(gij − ḡj)(gij − ḡj)T (3)

and we finally derive the mean normalized derivative profile for each landmark
across the frame range.

ḡj =
1

n

n∑
i=1

gij (4)

, where n is the total number of images in the training set. Then during fitting,
for each of the landmarks, we create a derivative search profile by sampling small
segments of m pixels across n pixels on either side of our landmark along the
normal (m < n) and compare to the mean normalized derivative profile using
Mahalanobis distance,

D = (gj(d)− ḡj)S−1(gj(d)− ḡj) (5)
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, where gj is current search profile, ḡ is the mean model profile, d is the center
pixel of the current profile sample across the normal and S is the mean covariance
matrix for this specific landmark. Minimizing D is equal to maximizing the
probability of g(d), hence the d that achieves the minimum D is the one towards
which this landmark should be moved [4]. We do this for all landmarks to derive
their new most likely locations on the image. Finally, at every fitting iteration
we update the b model parameters with gj(d)

b = PT (gj(d)− x̄) (6)

Fig. 2. Search profile along landmark normal

3.2 Proposed Method

In our approach, we extend ASM by iteratively fitting across the test frame
range simultaneously using random forests (RF) for the choice displacement
predictions. We refer to it as ’over time’ prediction as well. The traditionally de-
rived new contour predictions are computed for each frame at each iteration and
are used to simultaneously feed each next iteration’s shape fitting parameters,
across the frame ranges tested. More analytically, at each iteration i we build
displacement choice decision trees Tjir from each test frame range r for each of
the landmarks of our shape.

Tjir = {Tij1 ..Tijr } (7)

,where j is the current landmark, i is the current iteration and r total number
of frame ranges to simultaneously segment. Consequently, we use Equation 7
across the shape landmarks

S = {T1..Tn} (8)

, where n is the total number of landmarks and i and j subscripts have been
omitted in Equation 8 for notation simplicity. Once, our trees are built per
iteration, we use them to build and train a random forest and then derive a
prediction per landmark to represent the most likely best choice for displacement
for this landmark across the test frame ranges. From S we derive a vector of our
shape predictions, for each landmark separately

fpi = {fpi1 ..fpij} (9)
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,where j represents a single landmark of our shape and i is the current iteration
number.

In Figure 3 we show how we used the different searched frame ranges across
the target frames to produce trees, as well as how each of them is fed to the RF
so as to finally produce a displacement vector per iteration out of the predictions
per landmark across these ranges. The idea is that by searching over time, and
not on a per frame basis, each next frame’s segmentation doesn’t rely solely
on static image information. Similarly, the pose across the target frame ranges
doesn’t depend exclusively on the each previous frame’s pose. In the traditional
ASM, during search phase we scan along the normal to the point in question or
it’s surrounding area and use a metric such as Mahalanobis distance to express
the likelihood of the current searched profile compared to the training set’s
equivalent profile as shown in Figure 2, per each individual frame.

In our method, we harvest the underlying image information for both shape
and pose over time and across all target frames and compute a refined shape that
is insensitive to local noise and takes into account both local and global shape
variations. Because of this, the shape keeps it’s rigidity across the sequence and
overcomes the possibly inaccurate smoothing caused by interpolating 2 frames
(as KF based approaches [7]). For example, in this paper Cordea et al. [7] used
an extended Kalman filtering approach and applied it onto Active appearance
models (AAM) [5]. They updated the shape and pose parameters per iteration
during fitting. Huang et al. here [10] also used an this approach to update shape
and pose parameters and refine per frame, along with a temporal matching filter
to smooth inter-frame shape differences.

These methods inevitably result in some sort of smoothing because of the na-
ture of Kalman filtering itself. In medical imaging and specifically fluoroscopy, a
low-radiation incurring technique, there is a high possibility of increased amounts
of variation even between successive frames. Hence, one frame might have been
precisely segmented and another not. This would result in an in between dis-
placement for this particular landmark which would deviate from the image
feature. The smoothed interpolated position that KF approaches are based on,
would then result in successive frames to be clearly different from each other.

In our method, what we are suggesting is that the final shape is as solid
as possible (subject to sub pixel inaccuracy), driven by the information of the
whole range of target images and any inter-frame shape inconsistencies are only
due to sub pixel inaccuracies caused during segmentation. Thus, producing a
smooth and overall accurate animation result with no visually distracting jitter.
We manage to achieve this using over time RF (OTRF) displacement choices
across our frame ranges as described previously.

Most KF based and extended KF (EKF) approaches that update the shape
are either updated within each frame [10] using information from previous it-
erations, between successive frames [17] or across a sequence to reinforce shape
parameters [7]. In [25] KF is used to correct the global rigid motion after fitting
has converged on each frame. Consequently, the use of KF which is mostly used
to derive a better initial shape for each of the next frames, is not involved in
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Fig. 3. RF fitting across frame ranges

iterative shape fitting. Additionally, KF is usually accompanied with a smoother
or similar method that smooths the in between observations. This is because KF
methods are generally sensitive to outliers and there is a need for a more robust
outlier detection method to handle tracking inaccuracies. Wadehn et al. show
in [23], a smoother that was put in place to address possible outliers. Others,
such as Ting et al. in [22] followed a weighted least squares approach by apply-
ing weights to data observations to tackle outliers and hence improve tracking
robustness.

However, all the above mentioned methods could result in some sort of inter-
frame inaccuracies owed to the nature of KF and consequently shape incon-
sistencies in an animation reconstruction pipeline. The shape will change and
adapt to inter-frame smoothing and in the presence of outliers successive frame
shapes will vary even more significantly. This is undesirable when our aim is to
robustly reconstruct and rigidly derive a shape with no inter-frame variations
and produce animations that are jitter free across our sequence.

3.3 Reconstruction

The rest of the reconstruction pipeline is mostly based on an adaptation of
the NSCC algorithm [13], which practically updates the surface of a 3D model
from a contour based on correspondences between associated 3D surface and 2D
contour points. In this paper we use a single plane fluorscopy video to segment
lumbar spine contours, assuming that there’s no in-plane rotation. In the future
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Fig. 4. Maya reconstruction pipeline. From 2D segmented points imported (up left im-
age), all the way down to final model deformation (bottom right image)

we are planning to adapt our method using bi-planar sequences so as to achieve
a more robust shape representation. As part of ASM we trained our model on
a 2D fluoroscopy sequence with the help of a radiographer. For each instance
of our shape we used 43 landmarks to represent it. We have only focused on
the 3D reconstruction of the vertebral body. The complete Maya reconstruction
pipeline described in the following paragraph is depicted in Figure 4. At first,
we identify point correspondence between our 2D contours and our 3D generic
surface model within Autodesk Maya 3D package. Then, we bring into Maya
the 2D segmented contours C2D and superimpose them on the corresponding
vertebra at a particular frame f (Figure 4, image 1). Secondly, we import our
generic model M3D and identify in planar view the corresponding 2D points
on its 3D surface (Figure 4, image 2). Then, we align the model on the 2D
contour on the radiograph (Figure 4, image 3) and after this the 3D projected
contours to the model (hence the 3D projected to the 2D contour) (Figure 4,
image 4). Finally, we iteratively deform the 3D projected contour C3D to C2D

on this particular frame (Figure 4, image 5) and then we deform the rest of the
M3D to reflect the displaced C3D (Figure 4, image 6). This way, the 3D model
adapts to each new frame segmented with ASM and when this process is over we
derive an animation based on the whole sequence segmentation. It is important
to highlight that as our method is based on a ’model to images’ correspondence
to derive the 3D reconstruction, it’s evident that the final reconstructed shape
will be in immediate relation with the 2D segmentation. This is why it’s crucial
to derive a ”solid” 2D shape in the first place.

When the reconstruction is completed across the target frame range we can
monitor the inter-frame shape differences. By applying our method, we derive an
almost rigid (subject to sub pixel inaccuracy) shape across the sequence whilst
tracking the vertebra in question. This is owed to the fact that the 3D model
shape is driven by and adapted exclusively to the 2D segmented contour. This
segmented contour from ASM is iteratively updated based on the most RF voted
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displacement and it remains solid. In contrast, the commonly used KF with a
fixed lag smoother is causing a smoothing effect between observations.

Figure 5 shows the process of RF voting and choosing the most voted dis-
placement. We are doing the same for all shape’s landmarks and derive a solid
contour across frames. In Figure 6, the 2D contour drives the 3D shape at each
frame of our video sequence and in Figure 7 we present the final reconstructed
frames.

Fig. 5. RF range voting across frames’ at every iteration

3.4 Experiments

Figure 7 shows 2 final reconstructed frames f1, f75 . As seen in both Figure 6
(bottom right image 8) and Figure 7, there is no visible inter-frame surface
variation amongst the compared frames whilst tracking is correctly achieved.

We implemented the traditional ASM method and a commonly used fixed-lag
KF alongside with our over time RF fitting (OTRF) extension. Table 1 shows
the quantified results of their mean inter-frame rmse (root mean squared error).
We derive our final rmse metric fc.

fc =
1

n− 1

n−1∑
i=1

errii+1
(10)

,where fc is the inter-frame error metric across the sequence and i is every frame
in our sequence. Finally, we can derive the average rmse for each method by
averaging fc across the frame range, as shown in Equation 11.

f̄c =
1

n

n∑
i=1

fc (11)

As shown in Table 1, our proposed OTRF produces less inter-frame mean
error than the traditional ASM and the KF based ASM and thus leading to
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smoother and more accurate animation reconstructions which becomes more
obvious in the presence of outliers or a limited training set.

Method Inter-frame surface RMSE Sum - f̄ c

ASM 1.2330
KF ASM 0.6891
OTRF ASM 0.6617

Table 1. Inter-frame RMSE results across 75 frames.

Fig. 6. Reconstruction pipeline and final coloured difference comparison. Images 1 to
4: Individual 3D projected contour fitted to 2D segmented contour. Images 5 and 6:
Frame f26 , f75 after fitting and reconstructed with KF and Traditional ASM. Images
7 and 8: f26 , f51 , f75 reconstruction with over time RF voting (OTRF) displacement
ASM fitting. Image 8 superimposes OTRF reconstructed f26 , f51 , f75 to highlight the
minimal colour differences across the range.

3.5 Conclusion

In this paper, we introduced a novel extension method applied on ASM which
addresses the issue of jittery 3D reconstruction animations when reconstructing
from 2D images. We trained and segmented using a test fluoroscopy video of a
lumbar spine. The reconstructed 3D shape retains it’s rigidity across the sequence
and it doesn’t suffer from inaccurate smoothing caused by interpolating adjacent
frames. We used random forests as a voting method to select the next iteration’s
most likely displacements during ASM fitting, simultaneously across all frames.
The algorithm outperformed the traditional ASM and KF implementations on
the same dataset in terms of rigidity, whilst correctly segmenting the 2D and thus
tracking the 3D vertebra in question. Our future plan is to improve the developed
pipeline and extend it to incorporate another view so as to reconstruct using a
biplane rather than a single plane set up.
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Fig. 7. final reconstructed frames f1, f75
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