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Abstract—The weighted nuclear norm minimization and trun-
cated nuclear norm minimization are two well-known low-rank
constraint for visual applications. By integrating their advantages
into a unified formulation, we find a better weighting strate-
gy, namely truncated reweighting norm minimization (TRNM),
which provides better approximation to the target rank for some
specific task. Albeit nonconvex and truncated, we prove that
TRNM is equivalent to certain weighted quadratic programming
problems, whose global optimum can be accessed by the newly
presented reweighting singular value thresholding operator. More
importantly, we design a computationally efficient optimization
algorithm, namely momentum update and rank propagation
(MURP), for the general TRNM regularized problems. The
individual advantages of MURP include: (1) reducing iterations
through non-monotonic search, and (2) mitigating computational
cost by reducing the size of target matrix. Furthermore, the de-
scent property and convergence of MURP are proven. Finally, two
practical models, i.e., MCTRNM and SCTRNM, are presented
for visual applications. Extensive experimental results show that
our methods achieve better performance, both qualitatively and
quantitatively, compared with several state-of-the-art algorithms.

Index Terms—Nuclear norm minimization, Singular value
thresholding, Accelerated proximal gradient, Matrix completion,
Subspace clustering.

I. INTRODUCTION

THE low-rank property is prevalent in visual applications
due to the fact that there often exists a significant

correlation between different units of visual data. This can
be the case when each column of a matrix X represents
2D image at certain frame of video sequence, since images
at nearby frames are strongly correlated [1]. On that basis,
finding a low-rank solution to an optimization problem, e.g.,
matrix completion (MC) or subspace clustering (SC), has
attracted a great deal of attention over the last decade. Concrete
applications, where low-rank modeling of X is relevant, can
be found in scene reconstruction [2], video inpainting [3],
background subtraction [4], or video matting [5], among many
others.
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Generally speaking, there are two mainstream approaches
to find the low-rank structure of data, i.e., factorization based
[6], [7] and regularization based [8], [9], [10], [11] methods.
Since the former is restricted to problems with known rank,
which suffers from finding the global optimal solution due to
their non-convex nature, we focus on the latter, whose cost
function for a low-rank matrix X ∈ <m×n can be generally
formulated as follows:

min
X

F (X) = f(X) + λg(X) (1)

where λ is a balance parameter, f is the fidelity term, and
g is the regularizer. Typically, f is a smooth and convex
function (e.g., square and logistic losses), while g is possibly a
nonconvex, nonsmooth and non-Lipschitz function. The main
problem of Eq. (1) is to deal with nonconvex constraints during
minimization. The current research mainly aims to overcome
nonconvex optimization barrier, i.e. effectiveness of algorithm.
There is a lack of research on time complexity, i.e. efficiency
of algorithm.

One of the most typical low-rank regularizers is the nuclear
norm (NN), i.e., ‖X‖∗ =

∑q
i=1 σi(X), where q = min(m,n)

and σi(X) denotes the ith largest singular values of X . Ac-
cording to [12], NN is the tightest convex surrogate function of
the intrinsic rank constraint, and it can recover unknown low-
rank matrices from finite observations under broad conditions.
However, despite strong theoretical foundation, NN-based
minimization (NNM) problem may fail to obtain the optimal
solution and suffer slow convergence. The main problem is
that the nuclear norm is still a suboptimal relaxation to the
rank minimization problem. Therefore, lots of attempts for
improvements have been investigated [4], [12], [13], [14], [15],
[16], [17], [18]. An intuitive scheme is to enforce low-rank
property by using nonconvex constraints for closer approxima-
tion, e.g., Schatten p [12], Logarithm [12], [15], and Rational
[15], etc. However, most of these functions treat all singular
values in equivalence, and hence are not effective enough to
cope with many practical applications where different rank
components bear different contributions. The other alternative
is to involve a weight w into NNM (WNNM) [16], [17], i.e.,
‖X‖w =

∑q
i=1 wiσi(X), for holding certain prior knowledge

of given singular values. Although WNNM is more flexible
compared with NNM by penalizing larger singular values less
than the smaller ones such as to preserve the major data
components, it does not fully take into consideration a priori
rank information for the encountered problem. To address this
limitation, the truncated nuclear norm minimization (TNNM)
[18], [19], i.e.,‖X‖r =

∑q
i=r+1 σi(X), is proposed for

achieving better control of the target rank to be a given
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parameter r. However, it is also questionable due to the
missing consideration of different rank contributions, which
leads to suboptimal soft thresholding.

Although effectiveness has been intensively studied, unfor-
tunately the efficiency has seldom mentioned. Most existing
approaches resort to the two well-known first-order algorithms
for a low-rank solution, i.e., alternating direction method of
multipliers (ADMM) [9] and accelerated proximal gradient
(APG) [20]. However, both of these two suffer from slow
convergence and require great amount of computation cost at
each iteration due to the full SVD operation. Additionally,
for the TNNM problem, some extra manipulations are further
required due to the discrete nature of truncation step. To
avoid the directly minimizing of TNNM, a common way is
to alternatively optimize it by a two-step scheme [18]. The
first approximates TNNM with a difference of two convex
surrogates by introducing some auxiliary variables. The second
updates the target matrix by certain off-the-shelf algorithms.
While some acceleration schemes, e.g., the partial sum of
singular values (PSSV) [21] and the extension via weighted
residual error (EWRE) [22], have been attempted to minimize
the TNNM problem by a one-step scheme, they are still not
efficient enough due to the additional matrix multiplication
and slow convergence.

To address the issues of both effectiveness and efficien-
cy, a special regularizer by combining WNNM and TRNM
constraint as well as a computationally efficient method is
proposed in this paper. Concretely, our main contributions can
be highlighted as follows:

1) Inspired by WNNM and TNNM, we present a specific
low-rank regularizer, namely truncated reweighting norm
minimization (TRNM), as well as a reweighting singular
value thresholding (RSVT) operator for a better approx-
imation to the original rank minimization problem.

2) An improved APG algorithm with adaptive momentum
update criterion is proposed, which incorporates auto-
matic extrapolation and non-monotone search based on
an extended cost function. Moreover, we prove that its
sufficient descent property can be guaranteed by the
well-defined search criterion, and the convergence is also
promised.

3) A ranking propagation RSVT scheme is proposed to
avoid the full SVD computation. By optimistically pre-
dicting the progressive subspace rank with an initial guess
of the main matrix action, the RSVT operation can be
efficiently approximated from some smaller matrix.

4) We apply the proposed TRNM and the improved APG
method to matrix completion and subspace clustering.
Extensive experiments on image inpainting, video scene
segmentation and gesture segmentation demonstrate that
our methods achieve state-of-the-art performance both on
effectiveness and efficiency.

The remainder of this paper is organized as follows. In
Section II, we describe the TRNM regularizer and present
the RSVT operator to analytically solve it. In Section III,
the detailed description of momentum update and rank prop-
agation (MURP) is given. TRNM and MURP are applied to

matrix completion and subspace clustering in Section IV. The
experimental results are presented in Section V, and Section
VI concludes the paper.

II. TRUNCATED REWEIGHTING NORM MINIMIZATION

In this section, we first present the TRNM constrained low-
rank matrix approximation problem, and then provide our
RSVT operator under the APG framework for its optimal and
closed-form solution.

A. Problem Formulation
The concerned truncated reweighting norm of matrix X ∈
<m×n is defined as

‖X‖w,r =

q∑
i=r+1

wiσi(X) (2)

where r is the predicted rank, e.g., r=1 for background
subtraction and r=3 for photometric stereo; q = min(m,n),
and w = [w1, . . . , wq] is a non-negative and non-descending
vector for penalizing different rank components. With TRNM,
Eq. (1) can be rewritten as

min
X

F (X) = f(X) + λ‖X‖w,r (3)

Obviously, the convexity property of NNM cannot be
preserved in (3) due to involving of truncation operation
and weight constraint. In the following subsection, we as-
sume that f in (3) is a L−Lipschitz smooth function, i.e.,
‖∇f(X1)−∇f(X2)‖2 ≤ L‖X1 −X2‖2, and present the
core updating scheme under the framework of APG.

B. General Solution with APG
ADMM and APG are two most popular first-order ap-

proaches for solving problem (3). ADMM separates the objec-
tive function via additionally introduced variables, which may
results in tedious parameter setting and slow convergence. It
has been proved that APG converges to a solution with the
primal residual being smaller than ε after 1/ε0.5 iterations
[24]. We adopt APG for (3), which iteratively update X as

Y k = Xk + βk(Xk −Xk−1) (4)

Xk+1 = arg min
X

{1

2
||X −G||2F +

λ

µ
||X||w,r} (5)

whereG = Y k− 1
µ∇f(Y k), βk is the extrapolation parameter

for faster convergence, and µ > 0 is a step-size satisfying
certain conditions on the Lipschitz constant L.

To minimize Eq. (5), we present the RSVT operator Ξr ,τ (·).
First, from the von Neumann theorem, we know that for any
matrices A,B ∈ <m×n, tr(ATB) is upper bounded by the
inner product of σ(A) and σ(B). Note that the maximum
value of tr(ATB) can be reached only when A and B have
the same singular vector matrices. This fact is crucial to deduce
the RSVT operator, which is described in Theorem 1.
Theorem 1 (RSVT). Given scalar τ = λ/µ and matrix
G ∈ <m×n, without loss of generality, we assume m ≥ n,
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and let G = U∆V T be the SVD of G. Then the closed-
form solution of (5) can be achieved by the RSVT operator
as follows.

Ξr ,τ (G) = USw̃(∆)V T

where w̃ is a truncated vector by setting the first r elements of
w to 0, and Sw̃(∆)ii = max(∆ii−τw̃i, 0) is the generalized
soft-thresholding operator with weight vector w̃ [16], [17].
Proof. Based on the property of Frobenius norm, we get

min
1

2
||X −G||2F + τ ||X||w,r

⇔ min−tr(XTG) +
1

2
tr(XTX) + τ

q∑
i=r+1

wiσi(X)

⇔ min

q∑
i=1

(−σi(X)σi(G) +
1

2
σ2
i (X))

+

q∑
i=r+1

τwiσi(X)

⇔ min

r∑
i=1

(−σi(X)σi(G) +
1

2
σ2
i (X))

+

q∑
i=r+1

(−σi(X)σi(G) +
1

2
σ2
i (X) + τwiσi(X))

(6)

where the second deduction comes from the von Neumann
theorem, and the term ||G||2F is omitted here for simplicity
since it is a constant in the minimization with respect to X .

Since the final term in (6) consists of simple quadratic
equations, it is trivial to derive the optimal solution σ∗i (X)
separately. With i ≤ r, σ∗i (X) = σi(G) can be obtained
by derivative from the first-order optimality condition; With
i > r, σ∗i (G) = max(σi(G) − τwi, 0) is a global optimal
solution from Corollary 1 of [16]. Hence, by substituting w̃
for w, we achieve X∗ = Udiag(σ∗(X))V T, where U and
V are the left and right singular matrices of G.

Note that the RSVT operator exactly degenerates to PSVT
[21] or GSVT [16] by letting w = 1 or r = 0, respectively.
Compared with PSVT, the introduction of non-descending
vector w is significant for most real-world problems in visual
applications, since that the larger singular values are always
more informative, thus need to be suppressed less than the
smaller ones. Moreover, when σi(G) ≤ τwi for 1 ≤ i ≤ r,
GSVT projects these σi to zero leading to deficient rank
matrix X , i.e., whose rank is lower than the predicted one.
Conversely, RSVT implicitly enforces the resulting X to
satisfy the predicted rank even when all thresholding values
are small, which occasionally happens when parameter τ is
suboptimally selected or the number of observations is limited.

III. MOMENTUM UPDATE AND RANK PROPAGATION
BASED APG

In Section II, we specialize the typical WNNM and TNNM
problems into a unified TRNM formulation. In this section,
we focus on the acceleration of APG by virtue of adaptive
momentum update and rank propagation scheme, so as to
ensure convergence not only with less iterations but also with
less computation at each iteration.

A. Adaptive Momentum Update for APG
Assuming that f and g are both convex, APG works well

if one sets µ > L and choses βk as{
βk = (tk−1 − 1)/tk
tk+1 = (1 +

√
1 + 4t2k)/2,

(7)

where tk is a real number and t−1 = t0 = 1. However, the
convergence by directly applying APG to Eq. (3) is slow due to
the nonconvexity of TRNM regularization. Several researches
have been conducted to accelerate APG under the nonconvex
constraint [24], [25]. One intuitive scheme is to carry out
specific extrapolation by means of historical information [25],
[26]. Another efficient scheme is to employ certain search
criterion for adaptively updating the step-size µ [23]. However,
the optimal choice of the momentum parameters {βk} and
{µk} is not clear yet from these two schemes, especially in
the nonconvex case. In this section, we present an efficient
algorithm that incorporates both extrapolation and step-size
search through extending the function F in (1)as

Θδ(Ψ,Γ , µ) = f(Ψ) + λg(Ψ) +
δµ

4
||Ψ − Γ ||2F , (8)

where Ψ , Γ ∈ <m×n, and 0 ≤ δ < 1 is a scalar parameter. It
can be noted that Eq. (8) adds a third term into Eq. (3) such
that it can be more convex.

In terms of Eq. (8), we present the adaptive momentum
update based proximal gradient method to minimize it, which
is summarized in Algorithm 1. The basic idea is that we first
employ the extrapolation step 1.1 and update step 1.2 from
APG, then introduce the non-monotone decision step 1.3 and
the line search step 1.4 for more flexibility and efficiency.

With respect to flexibility, if δ = 0, we have Y k = Xk

from step 1.1 since that βk = 0 always holds from step 1. In
this case, our decision step 1.3 degrades into

F (Ψ)− max
(k−l)+≤i≤k

F (Xi) ≤ − c
2
||Ψ −Xk||2F .

As a result, Algorithm 1 reduces to non-monotone proximal
gradient (NPG) [23]. On the other hand, given δ ∈ (0, 1) and

µ0
k = µmax > L , β0

k ≤
√
δ(µmax − L)µmax

2(µmax + L)
, ∀ k ≥ 0,

then the condition of step 1.3 can be naturally satisfied
following from Lemma 1. In this case, both the introduced
non-monotone decision and line search can be bypassed and
our Algorithm 1 degenerates to the original APG method.

With respect to efficiency, the extended function (8) is
sufficient descent (Lemma 1). The momentum search criterion
is well-defined (Proposition 1). The overall convergence of
Algorithm 1 can also be guaranteed (Theorem 2). Moreover,
we propose a rank propagation RSVT operator in Subsection
III.B, which achieves further acceleration at each iteration.
Lemma 1. When the conditions µk > L and βk ≤
1
2

√
δ(µk − L)µk−1

/
(µk + L) hold, then the generated se-

quences from Algorithm 1, i.e., {Xk} and {µk}, satisfy the
following inequality.

Θδ(Ψ ,X
k, µk)−Θδ(X

k,Xk−1, µk−1)

≤ L−(1−δ)µk

4 ||Ψ −Xk||2F ,
(9)
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where Θδ is the extended function defined in (8).
Proof. By turning step 1.2 of Algorithm 1 back to the Taylor
expansion form and based on Remark 1 of [16], we have〈
∇f(Y k),Ψ − Y k

〉
+
µk
2
||Ψ − Y k||2F + g(Ψ)

≤
〈
∇f(Y k),Xk − Y k

〉
+
µk
2
||Xk − Y k||2F + g(Xk)

which implies that

g(Ψ) ≤ g(Xk) +
〈
∇f(Y k),Xk − Ψ

〉
+
µk
2
||Xk − Y k||2F −

µk
2
||Ψ − Y k||2F

= g(Xk) +
〈
∇f(Y k),Xk − Ψ

〉
− µk

2
||Ψ −Xk||2F

+ µk
〈
Xk − Ψ ,Xk − Y k

〉
(10)

On the other side, it can be seen from [12] that

f(Ψ) ≤ f(Xk) +
〈
∇f(Xk),∆ΨX

〉
+
L

2
||∆ΨX ||2F , (11)

where ∆ΨX = Ψ − Xk. Similarly, by denoting ∆XY =
Xk − Y k as well as combining (10) and (11), we can get

f(Ψ) + g(Ψ)− f(Xk) + g(Xk)
1
≤ L− µk

2
||∆ΨX ||2F+

(µk||∆XY ||F + ||∇f(Xk)−∇f(Y k)||F )||∆ΨX ||F
2
≤ L− µk

4
||∆ΨX ||2F +

(µk + L)
2

µk − L
||∆XY ||2F

1
=
L− µk

4
||∆ΨX ||2F +

(µk + L)
2

µk − L
β2
k||Xk −Xk−1||2F

3
≤ L− µk

4
||∆ΨX ||2F +

δµk−1

4
||Xk −Xk−1||2F

=
L− (1− δ)µk

4
||∆ΨX ||2F −

δµk
4
||∆ΨX ||2F

+
δµk−1

4
||Xk −Xk−1||2F

(12)

where inequality 1 comes from Cauchy-Schwarz theorem,
inequality 2 follows form Lipschitz smoothness of f as well
as the mathematical relation 4abs ≤ a2 + 4s2b2, equality 1
coincides with step 1.1 of Algorithm 1, and inequality 3 stems
from the constraint of βk. By recalling (8) and rearranging all
terms in (12), we complete the proof of Lemma 1.

Note that the descent property established in Lemma 1 is
independent of the convexity of f and g, so it is applicable to
(3) even with the concavity of TRNM regularization. Literally,
it seems that Algorithm 1 requires two loops for optimization,
which may yield more overall iterations as similar to the two-
step strategy for TNNM [18]. However, with the fact that the
sufficient descent property of Θδ can be satisfied given µk
large enough and βk small enough, we present Proposition
1 that the condition in step 1.3 can be easily satisfied given
θ > 1 and η < 1. Based on the above discussion, we show the
convergence of Algorithm 1 in Theorem 2. The stop condition
for Algorithm 1 is set as ||Xk+1−Xk||F /||Xk||F ≤ ε, where
ε is a given tolerance.
Proposition 1. For the defined {Xk} and {µk} in Lemma
1, the condition in step 1.3 of Algorithm 1 can be satisfied
within finite iterations of inner loop.

Proof. With the truth that µmax ≥ (L+ 2c)/(1− δ) ≥ L and
(1 − δ)µmax − L ≥ 2c in Algorithm 1, then from Lemma 1
we can get

Θδ(Ψ ,X
k, µmax)−Θδ(X

k,Xk−1, µk−1)

≤ L− (1− δ)µmax

4
||Ψ −Xk||2F ≤

−c
2
||Ψ −Xk||2F ,

which together with

Θδ(X
k,Xk−1, µk−1) ≤ max

(k−l)+≤i≤k
Θδ(X

i,Xi−1, µi−1)

guarantees the satisfied condition in step 1.3. So
this proposition can be proved if µk = µmax and
βk ≤ 0.5(δ(µk − L)µk−1)0.5/(µk+L) will be satisfied within
finite iterations. Due to the similarity of µk and βk, here we
only show the proof for µk. Note that µk > µmax will not
happen due to step 1.4. Let nk denote the iterations required
to get µk = µmax, it is obvious that nk = 1 if µ0

k = µmax;
Otherwise, we have µminθ

nk−1 ≤ µ0
kθ
nk−1 < µmax which

implies that

nk ≤
⌊

log(µmax)− log(µmin)

log θ
+ 1

⌋
,

and completes this proof.

Algorithm 1 Adaptive Momentum Update for Proximal
Gradient
Input: X0, µ0 = 1, θ > 1, δ, η ∈ [0, 1), c > 0, µmax ≥
L+2c
1−δ > µmin > 0, βmax ≥ 0, and l ≥ 1.

Suggested settings:
θ = 2, δ = 0.7, η = 0.8, l = 3, c = 1e−4, µmin = 1e−6,
βmax = 5.
For k = 1, 2, . . . ,maxit
1. Set µk = µ0

k ∈ [µmin, µmax] and βk = β0
k ∈ [0, δβmax].

1.1) Extrapolation: Y k = Xk + βk(Xk −Xk−1).
1.2) Perform RSVT with G = Y k − ∇f(Y k)

µk
, and τ = λ

µk
.

1.3) If

Θδ(Ψ ,X
k, µk)− max

(k−l)+≤i≤k
Θδ(X

i,Xi−1, µi−1)

≤ − c
2
||Ψ −Xk||2F ,

where (·)+ is a nonnegative operator, then turn to step 2.
1.4) Set µk = min{θµk, µmax}, βk = ηβk, and go to step 1.1.
2. Set Xk+1 = Ψ , k = k + 1, and turn to step 1.
End for
Output: Xk;

Theorem 2. For the defined {Xk} and {µk} in Lemma 1, the
following two statements hold.
i) the sequence {Θδ(X

ϑ(k),Xϑ(k)−1, µϑ(k)−1)} is nonin-
creasing and limk→∞Θδ(X

ϑ(k),Xϑ(k)−1, µϑ(k)−1) = κ,
where κ is some constant and
ϑ(k) = arg maxiΘδ(X

i,Xi−1, µi−1), (k − l)+ ≤ i ≤ k.
ii) limk→∞||Xk+1 −Xk||2F = 0.
Proof. Let Θk+1 = Θδ(X

k+1,Xk, µk) for simplicity. Step
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1.3 of Algorithm 1 together with the definition of ϑ(k) leads
to

Θk+1 −Θϑ(k) ≤ −c
2
||Xk+1 −Xk||2F ≤ 0 (13)

Then we have
Θϑ(k+1) = max

[k+1−l]+≤i≤k+1
Θi

= max{Θk+1, max
[k+1−l]+≤i≤k

Θi}

1
≤max{Θϑ(k), max

[k+1−l]+≤i≤k
Θi}

2
≤max{Θϑ(k), max

[k−l]+≤i≤k
Θi}

= Θϑ(k),

where inequality 1 and 2 stem from (13) and the
definition of ϑ(k), respectively. This demonstrates that
{Θδ(X

ϑ(k),Xϑ(k)−1, µϑ(k)−1)} is nonincreasing and its lim-
itation exists (κ is denoted as the limiting point) by the fact
that Θδ is bounded below by zero.

For statement ii), let ∆Xk = Xk+1 −Xk, we first show
(14) and (15) hold by induction.

lim
k→∞

∆Xϑ(k)−j = 0, (14)

lim
k→∞

F (Xϑ(k)−j) = κ, ∀j ≥ 1. (15)

When j = 1, by replacing k with ϑ(k)− 1 in (13), we have

Θϑ(k) −Θϑ(ϑ(k)−1) ≤ −c
2
||∆Xϑ(k)−1||2F ,

which further implies that

lim
k→∞

∆Xϑ(k)−1 = 0 (16)

due to statement i). Taking both of (8) and (16) into consid-
eration, we obtain

κ = lim
k→∞

Θδ(X
ϑ(k),Xϑ(k)−1, µϑ(k)−1)

= lim
k→∞

F (Xϑ(k)−1 + ∆Xϑ(k)−1) +
δµϑ(k)−1

4
||∆Xϑ(k)−1||2F

= lim
k→∞

F (Xϑ(k)−1)

Hence, the conditions (14) and (15) hold for j = 1.
Suppose that (14) holds for j = J > 1 and let ϑ(k)−J−1 ≥ 0
without loss of generality, then by replacing k with ϑ(k)−J−1
in (13), we have

Θϑ(k)−J −Θϑ(ϑ(k)−J−1) ≤ −c
2
||∆Xϑ(k)−J−1||2F

1⇒(
c

2
+
δµϑ(k)−J−1

4
)||∆Xϑ(k)−J−1||2F

≤ Θϑ(ϑ(k)−J−1) − F (Xϑ(k)−J)
2⇒ lim
k→∞

∆Xϑ(k)−J−1 = 0

where deduction 1 and 2 follow from the definition of Θδ and
the statement i), respectively. From this, we further obtain

lim
k→∞

F (Xϑ(k)−J−1)

= lim
k→∞

F (Xϑ(k)−J −∆Xϑ(k)−J−1)

= lim
k→∞

F (Xϑ(k)−J) = κ

Thus, (15) holds for j = J + 1, and the induction is proved.
We now return back for the statement ii). In fact, since that

k − l ≤ ϑ(k) ≤ k always holds from the definition of ϑ(k).
Thus k − l − 1 = ϑ(k) − jk holds for any k given some
jk ∈ [1, l + 1]. Then we can easily conclude that

||∆Xk−l−1|| = ||∆Xϑ(k)−jk || ≤ max
1≤j≤l+1

||∆Xϑ(k)−j ||

⇒ lim
k→∞

∆Xk = lim
k→∞

∆Xk−l−1 = 0

where the deduction follows from (14).

B. Rank Propagation for RSVT Operator
The primary computational burden of Algorithm 1 lies in

the iteratively performing of RSVT operator, whose cost for
a m × n matrix is O(mnq). In fact, for the singular values
in RSVT operator, only those larger than τw̃i are referred,
which offers the possibility of avoiding the full SVD operation.
Following this idea, we present a rank propagation technique
to speed up RSVT. Suppose Z ∈ <m×n has p′ ≤ q singular
values larger than τw̃i and let Up′Λp′Vp′T be the rank p′

SVD of Z, then Proposition 2 holds by the fact that the major
formulation (5) of RSVT comprises of unitary invariant norms
[27].
Proposition 2. Let Ξr ,τ (·) denote the RSVT operator and
given orthonormal matrix Q ∈ <m×p with p ≥ p′ and
span(Up′) ⊆ span(Q), we have Ξr ,τ (Z) = QΞr ,τ (B), where
B = QTZ ∈ <p×n.
Proof. By substituting RSVT for the traditional singular value
thresholding (SVT), the proof follows a similar derivation as
[29, proposition III.1], hence we omit the details here.

Based on Proposition 2, step 1.2 of Algorithm 1 can be
avoided by instead conducting partial RSVT on smaller matrix
B following two main routines: 1) Generating an orthogonal
matrix Q, and 2) Performing RSVT on B. This strategy has
already been intensively investigated in some pioneer works.
The randomized SVD [28] sequentially perform these two
routines with a fixed p. However, the unknown parameter p is
difficult to estimate in advance. To handle this issue, several
variants of randomized SVD [28], [29] have recourse to the
incremental implementation through achieving the complete
SVD block by block until certain given precision is satisfied.
Nevertheless, the incremental scheme may be vulnerable to
round-off deviation, thus some extra orthogonalization op-
erations should be imposed for acceptable accuracy, which
inevitably leads to more time complexity.

In practice, two facts should be noted for the rank evolving
process of Algorithm 1. First, the amount of the singular values
those greater than τw̃i shall progressively approaches to the
real rank of the target matrix. Second, the precision in the ini-
tial steps is often poorer due to a loosely approximation at that
stage. Inconsideration of these two, a natural question rises:
Whether performing the full RSVT operator is indispensable
when the target variable deviates far from the final solution?
These facts and the question motivate us to employ the rank
propagation strategy of implementing RSVT from inexactness
to exactness as presented in Algorithm 2.

Using the rank propagation strategy, Algorithm 1 begins
with an loose guess of subspace rank p0, and then iteratively
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performs randomized SVD for the RSVT operator. With the
obtained rank b in the kth iteration, the estimated rank pk+1

shall be computed as

pk+1 =

{
b+ a if b ≤ pk⌊
pk + ρq

⌋
if b > pk

(17)

where a is an integer earning more rank information, ρ ∈ (0, 1)
denotes a scale factor, and b·c represents the floor operation.
In the case of b ≤ pk, it demonstrates that pk is over
estimated resulting in excessively large block size and undue
computation cost, thus (17) reassigns pk+1 to a smaller value
with slightly over-sampling rate a. In the other case that
b > pk, it indicates pk is smaller than that required to
approximate the authentic rank, so (17) reassigns pk+1 to a
larger value for better capturing the whole energy. Empirically,
Algorithm 2 works well when we set a=2 and ρ = 0.05.
Compared to the original RSVT operator, although Algorithm
2 also involves a full SVD operation, it performs on the
smaller matrix B = QTZ and costs only O(npk2) time
complexity, which is clearly more efficient due to pk � q.
Therefore, our scheme of optimistically propagating rank shall
bring better computational efficiency without any predicted
rank information or given precision.

Algorithm 2 RSVT with Rank Propagation
Input: Zk = <m×n, r > 0, τ = λ/µk, a > 0, ρ ∈ (0, 1),

pk ∈ (r, q].
Output: Zk+1 and pk+1.
1: Generate Gaussian matrix Ω ∈ <n×pk ;
2: Let A = ZΩ;
3: Q = qr(A); //for othogonalization
4: Q = powermethod(A,Q); //optional, suggested by [28];
5: Perform SVD operation as: [U ,Λ,V ] = SV D(QTZ);
6: Let b be the amount of elements Λii greater than τw̃i, i =

1, . . . , q;
7: If b ≤ r
8: Zk+1 = QU(:, 1 : r)Λ1:rV (:, 1 : r)T;
9: else if

10: Zk+1 = QUSw̃(Λ)V T;
11: End if
12: Compute pk+1 as (17).

IV. APPLYING TRNM TO MATRIX COMPLETION AND
SUBSPACE CLUSTERING

To validate the effectiveness of the proposed TRNM con-
straint and MURP scheme, we apply them to two typical
data mining applications: matrix completion and subspace
clustering. For matrix completion, similar to TNNM [18], [21],
[22], TRNM is applied directly to the input matrix for structure
recovery. For subspace clustering, like the TSCLR [30], we
propose a TRNM constrained SC method to recover the
“low-rank + temporal” structure of the data matrix. Although
TRNM can also be applied in image denoising following the
similar steps of [17], we move the detailed discussions to the
supplemental material due to space limit.

A. TRNM in Matrix Completion

Given an incomplete data matrix M , let PΩ : <m×n →
<m×n denote an orthogonal projection onto the subspace
of matrices that have nonzero entries corresponding to the
observed components in a domain Ω, i.e.,

[PΩ(M)]ij =

{
M ij , if (i, j) ∈ Ω

0, otherwise
(18)

Then, the matrix completion problem via TRNM (MCTRNM)
can be formulated as follows:

min
X

1

2
||PΩ(X −M)||2F + λ||X||w,r (19)

It has been observed that (19) becomes easier by recovering
rows with more known entries preferentially in each step [22].
For this purpose, we assign the rows of the residual E =
X−M with different weights. Accordingly, problem (19) is
modified as

min
X

f(X)︷ ︸︸ ︷
1

2
||PΩ(T (X −M))||2F +λ||X||w,r (20)

where T ∈ <m×n is a diagonal matrix. Suppose sori =
(s1, s2, . . . , sm) is a vector with its element si being the
number of observed entries in the ith row of input ma-
trix M . By reordering sori into a non-ascending vector
ssort = (si1 , si2 , . . . , sim), where ij , j ∈ {1, 2, . . . ,m}
is the index of sij in sori, then the corresponding weight
Tsort = diag(t1, . . . , tm) can be given by

tij =

{
1, 1 ≤ j ≤ β
θ−1
m−β + tij−1 , β < j ≤ m

(21)

where θ > 1 and 0 < β < m. Eq. (21) ensures that the rows
with more known entries are given smaller weights than others,
which further leads to easier recovery than others. We can now
apply Algorithm 1 for solving problem (20), for which the
gradient of f(X) is

∇f(X) = PΩ(T 2(X −M)). (22)

Since that ||∇f(X1) − ∇f(X2)||2 = ||PΩ(T 2(X1 −
X2))||2 ≤ ||X1 − X2||2, where the inequality comes from
the fact that ti ≤ 1 for i ∈ {1, 2, . . . ,m}, then the Lipschitz
constant for (20) is L=1.

B. TRNM in Subspace Clustering

Subspace clustering methods differ in the constraints en-
forced on the coefficient matrix. Recently, some sequential
constraint based approaches, e.g., ordered subspace cluster-
ing (OSC) [31] and temporal subspace clustering [30], have
been proposed to cluster data drawn from a temporally or
spatially ordered union of subspaces, and obtain overwhelming
advantage against the traditional methods. However, all these
methods neglect the low-rank property that possibly resides
in data. By applying TRNM to the Laplacian regularized
TSC (TSCLR) model [30] and following the self-expressive



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2916986, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

property [10], [11], our subspace clustering model via TRNM
(SCTRNM) is formulated as follows:

min
X

f(X)︷ ︸︸ ︷
1

2
||M −MX||2F +

λ1

2
tr(XLTX

T) +λ2||X||w,r
(23)

where λ1 and λ2 are two balance parameters, M is the input
matrix with multiple subspaces, and LT ∈ <m×n is the
temporal Laplacian regularization [30].

The gradient of f(X) in (23) can be computed as

∇f(X) = MTMX −MTM + λ1XLT , (24)

from which ||∇f(X1) − ∇f(X2)||2 ≤ ||MTM ||2||X1 −
X2||2 +λ1||X1−X2||2||LT ||2 holds, and we can further get
the Lipschitz constant L = ||MTM ||2 + λ1||LT ||2.

V. EXPERIMENTAL RESULTS

We evaluate the performance of MCTRNM on image
inpainting, which is a typical matrix completion problem.
Some improved low-rank constraints based on NNM, includ-
ing IRNN [12], WNNM [16], and TNNM [18], [19], are
selected as the competing methods. For TNNM, we further
compare its variants, such as TNN-ADMM [18], TNN-APG
[18], PSSV [21], and EWRE [22], to validate the efficiency
of different optimization schemes. For MCTRNM, we adopt
wi = 1/(σpi (X) + ε) with p=0.8 as the default weight con-
straint following [4] and [16]. The main parameters r and λ are
traversed in {1, 2, . . . 9} and {1e2, . . . , 7e2}, respectively, to
report the best results. Unless otherwise stated, the parameters
θ and β for weight matrix T are set as 1.1 and 100 consistently.
For MURP, we simply choose {β0

k} by Eq. (7) with β0
k in

place of βk. The other parameters are permanently set as
the suggested values shown in Algorithm 1. The maximum
iterative number and the convergence tolerance are set as
maxit=1000 and ε =1e−5 for all the competing methods to
ensure a fair comparison.

We also compare another proposed approach, SCTRNM,
with the state-of-the-art SC algorithms, including FSCNN [8],
IRIALM [9], NSGLRR [10], IBDLR [11], TSCLR [30], and
OSC [31], for well-known clustering problems. For SCTRNM,
the parameters r and p are set as c and 1 in default, where c
is the target clusters in specific experiments. The balance pa-
rameters λ1 and λ2 are all traversed in {1e−3, 1e−2, . . . , 1e3}
for the best results. The maximum iterative number and the
convergence tolerance are set as maxit=200 and ε = 1e−4,
respectively. Other parameters of all competitors are tuned as
suggested in original papers to achieve the best performance.
The program platform is with Intel Core i7-5500U 2.40GHz
and 8GRAM.1

A. Image Inpainting
The samples in different resolutions listed in Fig. 1, in-

cluding 5 color images and 2 range data, are used in this

1More experimental results and the source code are provided as the
supplemental material and will be released on: http://www.escience.cn/people
/zhengjianwei/index.html

subsection. We adopt the Peak Signal-to-Noise Ratio (PSNR)
[17], which is a commonly used criterion in image inpainting,
to evaluate the quality of recovery results. The execution time
is also reported by recovering an incomplete image with 10
runs and generating the average results in seconds.

(1) 341× 600 (2) 300× 300 (3) 278× 410 (4) 210× 350

(5) 1300×975 (6) 496× 718 (7) 375× 450

Fig. 1: The used color images (1-5) and range data (6-7).

1. Text Removal
Text removal is a real world problem in most visual

applications. By regarding the corrupted pixels as missing
elements, the text removal mission can be directly considered
as a matrix completion issue. For all the samples listed in
Fig. 1, we randomly pave them some texts and then perform
image recovery using all the competing approaches. Notice
that the natural images 1-5 contain three color channels in
RGB setting; we recover them independently and then unify
the results on average as the final performance. Part of the
visual results, the runtime, and the PSNR values can be found
in Fig. 2, Fig. 3, and Table I. Notice that in Fig. 3, we scale
the result from sample 5 to 1/20 for balanced visualization,
since it requires much too more execution time than others.

The first observation from Fig. 2 is that all the methods can
recover the true data from text corruption. It makes sense for
these outcomes since that all the selected constraints have been
verified with appealing performance theoretically and empir-
ically. However, with more careful observations, our method
still achieves better visual quality with less ghost shadow of
text remnants, especially than the result from WNNM, whose
image is full of abnormal points. From Table I, it can be seen
that the PSNR results of WNNM are inferior to others in most
scenarios. IRNN and TNNM based methods share similar re-
covery performance in this experiment. However, their PSNR
is lower than ours in almost all cases. On average of samples 1-
7, MCTRNM achieves 0.24dB-2.6dB improvement over other
competing methods. Such an improvement is notable since all
of these methods have been proven to be superior to many
typical image inpainting approaches.

Moreover, from Fig. 3 and Table I (the values in brackets),
our method runs much more efficient than the competi-
tors, which not only requires least overall runtime but also
converges with less iterations. WNNM behaves the slowest
among all the seven methods; it fails in convergence until
the maximum iterations reached in most cases. IRNN, though
better than WNNM, still requires much more iterations than
others. For the TNNM based methods, while PSSV runs faster
than ADMM and APG by adopting a partial SVT operator for
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TABLE I: The PSNR results and required iterations of all the seven methods on samples 1-7 under text corruption.
Sample IRNN WNNM TNN-ADMM TNN-APG PSSV EWRE MCTRNM
1 23.38 (1071) 22.28 (3000) 23.49 (836) 23.46 (435) 23.18 (280) 23.48 (196) 23.60 (102)
2 22.04 (984) 18.71 (3000) 22.10 (1148) 22.11 (420) 21.98 (231) 22.09 (240) 22.06 (80)
3 25.54 (867) 20.96 (1088) 25.81 (484) 25.83 (452) 25.89 (234) 25.83 (159) 26.00 (75)
4 34.61 (799) 34.56 (2571) 34.57 (1116) 34.43 (354) 27.18 (316) 34.62 (201) 34.71 (192)
5 24.58 (2663) 23.98 (3000) 24.35 (726) 24.35 (766) 24.21 (465) 24.16 (183) 25.03 (177)
6 27.33 (502) 23.70 (1000) 27.64 (295) 27.64 (161) 27.62 (135) 27.56 (68) 27.92 (27)
7 23.00 (439) 20.31 (1000) 23.19 (527) 23.21 (264) 22.93 (121) 23.19 (72) 23.37 (26)

(1) Masked data (2) TRNN

(3) WNNM (4) TNN-ADMM

(5) TNN-APG (6) PSSV

(7) EWRE (8) MCTRNM

Fig. 2: Visual comparison on range data 6. (1) Masked data.
(2)-(8) Recovered images of IRNN, WNNM, TNN-ADMM,
TNN-APG, PSSV, EWRE, and MCTRNM, respectively.

avoiding the two-step scheme [21], it runs slower than EWRE.
The advantage of EWRE hinges on recovering different rows
(or columns) under scheduled order. However, this scheme
also causes additional matrix multiplications, whose cost is
O(mnq) for any two matrices A, B ∈ <m×n.
2. Random Pixels Missing

Due to coding or transmission issues, partial pixels of the
images may be occasionally missing. In this subsection, we
randomly mask part pixels of the input images, and then
evaluate the effectiveness and efficiency of all the compared
methods. Table II shows the quantitative results, i.e., PSNR
and runtime (in brackets), for all the tested samples with
60% missing ratio. An overall impression observed from
Table II is that MCTRNM achieves the highest PSNR in all

1 2 3 4 5 6 7

sapmles

0

50

100

150

200

250

R
un

tim
e 

(s
)

IRNN
WNNM
TNN-ADMM
TNN-APG

PSSV
EWRE
MCTRNM

Fig. 3: The execution time of all the competing methods on
samples 1-7 with text noise.

cases. WNNM again is inferior to others both in PSNR result
and in execution time. IRNN, though outperforming WNNM,
performs poorer than the remaining five in most cases. The
PSNR results of the TNNM based methods are roughly equal
to each other on average, so the one with better efficiency will
be more favorable for practicability. TNN-APG converges with
less iterations than TNN-ADMM. Nevertheless, it requires a
little more runtime in each iteration obtaining the objective
value [18]. Thus, we can deem that TNN-ADMM and TNN-
APG share similar efficiency level. PSSV converges much
faster than TNN-ADMM and TNN-APG by performing the
PSVT operator in one-step strategy, but it runs slower than
EWRE in most cases. However, EWRE still ranks behind our
method. The appealing efficiency of MCTRNM stems from
the momentum adaption and rank propagation scheme, where
the former results in a rapid convergence and the latter reduces
per-iteration computational burden.

Fig. 4 further shows the PSNR and runtime results of
six methods, excluding WNNM that performs the poorest
in previous experiments, on image 5 under 10%-50% mask
ratios. For all ratios of missing entries in Fig. 4 (1), the
PSNR results get lower with the increasing of mask level.
It is reasonable because more pixels are available when there
are smaller percent of outliers. Again, we can observe that
our method achieves the highest PSNR in all tests. Overall,
the gains of MCTRNM over the second one are 0.26dB,
0.41dB, 0.58dB, 0.57dB, 0.45dB, and 0.35dB along with the
increasing of mask ratio. In Fig. 4 (2), a phenomenon can
be observed that all the competitors run slower along with
the increasing of the missing ratio. It is also reasonable since
that an image with more pixels corrupted always holds less
meaningful information. Interestingly, we observe that EWRE
behaves reversely in this experiment. This can be attributed
to the addition of several extra variables generating better
recovery effectiveness, which requires to be finely tuned and
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TABLE II: Quantitative results on samples 1-7 with 60% random missing pixels .
Sample IRNN WNNM TNN-ADMM TNN-APG PSSV EWRE MCTRNM
1 21.30 (108.8) 19.03 (171.5) 21.32 (145.6) 21.34 (54.5) 21.33 (27.2) 21.31 (18.9) 21.45 (13.2)
2 20.75 (37.7) 18.09 (48.1) 21.14 (41.3) 21.20 (23.6) 21.37 (9.1) 21.27 (7.8) 21.37 (3.5)
3 23.92 (34.8) 21.20 (66.2) 24.27 (36.6) 24.35 (37.1) 24.54 (16.4) 24.37 (14.4) 24.63 (4.9)
4 32.18 (28.1) 30.92 (51.7) 32.13 (33.3) 32.14 (10.9) 31.02 (4.9) 31.92 (4.8) 32.59 (4.0)
5 24.77 (1995) 22.46 (3562) 24.56 (1007) 24.55 (1004) 24.45 (440) 24.23 (477) 25.12 (224)
6 27.11 (62.9) 24.50 (165.9) 27.31 (80.7) 27.35 (46.4) 27.39 (12.8) 27.33 (8.3) 27.49 (4.5)
7 22.92 (40.4) 20.85 (52.4) 23.12 (31.9) 23.15 (26.3) 23.16 (13.0) 23.13 (11.3) 23.21 (5.7)

may cause side-effect to the overall convergence. MCTRNM
runs most efficiently again in all tests, and is also more stable
under different missing rates.
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Fig. 4: PSNR and runtime of six competing methods on color
image 5 under different missing rates.

B. Data Clustering
In this subsection, we investigate the performance of SC-

TRNM by conducting experiments on video scene segmen-
tation, gesture segmentation, and regular image clustering.
Three metrics, i.e., accuracy (AC) [10], normalized mutual
information (NMI) [10], and execution time are adopted to
evaluate the clustering performance.
1. Video Scene Segmentation

The purpose of this experiment is to cluster different scenes
in video sequences. Following OSC, the data are drawn from
an animation freely available in the Internet Archive [31].
The videos are separated into sequences containing three
scenes, where each sequence consists of approximately 80-
300 frames. There are overall 19 sequences from the video.
The scenes to be segmented involve remarkable translation and
morphing of objects within the scene and occasionally camera
or perspective variations.

Since the frame size of original video is extremely high
dimensional, we down-sample all the frames to a resolution
of 129× 96 for computational tractability. Each frame in the
sequence is vectorized to xi ∈ <12384 and concatenated with
consecutive columns to form the input matrix X . All the se-
quences are then corrupted by Gaussian noise with magnitude
at 30% to generate clustering results that can be found in Table
III. From this table, Our first observation is that SCTRNM
generally outperforms the state-of-the-art methods both in
AC and NMI. Without consideration of temporal constraint,
FSCNN, IRIALM, NSGLRR, and IBDLR all underperform
our method with notable gap. Although TSSCLR and OSC
achieve closer performance to ours, they require more than
twice as much runtime compared with SCTRNM. Besides, the
standard deviation of our proposed method also outperforms

other competitors in most cases, which further demonstrate
that SCTRNM is more stable and behaves more predictably.
Note that FSCNN runs the fastest in this experiment, yet it lags
behind SCTRNM noticeably with respect to AC and NMI, i.e.,
9.33% and 9.69%, respectively.

TABLE III: Clustering accuracies, standard deviation, and
runtime of all methods on video sequences.

Method AC (%) NMI (%) TimesMean Std Mean Std
FSCNN 85.96 16.46 80.30 19.97 45.52
IRIALM 77.63 18.30 64.70 28.45 420.4
NSGLRR 57.50 12.62 40.48 23.98 558.8
IBDLR 86.77 15.54 77.56 23.91 70.51
TSSCLR 94.66 8.79 88.10 14.59 155.6
OSC 94.60 9.81 88.33 14.02 188.24
SCMATN 95.29 7.45 89.99 14.53 70.38

2. Gesture Segmentation
In this subsection, we use the Keck gesture data [31] that

consists of 14 different gestures for evaluation. For each
gesture, there are three sequences performed by different
subjects. In each sequence, the same gesture is repeatedly
performed with three times. The original resolution of each
frame is 480 × 640. Following [31],we resize each frame
to the resolution of 80 × 106 to speed up the computation.
Different gesture sequences of each subject are concatenated
into a single long video sequence, which is further used as the
input matrix X .

Fig. 5 plots the clustering performance of all seven methods
versus different number of gestures. All results are averaged
from 10 runs of randomly selected gesture sequences. Ben-
efiting from the temporal information, TSCLR, OSC, and
SCTRNM consistently and significantly outperform the other
methods. Among these three, the performance of our proposed
method again ranks the highest with regard to both AC and
NMI. To further demonstrate the advantage of SCTRNM,
Fig. 6 shows the clustering visualization containing all the
14 gestures, by rendering clusters as different colors. The
numerical results are also given in the subcaption for clearer
comparison. We can see that the sequential subspace structure
of TSCLR is more confused than OSC and SCTRNM, which
leads to the poorer numerical results. OSC roughly generates
the correct ordered clusters across columns. However, the span
of certain columns distinctly deviates from the ground truth.
Finally, SCTRNM keeps well-ordered the balanced structures
and generates the least chaos among all the visualization
results, which confirms the superiority of TRNM constraint.

In addition, an interesting phenomenon is noticeable from
Fig. 6. It shows that each cluster is led by a short extra block
caused by the preliminary motion of the performer. This is a
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positive result since it demonstrates that our approach is capa-
ble of discovering implicit clusters, which brings fine property
for some high-level applications such as video understanding.
In combining with Fig. 5 and Fig. 6, OSC achieves close
performance to our method with a difference less than 2%
numerically. However, the running time of SCTRNM is about
100 times faster than OSC, which ensures the more remarkable
application feasibility.
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Fig. 5: Clustering performance (%) on the Keck dataset with
respect to different number of gestures.

3. Regular Image Clustering
The aim of this experiment is to cluster unique objects from

a set of captured images. We draw the dataset from the COIL
database that contains 20 objects. The images of each object
are sequentially taken 5 degree apart as the object is rotated on
a turntable and each object has 72 images. The size of each
image is 40 × 40. All the images are kept contiguous, i.e.,
unique object do not mix, so that we can exploit the spatial
information from the final input matrix X ∈ <1600×1440.

Fig. 7 shows the quantitative results of AC and NMI for this
experiment. Similar to the previous experiments, SCTRNM
gives the best results outperforming other competitors. On
average of AC and NMI, the performance improvement of
SCTRNM is 25.76%, 44.92%, 24.60%, 22.97%, 9.64%, and
11.00%, over FSCNN, IRIALM, NSGLRR, IBDLR, TSCLR,
and OSC, respectively.

In Fig. 8, we further exhibit the normalized objective values
versus runtime of all methods under their optimally tuned
parameters. As can be seen from the figure, the proposed
approach is computationally more efficient compared to other

(1) Ground Truth

(2) TSCLR (AC: 62.47%, NMI: 60.75%, Time: 1.6e4s)

(3) OSC (AC: 70.86%, NMI: 72.34%, Time: 2.6e4s)

(4) Ours (AC: 72.84%, NMI: 74.33%, Time: 225s)

Fig. 6: Clustering visualization and the numerical results on
Keck dataset.
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Fig. 7: Clustering performance (%) on COIL20 dataset.

iterative based clustering methods. Numerically, the runtime
required for convergence of SCTRNM is about 1/100 of that
by TSCLR and OSC. The objective values of IBDLR in Fig.
8 decrease more smoothly than our method. However, the
computation of Eigen decomposition costs O(n3) iteratively,
which restricts IBDLR from convergence in short time. For
SCTRNM, the bumps shown in the figure come from the non-
monotone nature of Algorithm 1 and the rank approximation
operation. Especially, at the initial stage of optimization, the
predicted rank deviates far away from the authentic one, which
leads to a reverse effect on the cost function. As the iteration
continues, the real rank of matrix X is gradually revealed,
which impels Algorithm 1 to converge in an efficient manner.
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Fig. 8: The normalized objective values versus elapsed time
on COIL20 dataset.

C. Component Analysis
The efficiency of our Algorithm 1 mainly stems from two

factors: (i) The momentum adaptation ruled by the extended
function (8); and (ii) The rank propagation RSVT operator on
a smaller matrix. Their respective contributions are evaluated
on image inpainting under text corruption and shown in Fig.
9 and Table IV, respectively.

Notice that when given δ = 0, Algorithm 1 degenerates
to the NPG algorithm. In Fig. 9 (2), though the curves on
different samples fluctuates strongly with the changes of δ,
the execution time of Algorithm 1 with δ > 0 is stably
less than that when δ = 0. This result together with Fig.
9 (1) verifies that a fine-tuned δ prompts faster convergence
while holding close performance. Analogously, in Table IV, the
substitution of full RSVT operator with our rank propagation
scheme has trivial impact on recovery results, but facilitates
better efficiency, especially in the case of high resolution,
e.g., samples 5 and 6. Basically, the rank propagation RSVT
scheme ensures less per-iteration runtime with sacrifice of a
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little more iterations. In practice, the overall speed-up always
holds due to the fact that the intrinsic rank of common visual
data is much smaller than the spatial dimension or sample size.
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Fig. 9: PSNR and runtime of MCTRNM on text corrupted
samples 1-7 under various δ.

TABLE IV: PSNR, runtime, and consumed iterations (iter) of
Algorithm 1 on image inpainting from text corruption with
and without rank propagation scheme.

Sample With rank propagation Without rank propagation
PSNR time iter PSNR time iter

1 23.60 7.3 111 23.60 7.8 102
2 22.06 3.3 89 22.04 4.0 86
3 26.00 2.5 93 25.97 3.1 75
4 34.71 3.8 129 34.72 5.9 112
5 25.04 127.2 248 25.03 261.1 236
6 27.92 3.0 40 27.95 6.5 31
7 23.37 2.1 31 23.34 3.0 26

On the other hand, the effectiveness of our model mainly
relies on the proposed TRNM regularization, which is further
controlled by the parameters r and p. Fig. 10 plots the accu-
racy of TRNM versus these two parameters in the subspace
clustering application on COIL20 dataset. It can be observed
that the variations coming from both r and p have a regular
and unimodal trend when one of them is fixed. For p, the best
value lies in the interval [0.4, 0.8] in most cases; while for
r, a wide span centered at the cluster number always leads to
a desirable result. These properties make the two parameters
easy to be determined, which further promotes feasibility for
practical problems.
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Fig. 10: Accuracy versus p and r on COIL20 database.

VI. CONCLUSIONS

In this paper, the TRNM constraint is specified for low-rank
matrix approximation. On one hand, TRNM is effective to fit

into real-world problems by imposing different treatment for
sequential singular values; On the other hand, the target rank of
the matrix can be better warranted by the truncation parameter
r. The RSVT operator is further provided to facilitate the
solving of TRNM constrained problems. Moreover, based
on an extended function, we propose a more efficient APG
method, namely MURP, for the TRNM related applications.
There are several merits in the proposed MURP scheme. First,
the extended cost function is guaranteed with a sufficient
descent property iteratively. Second, the momentum param-
eters can be adaptively updated within given span, which
avoids the tedious searching process needed for traditional
APG model. Finally, the rank propagation RSVT operator
can optimistically approximate the main matrix action without
requiring any prior information. We validate the performance
of the proposed method on practical MC and SC problems
such as image inpainting, video scene segmentation, ges-
ture segmentation, and image clustering. Experimental results
demonstrate the superiority of TRNM over up-to-date methods
both in effectiveness and efficiency.
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