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ABSTRACT Human motion tracking is a prevalent technique in many fields. A common difficulty
encountered in motion tracking is the corrupted data is caused by detachment of markers in 3D motion
data or occlusion in 2D tracking data. Most methods for missing markers problem may quickly become
ineffective when gaps exist in the trajectories of multiple markers for an extended duration. In this paper,
we propose the principal component eigenspace based gap filling methods that leverage a training sample
set for estimation. The proposed method is especially beneficial in the scenario of motion data with less
predictable or repeated movement patterns, and that of even missing entire frames within an interval
of a sequence. To highlight algorithm robustness, we perform algorithms on twenty test samples for
comparison. The experimental results show that our methods are numerical stable and fast to work.

INDEX TERMS Missing marker problem, MoCap data, 2D tracking data, principle component analysis

I. INTRODUCTION

Human motion tracking has always received wide attentions
due to increasing demand in many applications, including
human computer interaction (HCI), automatic surveillance,
biomedical application (e.g. stroke rehabilitation), virtual
reality, video games, animation and movie FX produc-
tions. The tracking techniques may be categorized into
two groups, i.e. marker-based tracking (e.g. Vicon multiple
camera system) and markerless tracking. However, human
motion tracking remains challenging due to the motion
complexity and highly articulated structure of human body.
One of the well-known problems is of the self-occlusion
between body parts. Although multiple camera systems may
provide a constrained setting with minimal occlusion, the
loss of tracking markers is a frequent challenge in 3D
tracking from the current MoCap devices, as well as in
2D tracking from a monocular video [1]–[5]. For example,
sport exercises and dancing usually twist and rotate body
resulting in movements at high degree of freedom and the
absence of markers. Particularly, some markers may be
absent throughout (e.g. a marker dropping off) or multiple
frames may be missed in some extreme scenarios (e.g.
a blackout when all markers disappear at the same time
[6]). The resultant incomplete motion data compromises

the accuracy of the motion analysis [4], and therefore may
require a post-processing to fill missing data just as some
commercial MoCap software packages have done, such
as EVaRT (Motion Analysis Corporation, Santa Rosa CA,
USA), Qualisys Track Manager (Qualisys AB, Gothenburg,
Sweden), or Vicon (Oxford Metrics, Limited, Oxford, Eng-
land). As raw MoCap data volume is always too large,
the need for improving the efficiency of such data post-
processing is of substantial interest in MoCap community
[4], [7].

This paper aims at the “missing marker problem” and the
extension of this problem, that is, the entire time frames are
missed within an interval of a sequence. It may further be
applied to motion editing, such as combining two motion
type pieces into one piece.

The usual gap filling methods include linear, spline inter-
polation and reconstructing the marker trajectory in a local
segment coordinate system, which are restricted to the gaps
of short duration [8]. The recent low-rank matrix completion
methods [9] make use of the sparsity of motion data
rather than the traditional polynormal interpolations. The
rising issues include that (1) performance tends to degrade
noticeably when increasing the number of gaps or enlarging
the length of gaps [6]; (2) interpolation will become difficult
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if multiple markers are dropping off, particularly missing
whole frames within an interval of a sequence; (3) it remains
challenging when the motion sequence covers multiple
motion types with less predictable or repeated movement
patterns (e.g. walking and running are both involved in
the same motion sequence) [10]. Most of the off-the-shelf
methods tend to work on ONE piece in order to avoid a
large training time cost. Consequently, a challenging issue
is rising, i.e. it is unlikely for these methods to robustly deal
with diverse types of motion.

To tackle the above challenges, our proposed methods
employ the principal component analysis (PCA) technology
to motion data recovery. While using a training set for good
numerical stability, it has been shown that the proposed
methods do not introduce large computational cost during
training. The main contributions include,

1) a principal component eigenspace based learning
mechanism is presented;

2) the proposed method work well both on the scenarios
of missing entries in markers’ trajectories and that of
missing whole frames within an interval of a motion
sequence;

3) the proposed method is fast to work almost in real-
time.

II. RELATED WORK
Most of the gap filling methods can be roughly categorized
into three groups as follows.

A. POLYNOMIAL INTERPOLATION
Polynomial interpolation is the standard gap filling proce-
dure that is built in many commercial marker-based motion
tracking systems. Linear interpolation, spline interpolation
and monotone piecewise cubic interpolation [11] are well
known examples of this kind of method. They usually work
well for small gaps, typically 0.2 seconds [12], whereas they
are unsuitable for big gaps. Hence, many new interpolation
techniques are proposed to leverage the available temporal
information or spatial characteristics. For instance, missing
markers in a short sequence can be estimated using Kalman
filters [13]–[15]. In addition, methods based on Gaussian
process dynamic models [16] or linear dynamic systems
(LDS) [17] are suited for real-time applications. Hidden
Markov Model (HMM) has also been employed to model
human motion [4]. Moreover, some algorithms are devel-
oped based on the principal components analysis (PCA).
However, they lack a training sample set. For example,
Federolf [8] applied the mapping between PCA spaces
to motion data interpolation. However, this approach is
unsatisfactory if gaps occur in multiple markers or the
movements are less predictive or cyclic. This is because
the number of principle component eigenvectors cannot be
changed adaptively. To tackle this issue, Gløersen et al. [10]
assigned the weights to the individual gaps and omitted
either some whole frames or some markers’ trajectories in
a data-driven way in order to reduce overfitting problem

in least squares. These efforts obtained encouraging but not
perfect results, particularly motion data with less predictable
or repeated movement patterns. Liu and McMillan [18]
filled the missing data through the projection onto PCA
eigenspace and then refined the estimations through a local
linear model that is yielded by the Random Forest classifier.
However, although these methods can usually deal with
small gaps effectively (typically less than 0.5 second for
human full-body motion), they can be inadequate and fail
when applied to larger gaps [6], which is analyzed in the
section IV-B.

Moreover, [6] presents multiple regression models, such
as Global linear regression (GLR), Local polynomial re-
gression (LPR), Local generalized regression neural network
(LGRNN) in order to unify these methods with their scheme
of Probabilistic Model Averaging (PMA). While these mod-
els can be more or less effective, they are less robust due
to lack of training data.

B. LOW-RANK DECOMPOSITION TECHNIQUES
Recently, methods based on the low-rank decomposition
techniques have shown promising performance [7], [9], [19],
[20]. The distinct merit is to preserve the spatial-temporal
characteristics embedded in natural human motion and solve
the out-of-sample problem compared to many data-driven
methods [21], [22]. However, the low-rank regression is
suitable to approximate linear structures while human mo-
tion is nonlinear and lies on a Riemannian manifold. To
approximate nonlinear structures, [7] introduced truncated
nuclear norm to make subspaces simultaneously optimized.
Ref. [9] further showed that the representation of motion
data in a high dimensional Hilbert space was of low-rank
and presented a multiple kernel learning based low-rank
matrix completion method. The key point of these methods
is that the observed incomplete datasets are represented in
a matrix form, which assumes that the dataset is redundant
enough and thus the low rank matrix completion techniques
can be applied accordingly. Herein the low-rank constraint
must be satisfied. However, this rarely holds when the
motion data lacks repeated movement patterns [9], [23].

C. MODEL-BASED METHODS
The skeleton model-based methods have been widely stud-
ied, which usually impose the skeleton constraints to exist-
ing methods. For example, Li et al. [14] proposed a skeleton-
constrained method, BoLeRO, which enforces the bone-
length constraints in a linear dynamical system. Tan et al.
[24] combined the skeleton constraints with Singular Value
Thresholding (SVT) [25] while Peng et al. [26] applied
Nonnegative Matrix Factorization (NMF) to a block-based
skeleton model. Similarly, the constraint of fixing bone
length is employed to drive natural looking reconstruction
[9], [14], [24] through such skeleton constraints usually
result in high computational complexity due to iterative op-
timization procedures. Moreover, such methods are usually
defined for a special skeleton model based on a pre-defined
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marker set. To remove pre-processing, [15] [27] presented
the individual automatic methods to estimate a skeleton
structure in MoCap data in order to scale the whole dataset
to fit with the targeted actor.

III. METHOD
The basic idea of our proposed methods is to apply a set
of training samples to missing marker problem [15]. A
motion sequence is usually represented in a matrix form,
i.e. A ∈ Rm×n, where n denotes the number of the
markers’ coordinates and m denotes the frame number.
Missing markers usually results in some gaps in a motion
matrix. In some extrenal scenarios, it is possible that all
the frames within a short interval are accidentally missed
from the motion matrix. A training sample set contains
K motion sequences, i.e. {Ai} , i = 1, ...,K which may
involve a variety of short motion sequences to cater for
diverse motions.

A. FILLING GAPS

Consider the scenario of multiple gaps distributing over a
motion matrix B ∈ Rm×n. We can create a 0/1 template to
indicate the locations of gaps in the incomplete matrix B
and apply it to each training sample to form a set of sample

pairs, i.e. complete-incomplete matrix pairs
{
Ai;A

(0)
i

}K

i=1
,

where the gaps are indicated by zero entries in the incom-
plete matrix A(0)

i .
Consider that the training set is composed of K pieces,

which are from a long motion sequence. It can be expressed

in a matrix form, A =

A1

...
AK

 . In terms of PCA paradigm,

we can apply Singular Value Decomposition (SVD) to the
whole training set A and every sample A(0)

i respectively to
span the individual eigenspaces,
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and assume that,

AiU = A
(0)
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i T, i = 1...K (2)

up to a transformation matrix T which facilitates the trans-
formation from the incomplete matrix complete matrix. This
is because U spans the common eigenspace of all the
samples while U (0)

i spans the individual eigenspace for each
sample. The projection of the sample Ai onto the common
U may be equivalent to that of the incomplete A(0)

i onto
the individual U (0)

i up to a factor. Due to singularity issue,
we retain the first r eigenvectors of U and U (0)

i according
to rank. Thus T is a r × r matrix. We can solve it in a least
squares sense through K matrix equations in Eq.(2),
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For an incomplete matrix B, we can yield an estimation of
complete matrix of B as,

B∗ = BU
(0)
B TUT (4)

where U (0)
B contains the first r eigenvectors of the incom-

plete B. In practice, the estimated complete matrix can be
formed through filling the missing gaps of B by B∗. (The
estimated complete matrix is still denoted as B∗ thereafter.)

Moreover, let’s consider the other scenario, i.e. all the
samples are from different sources. As there are no temporal
continuity in-between samples, the training set may be
represented as, A = (A1, ..., AK).Applying SVD to the
whole training set A and every sample A

(0)
i respectively

yields, 
(
AAT

)
= V ΣV T(
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and assume that,

V TAi = FV
(0)
i

T
A

(0)
i , i = 1...K (6)

up to a transformation matrix F which facilitates the
transformation from the incomplete matrix to the complete
matrix. We have the same explanation on this assumption
as in Eq.(2), and select the first r eigenvectors according to
rank. We can solve F in a least squares sense through K
matrix equations in Eq.(6),
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(7)
To recover the complete matrix from an incomplete matrix
B, an estimated complete matrix of B can be expressed as,

B∗ = V FV
(0)
B

T
B (8)

where V (0)
B contains the first r eigenvectors of the incom-

plete B. Similarly, the estimated complete matrix is formed
through filling the missing gaps of B by B∗.

We present two interpolation methods Eq.(4) and Eq.(8),
in order to deal with two practical scenarios, one is that a
training dataset is of a long motion sequence; and the other
is that a training dataset consists of many short pieces that
may be from different sources, in which the motion data
is usually scaled to the same level in advance. We hope to
point out that mathematically speaking, Eq.(4) and Eq.(8)
have no essential difference except the form of input matrix
A. Thus, there is no distinct difference on their performance.
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B. WHOLE TIME FRAMES ARE MISSED
Consider the scenario of missing all the frames within
an interval of a sequence. The incomplete motion matrix
B ∈ Rm×n may be reduced as B̃ ∈ Rj×n by removing the
missing columns from B. The removed columns are grouped
in B̌ ∈ R(m−j)×n that will be estimated. We can reduce all
the training samples, Ai, i = 1...K,likewise and obtain two
kinds of submatrices for each sample, i.e. reduced version
Ãi and removed part Ǎi.

The training set is expressed as A = (A1, ..., AK).
Applying SVD to the training set A and each sample
respectively yields, (

AAT
)

= V ΣV T (9)

Due to the singularity issue, we select the first r eigen-
vectors of V according to rank, that is, V is an m × r
eigenmatrix and m > j > r. In terms of the row indices of
the pair (B̃, B̌) in the original B, the V can be partitioned
into two parts; one is the group Ṽ with the same row indices
of B̃ and the other is the group V̌ with the same row indices
of B̌.

Projecting Ai onto V yields,

V TAi = αi (10)

which can be further split as,

Ãi = Ṽ αi (11)

Ǎi = V̌ αi (12)

where V T = (Ṽ T , V̌ T ) and Ai = (ÃT
i , Ǎ

T
i ), i = 1...K.

They both share the same projection αi. This is due to the
following observation. Given an eigenvector matrix V and
the projection α of some sample P onto V , the sample can
be expressed as P = V α. It can be noted that if dividing V
into two parts, V T = (V T

1 , V
T
2 ), the P may be reconstructed

by these two parts individually, P = (V1α, V2α), in which
the same projection α is shared by these two parts of V .

It can be noted that Eq.(11) provides an approximate
solution for αi in a least square sense. For all the training
samples, we may apply the weighted least square method
to it to further improve accuracy, that is,

min
W

K∑
i=1

∥∥∥∥(Ãi − Ṽ αi

)T
W
(
Ãi − Ṽ αi

)∥∥∥∥ (13)

where the weight is a j × j diagonal matrix, W =
diag(wl), l = 1...j. Then, we can update αi by,

α∗
i =

(
Ṽ TWṼ

)−1

Ṽ TWÃi (14)

Substituting α∗
i to Eq.(12), the missing part Ǎi can be

expressed as,

Ǎi = V̌
(
Ṽ TWṼ

)−1

Ṽ T Ãi (15)

Consequently, the missing rows B̌ may be estimated as,

B̌ = V̌
(
Ṽ TWṼ

)−1

Ṽ T B̃ (16)

IV. EXPERIMENTS
A. EXPERIMENT SETUP
All the experiments are performed on the Southeast Asian
traditional dance dataset.1 This dataset covers a large variety
of dancing actions, such as squat, sway, and stretching.
Instead of cyclic motion such as walking on a treadmill
or low-frequency motion like balancing in a one-leg stance
[8], long sequences in this database usually involve multiple
motion types, which are highly complicated and lowly
predictable as shown in Fig.1. In 3D dancing datasets, every
frame contains 15 markers (e.g., head, neck, shoulder etc.).
Apart from 3D motion data, we perform our method on 2D
tracking data as well. The 2D tracking data are obtained
using the open source codes-OpenPose2 and every frame
contains 25 markers. It is natural that some markers are
missed in 2D/3D motion datasets due to occlusions or
marker dropping off. For robustness test, we use twenty
pieces of 3D motion data as test samples which is different
the current experiment setting, i.e. one test sample with
multiple random masks [6]. It is not sufficient to justify
algorithm robustness according to the comparison of testing
algorithms on ONE sample.

The experiments focus on two scenarios, that is, there are
multiple gaps over a sequence and a small set of whole time
frames are missed in a sequence.

In the experiment of filling gaps, we make the gap evenly
distributed over the whole motion data using a predefined
0/1 mask as the template shown in Fig.2, in which the
successive gaps have the same interval in the column
dimension. The main merit is that multiple test samples can
be tested instead of one test sample available with different
masks, which is suitable to evaluate numerical stability of
algorithms.

Moreover, we also compare our methods with the state-
of-the-art gap filling methods. Ref. [6] proposes the Prob-
abilistic Model Averaging (PMA), which combines multi-
ple methods together with probabilistic model averaging,
such as weighted PCA-based method (WPCA) [10], Global
Linear Regression (GLR) [6], Local Interpolation (LI) [12],
Local Polynomial Regression (LPR) [6], and Local Gen-
eralized Regression Neural Network (LGRNN) [6]. The
algorithms are evaluated in terms of (1) the length of the
gaps, and (2) the number of the gaps.

For comparison, we use the Mean Absolute Error (MAE)
[6] as the recovery error metric,

ε =
1

g

g∑
j=1

1

n2j − (n1j + 1)

n2j∑
n=n1j

‖m̂j (n)−mj (n)‖

(17)
where g denotes the number of gaps created, n1j and n2j
signify the location (in frames) of the introduced gap j,
m̂j and mj are respectively the recovered and the original
trajectories.Additionally, our methods, Eq.(4) and Eq.(8),

1https://www.euh2020aniage.org/testthaidancedownload
2https://github.com/CMU-Perceptual-Computing-Lab/openpose
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FIGURE 1: Examples of the 3D dancing data and the corresponding 2D tracking data of the Southeast Asian Dance Database.

FIGURE 2: Illustration of the masks, where the yellow
blocks represent the locations of gaps. Left: mask for
artificially creating evenly distributed gaps on probe 2D
tracking data. Right: mask for generating corrupted data on
3D motion data.

essentially have no difference since they both employ PCA
technology. Thus, we only show the results by Eq.(4) in the
following tests.

B. RESULTS
1) Filling gaps
The first comparison is undertaken when the length of gaps
is varying. Our recovery method, Eq.(4), is performed on
both the 3D motion data and 2D tracking data. The results
are compared with [6] based on our 3D dancing datasets.
Unlike [6], we randomly select 20 test samples from the
3D motion datasets and apply the predefined 0/1 mask in
Fig.2 to these test samples. We iterate our methods and
the methods mentioned in [6] on these test samples and
separately average the recovery errors of each method over
all the iterations.

Table 1 shows the mean recovery errors along with
the different gap lengths, which are intuitively shown in
Fig.3 as well. It can be noted that our method significantly
outperforms the others. Although LGRNN is slightly better

than our method when the duration of gap is very short, e.g.,
20 frames, it becomes gradually worse as the gap length
increasing. Moreover, the performances of the methods
mentioned in [6] are sensitive to the length of gaps. As
PMA is the averaging of several methods, its quality of
reconstruction relies on the individual methods. It is better
than the worst (i.e. LPR in this test) but also inevitably
weaker than the strongest (i.e. LGRNN). We hope to point
out that our method takes advantage of a training dataset
and is robust to deal with various test samples. In contrast,
the state of the art methods [6] only exploits the current
test sample for interpolation. It is natural that they perform
numerically unstable under multiple sample tests.

FIGURE 3: Mean recovery errors for different gap lengths.
5 evenly distributed gaps are placed on the sequences with
varying gap length, i.e. the duration of 20 frames, 50 frames,
80 frames and 100 frames.

We further show the comparison of WPCA’s and our
method’s performance in Fig.4 to illustrate the algorithm
robustness. It can be noted that due to the motion complexity
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TABLE 1: Mean recovery errors for different gap lengths.
All values are in units of (mm).

Length of gap (frames) 20 50 80 100
WPCA 2.6125 11.3295 15.3370 17.7271

LGRNN 3.5361 12.4654 14.8164 15.5710
GLR 3.9057 9.5267 11.1776 11.9146
LPR 21.1284 25.1179 28.3632 29.1967
LI 4.1168 10.7123 12.1057 12.1030

PMA 7.4004 17.1423 18.6547 19.1778
Ours 2.7312 3.6110 3.9816 4.0601

of these 20 samples, the MAEs look visibly undulant.
Compared with WPCA, our method noticeably tends to
stable. Comparing with the others in [6], we can conclude
the similar result.

The 2nd comparison is undertaken when the gap number
is changed. We further test our method on the 20 test
samples with different gap numbers, i.e. 1 gap, 2 gaps,
3 gaps, 5 gaps and 8 gaps are placed on the 3D motion
data respectively, and each gap contains 100 frames. Table
2 shows the results of 3D motion data, and Table 3 shows
the results of 2D tracking data. It can be noted that the
average recovery error increases very slow. Even when gaps
appear in every other marker, with missing rate up to 26%,
the average recovery error is less than 6 mm on 3D motion
data (see Table 2) and is merely 5 pixels on 2D tracking data
(see Table 3). The error level is acceptable in practice. For
intuitiveness, Fig.5 further shows the estimated trajectories
of the missing markers in all the 20 test samples when there
are 5 gaps. It can be noted that almost all the reconstructed
trajectories are closely fitting the ground truth. Regardless
of 2D or 3D data, our method yields relatively stable results
which justifies the importance of using training data again.

TABLE 2: Average recovery error of the proposed methods
on 20 pieces of 3D motion data at different missing rate.
Every testing sample is a 200-frame segment of 3D motion
sequences. Gaps start from the 101st frame to the end.
Missing rate is the percentage of missing entry number over
the total entry number in a motion matrix. All values are in
units of (mm).

Number of gaps
(missing rate)

1 gap
(3.33%)

2 gaps
(6.67%)

3 gaps
(10%)

5 gaps
(16.67%)

8 gaps
(26.67%)

Eq.(4) 1.2831 2.9079 3.1031 3.9479 5.7161

TABLE 3: Average recovery error of the proposed methods
on 2D tracking data. All values are in units of (pixels).

Number of gaps
(missing rate)

2 gaps
(4%)

4 gaps
(8%)

5 gaps
(10%)

9 gaps
(18%)

13 gaps
(26%)

Eq.(4) 1.5246 2.0104 2.1327 3.0697 4.6719

The above comparisons show a good performance of
our method against the start-of-the-art methods in [6]. Our
advantage mainly relies on the training data, that is, using
PCA learning mechanism is more robust to gap length or
motion complexity than the existing gap filling methods.

2) Missing whole time frames
It remains challenging to estimate the missed whole time
frames. Most of the existing methods, including the state-
of-the-art methods in [6], cannot work in the case of the
blackout or markers dropping off. They usually need at least
3 or 4 present markers as references for reconstruction. We
focus on a short blank interval in a sequence and apply our
method Eq.(16) to estimate it.

The recovery error metric Eq.17 is simplified as,

ε =
1

n2 − (n1 + 1)

n2∑
n=n1

‖m̂ (n)−m (n)‖ (18)

where m(n) denotes the n-th original frame and m̂(n)
denotes the n-th recovered frame.

We preform our method Eq.16 on both 3D motion data
and 2D tracking data. To illustrate the numerical perfor-
mance of our method, we plot the MAE of every single
marker on 3D and 2D data along with the increasing missing
frames, as shown in Fig.6 and Fig.7 separately. In addition,
the average MAEs of all markers is provided in Fig.8. It can
be noted that the proposed method, Eq.16, can satisfactorily
recovery the blank areas with missing rate less than 20% on
3D motion data, and even up to 40% on 2D tracking data.

Moreover, to illustrate the numerical performance of
Eq.16, we compare our method Eq.4 and Eq.16 as follow.
We set the gap duration as 30 frames and then miss markers
from the first marker to the end. Before the end marker, we
run our method Eq.4 on 20 test samples, while performing
our method Eq.16 in the extremal case, i.e. missing all
the markers (or missing whole time frames within the gap
duration). The results are plotted in Fig.9. It is reasonable
that the errors increase with increasing the number of
missing markers since the available spatial information is
getting less and less when missing markers more and more.

Furthermore, to evaluate the quality of the estimated
frames, we show the worst estimated frames, i.e., the middle
frame of a blank area, in Fig.10 and Fig.11. For comparison,
we also show both end frames of the blank area since these
two frames have very small deviations. It can be noted that
the worst estimated frames are still acceptable when the
frame missing rate is less than 15% on both 2D tracking
data and 3D motion data.

The PCA learning mechanism through using a training
sample set in our methods is to cover diverse motion types
to cater for various “missing marker problems”. In general
performance will be improved through enlarging training
datasets. A rising issue is that a large training dataset usually
results in an exponential training time. In contrast, applying
a large training dataset to our algorithms does not result in
a high time cost, which is shown in Table 4. Since Eq.(4)
and Eq.(8) have no essential difference, Table 4 only shows
the results by Eq.(4) here. However, it can be noted that the
running time of our method is comparable with those of the
existing methods.
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FIGURE 4: Comparison of WPCA and our method’s performance.

FIGURE 5: The predicted trajectories of the missing markers in all the test samples when there are 5 gaps. There are 5
missing markers and 15 trajectories of x-y-z coordinates. Dash lines denote the ground-truth trajectories and color lines
denote the estimated trajectories.
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FIGURE 6: The MAE of every single joint. Method Eq.16 is tested on 3D motion data with different numbers of missing
frames.

FIGURE 7: The MAE of every single joint. Method Eq.16 is tested on 2D tracking data with different numbers of missing
frames.
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FIGURE 8: The MAE of all joints in the extreme scenario.
Method Eq.16 is tested with increasing missing frames
on 3D motion data (left) and 2D tracking data (right)
respectively.

FIGURE 9: . MAEs of missing markers from 1 to all. The
gap duration is set as 30 frames.

Compared Fig.6, 7 and 8 with Table 1, 2 and 3, it can be
noted that the performance of Eq.(4) is noticeably better than
that of Eq.(16). This is because for filling gaps, our method,
Eq.(4), does not remove the whole time frames with gaps.
For missing whole time frames, our method, Eq.(16), has
to remove them from the motion matrix. In contrast, the
existing methods [8], [10], [18] all remove the whole-time
frames with gaps when filling gaps. It is inevitable that many
spatial information is discarded as well. Therefore, for large
gap duration, their performance is noticeable worse than our
method, Eq.(4). Fig.9 further justifies that removing whole

TABLE 4: The running times.

Training data size (frames) in Eq.4 Running times (seconds) of Eq.4
500 0.1466
800 0.1511
1000 0.1777
1500 0.2281
2000 0.2575
2500 0.2732

Other methods without training data Running times (seconds)
PCA 0.0670
GLR 0.1055

LGRNN 0.2618
LI 0.0825

LPR 0.0535
PMA 0.4522

time frames results in performance degradation as well.
Moreover, recalling our methods, Eq.(4), Eq.(8) and

Eq.(16), it can be noted that the eigenspaces are pre-
estimated. In essential, our methods are linear time algo-
rithms.

V. CONCLUSION
We present PCA based simple and robust methods to solve
the missing marker problems. As the PCA learning mecha-
nism requires training sample sets, we propose three algo-
rithms with respect to three practical scenarios, including
that (1) the training set may be of a long motion sequence,
(2) the dataset may be a set of short pieces from different
sequences, and (3) the gap may be of a blank area of missing
entire time frames in a piece. The proposed algorithms
are performed on 3D motion data and 2D tracking data
respectively. The experiments show that our methods are
numerical stable and low time complexity, and outperform
the state of the art methods. In particular, due to the PCA
learning mechanism, our methods can effectively deal with
the motion sequences with less predictable or repeated
movement patterns or a blank area in which all the time
frames are accidentally missed.

However, our methods have some limitations. For exam-
ple, one marker is missed throughout the whole sequence. It
is very challenging to interpolate the trajectory of the missed
marker since there is no mean vector available for the missed
trajectories. Moreover, adding more training samples will
increase the likelihood of overtraining our models, thereby
limiting the ability to generalize. We will aim at these
challenges in our future work.
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