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Summary 43 

 44 

The characteristics of successful invaders often include generalist traits that enable 45 

adaptation to new environments through plastic responses, including their diet. The use 46 

of trophic resources of invasive driftwood catfish Trachelyopterus galeatus of the 47 

Upper Paraná River basin, Brazil, were studied with diet analysis and stable isotopic 48 

niche metrics based on d15N and d13C to test differences between populations in 49 

impounded and free-flowing river sections, and between wet and dry season. Stomach 50 

content analyses revealed significant differences between the populations. The diet of 51 

the free-flowing river population was macroinvertebrate dominated, with Coleoptera 52 

and Lepidoptera prominent. In the impounded population, diet was largely plant based, 53 

although Coleoptera was also prominent. Trophic niche breadth comparisons revealed a 54 

larger niche in the free-flowing river population versus the impounded population that 55 

was independent of season. Populations in both sites had dietary differences between 56 

the wet and dry season according to stomach contents analyses, although these were less 57 

less prominent according to stable isotope metrics. Therefore, the diet of this invader is 58 

relatively general and plastic, enabling their exploitation of the varying availability of 59 

food resources between free-flowing and impounded river sections, and between wet 60 

and dry season.  61 

 62 

Key words: food resource, niche breadth, non-native species, stable isotopes, spatial 63 

variability. 64 

 65 

66 
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Introduction 67 

 68 

Non-native species are a major factor driving biodiversity loss, and altering ecosystem 69 

functioning and services (Dudgeon et al., 2006; Gozlan et al., 2010; Pelicice et al., 70 

2014). Following establishment, invasive populations can become abundant, competing 71 

with and predating upon native species, and potentially leading to food web instability 72 

(Latini & Petrere, 2004; Li et al., 2015; Sagouis et al., 2015), especially in aquatic 73 

ecosystems (Gallardo et al., 2016). The establishment of populations in new habitats is 74 

facilitated when the introduced species has generalist traits that are highly plastic, as 75 

these enable rapid adaptation to the new biotic and abiotic conditions (Gozlan et al., 76 

2010). These generalist traits include diet composition, with successful invaders often 77 

being those able to exploit a wide range of prey items in these novel environments 78 

(Gozlan et al., 2010). This ability to alter diet composition is especially important when 79 

the species is invading heavily modified waterbodies, including rivers impounded by 80 

dams. Food resources in impounded sections are usually more strongly associated with 81 

macrophytes and flooded vegetation than in the free-flowing, riverine sections, 82 

especially during the wet season (Mérona et al., 2003; Delariva et al., 2013). Indeed, 83 

seasonal hydrology is a strong driver of riverine food web structure (Douglas et al., 84 

2005), with fish diet in dry seasons tending to be simpler with narrow diet niche. During 85 

the wet season, flooding increases feeding opportunities (Balcombe et al., 2005; 86 

Douglas et al., 2005), facilitating the establishment process.  87 

 The construction of hydropower dams produces large reservoirs that can then be 88 

utilized for aquaculture (Forneck et al., 2016; Lima Junior et al., 2018), with public 89 

policies often encouraging this, including the subsequent culture of non-native fish 90 

(Alves et al., 2018; Brito et al., 2018). A number of non-native fishes farmed in 91 
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aquaculture and sport angling activities are now present within the fish faunas of the 92 

numerous hydroelectric dams in the Upper Paraná basin (Britton & Orsi, 2012). This is 93 

allied to another major introduction pathway for non-native fishes, river engineering 94 

schemes (such as hydroelectric plants and canals), that connect previously disconnected 95 

biogeographic regions, enabling the movement of species between them (Júlio Júnior et 96 

al., 2009; Panov et al., 2009; Vitule et al., 2012; Casimiro et al., 2017). An example is 97 

in the Paraná River, where the construction of the Itaipu Reservoir in 1982 flooded the 98 

natural barrier of the Sete Quedas Falls, connecting the upper and lower river basins for 99 

the first time (Abell et al., 2008; Vitule et al., 2012). This has subsequently resulted in a 100 

mass biological invasion involving over 30 fish species from the lower to the upper 101 

basin (Júlio Júnior et al., 2009).  102 

 Among the species that have invaded the Upper Paraná was the driftwood 103 

catfish Trachelyopterus galeatus (Linnaeus 1766), which is now relatively abundant in 104 

the Upper Paraná River floodplain (Agostinho et al., 2004; Luiz et al., 2004; Tonella et 105 

al., 2018). Native to river basins in northern South America (Reis et al., 2003) and 106 

Paraguay-Lower Paraná basin (Britski et al., 2007), the species has a lagged internal 107 

fecundation (Agostinho et al., 2007), where females may preserve the sperm received 108 

from a male for up to several months before it is actually used in egg-laying (Meisner et 109 

al., 2000). This strategy allows females to wait for optimal environmental conditions 110 

before spawning (Pusey & Stewart, 1989). The species is also considered a trophic 111 

generalist with a wide food spectrum (Hahn et al., 1997). Invasive populations are now 112 

present in both free-flowing and impounded environments within the Upper Paraná 113 

basin (Júlio Júnior et al., 2009; Tonella et al., 2018; Garcia et al., 2018). In the free-114 

flowing sections, their floodplain environments are characterized by high levels of 115 

environmental heterogeneity (Agostinho, 1997), whereas their impounded environments 116 
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are strongly influenced by hydroelectric dams (Garcia et al., 2018). The impact of T. 117 

galeatus on native species may extend to a larger number of species and therefore have 118 

a greater effect on the food web. In addition, high plants may have a positive effect on 119 

diet in dammed environments (Mérona et al., 2003). 120 

 The aim of this study was to test whether the diet of the invasive T. galeatus in 121 

the Upper Paraná basin exhibited generalist tendencies by comparing their diet 122 

composition and trophic niche size between free-flowing and impounded environments, 123 

and between the wet and dry seasons. Using stomach contents analyses, supported by 124 

stable isotope analysis, it was predicted that T. galeatus in the impounded environments 125 

would be more positively associated with high plants than in the lotic habitat, resulting 126 

in a narrower trophic niche, and would be more diverse in the wet season than dry 127 

season, as shown by larger trophic niches.  128 

 129 

Materials and Methods 130 

 131 

This study was authorised by the Instituto Chico Mendes de Conservação da 132 

Biodiversidade (ICMBio) (survey permit SISBio/16578) and the Animal Ethics 133 

Committee of Universidade Estadual de Londrina (30992.2014.33). 134 

 135 

Study area 136 

The Paraná River basin is one of the most impacted in the world, mainly due to the 137 

large number of hydroelectric plants in the Brazilian stretch (Grill et al., 2015; 138 

Agostinho et al., 2016). The Upper Paraná floodplain is located between the Porto 139 

Primavera Dam and the Itaipu Reservoir, and is the last stretch that is dam-free and so 140 

free-flowing within Brazil. This has preserved its floodplain, which comprises lagoons, 141 
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rivers and channels of different degrees of connectivity, with this high habitat 142 

heterogeneity supporting 211 fish species (Ota et al., 2018). Five sites were sampled in 143 

these floodplain areas, hereafter referred to as ‘free-from-dam’ (‘FFD’) sites, being two 144 

rivers (Baía River 22º43’23.16”S; 53º17’25.5”W and Ivinhema River 22º47’59.64”S; 145 

53º32’21.3”W), one open lagoon (Garças Lagoon 22º43’27.18”S; 53º13’4.56”W), and 146 

two closed lagoons (Fechada Lagoon 22º42’37.92”S; 53º16’33.06”W and Ventura 147 

Lagoon 22º51’23.7”S; 53º36’1.02”W) (Figure 1). The Baía and Ivinhema rivers have 148 

high fish species richness and habitat heterogeneity, and have low transparency 149 

(approximately 0.7 m and 0.8 m, respectively) (Reynalte-Tataje et al., 2013).  150 

 One of the largest tributaries of the Upper Paraná River basin is the 151 

Paranapanema River that has 11 hydroelectric reservoirs constructed along its main 152 

channel. Four areas were sampled in this dammed subsystem, two rivers (Pirapozinho 153 

River 22º32’13.40”S; 52º1’52.50”W and Anhumas River 22º38’58.59”S; 154 

51º26’48.62”W) and two open lagoons (Lagoon 1 22º38’3.26”S; 52º9’39.94”W and 155 

Lagoon 2 22º35’37.74”S; 52º9’29.81”W), in an area under the influence of the Rosana 156 

and Taquaruçu reservoirs (Figure 1). These impounded sites are referred to as ‘under the 157 

influence of dams’ (‘DAM’). 158 

 159 

Fish sampling 160 

Fish were sampled quarterly during the dry (from April to September) and wet (from 161 

October to March) seasons, between August 2014 and March 2016. In both FFD and 162 

DAM sites, fish were captured using gillnets (300 m length, mesh sizes ranging from 3 163 

to 7 cm between opposite knots), which were deployed for 24 hours and inspected at 164 

8:00 a.m., 4:00 p.m., and 10:00 p.m. 165 
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 Following lifting of nets, all fish were removed, identified to species, with T. 166 

galeatus specimens retained. They were euthanized using an overdose of anaesthetic 167 

(clove oil) and frozen for transport to the laboratory for further analysis (Animal Ethics 168 

Committee of Universidade Estadual de Londrina, 30992.2014.33). In the laboratory, 169 

the fish were defrosted, measured (standard length, LS, nearest mm), a sample of dorsal 170 

muscle was removed for stable isotope analysis, and then the stomach was removed and 171 

preserved in ethanol (70%). Subsequently, the stomachs were dissected, prey items 172 

removed and, under a stereo-microscope (magnification x5 to x40), the prey items were 173 

identified to lowest taxonomic level possible.   174 

 175 

Stable isotope analysis 176 

The fish dorsal muscle samples (FFD: n = 121 (69 in the dry and 52 in the wet season) 177 

and DAM: 62 (28 in the dry and 34 in the wet season)) were dried to constant weight at 178 

60 oC before being ground to a fine powder, weighed and stored in tin capsules before 179 

determination of their carbon and nitrogen isotopic ratios. This determination was made 180 

on an Isotope Radio Mass Spectrometer from PDZ Europa ANCA-GSL with a PDZ 181 

Europe 20-20 interface (Sercon Ltd., Cheshire, UK) at the University of California, 182 

Davis Stable Isotope Facility. The values of the carbon and nitrogen isotope ratios were 183 

expressed in delta notation (d; ‰), relative to the international standard for the carbon 184 

of the Vienna Pee Dee Belemnite (V-PDB) limestone, and the nitrogen standard was 185 

atmospheric nitrogen (i.e., d13C (indicator of energy source) and d15N (indicator of 186 

trophic position)) (Grey, 2006).  187 

 As there were no stable isotope data available on the putative food resources of 188 

the fish for each site, inter-site comparisons between FFD and DAM are difficult due to 189 

the lack of standardization in the data (i.e., conversion of d15N to trophic position and 190 
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d13C to corrected carbon; Jackson & Britton, 2014). Consequently, the stable isotope 191 

data were primarily used for intra-site comparisons between the wet and dry season 192 

using a suite of stable isotope metrics (Layman et al., 2007; Jackson et al., 2011). The 193 

initial metrics were the isotopic ranges of nitrogen (NR) and carbon (CR) that represent 194 

the distance between the individual fish with the highest and lowest values of δ15N and 195 

δ13C within the sample, thus indicate the total extent of nitrogen and carbon isotopes 196 

being utilised. Mean centroid distance (CD) was then used as a measure of trophic 197 

diversity and was calculated as the mean Euclidean distance of each fish the centroid of 198 

δ13C or δ15N. Finally, standard ellipse areas (SEA) were used as a measure of isotopic 199 

niche size, a metric similar to trophic niche size, and were calculated in two ways. 200 

Firstly, they were determined using a Bayesian inference model to estimate the 201 

covariance matrix of the isotope data that considered data variability (caused both by 202 

natural variations and by analytical errors) more efficiently and provides a distribution 203 

of solutions rather than a single value (SEAB). Secondly, they were calculated as sample 204 

size corrected ellipse areas (SEAc), calculated from the variance and covariance of the 205 

values of δ15N and δ13C and where the standard ellipses accommodate 40% of the data.  206 

 207 

Stomach contents analyses 208 

The analyses of stomach contents tested differences in the diet composition between wet 209 

and dry seasons within the two areas (FFD and DAM), and then between the two areas. 210 

To verify the percentage of the populations with individuals with empty stomachs, the 211 

vacuity index (%Iv) was completed as the percentage of empty stomachs to the total 212 

number of stomachs analysed (Hyslop, 1980). Dietary analyses were then based on the 213 

volume of each food item (Hyslop, 1980), obtained by displacing large items in water in 214 

a graduated cylinder (0.1 ml) and small items on a millimeter plate (mm3). The volume 215 
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obtained (mm3) was converted to millilitres when the volume was less than 0.1 ml 216 

(Hellawel & Abel, 1971). Differences in the diet composition of each population in FFD 217 

and DAM areas, and differences between the dry and wet seasons within FFD and 218 

DAM areas, were determined by permutational multivariate analysis of variance 219 

(PERMANOVA; Anderson et al., 2008), applied to a matrix of food items per analysed 220 

stomach versus the volume of the items. The Gower distance was used as a dissimilarity 221 

index, and 9999 permutations were used to test the significance of the pseudo-F statistic 222 

derived from PERMANOVA. Variations in diet composition were synthesized through 223 

Principal Coordinate Analysis (PCoA), on a volume data set of prey (individuals in the 224 

lines and prey in the columns). The Indicator Value Method (IndVal), based on 225 

abundance and relative frequency, was used to detect which food item differed between 226 

FFD and DAM, according to Dufrêne and Legendre (1997). The indicator value of a 227 

food item ranges from 0 to 100, and reaches its maximum value when all items occur on 228 

all sites and hydrological periods within a single group. We tested the significance of 229 

the indicator value for each item with a Monte Carlo randomization procedure with 230 

10,000 permutations (significance level adopted was p < 0.05). 231 

 The trophic niche breadth was estimated for each population using the Levins’ 232 

standardized niche breadth, according to Bi = [(EjPij2)-1-1](n-1)-1, where Bi is the Levins’ 233 

standardized niche breadth; Pij is the proportion of prey j in the diet; and n is the number 234 

of food items (Krebs, 1998). Breadth values varies from 0 to 1; higher values indicate a 235 

wider range of resource exploitation. 236 

 All statistical analyses were performed using R Core Team software. We used 237 

the SIAR (Parnnel & Jackson, 2013), SIBER (Jackson et al., 2011) and Vegan packages 238 

(The R Project for Statistical Computing, http://www.t-project.prg/: Oksanen et al., 239 

2017). 240 
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 241 

Results 242 

 243 

Stable isotope metrics between wet and dry seasons 244 

Comparisons of metrics between the wet and dry seasons at both sites revealed there 245 

were only minor differences in NR, CR and SEAc, with SEAB indicating that the 246 

probability of the isotopic niches being larger in the wet season than the dry season was 247 

not significant (Table 1). Moreover, the standard ellipse areas (as SEAc) remained in a 248 

similar position in isotopic space between the wet and dry seasons at each site (Figure 249 

2). Whilst the stable isotope metrics indicated that FFD had higher values than DAM for 250 

NR and CR, and larger isotopic niches, these remain uncorrected due to the lack of 251 

isotopic baseline.  252 

 253 

Stomach contents analyses 254 

The vacuity indices indicated that values were higher in the FFD areas compared with 255 

the DAM areas; even in DAM, the minimum value was 24% (Table 2). Across the sites, 256 

the stomach contents data indicated that T. galeatus diet was mainly composed of high 257 

plants, insects, fish and crustaceans. In comparison to DAM, their diet in FFD had 258 

higher contributions of Coleoptera, irrespective of season, but was lower in high plants 259 

and fish. In DAM, the diet of T. galeatus mainly consisted of high plants and 260 

Coleoptera, with fish and crustaceans present in diet but being less prominent (Table 2).  261 

 In general, the diet of T. galeatus differed significantly between FFD and DAM 262 

(PERMANOVA: F72;44 = 5.66; p < 0.01). The ordination plot of the dietary data 263 

revealed a separation between the two environments in axis 1, with FFD being more 264 

positioned in the positive scores (Figure 3a). The food items that contributed to this 265 



12 

 

differentiation were Coleoptera and Lepidoptera in FFD and high plants in DAM. In 266 

contrast to the stable isotope metrics, the PCoA indicated that the diet between dry and 267 

wet seasons differed significantly in both FFD (F33;9 = 2.432; p = 0.02) and DAM (F37;35 268 

= 3.042; p < 0.01) (Figure 3b–c). In FFD, important food items in the dry season were 269 

Coleoptera and Lepidoptera, but these were extremely low (5.22%) and absent (0.00) 270 

respectively in the wet season (Table 2). In DAM, Coleoptera was only important in the 271 

wet season, with Crustacea being more important in the dry season (Table 2).  272 

 Across both seasons, the trophic niche breadth of T. galeatus was similar in FFD 273 

and in DAM (0.18 FFD vs. 0.19 DAM) (Table 2). When compared seasonally, the 274 

trophic niche was larger during the wet season in FFD (0.14 Dry vs. 0.34 Wet), with the 275 

opposite in DAM (0.28 Dry vs. 0.13 Wet) (Table 2). 276 

 277 

Discussion 278 

 279 

The results indicated that there was variability in the diet of T. galeatus, with 280 

differences apparent between the populations in the impounded (DAM) and free 281 

flowing (FFD) areas, and between wet and dry season. This variability was consistent 282 

with the hypothesis that this invader has a generalist diet that is sufficiently plastic to 283 

enable the fish to alter their feeding to exploiting different prey items as their food 284 

resource availability alters. It was also hypothesised that their diet would be more varied 285 

in the wet season than dry due to flooding providing greater feeding opportunities due 286 

to the inundation of floodplain areas and the consequent increase in production from 287 

vegetation breakdown (Britton et al., 2009). This larger trophic niche in the wet season 288 

was indeed apparent in the free flowing areas, but not the impounded areas. In the free- 289 

flowing area, the Baía and Ivinhema rivers are generally important in providing 290 
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permanent water flows that support high biodiversity, with fish foraging habitat 291 

protected by riparian vegetation (Ward et al., 1999; Thomaz et al., 2007). Thus, the 292 

larger niche of T. galeatus in the wet season here suggests that the high habitat 293 

heterogeneity was important in supporting fish diet, with the inundation of floodplain 294 

areas being an important process. This was a contrast to the impounded areas, perhaps 295 

due to the habitat suffering from a marked decrease in nutrient input in the wet season 296 

that limited the extent of food resources available to the fish, as is often typical for 297 

impounded rivers (Agostinho et al., 1999). 298 

 Fish captured in impoundments had more full stomachs (lower vacuity indices) 299 

than those from free-flowing areas. This may be related to the more consistent reservoir 300 

levels that ensured constant presence of high plants that were then as a common food 301 

item. The diet composition data present here for T. galeatus revealed it was omnivorous 302 

and highly plastic in its feeding habitat, which is in agreement with other studies on the 303 

species more generally (e.g., Moyle & Light, 1996; Ruesink, 2005). For example, 304 

Andrian and Barbieri (1996) revealed that T. galeatus diet was mainly composed of 305 

invertebrates such as Coleoptera and Hymenoptera, with fish and high plants present, 306 

similar to the results in the DAM fish. High plants were an important food item during 307 

both seasons in DAM. In FFD, the species fed mainly on insects derived from the 308 

riparian vegetation, such as Coleoptera, Lepidoptera and Orthoptera. In the Upper 309 

Paraná River floodplain, Santin et al. (2015) revealed strong ontogenetic patterns in the 310 

diet of T. galeatus, where larvae fed mainly on microcrustaceans and aquatic insects, 311 

but as the developed and increased in size, their diet switched to being based primarily 312 

on aquatic insects. In other studies that have been conducted in the Upper Paraná River 313 

floodplain, T. galeatus fed mainly on microcrustaceans, insect larvae, aquatic insects 314 

and small fish (Peretti & Andrian, 2004; Santin et al., 2015). In Central Amazonia, T. 315 
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galeatus diet comprises mainly of fruits, seeds and invertebrates (Claro-Jr et al., 2004), 316 

while in rivers of the Northern Pantanal, Brazil, the fish is considered as insectivorous 317 

(Ximenes et al., 2011). Elsewhere, it is considered omnivorous due to both plant and 318 

animal matter in their diet (Santos, 2005). In other Brazilian regions, the fish has also 319 

been considered as insectivorous (Gurgel et al., 2002; Oliveira et al., 2016) and 320 

carnivorous (Sousa et al., 2017). In entirety, the species is thus highly opportunistic and 321 

generalist (Ricciardi & Rasmussen, 1998), able to adapt its diet according to resource 322 

availability.  323 

 The use of stomach contents analysis and stable isotope analysis to assess the 324 

diet composition of fishes is routine, including for dietary assessments of invasive fish 325 

populations (e.g., Leunda et al., 2008; Cucherousset et al., 2012; Hamidan et al., 2016). 326 

However, when the two dietary methods are used together, the results are not always 327 

congruent. For example, a study on the diet of pumpkinseed Lepomis gibbosus 328 

(Linnaeus 1758) using a combination of methods (data from stomach contents, stable 329 

isotopes and their trophically transmitted parasite fauna) revealed no congruence 330 

between the methods, with each one providing apparently unrelated information that 331 

provided contrasting information on the importance of the different prey items (Locke et 332 

al., 2013). Dietary changes of fish might not be reflected in the stable isotope data of 333 

their tissues for some time, with this time dependent on a rage of factors including the 334 

tissue analysed, and fish growth and metabolic rates (Winter et al., 2019). Thus, a diet 335 

change in the transition between wet and dry season might not be detected in stable 336 

isotope values of dorsal muscle for some time (e.g. > 90 days) (Sacramento et al., 337 

2016). Indeed, differences in the results of dietary assessments are typical in studies that 338 

use both stomach contents and stable isotope analysis, with the differences usually 339 

relating to how each method works. For example, Hamidan et al. (2016) revealed that in 340 
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the desert fish Garra ghorensis Krupp 1982, stomach contents data collected through 341 

the year was successful at detecting temporal shifts in diet, given that the method 342 

indicates the individual, ingested diet of fish over very short time frames (e.g., < 24 h). 343 

Stable isotope analysis, however, in providing a much longer temporal perspective on 344 

assimilated diet, does not necessarily have the power to detect such short-term dietary 345 

changes, unless a tissue has been analysed that has a short isotopic turnover rate, such as 346 

epidermal mucus (Winter et al., 2019). The T. galeatus tissue used here, dorsal muscle, 347 

tends to have a slower turnover rate than mucus, although a faster rate than fin tissue 348 

and scales (Winter et al., 2019). Thus, stable isotope data using these tissues tend to be 349 

less sensitive to temporal dietary changes than stomach contents data. Consequently, the 350 

minor differences observed in the stable isotope metrics between the wet and dry here 351 

might relate to the method not being sufficiently sensitive to detect changes over this 352 

timeframe.  353 

Field samples of the putative food resources of the fish were also not available to 354 

this study and so it could not be tested whether there were seasonal or spatial 355 

differences in the stable isotope baseline of the populations. This means that it was 356 

difficult to assess temporal and spatial patterns in stable isotope metrics, such as the size 357 

of the standard ellipse areas, as the metrics could not account for any changes in 358 

variability of the stable isotope data of the main food resources of the fish that might 359 

have been apparent (Jackson & Britton, 2014). Consequently, any inferences on dietary 360 

changes from the stable isotope data need to be interpreted cautiously. 361 

 In summary, the results indicate that T. galeatus is a dietary generalist whose 362 

diet composition varies over time and space, and habitat type. The data presented here 363 

suggest that the species is an unrestricted predator, i.e., it consumes easy-to-catch items 364 

in its habitat (albeit resource availability was not measured here), suggesting it is highly 365 
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opportunistic. There were clear dietary differences between populations in impounded 366 

and free-flowing areas of river, and differences between wet and dry season. These 367 

results indicate that when introduced into new environments, the diet plasticity of T. 368 

galeatus facilitates their adaptation, with this likely to be an important trait that 369 

enhances their ability establish new invasive populations. 370 

 371 
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 594 

 595 

 596 

 597 

 598 

 599 

TABLE 1 Isotopic niche metrics of Trachelyopterus galeatus in free-from-dam (FFD) 600 

and damming (DAM) environments  according to all data and wet and dry season, 601 

where NR = nitrogen isotopic range; CR = carbon isotopic range; CD = mean centroid 602 

distance; Prob. Wet > Dry = probability that the SEAB obtained in wet season is greater 603 

than the SEAB obtained in the dry season 604 

Environment/Season  NR CR CD SEAc Prob. Wet < Dry 

FFD 

All  7.96 12.51 2.61 9.64 0.29 

Dry 
 

7.65 11.92 2.46 9.00 
 

Wet 
 

6.99 10.53 2.66 10.19 

DAM 
All  5.41 11.64 2.18 7.08 0.25 

Dry 
 

4.10 11.12 1.94 6.33  
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Wet   5.41 8.96 2.30 7.54 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

TABLE 2 Volumetric percentage of food items in the diet of Trachelyopterus galeatus, 618 

trophic niche breadth (Bi), and mean standard length (± standard deviation) in free-619 

from-dam (FFD) and damming (DAM) environments. Values in parentheses show the 620 

number of stomach contents analysed 621 

Items FFD  DAM  

 Dry Wet Total Dry Wet Total 

 (112) (26) (138) (50) (46) (96) 

High plants 6.58 28.26 34.84 30.45 47.79 78.24 

Fish 0.77 21.87 22.64 17.81 7.41 25.22 

Coleoptera 52.04 5.22 57.26 2.57 28.79 31.36 
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Lepidoptera 19.89 0.00 19.89 0.35 0.00 0.35 

Orthoptera 8.00 2.75 10.75 3.23 1.28 4.51 

Odonata 4.03 0.82 4.85 5.17 1.69 6.86 

Ephemeroptera 0.00 10.93 10.93 0.00 0.00 0 

Hymenoptera 0.02 0.01 0.03 3.00 0.84 3.84 

Isoptera 2.32 0.00 2.32 0.00 0.00 0 

Hemiptera 2.17 0.54 2.71 0.19 0.00 0.19 

Homoptera 0.18 0.00 0.18 0.55 1.28 1.83 

Crustacea 2.63 0.00 2.63 22.46 0.00 22.46 

Gastropoda 0.38 0.00 0.38 1.89 2.37 4.26 

Aranae 0.12 3.55 3.67 1.11 0.04 1.15 

Algae 0.00 0.86 0.86 0.184 0.07 0.25 

%Iv 67.9 57.7 65.9 26.0 24.4 25.0 

Bi 0.14 0.34 0.18 0.28 0.13 0.19 

Mean LS (cm) ± 

S.D. 

13.7 ± 

2.1 

12.7 ± 

2.9 

13.5±2.3  14.0 ± 

1.1 

14.1 ± 

1.4 

14.1 ± 

1.3 
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List of figure captions 645 

 646 

FIGURE 1 Study area and sampling sites in the Upper Paraná River floodplain (free 647 

from dam, FFD): 1 – Ventura Lagoon; 2 – Ivinhema River; 3 – Fechada Lagoon; 4 –648 

Baía River; 5 – Garças Lagoon; and Lower Paranapanema (under the influence of dams, 649 

DAM): 6 – Lagoon 1; 7 – Lagoon 2; 8 – Pirapozinho River; 9 – Anhumas River; A – 650 

Porto Primavera Dam; B – Rosana Dam; C – Taquaruçu Dam; D – Capivara Dam 651 

 652 

FIGURE 2 Stable isotope biplot of δ13C and δ15N data (expressed in parts per thousand) 653 

for each sampling area with the ellipses that represents the isotopic niche area (SEAc 654 

‰2) occupied by Trachelyopterus galeatus. (a) all seasons and all areas together; (b) 655 
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free-from-dam habitat (FFD), each ellipse represent a different season; (c) damming 656 

habitat (DAM), each ellipse represent a different season. Each point is an individual fish 657 

 658 

FIGURE 3 (a) Diet data ordination of Trachelyopterus galeatus based on food items 659 

volume consumed in free-from-dam (white circles, FFD) and damming (black squares, 660 

DAM) environments during dry and wet season, (b) by dry (white circles) and wet 661 

(black squares) season in FFD area, and (c) DAM area. Each point represents the 662 

stomach of one fish in each environment 663 


