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1 Introduction
After rendering, fluid simulation remains the most computationally expensive task in Visual Effects
production. However turbulent and photorealistic fluids are arguably some of the most visually exciting
dynamic physical phenomena used in film and are ubiquitous in new films. These effects are typically the
result of multiple interacting visual components, the combination of which delivers a seemingly complex
visual effect. Components (display in Fig. 1 may include

• Ocean waves populating the background of the shot,

• Main or “hero” waves in the foreground with potentially more complex behaviour,

• Droplets and splashes on the peak of the wave and against the rocks,

• Mist and vapour,

• Foam and churn in front of the wave near the short, and

• Bubbles entrained in the liquid creating lighter areas beneath the surface.

Figure 1: Wave phenomena consist of interactions between many different states of liquid and air
mixtures including droplets, sprays, foam and bubbles, as well as larger scale liquid behaviours such as
breaking waves and ocean wave dynamics. Image courtesy of Richard Jones [14].

Common practice for artists in all areas of Visual Effects is layering : the more physically plausible
components that can be compiled into a shot the less likely the viewer will observe something implausible.
This “bells and whistles” principle is demonstrated in [14], with an example shot from American Assassin
(2017) requiring at least 78 different layers which are composited in the final rendered image. An
example is included in Fig. 2 visually illustrate the process.
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Figure 2: Typically a Visual Effects artist will simulate and partially control multiple different layers to
construct the final shot. Image from FXGuide [9] from the film Battleship.

What is noteworthy is that many of these components are simulated using different approaches — the
general ocean state is often modelled based on 2D heightfields (using a method like that of Tessendorf
[21], developed while working at Rhythm and Hues) while spray and droplets may be modelled using
ballistic methods. However the industry standard for foreground, high quality fluid simulation and
associated effects is the Particle-In-Cell method, which I will describe here in some detail. Note that I
will avoid discussion of the extremely important boundary conditions (the reader is referred to Bridson
[5] for more details) and will only address implementation details at a high level.

2 Particle-In-Cell Methods

Francis Harlow, Jan. 22,
1928 — July 1, 2016

Francis Harlow is widely credited as being responsible for the establishment
of computational fluid dynamics (CFD) as an important discipline. His
work while at the Los Alamos National Laboratory, where he served as
group leader for 14 years, has produced some of the most fundamental
contributions to the area of CFD for computer simulation of fluids, including
the Particle-In-Cell (PIC) and Marker-and-Cell (MAC) grid methods, which
underpin the methods used in Visual Effects today.

The Particle-In-Cell (PIC) method was first introduced by Harlow and
Welch [11]: their approach was one of the first proposed for numerical
fluid dynamics, and was applied to the simulation of supersonic flows with
obstacles [10]. In his words:

One of the things about supersonic flows that I soon learned
was that there were at that time two main ways to think about
zoning space for resolving the behavior of a fluid. One of them
we call the Lagrangian approach, which means having a mesh
of computational cells that follow the motion of a fluid through
its contortions and whatever processes that take place. The mesh could follow interfaces
beautifully. The other, the Eulerian viewpoint, has a fixed mesh of cells that stay in one
place in the laboratory frame and the fluid flows through it. This second approach is great
for looking at large distortions; there is no movable computational mesh to get tangled.
But on the other hand, it has problems if you want to follow a sharp interface between two
fluids. Eulerian techniques tend to diffuse the interface and to smear out sharp shocks. (In
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those days we had only begun to experiment with very primitive interface reconstruction
techniques.) Harlow [10]

Many contemporary advances in fluid simulation applied to the domain of Visual Effects are attributed
to Robert Bridson, and the crucial theory which underpins much of this talk is contained within his book
[5]. The contemporary context and examples of usage are derived from conversations with and reference
to Jones [14].

The central premise of PIC methods is to represent fluid as a hybrid representation (see Fig. 3), with
particles and associated information where advection is computed, and a grid which computes everything
else. The finite differencing approach to solving the Navier-Stokes equations has been updated since
Harlow and Welch [11] and Brackbill et al. [4] to enforce stable incompressability based on the Poisson
method of Stam [19], but contemporary methods differ in the manner in which particles are transfered
to and from the underlying grid representation, and what information is stored with the particles. For
the implementation, most methods still employ the original Marker–and–Cell (MAC) data structure of
Harlow and Welch [11], but the scale of contemporary simulations require more sophisticated volumetric
databases such as the Volumetric Database introduced by Museth [16].

Figure 3: Particle-In-Cell methods are hybrid representations of fluid, with particles embedded in a grid
representation. Advection is resolved on the particle representation, everything else is evaluated on the
grid.

3 Solving the Navier-Stokes Equations with PIC
The Navier-Stokes equation is typically defined as

@u

@t
+ u · ∇u =− ∇p


+ g + �∇2u (1)

∇ · u =0

where u is the fluid velocity vector, p is the fluid pressure,  is the fluid density, � is the kinematic viscosity
coefficient, and ∇ and ∇2 represent the gradient differential and Laplacian operators respectively.

Standard practice in VFX is to simply drop viscosity and use the Euler equations:

@u

@t
+ u · ∇u =− ∇p


+ g (2)

∇ · u =0
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In some situations, viscosity forces are extremely important: e.g., simulating honey or very
small-scale fluid flows. But in most other cases that we wish to animate, viscosity plays
a minor role, and thus we often drop it: the simpler the equations are, the better. In
fact, most numerical methods for simulating fluids unavoidably introduce errors that can be
physically reinterpreted as viscosity (more on this later) — so even if we drop viscosity in
the equations, we will still get something that looks like it. In fact, one of the big challenges
in computational fluid dynamics is avoiding this spurious viscous error as much as possible.

Bridson [5]

For completeness, methods to evaluate viscosity for particle-in-cell methods are included in Appendix B.
Note also that

@u

@t
+ u · ∇u =

Du

Dt
is the material derivative, which allows the Euler equation to be written in a more compact form.

3.1 PDE Splitting

The first step is to define a simple forward Euler integration by splitting Eq. 2 into separate components.
This method is inspired by the approach proposed by Stam [19] and is crucial to enforcing stability. For
a separable differential equation

dq

dt
= f (q) + g(q)

we can split this with Euler integration to read:

q̃ =qn + ∆tf (qn) (3)

qn+1 =q̃ + ∆tg(q̃) (4)

which can be shown to be first–order accurate (see Appendix C).
The Euler equations can now be divided into three effective steps using the method of splitting

described above, and are typically applied in the following order:

1. The application of body forces:
@u

@t
= g:

This is the most straightforward step, which is solved according to the forward Euler method
ũ = u + ∆tg, and this is typically computed on the projected positions of the Marker-and-Cell
(MAC) grid (see below).

2. Solving for the pressure projection while preserving incompressibility:
@u

@t
= −1


∆p (5)

subject to ∇ · u = 0. This is somewhat harder to solve, and is covered in Section 3.3.

3. Advecting1 the properties due to the velocity field:

Du

Dt
= 0: (6)

Advection is performed on the particles, and the method of advection is dependent on the integra-
tion scheme. This can be written out as a PDE and solved using one of any number of integration
methods. For example, a simple forward Euler advection step to update particle positions would
be computed by

xn+1
p = xp + ∆tup (7)

where the subscript p is used to indicate that these properties are updated on the particle repre-
sentation.

Note that the crucial step of transfering particle properties to and from the grid representation is discussed
later in Section 3.4.

1Note that while any properties may be advected by the velocity field, generally this is the particle positions x .
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3.2 Discretization

Properties from the particles are transfered to points on a grid in order to solve Eq. 24 using partial
differencing. For the method in [8] this entails the projection of pressure to cell centres (e.g. pi ;j) and
particle velocities are projected to the centre of cell faces (e.g. ui+1=2;j) such that neighbouring cells
shared points (e.g. vi ;j−1=2;k ≡ vi ;(j−1)+1=2;k). This requires a staggered grid representation, as shown
in Fig. 4.

ui+ 1
2 ,j

ui� 1
2 ,j

vi,j+ 1
2

vi,j� 1
2

pi,j pi+1,jpi�1,j

pi,j+1

pi,j�1

Figure 4: The Marker-In-Cell (MAC) grid in R2 on the left (from [14]) and in R3 on the right (from
[8]). This structure was first introduced by Harlow and Welch [11].

Most methods use the fastest approach to determining weights for transfering propeprties from
particles to the grid — which is to use trilinear interpolation (or bilinear interpolation in R2), a fast area
weighting interpolation scheme2. The main advantage of the grid representation is that is allows the
use of finite differencing to estimate quantities via second order accurate differences, e.g. at grid cell
(i ; j) with width ∆x in R2:

∇ · u =
@u

@x
+
@v

@y

≈
ui+1=2;j − ui−1=2;j

∆x
+
vi ;j+1=2 − vi ;j−1=2

∆x
(8)

and similarly at the centre of face (i − 1=2; j),

@p

@x
≈ pi ;j − pi−1;j

∆x
(9)

3.3 Pressure Projection

At the heart of PIC and the derived methods is the approach to subtract the pressure gradient from the
intermediate velocity field u to ensuring incompressibility and enforce boundary conditions. Note that
the approach presented here is the method commonly applied in Computer Graphics but differs from the
original approaches from Harlow and Welch [11], Brackbill et al. [4] and Foster and Metaxas [8]. The
pressure projection step in Eq. 5 can be expressed as:

un+1 =u− ∆t


∇p (10)

∇ · un+1 =0 (11)

2So common, it’s on Wikipedia: https://en.wikipedia.org/wiki/Trilinear_interpolation.
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In the discrete sense, Eq. 10 can be written as:

un+1
i+1=2;j =ui+1=2;j −

∆t



pi+1;j − pi ;j
∆x

vn+1
i+1=2;j =vi ;j+1=2 −

∆t



pi ;j+1 − pi ;j
∆x

(12)

while Eq. 11 can be written as

∇ · un+1 =
un+1
i+1=2;j − u

n+1
i−1=2;j

∆x
+
vn+1
i ;j+1=2 − v

n+1
i ;j−1=2

∆x
= 0 (13)

Substituting Eq. 12 into Eq. 13 and simplifying yields:

∆t



„
4pi ;j − pi+1;j − pi ;j+1 − pi−1;j − pi ;j−1

∆x2

«
=

−
„
ui+1=2;j − ui−1=2;j

∆x
+
vi ;j+1=2 − vi ;j−1=2

∆x

«
(14)

The system above is essentially the Poisson problem, and can be reformulated as the system Ap = b
where A is a 5 (in R2) or 7 (in R3) point Laplacian matrix, p is the solution vector of pressures, and b
is the negative vector of divergence values at each cell.

The matrix A is sparse, symmetric and positive definite, meaning that it is easily solved using
Preconditioned Conjugate Gradient or Multi-Grid approaches.

The solution to the above equation is then used to remove the divergence from the velocity field:

û = ũ−∇p: (15)

3.4 Property transfer to and from the grid

At each time step, the mass and momentum from each particle is transfered to the centre of faces on
the MAC grid. In the original method of Harlow and Welch [11] the transfer from particles to the MAC
grid is

mn
i =

X
p

wn
ipmp (16)

mn
i u

n
i =

X
p

wn
ipmpu

n
p (17)

where the subscript p indicates a particle property and i indicates a particular grid cell. mn is mass at
time step n (although for mass conservation this never changes), un is velocity at time step n, and wn

ip

is the interpolation weights associating the particle position xp with the grid point xi , deduced using
bilinear (2D) or trilinear (3D) interpolation.

Transfering the updated velocities to the particles is achieved with

un+1
p;PIC =

X
i

wn
ipu

n+1
i (18)

The principle improvement offered by [4] was to change the backwards transfer by updating the
original particle velocity by the difference rather than overwriting the velocity stored at particles, e.g.

un+1
p;FLIP = unp +

X
i

wn
ip(un+1

i − uni ): (19)

This relatively minor adjustment to the algorithm greatly improves the quality of simulation results by
almost eliminating the energy dissipation resulting from transfering to and from the grid representation.
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Figure 5: A comparison if APIC and FLIP/PIC (from [7]). APIC appears considerably smoother, with
the FLIP/PIC solution generates noise — which may not be unwanted depending on the example.

FLIP simulations alone tend to be too “splashy”, while PIC simulations tend not to be splashy enough
due to the energy dissipation. Zhu and Bridson [22] proposed the linear of the results of both methods,
e.g.

un+1
p = (1− ¸)un+1

p;PIC + ¸un+1
p;FLIP (20)

exposing a simple user parameter ¸ which controls the “splashiness” of the fluid, although with little
physical justification3.

While linear momentum is conserved by both forward and backward transfers when using either FLIP
or PIC, the angular momentum, quantified on either the grid or particles as

Ltot =
X
i

x ×mu (21)

is not preserved when transfering properties from the grid to the particles (Eq. 18) and is lost.
The solution offered by Jiang et al. [13] (working with Disney) is to store an additional two (2D)

or three (3D) vectors at the particles cpa, where a represents the x; y ; z direction. The transfer from
particles to the grid for the mass is as in Eq. 16, but to the faces is then achieved using:

mn
aiu

n
ai =

X
p

mpw
n
aip

`
eTa u

n
p + (cnpa)T (xai − xnp )

´
(22)

where eTa is the basis vector for axis a, and xai is the a-position of the grid node i . This process ensures
that the component of angular momentum is incorporated in the grid velocity. The transfer of velocity
from faces to particles is achieved using Eq. 18, but the vectors cpa are updated using:

cn+1
pa =

X
i

∇wn
aipu

n+1
ai : (23)

Note that this approach requires very little additional storage, and the performance overhead is minimal.
The qualitative improvements are demonstrated in Fig 5.

While APIC significantly improves on the smoothness of the results by preserving the angular mo-
mentum and to date is incorporated into nearly every content creation tool, FLIP/PIC is still used in
some circumstances by VFX artists due to the additional control they have over damping (the parameter
¸ in Eq.20) and the splashy, noisy effect that emerges naturally (see, for example Fig. 5). There “swirly”
effects arising from APIC as a result of the preservation of angular momentum may also be undersirable.

3Bridson [5] derives an explicit value for ¸ from the numerical dissipation implied by PIC, based on the kinematic
viscosity of fluid �: ¸ = min

`
6∆t�
∆x2 ; 1

´
.
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Figure 6: Some performance metrics for large scale FLIP simulation in VFX production using OpenVDB.
From Baily [2].

4 Implementation
The Volumetric Database (VDB) was first introduced by Museth [16] for use within DreamWorks Ani-
mation. This tool has proven to be exceptionally versatile for a number of applications in film production
and computer graphics, winning the Sci-Tech Academy Award in 2014. The VDB stores near infinite
volumes of 3D data in cache–coherent, rapid access structure with O(1) random access for insertion,
retrieval and deletion. This is supported through an adaptive hierarchical structure, with a quantised
representation of local data allowing for orders of magnitude reductions in storage overhead.

Amongst the many application domains within Computer Graphics that this technology has been
used, Museth [16] specifically discusses the use of this approach in the context of PIC methods:

“In the more practical context of surface tracking in fluid simulation, level set advection often
involves velocity fields represented on MAC grids. These “staggered grids” conceptually store
the Cartesian components of the velocities at cell faces rather than colocated at cell centers.
This is a popular technique to suppress so-called checkerboard frequencies in the pressure
projection step of most Navier-Stokes solvers. However, instead of devising specialized data
structures for MAC grids, it is customary to use standard collocated grids, and simply move
the staggered interpretations of the grid indexing and values to client code. In other words,
VDB fully supports MAC grids, and we use special interpolation schemes to convert from
staggered to colocated velocities required for level set advection.” Museth [16]

An extension was developed and maintained by DNEG [6] to specialise the VDB representation
to store points and implement fast routines for MAC-grid projection, which has been widely adopted
and used in the context of Visual Effects production. An example of the memory overhead for large
simulations is shown in Fig. 6, with billion particle simulations possible on a standard workstation. A
significant advantage of this representation (and FLIP in general) are the use of fast surfacing techniques
which are able to generate signed distance field representations which are necessary for fast rendering of
fluid volumes.

Distributed simulations are crucial for high performance simulation, and typical implementations
exploit CPU (rather than GPU) parallelism due to the significant memory requirements. The most
expensive operation of the FLIP solve is the pressure projection step (outlined in Section 3.3) which
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Figure 7: An example of distributed FLIP, as implemented in Houdini 15. Image from SideFX [18].

requires the solution of a sparse linear system. This is solved in a distributed fashion through the use
of a highly specialised solver which takes advantage of the spatial organisation and the small size of the
Laplacian stencil. A distributed framework for solving FLIP in a production environment is discussed
briefly in Bailey et al. [1]. In the toy example in Fig. 7 it is clear that distributed simulations do not
suffer from artefacts across boundaries between cells.

5 FLIP in Content Creation Tools
Insights on PIC methods used in VFX are provided by Jones [14]:

• Whilst simulations are comparatively fast, they are dominated by the time to perform the pressure
projection (Section 3.3).

• Interaction and fluid behaviour happens on the scale of the background grid, so whilst particles
are present in the model they do not represent any particular liquid mass.

• As the particles do not interact with each other directly, they are not guaranteed to be well-
distributed.

• The simulations require manipulation of both point and volumetric data, and so artists may require
ways to interact with both of these representations.

As well as the computational benefits of this method, there are workflow implications that
have made it so successful. Firstly, particle systems are a very familiar concept to FX artists
and so having particles as the input and output of the simulation makes it very easy to work
with in a VFX environment. Building on this, FLIP/PIC in particular facilitates particle
workflows that are much more forgiving than purely Lagrangian methods such as SPH.

This method allows the user to arbitrarily reseed the particle set under the fluid surface and
introduce additional particles without destabilising the simulation whilst retaining benefits of
particles such as fine details at the surface (at sub-grid resolution) and handling of splashes
that would be difficult to resolve on a grid representation. From this it is not difficult to see
why it has become a favourite of visual effects artists. Jones [14]
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Realflow implements FLIP as part of it’s Hybrido toolset:

Like PBD methods, FLIP solvers do not need a high number of substeps. Low substeps makes
these solvers very fast, but this can also be a problem in terms of fluid-object interaction.
RealFlow provides a wide variety of solution to fix these interaction problems. In FLIP solvers,
the particles are used to carry the fluid’s velocity information. During the simulation, velocity
is transferred to the grid, where the physics is done. This transfer can be seen as the core
that keeps the simulation stable. The main advantage of the hybrid approach is, aside from
speed, that it is possible to add secondary fluids like splashes, foam, or mist.

RealFlow [17]

Houdini has support for both FLIP/PIC and SPH and provides the following description for the
comparison of the two methods:

FLIP fluids are faster than SPH fluids, if you don’t need to substep the FLIP fluid. If you
need to substep the FLIP fluid because of fast moving colliders, you may find SPH just as
a fast or faster. FLIP fluids are also useful because particles can be placed on top of each
other without destabilizing the system. SPH tends to blow up if you move particles too
close.

The advantage of the FLIP Solver is that you run with only a few time steps per frame while
SPH requires anywhere from 7 to 20 time steps or more per frame to stabilize. FLIP utilizes
a few grids (volume fields) to help tame the instantaneous impulses that can arise in a fluid
sim.

Various fields are used to tame the FLIP Solver so that you can run far fewer points at far
fewer time steps and the inter-spacing between particles can be random. You can introduce
new particles at any time with little to no consequence. This opens up so many new work
flows in POPs that were simply not possible with SPH. For example, introducing splash
particles with their own property attributes is now possible. Houdini [12]

Houdini refers to FLIP as “splashy” and APIC as “swirly” to assist artists in identifying the appropriate
tool. It is also commonly observed that due to the conservation of inertial properties APIC surfaces
appear considerably smoother than FLIP (see Fig 5). The noisiness of FLIP could (counterintuitively)
be considered a strength: artists often find it more suitable for generating agitated fluid than applying
a noisy vector field to an APIC solution.

6 Fluid Problems in Visual Effects
DNeg is the multi-award winning visual effects studio behind Oscar winning films like Inception, Inter-
stellar and Ex Machina. I asked them to identify some of the open challenges that they are encountering
in fluid simulation for Visual Effects. They are listed below in priority order.

1. Coupling of fluid solver with 2D ocean surface simulation: Example given: a tiny dingy is
being simulated in an open ocean. It is impractical (and uncontrollable) to simulate the entire
ocean with a full fluid solver. The wider ocean is solved using a 2D (height field) simulation of the
ocean surface, while the area about the boat is simulated using a full particle based fluid solver.
Linking these two so that the resulting simulation is seamless remains an open problem. This links
closely to the existing SPH grand challenge of coupling between existing fluid methods.

2. Fluid authoring tools: A very challenging open problem is how to provide artistic control for fluid
in visual effects. There is fundamentally a tradeoff between a simulation that is entirely physically
plausible and one that is largely artistically controlled, and typically the amount of control varies
depending on the specific shot. Artists tend to prefer drawn images, so the ability to map a fluid
state from a sketch would be a powerful and popular tool. The ability to determine the conditions
necessary to transition between explicitly defined keyframes is also an open problem. From MW’s
perspective, he is sceptical that a unifying general purpose tool can be created that satisfies all
artistic requirements on all shots required in VFX.
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3. Adaptibility / multiresolution: There is no dispute that more particles leads to generally more
believable physical simulations of fluid. DNeg, one of the leaders in fluid simulation in Visual
Effects, can currently simulate systems of about 3 billion particles using their distributed FLIP
solver (which was needed for the massive wave in Interstellar). Demand for more particles will
continue to grow, but processing and storage requirements will increase exponentially. Currently
there is a requirement that fluid data can be visualised on a high end workstation, which limits the
maximum resolution of any resulting fluid simulation. Multi-resolution solutions (already one of
the grand challenges) which allow resolution to be adaptively refined based on regions of interest
would reduce hardware requirements significantly.

4. Multiphase simulation: Multiphase fluid simulation is a widely relevant problem, and also crops
up sometimes in visual effects. A particularly common problem is the simulation of foam on ocean
waves, but there are other examples of miscible and immiscible multi-phase fluid behaviours which
do occasionally need to be simulated.

Current solutions to these problems are inaccurate, expensive to compute, or do not offer sufficient
artistic control, and would benefit from research.

7 Concluding Remarks
The widespread use of Particle–In–Cell methods in Visual Effects is a testament to the ingenuity of
early works by Harlow and coworkers so many decades ago. The performance, stability and distributable
nature make it the tool of choice for use in the Visual Effects industries. It should also be noted that
the PIC approach has been applied to other simulation problems, such as the Material Point Method —
most notably used in Disney’s Frozen [20], and research continues in this area to simulate more complex
material behaviours.
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A Older method resolve FLIP/PIC pressure projection
The method described by [8] uses a relaxation method to eliminate velocity diffusion, which I include
here for completeness. Eq. 1 can be decomposed into it’s partial derivatives in each of the component
dimensions (in R2):

@u

@t
+
@u2

@x
+
@uv

@y
= −@p

@x
+ gx + �

„
@2u

@x2
+
@2u

@y2

«
@v

@t
+
@vu

@x
+
@v2

@y
= −@p

@y
+ gy + �

„
@2v

@x2
+
@2v

@y2

«
; (24)

where u; v are velocities in the x; y directions respectively, p is the local pressure, g is gravity and � is
the kinematic viscosity of the fluid. Terms on the left hand side of the equations account for changes in
velocity due to local fluid acceleration and convection. The right hand terms take account of acceleration
due to the force of gravity (or any body force g), acceleration due to the local pressure gradient (∇p)
and drag due to kinematic viscosity (�) or thickness of the fluid [8].

In Harlow and Welch [11], Brackbill et al. [4] and Foster and Metaxas [8], Eq.24 is solved by finite
differencing on the discretization in Fig 4:

un+1
i+1=2;j =ui+1=2;j + ∆t{(1=∆x)[u2

i ;j − u2
i+1;j ]

+ (1=∆y)[(uv)i+1=2;j−1=2 − (uv)i+1=2;j+1=2] + gx

+ (1=∆x)(pi ;j − pi+1;j)

+ (�=∆x2)(ui+3=2;j − 2ui+1=2;j + ui−1=2;j)

+ (�=∆y2)(ui+1=2;j+1 − 2ui+1=2;j + ui+1=2;j−1); (25)

yielding an explicit approximation of the updated velocity un+1
i ;j in terms of the projected pressure at cell

centres and the projected velocities at staggered grid points.
The result is not divergence free / incompressible — Foster and Metaxas [8] determine the updated

pressure field by solving the mass conservation equation ∇u = 0 by defining the fluid divergence (or
“missing mass”) for a cell (i ; j) according to:

Di ;j = −
„
ui+1=2;j − ui−1=2;j

∆x
+
ui ;j+1=2 − ui ;j−1=2

∆y

«
(26)

with the change in pressure given by:

∆pi ;j =
˛0

2∆t

„
1

∆x2
+

1

∆y2

«
Di ;j (27)

where ˛0 is a relaxation coefficient within the range [1; 2]. The cell face velocities and cell pressure
properties are then updated (see Foster and Metaxas [8] for the specifics), and the process is repeated.
This iterative process converges in 3-6 iterations according to the paper.

B Viscosity
As stated previously, fluids are considered by default in VFX to be inviscid, but solutions to this are
available. Batty and Bridson [3] solve viscosity as a separate step by the following PDE:

û =
1


∇ ·
`
�
`
∇u + (∇u)T

´´
(28)

which is discretized to give the following form:

û = u +
∆t


∇ ·
`
�
`
∇u∗ + (∇u†)T

´´
(29)
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Figure 8: Collapsed piles of viscous armadillos. Boundary conditions of the method of Batty and Bridson
[3] (left) reduce surface detail in comparison with the method of Larionov et al. [15]. Reproduced from
Larionov et al. [15].

where u∗ and u† are used to denote whether the old or current version of u are used depending on the
integration scheme. Once discretised this solution adds an additional linear solve to the system described
above.

Larionov et al. [15] combine the viscous and pressure force solve into a single coupled system, and
are able to address limitations in the decoupled approach of Batty and Bridson [3] (see Fig. 8. However
the additional computational cost is not currently considered worth the qualitative improvement.

C On the splitting of Ordinary Differential Equations
[5] demonstrate that ODE splitting is first order accurate using Taylor series expansion. Substituting
Eq. 3 into Eq. 4 yields:

qn+1 =(qn + ∆tf (qn)) + ∆tg(qn + ∆tf (qn))

=qn + ∆tf (qn) + ∆t(g(qn) + O(∆t))

=qn + ∆t(f (qn) + g(qn)) + O(∆t2)

=qn +
dq

dt
∆t + O(∆t2):
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