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A B S T R A C T   

The assessment of the orientation of built structures is often hampered by the lack of historical or ethnographic 
records that could be used to support claims of alignments to celestial events such as the rising and settings of 
sun, moon or stars. This has led to an obsession with surveying large numbers of structures in order to identify 
patterns in orientation that might betray intentionality - however, no first-principles framework has ever been 
proposed and the few statistical significance tests used are of limited applicability. This paper addresses these 
problems by laying out a probabilistic framework for the analysis of structural orientations and using it to 
develop a test of statistical significance. The framework is based on two simple premises: firstly, that the mea
surement of a structural orientation can be modelled as a probability distribution; and secondly, that in order to 
assess the likelihood of celestial alignments such a distribution needs to be coordinate-transformed in a manner 
not unlike that of radiocarbon calibration. A method that aggregates multiple structural orientations and 
quantifies their statistical significance in the form of a p-value is then introduced. Finally, the robustness of the 
presented methodology over previous approaches is demonstrated using real-world datasets of orientations of 
ancient Egyptian temples and tombs and Scottish Recumbent Stone Circles, and the ensuing conclusions 
compared with past interpretations.   

1. Introduction 

The search for meaning in the orientation of built structures, 
particularly in prehistory, is as old as archaeology. Already at the turn of 
the 20th century there were those that, for example, saw intent behind 
the careful orientation of Stonehenge and its correlation with the solstice 
sun (e.g. Lockyer, 1906). This interest eventually led to a peak in the 
popularity of archaeoastronomy in the 1960s and 70s, despite the con
tested nature of the claims and interpretations being made (e.g. Haw
kins, 1964; Thom, 1967). The field then saw a renaissance of sorts by 
grounding itself in the analysis of field measurements (as opposed to 
taking measurements from plan drawings of unknown accuracy) and by 
paying attention to the unavoidable statistical argument that correla
tions between structural orientation and celestial objects can occur by 
chance alone, and therefore should not be assumed a priori to encode any 
prehistoric intent or meaning (Ruggles, 1999; Hutton, 2013). 

Further afield, archaeologists interested in how people sit and 
engage with the landscape also began to pay attention to how people 
positioned their structures as well as how they orientated them (e.g. 
Tilley, 1994). This brand of landscape archaeologist was, however, less 

interested in accurate measurements or analytical techniques and more 
engrossed in phenomenological observations and post-processual in
terpretations. It was with the advent of computation that spatial analysis 
became a well-established and respected archaeological field of inquiry 
with a robust statistical backbone (e.g. Bevan and Lake, 2016), which 
has also led to the statistical testing of some of the post-processual in
terpretations and hypotheses (e.g. Eve and Crema, 2014). 

Archaeoastronomy too underwent a flurry of interest in new statis
tical methodologies in the 1980s (e.g. Freeman and Elmore, 1979; 
Ruggles, 1984) but failed to maintain this momentum, or to take 
advantage of developments in the sister field of landscape archaeology. 
As a result, archaeoastronomy has stalled over the past 40 years (Rug
gles, 2011): it still largely relies on data collection techniques first 
delineated more than one hundred years ago (Lockyer, 1909) and on 
data visualisation methods that were first used by Thom (1967). For 
example, despite interest in quantifying the astronomical significance of 
alignments, a widely applicable statistical significance test for structural 
orientations was never devised. 

Lately, there is a movement to reframe the field as a skyscape 
archaeology, which applies “a degree of reflexivity well above the norm 
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of archaeoastronomy in the past” and demands “total immersion in the 
society we are studying” (Silva and Henty, 2018: 3). Reflexivity applies 
not only qualitatively to one’s interpretation and assumptions, but also 
quantitatively to the quality and nature of one’s data and to the limi
tations and underlying assumptions of one’s analytical methods. This 
paper proposes to do the latter, by focusing in particular on the over
reliance on what Ruggles called the “qualitative assessment” (2015b: 
420) of frequencies of orientations. This widespread approach involves 
the creation of histograms or curvigrams, which are kernel density esti
mates using a normal kernel with varying bandwidth values, whose 
peaks are then looked at in search of landscape or skyscape correlates (e. 
g. Silva, 2017). This involves little to no analytical care with whether 
those peaks are statistically significant, which is to say whether they 
cannot be said to arise solely by chance. 

A more robust approach started to appear within the Spanish school 
of archaeoastronomy (Belmonte et al., 2013; Gonz�alez-García and Bel
monte, 2011, 2014; Gonz�alez-García and Sprajc, 2016). It consists of 
comparing the curvigram constructed from the structural measurements 
with a curvigram based on a random distribution of orientations. The 
method compares the two and outputs z-values (in units of standard 
deviation, σ) which indicate how far the empirical curvigram is from the 
randomly derived one. Following Schaefer (2006), one can then say that 
only orientations with z-values above the 3σ level can be said to be 
significant and therefore should form the backbone of the search for a 
topographic or celestial explanation. Although this method is a signifi
cant stride in the right direction, it is not without limitations. Firstly, one 
is comparing an empirical curvigram constructed from a realistic, and 
hence small, sample of orientations with a curvigram constructed from 
an infinite number of random orientations, i.e. with a limiting distri
bution. Realistic samples of random orientations, with the same char
acteristics as the empirical dataset, are likely to feature peaks and 
troughs that are not being taken into account by this method and, 
therefore, throw serious doubts over its conclusions, especially when 
used on small datasets. And secondly, this method does not produce a 
measure of significance for the entire dataset, but rather it estimates 
z-values as a function of orientation, making it difficult to interpret and 
reach consensual conclusions regarding a dataset’s significance. 

In statistics, significance tests are specific cases of the more general 
Neyman-Pearson hypotheses testing approach (Neyman and Pearson, 
1933; Neyman, 1950) where, instead of comparing two competing hy
potheses and subsequent selection of one over the other, the purpose of 
the significance test is to measure the evidence against a single hy
pothesis – the null hypothesis. The result of a significance test is a p-value, 
which indicates the ‘strength of the evidence against the [null] hy
pothesis’ (Fisher, 1958, 80) and is more correctly interpreted as the 
probability of observing an outcome that is as extreme as, or more 
extreme than, that which is observed empirically, assuming the null 
hypothesis to be true. In other words, if the null hypothesis does not 
hold, then the empirical observations will be highly unlikely to occur, 
and hence the estimated p-value is expected to be very low. A currently 
accepted cross-disciplinary threshold for significance is that p-values of 
0.05 or smaller, corresponding to a mere 5% probability of occurrence 
under the null hypothesis, are considered statistically significant. This 
choice is, however, completely arbitrary, and there has been a recent call 
for this threshold to be changed to 0.005 (Benjamin et al., 2017), as well 
as Schaefer’s already mentioned call to use 3σ in archaeoastronomy, 
which corresponds to a p-value of 0.001 (Schaefer, 2006). Since its 
formulation, significance tests have become the most widely used sta
tistical approach crossing such varied fields as the health sciences, the 
natural sciences and the humanities (e.g. Benjamin et al., 2017). 

We can, probably safely, assume that archaeoastronomy’s general 
lack of engagement with significance testing is not due to a lack of 
awareness on the part of archaeoastronomers (most of whom had 
training in the exact sciences) but due to the lack of a specific algebraic 
test that could be applied to the intricacies of structural orientation data, 
in the same manner that, for example, a Chi-squared test can be used for 

categorical data. With the advent of the computer age, numerical tests 
and solutions are now possible where previously they would have taken 
months, or even years, to conduct manually. Efron and Hastie (2016), 
have called for 21st-century statisticians to move away from 20th-cen
tury algebraic tests, which are based on assumptions and simplifica
tions that allow calculations to be made manually but that can limit their 
range of applicability, and instead embrace the full computational 
power that is widely available today. This can be done through the 
employment of robust, though brute-force, approaches which can be 
applied in almost every scenario and often do not involve the assump
tions and simplifications of the algebraic tests. 

This is exactly the aim of this paper: instead of prowling the historical 
statistical texts in search of the “right” test for structural orientations, it 
develops a foundational probabilistic framework from which a compu
tational statistical significance test can be developed and employed. The 
methodology, which is detailed below, was implemented in the R soft
ware environment for statistical computing (R Core Team, 2019) and 
builds upon the R packages skyscapeR (Silva, 2019a) and swephR 
(Stubner and Reijs, 2019) which handle the astronomical computations. 
The source code, as well as all necessary data files to reproduce the 
figures and tables, are available are in the authorsupplementary mate
rial, as are all necessary files to reproduce the figures and tables. When 
the paper gets accepted for publication the code will be made available 
open-access and open-source on the author’s GitHub page and a link will 
be added here. 

2. Measurement as a probability distribution 

Any statistical analysis starts from a dataset of observations – in our 
case the orientation(s) of a given set of similar structures. Once a 
particular architectural feature whose orientation one wants to analyse 
is identified, it can be relatively trivial to measure its orientation using 
standard surveying instruments and techniques. Nonetheless, such a 
measurement – indeed, any measurement – is but an approximation or 
estimate of the real value that is being measured (Taylor, 1997). And just 
like any other estimate it has an associated uncertainty, which often 
needs to be estimated (e.g. Silva, 2019b). To take uncertainty into ac
count, and to establish the foundations of a probabilistic framework, one 
must begin by choosing a mathematical model to represent the mea
surement of structural orientation. 

Since measurements are just approximations, every time one is taken 
it will be different from the previous one. With a very large number of 
measurements one would be able to construct a limiting distribution, 
which is to say a mathematical function that “describes the proportion of 
times a repeated measurement yields each of its various possible an
swers” (Taylor, 1997: 227). In the absence of large numbers of mea
surements, one can still use a probability distribution (or probability 
density) to represent a single measurement, this time describing the 
distribution of the likelihood of where the true value being measured lies 
with respect to the measurement itself. The shape of this probability 
distribution represents the distribution of likelihood and, as such, it is up 
to the scholar to choose which shape best represents their confidence in 
where the correct structural orientation and/or alignment lies within the 
range given by the best estimate plus or minus the uncertainty (Fig. 1). 
Examples of distribution shapes can be taken from, for example, the 
many kernels used for kernel density estimation (e.g. Zucchini, 2003: 8). 
Here, however, we will restrict ourselves to two contrasting examples: 
the normal and uniform distributions. 

A normal distribution gives more weight to the mean value and the 
probability of finding the true value drops as one moves away from the 
mean (Fig. 1A). It can be used to model an orientation measurement by, 
for example, saying that its mean value is equal to the measurement’s 
best estimate and that its standard deviation is equal to half of the 
estimated uncertainty. One must always keep in mind that, because the 
normal distribution never drops to zero, one is assuming that, however 
unlikely, it is still possible that the true value is five, ten or a hundred 
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times the uncertainty away from the best estimate. An alternative model 
is to use the uniform distribution. Such a distribution attributes the same 
likelihood to all azimuths inside a given range, or window, and therefore 
can represent a less centre- or symmetry-biased assumption (Fig. 1B). 
This can be easily implemented by, for example, using the uncertainty 
range as the range of the uniform distribution. Note that, in this case, the 
probability distribution drops to zero outside of its range – its underlying 
assumption is therefore that one is 100% confident that the true value of 
orientation lies somewhere within the range of the distribution. These 
two distributions, just like any other, have pros and cons and one must 
therefore carefully weigh them when choosing one to model orientation 
measurements. 

3. Coordinate transformation 

To explore potential celestial alignments across a number of different 
sites, one needs to work with quantities that are not tied to a specific 
location. This is necessary because a given celestial object does not rise 
nor set at the exact same azimuth when seen from different locations. 
Two factors affect this: the latitude of the place, which changes the angle 
between the celestial object’s path and the horizontal plane, and the 
horizon itself, which can block celestial objects from view until they 
reach a certain altitude, for example in the presence of a mountain 
(Fig. S1). Hence, structures at different locations can have different 
orientations but still be intentionally aligned with the rise or set of the 
same celestial object. For this reason, when analysing the orientations of 
structures at different locations, one needs to convert one’s measure
ments to a coordinate system that references the location on the celestial 
sphere that the structures are pointing towards, regardless of horizon or 
location. 

The equatorial, “fixed address” or “Chinese” coordinate system is the 
standard in astronomy and corresponds to a simple angular system on 

the projected celestial sphere (Kelly and Milone, 2005: 16–20). In this 
system, there is a declination that is measured along a line connecting the 
celestial North and South poles (a celestial meridian) and is analogous to 
latitude on the Earth’s surface; and a right ascension that is measured 
along lines parallel to the celestial equator and is therefore analogous to 
longitude. Because the celestial sphere is perceived to be rotating 
throughout the day and night, right ascension relates to the time at 
which a given celestial object will be above the horizon. Declination, on 
the other hand, is the key quantity to understand where the celestial 
object will touch the horizon and what trajectory it will follow. It is 
therefore this quantity that is regularly used in archaeoastronomical 
studies. Unfortunately, it cannot be directly measured in the field, rather 
it needs to be calculated from field measurements with recourse to 
spherical trigonometry. The equation to do this is: 

sin δ¼ sin h� sin Lþ cos h� cos L� cos A; (1)  

where δ is the declination, A is the azimuth, h the horizon altitude and L 
the latitude of the structure. To this calculation some corrections can be 
added, such as those due to atmospheric refraction, nutation and 
parallax (e.g. Kelly and Milone, 2005: 49–70). This equation reveals that 
the declination is an angular measurement that goes from � 90� to þ90�
and that for a flat horizon with 0� altitude, declination 0� corresponds to 
azimuths of 90� and 270�, i.e. East and West respectively. Hence, a curve 
of equal declination on the celestial sphere will, typically, touch the 
horizon twice: once in the eastern half and again in the western half, 
corresponding to the rising and setting positions of a celestial object with 
that declination. 

The typical approach within archaeoastronomy is to take the 
measured azimuth, horizon altitude and latitude and plug them through 
equation (1) to get a single declination value (e.g. Ruggles, 1999, 22) – 
an approach that has remained largely unchanged for at least a century 
(see Lockyer, 1909). An uncertainty around the calculated value of 
declination, when presented, is often obtained by plugging the uncer
tainty in azimuth through equation (1). These values are then used to 
identify one (or more) celestial object(s) with the same declination and 
that, therefore, would rise or set in alignment with the structure being 
studied. When in the presence of multiple similar sites, histograms, 
curvigrams or kernel density estimates can be produced and looked at in 
search of frequency peaks that highlight patterns in orientation (e.g. 
Ruggles, 2015). Because this approach is based entirely on singular, or 
discrete applications of the coordinate transformation equation, I will 
refer to this as the discrete approach. 

This discrete approach ignores a number of important issues. First 
and foremost, it can lead new scholars astray by giving off the impres
sion that the uncertainty in declination is the same regardless of azi
muth. This is not supported by equation (1), which exhibits a 
trigonometric relationship between declination and azimuth, meaning 
that the declination varies differently, for example, around azimuths of 
0�/360� (North) and 180� (South). Furthermore, as uncertainty is not 
fundamentally built into this approach, scholars neglect or underesti
mate it, which has severe consequences for the accuracy of the methods 
of the discrete approach (Silva, 2017). Finally, as pointed out by Ruggles 
(2015b: 418), it fails to note that within the range of azimuths given by 
the measurement uncertainty, the altitude of the horizon can vary quite 
dramatically, which leads to significant differences in how azimuths 
relate to declinations (Fig. 2). Together these observations indicate that 
a declination is not necessarily normally distributed and, hence, cannot 
be reduced to a mean and uncertainty values derived from equation (1), 
which is the underlying assumption of the discrete approach. 

Therefore, what is required is a method that performs the coordinate 
transformation (1) on the full probability distribution of the field mea
surements (Fig. 1), for which it will need not a single value of horizon 
altitude but a horizon profile that, at the very least, covers the azimuthal 
range of interest. Such a method would in many ways be analogous to 
the process of calibration of radiocarbon dates, wherein there is a 

Fig. 1. Two different probabilistic models for the same measurement (90� �
10�). The top one is modelled using a normal distribution with standard devi
ation equal to half the uncertainty, meaning that one has 95.4% confidence that 
the real value is within the uncertainty range and that the likelihood peaks 
around the mean. The bottom model uses a uniform distribution with range 
given by the uncertainty range, meaning there’s 100% confidence that the real 
value is within the uncertainty estimate and that all orientations inside that 
range are equally likely to be close to the real value. 
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continuous calibration curve that transforms the probability distribu
tions of the uncalibrated dates (which are normally distributed) into 
calibrated probability distributions (which are not necessarily bell- 
shaped). 

3.1. The transformation process 

Whereas for radiocarbon a single atmospheric calibration curve ap
plies to all sites in half of the planet, in the case of structural orientations 
there must necessarily be one transformation curve for each site (some
times even for each measurement) since equation (1) is tied to the 
apparent horizon from a particular viewpoint. This requires that a ho
rizon profile be obtained during fieldwork. If this is impossible, one can 
be virtually constructed with recourse to digital elevation models. The 
former is however, preferred, as the most readily available digital 
elevation models are likely to contain spatially variable errors in vertical 
measurement (e.g. Mukul et al., 2017), which will yield uncontrolled-for 
errors in horizon profiles and altitude values. 

When a horizon profile is obtained it is a simple matter to turn it into 
a transformation curve by applying equation (1) across the entire 360�

panorama at regular intervals (top-right panel in Fig. 3). Since all 
measurements, however they were obtained, have an associated un
certainty one must take the uncertainty in horizon altitude into account. 
This can be done by repeating the process two more times for altitude 
values hþ δh and h � δh, where δh is the altitude uncertainty (dark blue 
shaded curves in top-right panel of Fig. 3). Without loss of generality, it 
is here assumed that the horizon altitude measurement can be repre
sented by a normal distribution with standard deviation equal to the 
uncertainty of that measurement. 

Having, in this way, transformed the horizon profile into what re
sembles a calibration curve, the process of coordinate transformation 
proceeds just like a radiocarbon calibration (e.g. Bronk Ramsey, 2001). 
A key difference is that whereas in radiocarbon calibration the distri
bution that is being calibrated is almost always normally distributed, for 
present purposes it is desirable to leave the choice of probability dis
tribution open (as discussed above). This means that the algebraic 
simplification that ensues when convolving two normal distributions, 
which is implemented in all radiocarbon calibration software packages 
(Bronk Ramsey, 2001), will not work here. Instead, the density values of 
the coordinate-transformed probability distribution, at each value of 
declination, are calculated by numerically convolving the azimuthal 
distribution with the distribution of said declination that stems out of 
the transformation curve (see R code in GitHub 

repositorysupplementary material). Because of its numerical nature this 
is a slower process than radiocarbon calibration – an unfortunate ne
cessity. This process results in what should be an intuitive output to 
archaeologists (Fig. 3). 

It is now relevant to better understand the impact of this coordinate- 
transformation and how it affects the shape of probability distributions 
of individual orientation measurements, especially when compared to 
the naïve approach of assuming declination distributions to be normal 
curves. A more thorough exploration of the parameter space is done in 
the Supplementary Material, however, Fig. 4 below summarises the key 
results. The first observation is that, due to the changing density of 
declination isolines per unit of azimuth, the declination distribution 
changes depending on the orientation, leading to considerably narrower 
and slightly skewed distributions the closer one is to North or South 
(Fig. 4A and B). The second observation is that the shape of the horizon 
does matter quite significantly: if an orientation is targeting a down
wards slope, for example (Fig. 4C), then the distribution is wider and 
shorter due to the fact that more declination isolines are encompassed by 
the same azimuth range than in the flat scenario. The opposite occurs for 
an upward slope. For combinations of the two, such as for peaks 
(Fig. 4D) or notches on the horizon the distribution is compressed on the 
upwards sloping side and extended on the downwards sloping side, 
creating a highly non-normal distribution. For more details, see the 
Supplementary Material, where this analysis is also done for uniform 
azimuthal distributions. 

3.2. Aggregating coordinate-transformed probability densities 

Coordinate-transformed distributions, regardless of their particular 
shape, can be aggregated into what would be appropriately called a Sum 
of Probability Densities, to use the same terminology that is in use for 

Fig. 2. Example of a situation where the range of declinations covered by the 
horizon band changes dramatically within the uncertainty range of an 
azimuthal measurement. Orange shaded area corresponds to the ground; 
dashed blue lines correspond to lines of equal declination separated by one 
degree. The uncertainty in measurement of orientation (black error bar) and 
horizon altitude (grey shaded band) are also represented. In this case, the re
gion of the horizon to the left of East spans a mere 4.9� of declination, whereas 
the region to the right spans 10.3�. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 3. Result of the coordinate-transformation of an azimuthal measurement 
of 90� � 10�, modelled as a normal distribution with standard deviation of 5�

(grey-shaded curve on the left). The horizon profile from Fig. 2 has been con
verted into a transformation curve (blue shaded lines on top-right). Finally, the 
result of the coordinate-transformation is a declination probability distribution 
(blue shaded curve on the bottom) with 95.4% probability range shown on the 
bottom-left. Notice how the mound on the horizon considerably distorts the 
shape of the declination distribution. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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radiocarbon analyses (e.g. Bevan et al., 2007). For clarity, and to better 
distinguish this method from that which assumes all declination distri
butions to be normally distributed, we will always refer to the latter as 
the curvigram, and to this new method as the Sum of Probability Densities 
or SPD for short (contra Silva, 2017 where the two were conflated). In 
fact, the curvigram is also an aggregated probability distribution, but 
one where the azimuthal measurements were not 
coordinate-transformed in the way introduced above, but rather 
modelled as normal curves (i.e. as the red curves in Fig. 4). 

Fig. 5 illustrates the differences between the SPD and the curvigram 
outputs for a set of five random orientations around a 4� peak on the 
horizon. The azimuthal measurements were modelled using normal 
distributions with 2� of uncertainty. In this not-unrealistic scenario, the 
curvigram and SPD present qualitatively and quantitatively very 
different shapes. Whereas the curvigram features a bimodal distribution 
around � 1� and 5�, the SPD actually downplays the lower declinations 
and features a narrower peak around 3.5�. This occurs because of the 
effects discussed above for Fig. 4, where coordinate-transformed decli
nation distributions present a peak towards positive declinations since 
they are taking into account the varying range of declinations along the 
horizon (as seen in Fig. 2). Also shown is the result of a kernel density 
estimate using Scott’s (1992) bandwidth, which produces a much 
smoother curve that peaks close to the SPD peak – and therefore equally 
misses the mark. 

Using the traditional archaeoastronomical approach mentioned in 
the introduction, one would now look at the declinations of peaks of the 
curvigram in search of a matching celestial object that could be the 
target of an alignment. The curvigram and KDE peak around � 1�, 
whereas the SPD peaks at 3.5� so, depending on the accuracy one is 
imposing on this, scholars using the two approaches would be looking 
for different targets. Nevertheless, as archaeologists familiar with the 
use of SPDs in radiocarbon modelling know very well, peaks, troughs 
and wiggles in aggregated probability distributions can be due to sam
pling issues (for example if a particular orientation is under-represented 

in the sample due to sampling bias) or even due to the transformation 
process (c.f. calibration wiggles in a radiocarbon-derived SPD). Without 
a significance test one is likely to be over-interpreting the results by 
reading too much into those peaks. 

4. Testing significance 

4.1. Null hypothesis construction 

To test for significance, one needs to start off with a null hypothesis 
that the data is tested against. The most basic one for the study of 
structural orientations is that the structures being analysed were 
orientated at random. This translates into a random distribution of 
azimuths that can be modelled with a uniform distribution, where each 
and every azimuth value has the same probability of having been chosen 
(Fig. 6A). The corresponding declination distribution to this null hy
pothesis, however, is not uniform as can be observed by coordinate- 
transforming it (Fig. 6B). The distribution peaks at the extremes for 
the same reasons discussed above for the coordinate-transformation of 
azimuths close to North and South: the declination distributions of in
dividual measurements get narrower and taller (Fig. 4A and B). This 
means that, under the null hypothesis of random orientation, we would 
expect to see more values of declination closer to the extremes than 
closer to zero. 

Such a shape corresponds to a very specific scenario where there is a 
large number of structural orientations, all of which occur at the same 
latitude and hence cover the same span of declinations. In a realistic 
research project however, one is confronted with a finite, and often 
rather small, sample of orientations, each taken from a different struc
ture on a different location. As such, one needs to consider not the 
limiting distribution of Fig. 6B but the range of realistic possibilities 
that, nevertheless, still conform with the null hypothesis. This can be 
achieved through a brute-force computation method inspired by the 
approaches to significance testing of radicoarbon SPDs by Shennan et al. 

Fig. 4. Coordinate-transformation of normal measurement models of azimuths 
160� (A) and 180� (B), with equal uncertainty (5�) and a flat 0� horizon sce
nario at latitude 40� N; and of azimuth 90� but with a downwards slope (C) and 
a peak (D) on the horizon exactly at that value. The red dotted curves represent 
the expectation under the discrete approach. (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 5. Example comparison of the outputs of the SPD approach that aggregates 
coordinate-transformed probability distributions developed in this paper (blue- 
shaded curve) with the discrete approach curvigram (purple dashed curve) and 
a kernel density estimate (KDE) using Scott’s (1992) bandwidth (green dotted 
curve). For ease of comparison the last two curves were renormalised to match 
the peak of the SPD. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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(2013), Timpson et al. (2014) and Crema et al. (2017). The goal is to use 
the information in the empirical dataset – in this case the sample size, 
uncertainty profile and spatial locations – to create a confidence enve
lope around the null hypothesis that represents the range of possibilities 
of the null hypothesis. It is from this envelope that the statistical sig
nificance can then be quantified in the form of a p-value. 

To explain the process, consider the set of measurements of the 
orientation of five similar structures that were used above to produce 
Fig. 5. The goal is to compare this empirical SPD with the null model in 
order to assess whether or not it constitutes evidence against the null 
hypothesis of random orientation. One should therefore ask the question 
of what would the SPD of a randomly orientated set of five structures, 
sited at the same locations and measured with the same uncertainty, 
look like. This can be answered as follows: (1) pick five random azi
muths from the uniform distribution of Fig. 6A; (2) randomly attribute to 
them the same measurement uncertainties, locations and horizon pro
files of the empirical set; (3) coordinate-transform them; and (4) 
aggregate them to produce a simulated SPD (grey curve in Fig. 7B). 
Comparing the empirical SPD with the simulated one isn’t particularly 
informative since there is a very large number of different possibilities 
contained within the null hypothesis, especially for such small sample 
sizes – as is clear when this process is repeated a few more times 
(Fig. 7C). A much more helpful approach is to repeat this a great number 
of times so as to get a sense for the 95% confidence envelope around the 
null hypothesis (Fig. 7D and E). This is to say that we can be confident 
that a dataset that conforms to the null hypothesis – i.e. a dataset that is 
randomly orientated – will produce an SPD that, 95% of the time, falls 
inside of the confidence envelope. 

From this, one can calculate a value that quantifies the level of sta
tistical significance (Fig. 7E). This is often referred to as a p-value and is 
defined as the probability of observing, under the null hypothesis, the 
empirical dataset or an even more extreme dataset. This can be calcu
lated by comparing the empirical SPD with the simulated ones. 
Following Shennan et al. (2003: 6), we calculate a statistic defined by 

the total area of the empirical SPD that lies outside of the confidence 
envelope. The same statistic is also calculated for each of the simulated 
SPDs originated by the random picks from the null hypothesis. Finally, 
the p-value is calculated as (following North et al., 2002): 

p¼ 1 �
r þ 1
nþ 1

; (2)  

where r is the number of simulated SPDs with the statistic greater than, 
or equal to, that obtained from the empirical SPD, and n is the total 
number of simulated SPDs. This amounts to saying that the probability 
of observing an SPD like that of the empirical dataset under the null 
hypothesis is given by the probability of finding a similar SPD among the 
simulated ones. We are therefore implementing a global p-value along the 
lines suggested by Shennan et al. (2013) as a measure of global signif
icance, i.e. a measure of the statistical significance of the empirical 
dataset as a whole. 

Furthermore, the regions of the empirical SPD that lie outside of the 
confidence envelope – the very regions whose area is used to calculate 
the global p-value – can be highlighted. These regions of significance 
comprise those declination ranges that are deemed statistically signifi
cant and they are precisely the regions which should be of interpretive 
interest. As one is working with a 95% confidence envelope, one should 
still expect 5% of false positives to lie outside of the envelope. To try to 
separate the wheat from the chaff, as it were, different approaches have 
been taken. Timpson et al. (2014: 551) introduced a heuristic false 
positive remover, whereas Crema et al. (2017) used a false-discovery rate 
to address the high risk of incorrectly rejecting a true null hypothesis. A 
third approach, albeit equally heuristic and arguably more useful for the 
present concern, is here introduced. It consists in the calculation of a 
local measure of significance – the local p-value – which takes only the 
region of significance into account for its calculation. Essentially, the 
algorithm loops through the identified regions of significance and re
peats the p-value calculation using only the identified declination range 
to calculate the area statistic for the empirical as well as the simulated 
SPDs. The local p-value is then also calculated using equation (2). This 
results in a measure of significance that correctly attributes more sig
nificance (lower p-values) to regions that go well beyond the confidence 
envelope, whereas lower peaks or troughs, or those in regions where 
high deviations are more likely (such as near northern and southern 
azimuths or near peaks and notches on the horizon), are attributed lower 
significance (higher p-values). Local significance can help identify false 
positives, which will have larger local p-values compared to true posi
tives (see Fig. 7E). 

5. Applications 

The statistical framework just introduced can now be used to look at 
real-world studies of structural orientations. In particular, this frame
work will prove useful in not only explicitly comparing measurements to 
the expectation under the null hypothesis but also in quantifying sig
nificance (the global p-value) and identifying ranges of statistically 
significant orientations that are potentially intentional. In the process, 
these applications will also highlight flawed readings of the data (such as 
the over-interpretation of frequency peaks) that disappear when this 
more robust methodology is employed. 

5.1. Ancient Egyptian tombs and temples 

The tombs and temples of ancient Egypt were among the first 
structures to be studied for their orientation using a surveying meth
odology that has remained largely unchanged to this day. In what is 
largely considered to be a key turning point in the history of the field of 
archaeoastronomy, Lockyer (1894) set out a more rational and scientific 
approach to the measurement of structural orientations, which he 
promptly applied to the study of Egyptian temples. Since Lockyer’s 

Fig. 6. Two models for the null hypothesis of random orientation: (A) shows 
the null hypothesis azimuthal distribution where each azimuth value is equally 
likely to be picked; whereas (B) shows the equivalent coordinate-transformed 
declination distribution which displays peaks around the extremes (corre
sponding to due North and due South) as being more likely to occur when one is 
looking at declinations. 
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impressive survey of dozens of ancient Egyptian structures, no 
large-scale study was attempted until 2004 (Shaltout and Belmonte, 
2005). The so-called Egyptian-Spanish Mission had for its aim the 
measurement of the orientation of the vast majority of ancient Egyptian 
buildings so as to obtain ‘sufficient fieldwork data that could prove, or 
disprove, through statistical studies, all the speculations concerning 
temple orientation’ (Belmonte et al., 2009: 218). Over its five-year 
period the mission surveyed over 300 pyramids, hypogea, chapels, 
sanctuaries and temples (Shaltout and Belmonte, 2005; Belmonte and 
Shaltout, 2006; Shaltout et al., 2007; Belmonte et al., 2008; Belmonte 
and Shaltout, 2009; Belmonte et al., 2010). After identifying the direc
tion of the Nile as a key concern in the orientation of the temples, 
Shaltout, Belmonte and collaborators explored the possibility of celestial 
alignments (Shaltout and Belmonte, 2005; Belmonte et al 2009, 2010). 
They employed an analytical framework which largely relied on the 
creation of curvigrams and the identification of celestial objects that 
match their peaks. Using this, they identified seven families of orienta
tion by looking at the peaks whose frequency was higher than a relative 
normalized frequency (see Figs. S8 and 8). These were given numbers 
and interpretations: equinoctial (I), solstitial (II), seasonal (III), Sirius 
(IV), Canopus (V), meridional (VI) and intercardinal (VII), largely by 
attaching cardinal and celestial interpretations to the peak orientations 
(see Belmonte et al., 2009 for details). 

To explore whether all of these families of orientations are indeed 
statistically significant, and hence worthy of further consideration, the 
probabilistic framework developed here has been employed. The pub
lished dataset of 330 measurements of the Egyptian-Spanish Mission 
(Belmonte and Shaltout, 2009: 347–352) was used, and each azimuthal 
measurement was modelled using a normal distribution with 2� stan
dard deviation. This uncertainty is slightly larger than the 1.5� bandpass 
used by Shaltout and Belmonte (2005: 281) in their methodology, which 
is itself mysteriously larger than the claimed 0.5� precision (2005: 279), 
but yields results that are closer to those published by the authors (see 
Fig. S8). Due to the lack of precision in the published georeferences, 
accurate locations for all structures could not be obtained, which pre
vented horizon profiles from being reconstructed from a Digital Eleva
tion Model. Therefore, flat horizons with an altitude equal to that 
measured by the Spanish-Egyptian team, and with an associated un
certainty of 0.5�, were assumed throughout. The SPD constructed in this 
way is not expected to vary much from the traditional curvigram since 
the effects of horizon shape (i.e. the ones depicted in Fig. 4C and D) are 
effectively being ignored. Any marked differences are therefore likely to 
stem from typos in the published data and from the azimuthal effects 
described in Fig. 4A and B. Such differences are therefore deemed 
conservative and would be expected to be magnified by future studies 
that use full horizon profiles. Such studies are beyond the remit of this 

Fig. 7. The process of constructing a confidence en
velope for the null hypothesis of random orientation 
by randomly sampling from a uniform azimuthal 
distribution and randomly attributing the same un
certainties and horizon profiles from the empirical 
dataset. When the process is repeated a few hundred 
times or more a 95% confidence envelope can be 
obtained (grey band in panels D and E) as well as a 
global p-value (panel E). Regions of significant posi
tive deviations from the null hypothesis are marked 
by the green bands at the bottom of panel E, with 
stars denoting their level of significance. (For inter
pretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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methods-driven paper, but the present analysis is still relevant as it will 
show the importance of performing the significance test even in the 
absence of full horizon profiles. After coordinate transforming the 
orientation measurements and summing them, the resulting SPD can be 
subjected to the significance test, giving rise to Fig. 8 and Table 1. 

Firstly, the global p-value is rather small (p < 0.0002) attesting to the 
overall statistical significance of this dataset which can therefore be said 
to exclude the null hypothesis of random orientation. This, however, 
doesn’t mean that every structure in the dataset does not conform to the 
null hypothesis. Rather, what can be seen are peaks that step out of the 
confidence envelope (grey shaded), indicating regions of significant 
deviation from the null hypothesis. The regions of significant positive 
deviation (i.e. higher than the confidence envelope) directly correlate to 
orientation families I, II and III- (see Table 1). The local p-values rein
force what Fig. 8 qualitatively states: that peak III- is considerably less 
significant than the others and may potentially be a false positive — 
indeed, if one were to use the more strict significance thresholds sug
gested by Schaefer (2006) or Benjamin et al. (2017) then this peak 
would not be deemed significant at all. In other words, only two (or 
possibly three) of the families inferred by Belmonte et al. (2009), are 
validated by this more robust method – all other peaks fall within the 
confidence envelope and therefore conform to the expectation of 
random orientation. 

What then does the new method permit one to say about the orien
tation of Ancient Egyptian tombs and temples? Despite the existence of 
statistically significant peaks and troughs, when looking at the entire 
dataset, most surveyed structures appear to follow a pattern of random 
orientation. The only structures that can be said to be statistically 
aligned to some target are those that fall in the two or three regions of 
significance. The most statistically significant corresponds to an easterly 
orientation (family I), which may have been a simple cardinal orienta
tion to East, an alignment to the Nile which generally runs south-north 
or, less likely, an alignment to the equinoctial sun (see discussion in 
Belmonte et al., 2009: 227-8). This is followed by a second peak (family 
II) which very tightly matches the orientation of the December solstice 
sunrise (Belmonte et al., 2009: 229-30). The potential targets of family 
III require more complex arguments, involving the orientation of the sun 
around the beginning of the Ancient Egyptian seasons of Peret and 
Shomu around 1500 BC (Belmonte et al., 2009: 231-32). As previously 
mentioned however, this last family of orientations may very well be a 
false positive and actually not be statistically significant. 

These two or three families can therefore be said to represent the 
dominant orientations for ancient Egypt as a whole, possibly reflecting a 
long-term interest in these celestial objects and/or events, rather than 
more regionally or temporally localised intentions. Similarly to Bel
monte et al. (2009: 244–249) one can split the dataset into meaningful 
chronological segments to assess whether these families played more 
prominent roles in different historical periods, or even whether other 
families become statistically significant when looked at in this way. The 
dataset was therefore split into four chronological periods of political, 
social and religious stability (Shaw, 2000); ignoring orientations 
belonging to temples or tombs of other, less stable, periods, as well as 

those which belonged to structures of unknown or dubious chronology. 
The results are shown in Fig. 9 and Table 2, where a chronological 
pattern becomes apparent. 

Old Kingdom (2686 - 2160 BC, Shaw 2000) structures were by far 
and large built with an easterly orientation - potentially facing the Nile 
river although this should be assessed on a case-by-case basis - whereas 
no other orientation family was statistically significant in this period. 
Family I continued to be of importance in the Middle Kingdom (2055 - 
1650 BC, Shaw 2000), when the family of orientations to the December 
solstice sun (II), became significant. In the New Kingdom (1550 - 1069 
BC, Shaw 2000), family I disappeared completely, whereas family II 
became the most statistically significant one, including also related 
orientations marked as II? to represent directions perpendicular to the 
December solstice sun. This may indicate the special importance 
attributed to the sun-god in the New Kingdom as seen, for example, in 
the Books of the Netherworld that feature exclusively within the royal 
tombs of this period (Assmann, 2008: 186–189). Family VII (both þ and 
-) appeared for the first time in the New Kingdom, being entirely absent 
in previous periods, and is deemed significant by the employed statis
tical method. Belmonte et al. (2009: 238–244) suggest this family in
volves a 45� shift from the cardinal directions, which they suggest was a 
clever solution to ensure ‘simultaneous astronomical and Nile orienta
tions’ (238). Finally, in the Ptolemaic period (332 - 30 BC, Shaw 2000) 
only family VII- juts above the confidence envelope of the null hy
pothesis, and indeed the global p-value does not indicate statistical 
significance in this subset. It is also worth highlighting that family III- is 
not statistically significant in any of these periods, adding further weight 
to the above interpretation of it being a false positive. 

This case study illustrates an important issue with archae
oastronomical approaches that rely solely on the construction of a cur
vigram and the analysis of its peaks: without the significance test one is 
prone to over-interpret the many peaks, most of which, as the above 
analyses demonstrate, are not statistically significant. Nevertheless, this 
dataset deserves a lot more attention. On the one hand, the chronolog
ical dynamics revealed above needs to be socio-historically con
textualised to be fully understood. Further subsetting of the data, for 
example into regional groupings and site-types similarly to Belmonte 
et al. (2009: 247), may shed further light. On the other hand, and 
perhaps more importantly, future analyses should also incorporate full 
horizon profiles, as well as take into account variations in both 
azimuthal and altitudinal uncertainty, which should improve on these 
results considerably. 

5.2. Scottish Recumbent Stone Circles 

The second case-study focuses on the Recumbent Stone Circles of 
Aberdeenshire, most recently surveyed for potential celestial alignments 
by Clive Ruggles (1984, 1999). The circles are believed to have been 
built during the period 2500-1750 BC (e.g. Ruggles and Burl, 1985: S25) 
and have been at the centre of archaeoastronomical debate for a long 
time (see the review by Henty, 2015). Following Thom and Thom (1980) 
and Ruggles (1984), their orientations have been studied largely by 
focusing on the orientation towards the midpoint of the recumbent stone 
as seen from a putative centre of the circle or, alternatively, along a line 
perpendicular to the recumbent itself (Ruggles, 1999: 96). Having sur
veyed all extant monuments in this way, and creating histograms of their 
orientations, Ruggles concluded that they were likely oriented to 
observe the full moon passing low over the recumbent around 
midsummer each year (Ruggles, 1999, 98). This view is at least partially 
endorsed by Richard Bradley, who led the excavation of three of these 
monuments and largely agreed with Ruggles’ conclusion when he stated 
that they ‘may have been directed towards the moon and in some cases 
they may also have faced the winter sun’ (Bradley, 2005: 111). On the 
other hand, the Royal Commission on the Ancient and Historical Mon
uments of Scotland recently produced a major synthesis work on these 
megalithic monuments, which noted that such celestial explanations do 

Table 1 
Regions of significance identified by the method developed in this paper, 
including Belmonte et al.’s family number, declination range, local p-value and 
potential targets discussed in Belmonte et al. (2009).  

Family Declination Range Local p- 
value 

Potential targets 

Min Max 

I � 4.7� þ2.7� <0.0002 
(***) 

East, Nile river, Equinox sun 

II � 26.2� � 21.1� <0.0002 
(***) 

December solstice sun 

III- � 11.9� � 9.5� 0.0138 (*) Sunrise at beginning of Egyptian 
seasons of Peret and Shomu c. 1500 
BC  
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not apply to all the stone circles, leading to the conclusion that 
‘archaeoastronomy has failed to provide a convincing and coherent 
theoretical model […] with respect to their orientation’ (Welfare, 
2011a: 28). 

One of the great things about high-quality open data is that it can be 
endlessly analysed by alternative and, at the time of publication, yet-to- 
be-devised methodologies. Ruggles’ data (1999: 212-6) can now be 
approached using the probabilistic framework developed in this paper. 
This dataset contains orientation measurements for 37 stone circles, 
taken from the circles’ putative centre towards the midpoint of each 
recumbent. The most recent survey of recumbent stone circles (Welfare, 
2011b) was used to obtain accurate georeferences for each of these 
circles. Horizon profiles were obtained from the SRTM digital elevation 
model through the HeyWhatsThat website (Kosowsky, 2019). The 
orientation measurements were then modelled in three different ways 
(Fig. 10):  

A) as normal distributions centred around the middle of the 
recumbent and with 0.5� of uncertainty;  

B) as normal distributions centred around the middle of the 
recumbent and with an uncertainty given by the width of the 
recumbent arrangement;  

C) as uniform distributions whose width is given by the recumbent 
arrangement. 

Model A is closer to the traditional approach of archaeoastronomers, 
except that the coordinate transformation will be applied across the 
entire probability distribution. The second model (B) is an attempt to 
take into account the fact that the entire recumbent arrangement could 
act as a window to any alignment targets, whether topographic or 

celestial, a point more poignantly made by Henty (2014). This model, 
however, still assumes that the middle of the recumbent is more likely to 
be the backsight for any alignment – i.e the probability density is highest 
at this location. Model C ditches this assumption and rather suggests that 
any location within the recumbent arrangement is equally likely, an 
approach closer to Silva’s research among the Portuguese passage 
graves (Silva, 2014, 2019). These models, depicted in Fig. 10, form the 
basis for the ensuing analysis. 

Each measurement was then coordinate-transformed and summed, 
leading to the SPDs of Fig. 11. Model A produces several peaks and 
wiggles, which is to be expected from the very narrow uncertainty 
margin. Model B, on the other hand, results in a smoother SPD, espe
cially with respect to the peaks around � 25� and � 17�. The model that 
employs a uniform probability distribution (model C) yields a SPD that 
features a single distinctive peak towards the southernmost extreme of 
the declination range and a long tail in the other direction. This shows 
that, when the full width of the recumbent is taken into account those 
minor peaks are dissolved. This is not surprising when more attention is 
given to the fact that the recumbent arrangements are quite wide: the 
mean angular width being 21.7� and the maximum being 35.5� (for 
Strichen circle). In itself, this suggests that the 0.5� uncertainty of model 
A is likely to be underestimating the actual uncertainty in these mea
surements (cf. Silva, 2019b for a general discussion of the dangers of 
uncertainty underestimation). As such, any interpretative attempts to 
identify alignment targets from those peaks in model A are likely to be a 
wild goose chase. 

To explicitly test whether or not that is the case, the next step is to 
perform the significance test and obtain the declination ranges that 
present significant deviations from the null hypothesis of random 
orientation. The results are shown in Fig. 12 and Table 3. 

Fig. 8. Result of the significance test applied to the Ancient Egyptian temple and tomb orientation dataset, running 5000 simulated SPDs. Roman numerals indicate 
Belmonte et al’s (2009) orientation families. Also shown as vertical black lines are the declinations of the sun at the December solstice (dashed), at the start of the 
ancient Egyptians seasons of Peret and Shomu around 1500 BC (dotted), and at the equinoxes (solid line). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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The global p-values indicate that indeed the orientations of the 
Recumbent Stone Circles significantly deviate from random, with a clear 
clustering around the southernmost orientations (i.e. lowest possible 
declinations). But whereas model A has three peaks that are significantly 
above the confidence envelope of the null hypothesis, model C features 
only two and model B merely one. Those secondary peaks are very close 
to the confidence envelope, which can also be seen by their large local p- 
values shown in Table 3, which are considerably higher than those of the 
main peak. In fact, if one were to use Schaefer (2006) or Benjamin et al. 
(2017) tighter significance thresholds then none of those secondary 

peaks would be deemed significant. 
This case study demonstrates the importance of carefully choosing a 

model for the measurements by illustrating the impact it has on inter
pretation. The azimuthal probability distribution represents one’s a 
priori assumptions about the measurement’s relationship to potential 
alignments and this choice affects the shape of the aggregated distri
bution – whether it be the SPD as defined here or the curvigram. 
Moreover, this case study also demonstrates how the significance test 
can attenuate this problem by highlighting the lack of significance of 
those secondary peaks. 

Finally, this brief study of the Recumbent Stone Circles cannot close 
without looking at potential alignment targets. Fig. 13 overlays the 
declination of previously considered celestial objects (for the period 
2500-1750 cal BC) on top of the results of the significance test. It shows 
that the preferred interpretations of Ruggles and Bradley, where the 
recumbent arrangement frames the setting summer full moon or winter 
sun, are insufficient to explain the orientation of these structures. The 
vertical black line marks the declination of the sun at its most southern 
extreme during the December solstice, and it is clear from the SPD that 
most of the recumbents lie too far south to catch the setting sun at any 
point in the year. In fact, this would be possible in only 8 out of the 37 
stone circles. The orange vertical band marks the range of the summer 
full moon over its 18.6-year cycle, and although this band partly covers 
the region of significance it only does so for about a third of it. When the 
dataset is looked at more closely, it becomes clear that at 19 out of the 37 
circles it would be impossible to observe the summer full moon set 
within the recumbent window. 

This could be interpreted as evidence against any kind of celestial 
alignment – which indeed may be true – however, it is worth exploring 
any underlying assumptions in the dataset that may need to be reas
sessed or otherwise incorporated into the measurement distribution. In 
this particular case, three assumptions need to be highlighted. Firstly, 

Fig. 9. Result of the significance test applied to the Old Kingdom, Middle Kingdom, New Kingdom and Ptolemaic Periods subsets, running 5000 simulated SPDs. The 
numbers of the orientation families deemed statistically significant in each period are shown. 

Table 2 
Regions of significance identified by the method developed in this paper, when 
applied to chronological subsets of Belmonte et al. (2009) dataset.  

Period Family Declination Range Local p- 
value 

Potential targets 

Min Max 

Old 
Kingdom 

I � 4.9� þ4.0� <0.0002 
(***) 

East, Nile river, 
Equinox sun 

Middle 
Kingdom 

I � 3.0� þ0.9� 0.0006 
(***) 

East, Nile river, 
Equinox sun 

II � 26.6� � 21.8� 0.0032 
(**) 

December solstice 
sun 

New 
Kingdom 

II � 26.7� � 20.4� <0.0002 
(***) 

December solstice 
sun 

VII- � 38.3� � 34.2� 0.0004 
(***) 

Intercardinal 
direction 

VIIþ þ38.2� þ40.8� 0.0054 
(**) 

II? þ49.0� þ51.2� 0.0006 
(**) 

Perpendicular to II 
(December solstice 
sun) 

Ptolemaic 
Period 

VII- � 39.4� � 36.2� 0.003 (**) Intercardinal 
direction  
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the assumption that these circles have a centre-point from which these 
measurements were taken might be untenable, especially considering 
that they are not perfect geometric circles nor are there any visible 
marks or finds at their geometric centres (Henty, 2012, 2014). Secondly, 
as Bradley (2005: 99) remarked and Henty explored (2014), it is possible 
that the circle’s internal area was not entered at all, but instead that the 
space between two stones opposite the recumbent was used as viewpoint 
from which to look at the recumbent arrangement. If that was the case – 
or indeed if the framing device of the recumbent was meant to be 
observed from any other location, either within or outside the circle – 
then new measurements must be obtained and this analysis performed 

once more. And finally, the above analysis explores only the possibility 
of celestial alignments at the horizon, i.e. when celestial objects are so 
low as to touch the horizon, leaving open the possibility of alignments to 
celestial objects within the recumbent arrangement but higher up in 
altitude. To tackle these points is outside the scope of this paper, but 
they are highlighted here as avenues for future exploration, which 
should focus on alternative ways of thinking about these circles, the 
placement of their recumbent stones, and any potential alignments. 

6. Concluding remarks 

This paper introduced a probabilistic framework for the quantitative 
analysis of structural orientations. It began by defending the use of 
probability distributions to model orientation measurements, and then 
used those distributions to infer statistically significant orientations that 
are unlikely to be due to chance alone. As such, it not only formulated a 
quantitative foundation for further theoretical and methodological de
velopments but also a robust analytical framework for the analysis of 
orientation datasets. The latter can be summarised as the following four- 
stage process:  

i. decide on a probability distribution to model the orientation 
measurements;  

ii. coordinate-transform the azimuthal distributions into declination 
distributions;  

iii. aggregate the probability distributions into an SPD; and  
iv. perform the significance test. 

Having done this, one will be in a much stronger position to consider, 
and interpret, any correlations between statistically significant de
viations from the null hypothesis and the risings or settings of celestial 
objects. In fact, it is not merely skyscape archaeologists that will be 
interested in this methodology, but also landscape archaeologists 
interested in alignments to geographic features. The same framework 
and methodology can be easily deployed, except that step ii above can be 
skipped when one is interested in landscape targets, therefore further 
bridging the gap between landscape and skyscape archaeology. 

This approach has the potential to raise the analysis of the orienta
tions of archaeological structures to a new standard, comparable to that 
of other quantitative fields that routinely use p-values to support their 
finds and claims. This method, although somewhat computationally 
intensive, is robust enough to be applicable to datasets of any size, from 
very small local studies to larger regional, national and international 
projects. With the right amount of reflexivity over one’s data and as
sumptions, it will not only allow for an independent reassessment of past 
archaeoastronomical claims but also form a robust foundation for future 
skyscape research. 

Two important theoretical points are also foregrounded by the 
methodology developed here. On the one hand, it highlights the role 
played by a priori assumptions that can significantly affect one’s in
ferences. In the proposed framework these assumptions form the basis 
for the choice of measurement distribution (step i) and, therefore, need 
to be explicitly reported and justified. The same applies for how the 
coordinate-transformation is achieved when in the absence of 360�
horizon profiles (step ii), as well as the significance level that is chosen 
(step iv). These should not be seen as limitations or hindrances but 
rather as features: instead of blurring and hiding researchers’ biases and 
assumptions, the proposed framework exposes and foregrounds them. 
This has the advantage of making the scholarly endeavour more open 
and transparent which, as a by-product, will lead to more robust peer 
reviews and enhance cross-disciplinary understanding of the process of 
skyscape archaeology. 

On the other hand, the proposed methodology deals explicitly and 
exclusively with the issue of statistical significance and not with inten
tionality. Intentionality has been a major concern for archae
oastronomers who attempt to demonstrate that the alignments they 

Fig. 10. Three different ways to model the orientation of the recumbent 
arrangement of a Recumbent Stone Circle: (A) as a normal distribution tightly 
concentrated around the centre of the recumbent; (B) as a broader normal 
distribution to encompass the entire recumbent arrangement; and (C) as a 
uniform distribution. The background image is for Sunhoney circle, courtesy of 
Liz Henty (with permission). 

Fig. 11. SPDs for each of the three measurement models considered.  
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observe today were intentionality incorporated into the structures they 
study (e.g. Ruggles, 2011). One methodological school – the so-called 
green archaeoastronomy — has relied on statistics as a proxy for inten
tionality under the largely unquestioned reasoning that a statistically 
significant pattern in orientation is likely to be due to an intentional 
desire to orient structures in the same way. The concepts of intention
ality and statistical significance thus became conflated. Intentionality, 
however, is beyond the scope of inferential statistics, and certainly 
beyond the scope of this probabilistic framework. This framework can 
only be used to infer patterns of orientation that are unlikely to be due to 
chance — but those patterns might have emerged for a variety of rea
sons, including, but not exclusive to, celestial intentionality. Therefore, 
intentionality should not be argued for solely with recourse to a signif
icance test, but also with evidence that is independent from the orien
tations themselves, and the principles of skyscape archaeology tells us 

that one should always start by seeking it in the wider archaeological 
record and the socio-historic context of the structures being studied 
(Silva and Henty, 2018). 

This probabilistic framework should not be regarded as the endgame 
of quantitative orientation studies – this is but a stepping stone to 
bringing archaeoastronomy to the 21st century. In fact, statisticians 
across a variety of fields, including quantitative-minded archaeologists, 
are moving away from significance testing and p-value estimation to
wards the exploration of more informative alternatives such as 
approximate Bayesian computation and likelihood-based model selec
tion (e.g. Burnham and Anderson, 2002). These more advanced methods 
allow not only for the empirical data to be statistically compared against 
the null hypothesis of randomness but also against other hypotheses that 
can explicitly incorporate landscape and skyscape targets. It is hoped 
that the framework presented in this paper might provide a robust 
baseline for the statistical analysis of structural orientations, but also act 
as a springboard to future development and application of even more 
robust statistical tools. 
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