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Abstract
An accurate measurement of intrinsic hand muscle strength (IHMS) is
required by clinicians for effective clinical decision-making, diagnosis of
certain diseases, and evaluation of the outcome of treatment. In practice,
the clinicians use Intrins-o-meter and Rotterdam Intrinsic Hand Myometer
for IHMS measurement. These are quite bulky, expensive, and possess poor
interobserver reliability (37–52%) and sensitivity. The purpose of this study
was to develop an alternative lightweight, accurate, cost-effective force
measurement device with a simple electronic circuit and test its suitability
for IHMS measurement. The device was constructed with ketjenblack/
deproteinized natural rubber sensor, 1-MΩ potential divider, and Arduino
Uno through the custom-written software. Then, the device was calibrated
and tested for accuracy and repeatability within the force range of finger
muscles (100 N). The 95% limit of agreement in accuracy from �1.95 N to
2.06 N for 10 to 100 N applied load and repeatability coefficient of +1.91 N
or 6.2% was achieved. Furthermore, the expenditure for the device con-
struction was around US$ 53. For a practical demonstration, the device was
tested among 16 participants for isometric strength measurement of the
ulnar abductor and dorsal interossei. The results revealed that the per-
formance of the device was suitable for IHMS measurement.
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Introduction

Muscle strength refers to the amount of force that a muscle can generate

against resistance in a single maximal effort. Evaluation of muscle strength,

including intrinsic hand muscles, is frequently carried out by physicians,

physical therapists, and other professionals in clinical settings for clinical

decision-making and outcome measurements (Schreuders, Selles, Roeb-

roeck, & Stam, 2006). However, the purpose of muscle strength testing

varies; it includes prediction of the risk of developing certain diseases in

the future (Kim, Kim, Seo, & Kang, 2014; Rikkonen et al., 2012; Timpka,

Petersson, Zhou, & Englund, 2014), assistance in the diagnosis of medical

conditions (Cruz-Jentoft et al., 2010; Schreuders, Roebroeck, Jaquet,

Hovius, & Stam, 2004), examination and comparison of the efficiency of

treatment, documentation and monitoring of the progress of muscle strength
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during treatment, and providing feedback during the phases of rehabilitation

(Rosen, Dahlin, & Lundborg, 2000; Schreuders et al., 2004, 2006). Strength

testing is also done among healthy subjects, particularly in sports medicine

and ergonomic industries to prescribe suitable strength training.

In this context, intrinsic hand muscle strength (IHMS) evaluation is

important for researchers and clinicians, as it determines a human’s capa-

bility of accomplishing tasks of adaptation, exploration, prehension, manip-

ulation, and perception (Simone et al., 2007). Reduced IHMS can lead to a

severe loss of hand function; for example, firmly holding a key will be

impossible with the paralysis of the intrinsic hand muscles. Furthermore,

atrophy of these muscles alerts clinicians to medical diseases such as

leprosy, poliomyelitis, Guillain–Barre syndrome, amyotrophic lateral

sclerosis, rheumatoid arthritis, hand-arm vibration syndrome, and diabetes

(Videler, Beelen, Aufdemkampe, de Groot, & Van Leemputte, 2002; Vinci,

Esposito, Perelli, Antenor, & Thomas, 2003). A few researchers have

reported that increased IHMS improves the functional status of the patient

and recommended that the method/device used for evaluation of IHMS

should be accurate and reliable (Cortez et al., 2011; Hsu, Tang, & Jan,

2000). In clinical practice, IHMS is frequently assessed by the Medical

Research Council (MRC) scale, Intrins-o-meter, and Rotterdam Intrinsic

Hand Myometer (RIHM; Pataky, Savescu, Latash, & Zatsiorsky, 2007; Xu

et al., 2010).

The MRC scale classifies IHMS into six cardinal grades (0–5 muscle

grade) based on observation, palpation, gravity, and manual resistance pro-

vided by the therapist. In the classification of the muscle strength grade, this

cardinal scale places each muscle group into a particular grade that best

suits a description. Although the MRC scale facilitates quick clinical eva-

luation and description of IHMS, it is not much reliable or sensitive in

detecting small changes in the muscle strength grades of 4–5 (Harlinger,

Blalock, & Merritt, 2015; Schreuders et al., 2000). To overcome the draw-

backs of the MRC scale, researchers have developed modified dynam-

ometers, namely, the Intrins-o-meter (Mannerfelt, 1997) and the RIHM

(Schreuders et al., 2000). Both these devices are widely used by health

professionals in clinical settings to measure the isometric strength of intrin-

sic muscles. Pataky et al. developed a device based on the model of multi-

component force transducers with complex electronic circuits and claimed

that the abductor and adductor muscle strength of all the fingers can be

measured instantly by it. However, the available dynamometers are expen-

sive (cost ranges from US$1,000 to US$1,600), quite bulky, and exhibit

poor interobserver reliability (37–52%) and sensitivity (Pataky et al., 2007;

Madhanagopal et al. 3



Xu et al., 2010). Xu et al. noted that the device developed by Pataky et al. is

not suitable for the measurement of IHMS among young children and

patients with hand deformities due to its rigid design. Therefore, there is

a need for the development of an alternative low-cost, lightweight, and

accurate device for the measurement of IHMS.

The working principle of all these dynamometers is based on the piezo-

resistive load cell, in which the resistance of the metallic foil strain gauge is

altered upon the perpendicular application of compressive or tensile load.

The resistance change in the strain gauge is accurately measured using the

Wheatstone bridge, and its output is displayed in voltage. The output vol-

tage is then calibrated with the known standard weights and further dis-

played as a force (in N or kg or lbs) in the device (Xu et al., 2010). Recently,

our research group developed a highly reliable, high-pressure sensitive

ketjenblack (KB) reinforced deproteinized natural rubber (DPNR) compo-

site (KB/DPNR), equivalent in its behavior to a metallic foil strain gauge

sensor. We have successfully monitored grade I and grade II joint mobiliza-

tion techniques and the lateral pinch strength using KB/DPNR in our earlier

study (Madhanagopal et al., 2017). In this study, (1) a new, cost-effective

device was constructed, based on the KB/DPNR force sensor, using simple

electronic components; (2) the accuracy and repeatability of the developed

device were tested with standard applied loads (1–10 kg); and (3) the suit-

ability of the device for IHMS measurement was examined.

Methods

Participants

In this study, the device was tested among 16 participants (4 males and 4

females in each group) from two different age-groups (age range ¼ 30–39

and 60–69). The male participants’ mean age, weight, and height in the 30–

39 age-group were 34.50 years (SD ¼ 1.70), 80.50 kg (SD ¼ 10.90), and

1.64 m (SD ¼ 0.08), respectively, while the female participants’ mean age,

weight, and height were 35.80 years (SD¼ 4.80), 62.50 kg (SD¼ 7.20), and

1.57 m (SD ¼ 0.03), respectively. The mean age, weight, and height of the

male participants in the 60–69 age-group were 64.80 years (SD ¼ 3.90),

72.20 kg (SD ¼ 3.10), and 1.62 m (SD ¼ 0.09), respectively, and those of

the female participants were 64.80 years (SD¼ 2.80), 62.20 kg (SD¼ 7.50),

and 1.54 m (SD ¼ 0.07), respectively. The participants were recruited from

a residential apartment and a public university in Johor, Malaysia, through

convenience sampling. The inclusion criteria were as follows: participants
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had no soft tissue injuries in the hand, no median and ulnar nerve damage,

no arthritis of the hand, and were able to understand the instruction provided

by the physiotherapist. The participants who did not meet the abovemen-

tioned inclusion criteria were excluded from the study. Written and

informed consent was obtained from all the participants. The study was

approved by AIMST University Human and Animal Ethical Committee

(Ref: AUHAEC/EXT/2017/01).

KB/DPNR Sensor Construction

The KB (18 g), each 3 g of cross-linking agents (trimethylolpropane tri-

methacrylate (SR 350) and dicumyl peroxide), and 300 g of DPNR were

hand mixed for 5 min. The hand mixed compounds were then incorporated

into a two-roll mill machine and rotated 10 times at a speed of 200 rpm.

Finally, the roll-milled mixture was molded under 3,000 psi at 160�C for 10

min and dried at room temperature to obtain a KB/DPNR nanocomposite

sheet. A portion of the KB/DPNR (25 mm� 25 mm� 1 mm) was cut from

the sheet and utilized for the sensor construction. Then, two thin copper

wires were glued on either end of the same plane of the KB/DPNR compo-

site using a silver paste. Finally, adhesive copper tapes were fixed over it for

good contact.

Device Construction

The two copper wires of the KB/DPNR sensor were connected to the A0 and

the ground pin of the Arduino, respectively. A potential divider with 1-MΩ
standard resistor was adopted, as it exhibited an excellent voltage output

range by the KB/DPNR sensor, upon applying compressive load under 5 V

constant power supply. For accurate force measurement, the device was

first conditioned with a known weight of 11 kg (*110 N) placed on the

sensor. Then, the device was calibrated with the known weights of 1–10 kg

with an increment of 1 kg maintained for 5 seconds (Madhanagopal et al.,

2017; Tuttle & Jacuinde, 2011). This calibration step was repeated 5 times.

In our case, the aim of the developed device was to measure IHMS, and

therefore, the device was calibrated up to 100 N, as the finger muscle can

generate a maximum of 108.7 N (Schreuders et al., 2000). The mean value

of the voltage change to an applied load was taken as the response of the

device. To compute the output voltage into a force value, the slope and

the intercept values were obtained from the linear equation (f ¼ y0 þ a(x)),

by plotting the mean peak point of the output voltage (V) against the applied
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load (kg). In the linear equation, f is the output voltage (V), x is the applied

load, y0 is the intercept between the output voltage (V) and applied load

(kg), and “a” is the slope. The KB/DPNR sensor was glued to the acrylic

block (2.5 � 2.5 cm) and mounted to the center of the plastic casing for

smooth execution of the muscle strength testing. The device readings were

displayed on a liquid crystal display (LCD) using custom-written Arduino

software. Finally, the sensor, Arduino, and the LCD were soldered and

compactly packed into a plastic casing (8 � 8 cm).

Measures

The accuracy and repeatability of the device were measured by placing the

known standard weights of 1–10 kg on the sensor, at an interval of 1 kg,

5 times each (Madhanagopal et al., 2017; Tuttle & Jacuinde, 2011). The

readings of the device were recorded using the Arduino software program.

The isometric muscle strength of the ulnar abductors (UA) and dorsal

interossei (DI) were measured as described by Schreuders, Selles, Roeb-

roeck, and Stam (2006) and Schreuders et al. (2000). In brief, for UA

strength measurement, the participants were asked to position their palm

facing upward, with the little finger in slight contact with the device. For DI

strength measurement, the participant’s palm was facing downward with

the index finger in slight contact with the device and the remaining fingers

stabilized by a physiotherapist. The participants were then asked to generate

a force by gradually using their index finger for the DI and their little finger

for the UA against the device for 1–2 s and maintain the maximal effort for

4–6 s, respectively. This procedure was repeated 3 times at intervals of

1 min. A 1-min rest was given between repetitions to minimize muscle

fatigue. The mean average of the three measurements was recorded as a

participant’s isometric muscle strength of DI and UA.

Statistical Analyses

Normality distribution of the obtained data was analyzed using the Shapiro–

Wilk (S-W) and skewness and kurtosis statistical test. To assess the

accuracy and repeatability of the device, the Bland and Altman plot was

constructed to describe the agreement between the mean difference of the

actual values of all applied load (10–100 N) and readings of the device (N)

as well as the mean difference of the repeated measures against the mean

force (N). The upper and lower 95% limit of agreement was calculated in
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Newton and percentage values. The acceptable limit of agreement was set at

+10% for both the accuracy and the repeatability of the device.

Results

The linearity and the sensitivity (S) of the device were r ¼ .98 and S ¼ 0.21

V/kg, respectively. A S-W test (p � .05) for all applied load (10–100 N) and

visual inspection of the normal Q-Q plots showed that the accuracy readings

of the device were approximately normally distributed for all applied loads

(10–100 N), with skewness z-values of 0.13, �0.22, 0.19, 0.89, 0.11, 0.66,

�1.65, 0.18, 0.19, and 0.74 and kurtosis z-values of �1.46, �0.86, �0.76,

�0.63, �0.47, 0.54, 1.19, �1.05, �1.18, and �0.20, at an interval of 10 N,

respectively.

Accuracy

The mean (M) + standard deviation (SD) differences and standard error of

mean (SEM) between the readings of the device and applied loads were 0.05

N + 1.03 N and 0.14 (0.6% + 3.4% and 0.48%), respectively. The 95%
limit of agreement between the mean difference from applied load and the

readings of the device was calculated to be 2.06 and �1.95 N (7.33% and

�6.15%). The Bland and Altman plot revealed that the mean difference

from actual value was closer to zero from 10 to 100 N, with a bias of 0.06

(0.59%) in the accuracy. In terms of the percentage, mean differences from

the applied load was decreased upon increasing the applied load from 10 to

100 N. All readings of the device strongly agreed with the actual value and

closely distributed around zero with low SD (3.44%) and SEM (0.48%)

values.

Repeatability

The M + SD difference and SEM of repeatability of the device were 0.006

+ 3.20% and 0.45%, respectively. The 95% limit of agreement between the

differences from mean value and the mean force was 1.92 and �1.91 N

(6.27% and �6.26%). The Bland and Altman analysis revealed that the

readings of the device have strongly agreed with each other with a mean

difference less than 1.92 N, with a bias in repeatability of 0.004 (0.006%).

Similar to the plot of accuracy, the percentage of mean differences of

repeatability was decreased closer to zero upon increasing the applied load
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from 10 to 100 N, which confirms that the readings of the device are

repeatable with the same applied load.

Muscle Strength

The obtained isometric strength of UA and DI of all the 16 subjects were as

follows: The M + SD of DI muscle strength of the 30–39 years age-group

(male: 69.47 + 5.97 N, female: 56.15 + 4.66 N) were higher when com-

pared to the 60–69 years age-group (male: 50.72 + 5.63 N, female: 44.42

+ 4.32 N). Similarly, the measured UA muscle strength of 30–39 years

age-group (male: 42.67 + 5.66 N, female: 32.85 + 4.47 N) were also

higher compared to 60–69 years age-group (male: 33.19 + 4.29 N, female:

25.82 + 4.32 N).

Discussion

Our device works under the principle of piezo-resistive load cell, similar to

the commercially available strain gauge handheld dynamometer (HHD).

When the device was subjected to loading and unloading of low compres-

sive load (e.g., 30 N), the reading of the device rose up and returned to the

zero reading immediately, whereas, under high compressive load (100 N),

the device exhibited similar behavior, but it took time (less than 15 s) to

return to the zero reading after unloading the applied load. The delay in

getting back to the zero reading was due to the minimal hysteresis of the

KB/DPNR sensor. However, this hysteresis might not affect the consecutive

muscle strength measurement as 30 s–2 min rest is usually given to subjects

between the trials of strength testing (Hebert et al., 2011; Symons, Vander-

voort, Rice, Overend, & Marsh, 2005).

The device can be used in two routes: as a secured laptop device or a

freely handheld device. As a secured laptop device, both the readings of the

device and the real-time visual feedback via graph can be monitored, and it

would allow the tester to carry out the strength testing not beyond 2 m. As a

freely handheld device, it will allow the tester to conduct the muscle

strength testing in any clinical setting. However, the limitation is that the

displayed force readings cannot be saved during such a mode of testing. In

order to eliminate this issue in the present version of device, we are cur-

rently working on including a data logger into the device to save the record-

ings. The budget required for the development of the device and the sensor

was analyzed. It was estimated to be approximately US$53, which suggests

that the device cost is 20–30 times lower than the commercially available
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HHD (US$1,000–US$1,600; Stark, Walker, Phillips, Fejer, & Beck, 2011).

The accuracy and repeatability of this inexpensive device were similar to

the commercially available HHD. In this study, isometric strength measure-

ments of UA and DI were chosen as a model system. The measured muscle

strength of UA and DI by our device was lower in older adults when

compared to young adults, which confirms that the developed device is

suitable for all age-groups. The intra and interobserver reliabilities of the

device are under progress. The proposed method to develop a sensor and a

force monitoring device may be useful for health professionals in designing

a new device for health-care applications, such as monitoring applied force

during joint mobilization.
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