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Abstract
Natural World Heritage Sites (NWHS), which are of Outstanding Universal Value, are increasingly
threatened by natural and anthropogenic pressures. This is especially true for coastal NWHS,
which are additionally subject to erosion and flooding. This paper assesses shoreline change from
1984 to 2016 within the boundaries of 67 designated sites, providing a first global consistent
assessment of its drivers. It develops a transferable methodology utilising new satellite-derived
global shoreline datasets, which are classified based on linearity of change against time and
compared with global datasets of geomorphology (topography, land cover, coastal type, and
lithology), climate variability and sea-level change. Significant shoreline change is observed on
14% of 52 coastal NWHS shorelines that show the largest recessional and accretive trends (means
of−3.4 m yr−1 and 3.5 m yr−1, respectively). These rapid shoreline changes are found in low-lying
shorelines (<1 m elevation) composed of unconsolidated sediments in vegetated tidal coastal
systems (means of−7.7 m yr−1 and 12.5 m yr−1), and vegetated tidal deltas at the mouth of large
river systems (means of−6.9 m yr−1 and 11 m yr−1). Extreme shoreline changes occur as a result
of redistribution of sediment driven by a combination of geomorphological conditions with (1)
specific natural coastal morphodynamics such as opening of inlets (e.g. Río Plátano Biosphere
Reserve) or gradients of alongshore sediment transport (e.g. Namib Sea) and (2) direct or indirect
human interferences with natural coastal processes such as sand nourishment (e.g.Wadden Sea)
and damming of river sediments upstream of a delta (e.g. Danube Delta). The most stable soft
coasts are associated with the protection of coral reef ecosystems (e.g. Great Barrier Reef ) which
may be degraded/destroyed by climate change or human stress in the future. A positive correlation
between shoreline retreat and local relative sea-level change was apparent in theWadden Sea.
However, globally, the effects of contemporary sea-level rise are not apparent for coastal NWHS,
but it is a major concern for the future reinforcing the shoreline dynamics already being observed
due to other drivers. Hence, future assessments of shoreline change need to account for other
drivers of coastal change in addition to sea-level rise projections. In conclusion, extreme
multi-decadal linear shoreline trends occur in coastal NWHS and are driven primarily by sediment
redistribution. Future exacerbation of these trends may affect heritage values and coastal
communities. Thus shoreline change should be considered in future management plans where
necessary. This approach provides a consistent method to assess NWHS which can be repeated and
help steer future management of these important sites.
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1. Introduction

World Heritage Sites are locations of Outstand-
ing Universal Values (OUV) selected by the United
Nations Educational, Scientific and Cultural Organ-
ization (UNESCO) as having cultural, historical, sci-
entific, or other forms of significance [1]. Of the 1 092
World Heritage Sites, 209 are classified as Natural
WorldHeritage Sites (NWHS) [1].NWHShave a high
irreplaceability (uniqueness or rarity) factor; they are
prioritised and have extraordinary biodiversity and
geodiversity features compared to other protected
areas [2, 3]. The UNESCO World Heritage Centre
established a list of 14 primary factors of deteri-
oration of the OUV ranging from human activit-
ies (development, pollution, social and cultural use),
climate change and severe weather events, to invas-
ive species, management and institutional factors
[4]. Climate change and severe weather events can
affect coastal areas through flooding, inundation and
increased erosion [5–7]. 88 NWHS intersect the coast
and include sites most at risk from climate change
[8]. Although they have pristine environments, their
coastlines are increasingly subject to anthropogenic
pressures inside and outside their boundaries such
as pollution, population growth, and development
including port facilities, dams and pumping stations.
Following the International Union for Conservation
of Nature conservation Outlook assessment conduc-
ted in 2017 [9], only 20% of coastal NWHS have
a good conservation outlook, and the conservation
outlooks of 39% of the sites range from significant
concerns to critical. Moreover, the OUV of about
two thirds of coastal NWHS are at high to very
high threat from deteriorating factors. Additionally,
these sites are subject to physical processes such as
sea-level rise (SLR) [10–14] and human modifica-
tions to sediment budgets [15]. However, shoreline
change is not systematically monitored or reported in
many NWHS [16–18], so it is unclear how NWHS
shorelines have or could change. As sites that have
very limited internal anthropogenic disturbance, they
present significant opportunities to analyse how and
why shorelines change due to natural drivers and/or
external pressures.

Previous assessments of shoreline change in her-
itage studies include local [19–22], regional [23] or
global [24, 25] studies. Local studies included the
Sundarbansmangrove forests [20, 22], the Everglades
National Park [21], and the Wadden Sea [19]. A
regional evaluation of 49 coastal Cultural World Her-
itage Sites around the coast of the Mediterranean
found that 37 low-lying sites are at risk from a 100-
year flood event today and that 42 sites are threatened
by coastal erosion [23]. Two global studies have ana-
lysed the effects of future shoreline change due to
SLR. The first determined that 80%of the coastal wet-
lands of international importance could be affected
by a 0–1 m rise in sea level [25]. The second study

found that 40 to 136 cultural and mixed coastal
World Heritage Sites may be affected by flooding over
2 000 years if global temperatures and sea-levels con-
tinue to rise [24]. To date, no study has explored glob-
ally past multi-decadal shoreline change and its pos-
sible drivers in NWHS in term of their geomorpho-
logy, elevation, land cover, lithology, climate variab-
ility and sea-level change.

The availability of satellite images from 1984 to
present via the Google Earth Engine has allowed
the creation of a global consistent shoreline change
dataset that can be used to monitor coastal NWHS
[26–28]. In this paper, global datasets of shorelines,
geomorphological conditions, and relevant forcing
drivers are used to evaluate historic shoreline change
from 1984 to 2016 across 67 coastal NWHS (out of 88
due to data availability limitations and data cleaning).
The objectives are:

• To assess and classify historic shoreline change
behaviour within the 67 coastal NWHS;

• To evaluate the geomorphological conditions asso-
ciated with different shoreline behaviours (based
on their linearity against time) and shoreline
trends (recessional, depositional and stable); and

• To determine the impacts of historic sea-level
change and climate variability on shoreline beha-
viour.

This paper is structured as follows. The data are
introduced in section 2. The methods and results are
presented in section 3 and section 4 respectively. The
discussion is presented in section 5 and the conclu-
sion in section 6.

2. Data

Three datasets were used: (1) coastal NWHS bound-
aries and shoreline change time-series (section 2.1);
(2) geomorphological datasets (section 2.2); and (3)
climate variability and sea-level change datasets (sec-
tion 2.3).

2.1. Study sites and shoreline change time-series
Boundaries of coastal NWHS were retrieved from
the World Database on Protected Areas [29]. 88 sites
intersected the Global, Self-consistent, Hierarchical,
High-resolution Shoreline database [30] (figure 1).
Shorelines were obtained from a global assessment
of derived Landsat images [26–28]. This provided
satellite-derived shorelines (SDS) data points and
their yearly positions based on transects spaced
500 m apart. SDS data points were available for
71 out of 88 coastal NWHS due to limited cover-
age of historic satellite imagery in offshore waters.
The raw shoreline time-series data were cleaned
from transects containing less than five SDS data
points and having a temporal coverage shorter
than seven years [26]. Approximately 1.5 million
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Figure 1. Geographical distribution of 88 coastal Natural World Heritage Sites around the world. 67 sites with available cleaned
shoreline time-series data are analysed (Sources: World Database on Protected Areas [29], Global, Self-consistent, Hierarchical,
High-resolution Shoreline database [30], and shoreline time-series data [26–28]).

time-series data points were selected. Further con-
ditional and outlier data cleanings were under-
taken (supplementary section A.1.1, available at
stacks.iop.org/ERL/15/104047/mmedia). The condi-
tional cleaning was performed for more consistency
on the assessment of shoreline trends: all transects
that had at least 17 SDS data points were retained
for the analysis (supplementary section A.1.1). The
outliers’ cleaning was performed to delete extreme
SDS data points values (deviating by more than three
times the standard deviation) within each transect
(supplementary section A.1.1). The cleaning pro-
cess (see flowchart in supplementary figure SM1)
removed 3.8%of the raw SDS data points, and 67 sites
remained in the analysis (figure 1).

2.2. Geomorphological conditions
Information of topography, land cover, coastal type
and lithology (table 1) was obtained from global data-
bases to analyse how depositional and recessional
shoreline change rates (SCR) varied (supplementary
section A.1.2). The resolution of the topography and
land cover datasets (~500 m at the equator) is sim-
ilar to the shoreline data. The coastal type dataset
resolution is 50 km and permits the classification of
sites. The resolution of lithological data varies, start-
ing from 5 m2 and is adequate for both transect- and
site-based analysis. These datasets are suitable due to
their coverage of the study area allowing for a consist-
ent analysis; moreover, their resolutions are suitable
for a global and site-based assessment of shoreline
trends.

2.3. Climate variability and sea-level change
Between 1900 and 2016, global mean sea level has
risen by 16–21 cm [35]. However, the effect of local

SLR on the shoreline variability is poorly under-
stood as often exceeded by climate variability, local
geomorphological conditions, and/or human inter-
ventions [36]. Our study hypothesised that local
trends of sea-level change [35] may have a poten-
tial observable contribution to strong linear shoreline
trends within similar geomorphological categories in
pristine NWHS, which should be negligibly affected
by human interventions. To verify this hypothesis,
local trends of sea-level change were assessed, and
their effects on strong linear shoreline trends were
determined within different geomorphological cat-
egories and sites. Linear available trends of local
estimates of relative sea-level change [37] (meas-
ured by tide gauges) were used. These linear trends
are appropriate as contemporary SLR acceleration
rates are small (order of 0.1 mm2 yr−1) and are
often not detectable at local tide gauge sites because
of the large variability present in sea level [38].
Other driving forces of regional climate variability
[39] (table 2) were assessed as drivers of shoreline
change. These yearly values of large-scale climate
indices have been used in previous global assess-
ments of surges and flooding [40, 41] and have
been shown to influence year-to-year variability in
sea level [42–44]. The shoreline change dataset is
33 years of length, which is appropriate to cap-
ture the year-to-year variability that arises from
climate forcing such as El Niño/Southern Oscilla-
tion (ENSO) or the other climate indices listed in
table 2.

3. Methods

Three stages of analysiswere undertaken, correspond-
ing to the three study objectives.

3
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Table 1. Summary of data types, sources, resolutions and transects categorisation in terms of topography, land cover, coastal typology,
and lithology. Details of data selection and classification are available in the supplementary section A.1.2.

Dataset Source and Resolution Categories

Topography (classification based
on the distribution of the eleva-
tion of strong linear transects)

Global Map DEM (2017) [31] ~0.5 km at
the equator

1. 0⩽ elevation⩽ 1 m (extremely
low-lying)

2. 1 < elevation⩽ 10 m (low-lying)
3. 10 < elevation⩽ 50 m (middle)
4. 50 < elevation⩽ 400 m (high)
5. No data (transects without avail-

able elevation)

Land cover Global Land Cover by National Mapping
Organisations—GLCNMO (2013) [32]
~0.5 km at the equator

1. Coral reefs
2. Mangroves
3. Marshes
4. Vegetated
5. Non-vegetated
6. Urban areas

Coastal type Worldwide Typology of Nearshore
Coastal Systems (2011) [33] Minimum
resolution 50 km

1. Small deltas
2. Tidal systems
3. Lagoons
4. Fjords and fjärds
5. Large rivers
6. Large rivers with tidal influence
7. Karst-dominated stretches of coasts
8. Arheic (dry areas)
9. Islands

Lithology Global Lithological Map—GliM (2012)
[34] Average resolution of 1:3 750 000—
polygons areas vary starting from 5 m2

1. Evaporites
2. Polar ice and Glaciers
3. Acid Plutonic Rocks
4. Basic-Ultrabasic Plutonic Rocks
5. Intermediate Plutonic Rocks
6. Metamorphic Rocks
7. Carbonate Sedimentary Rocks
8. Mixed Sedimentary Rocks
9. Siliciclastic Sedimentary Rocks
10. Unconsolidated Sediments
11. Pyroclastic
12. Acid Volcanic Rocks
13. Basic Volcanic Rocks
14. Intermediate Volcanic Rocks
15. No data

3.1. Shoreline change time-series: linear behaviour
classifications and strong linear trends
Prior to fitting a linear regression, the potential lin-
ear behaviour of SDS data points, defined by their lin-
earity against time, was assessed using Pearson’s cor-
relation coefficient (r) (R-3.5.1 package ‘psych’ [60]),
with the statistical significance measured using the p-
value (the closer r is to±1 the stronger the linear rela-
tionship). Based on past qualitative description of r
[60–63], shoreline change transects were divided as:

• Strong linear (less than−0.7 or greater than 0.7);
• Weak linear (−0.7 to−0.3 or 0.3 to 0.7); and
• Non-linear (−0.3 to 0.3).

To assess the contributions of the three linear
categories in the long-term shoreline change, mean

annual SCR for the three linear categories were
assessed using anOrdinary Least Square linear regres-
sion applied to transects based SDS [64]. The linear
fit is a valid option to describe and forecast long-term
predictive analysis and to minimise potential random
error and short-time variability [64].

For the multi-decadal period considered in the
analysis, linear regressions, which assume that the
relationship between shoreline change and time
is linear, are not relevant for shorelines changing
with weak linear or non-linear behaviours. Thus,
only SCR calculated for transects with strong lin-
ear shoreline behaviour are highly probable and sig-
nificant on a multi-decadal scale and were selec-
ted to analyse depositional, recessional or stable
SCR between 1984 and 2016. As the SDS accur-
acy is within a subpixel precision for the 33 years
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Table 2. Regional climate variability indices description. The datasets are retrieved from https://psl.noaa.gov/data/climateindices/list/.

Index Return periods Description

El Niño/Southern Oscillation (ENSO)
precipitation index

2 to 7 years [45, 46] Rainfall-based ENSO indices describing irreg-
ularly periodic variation in sea surface temper-
atures (SST) over the tropical eastern Pacific
Ocean. The climate phenomenon periodically
fluctuates between neutral, La Niña or El Niño
[47].

Atlantic Multi-decadal Oscillation
(AMO)

20 to 60 years [48, 49] SST anomalies occurring in the North Atlantic
Ocean [50].

Arctic Oscillation (AO) No particular periodicity [51] Non-seasonal sea-level pressure (SLP) anom-
alies at the Arctic and Antarctic poles [52].

North Atlantic Oscillation (NAO) No particular periodicity [53] Atmospheric SLP between the Icelandic Low
and the Azores High, which affects the westerly
winds and location of storm tracks [54].

Niño 3, Niño 4 and Niño 3.4 2 to 7 years [45, 46] Indices used to monitor the tropical Pacific, all
of which are based on SST anomalies averaged
across a given region [55].

North Pacific (NP) 2 to 6 years or 7 to 12 years [56] Area-weighted SLP over the region 30◦N-
65◦N, 160◦E-140◦W [56].

Pacific Decadal Oscillation (PDO) 20 to 30 years [57] Leading principal component of North Pacific
monthly SST variability [58, 59].

Southern Oscillation Index (SOI) 2 to 7 years [45, 46] Description of the development and intensity
of El Niño or La Niña events in the Pacific
Ocean (normalised index) [55].

period analysed (15 m for Landsat), SCR between
−0.5 and 0.5 m yr−1 were considered stable [26].
Depositional and recessional transects were defined
by SCR > 0.5 m yr−1 and <-0.5 m yr−1 respect-
ively [26]. The mean and standard deviation of SCR
were calculated for each geomorphological category
and sub-category. Geomorphological categories and
sub-categories with less than five transects were con-
sidered non-representative of mean shoreline change
per category. Shoreline change outliers for strong
linear transects were removed (<-21.16 m yr−1 for
recessional transects and > 23.05 m yr−1 for depos-
itional transects) (see supplementary figures SM10
and SM11). 6 947 transects (98%) remained within
52 sites, after outliers were removed.

3.2. Geomorphological analysis
All transects were classified by their topography, land
cover, coastal type and lithology (see supplementary
section A.1.2). A comparison of the different geo-
morphological conditions for the strong linear, weak
linear and non-linear shoreline behaviours has been
conducted followed by an in-depth analysis of the
three transects’ types of the strong linear behaviour:
recessional, depositional and stable.

3.3. Climate variability and sea-level change
analysis
Comparisons of SDS data points per transect against
time-series of climate indexes were undertaken using
Kendall τ non-parametric rank correlation [41, 65].
The comparison investigated potential dependencies
between shoreline change and the ten climate indices
defined in section 2.3. The percentage of transects

having a moderate/strong positive (τ⩾ 0.5) or mod-
erate/strong negative (τ⩽−0.5) correlation with the
time-series of climate indices was assessed for each
category of transects defined by Pearson’s r classi-
fication. The contribution of sea-level change was
assessed by fitting a linear regression between reces-
sional and depositional strong linear SCR and local
relative sea-level change for different land cover and
coastal type categories. Additionally, a comparison
between average shoreline evolution and relative sea-
level change has been conducted for each site. Only
shores with a mean elevation lower than 10 m (defin-
ition of the Low Elevation Coastal Zone [66]) were
assessed.

4. Results

4.1. Classification of shoreline change time-series
The first objective was to assess and classify shoreline
change linear behaviours in coastal NWHS between
1984 and 2016. All 67 sites had transects exhibit-
ing at least two of the three linear shoreline beha-
viour categories (defined in section 3.1). 52 of the 67
sites contained transects with strong linear shoreline
behaviour. Across the 67 sites, data were available
for 52 033 transects. 14% of these showed a signific-
ant strong linear behaviour at the 99.85% confidence
level (supplementary table SM4). The percentage of
transects with linear behaviour within each site varied
from0.2% (Dorset and EastDevonCoast, UnitedKing-
dom) to 63.5% (The Sundarbans, Bangladesh) (figure
2, supplementary table SM5). Under the hypothesis
of long-term shoreline change, transects with strong
linear behaviour had the highest mean recessional

5
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Figure 2. Globally distributed pie charts of strong linear, weak linear and non-linear transects (defined using Pearson’s r
coefficient) within the 67 coastal NWHS with available cleaned time-series shoreline data. The relative density plots show the
relative distribution of each subset in relation to the complete dataset for the longitudes and the latitudes separately. Detailed
percentages for each site are available in the supplementary table SM5.

Figure 3. Globally distributed pie charts of recessional, depositional and stable shoreline trends within the 52 coastal NWHS with
strong linear shoreline behaviour. The relative density plots show the relative distribution of each subset (recessional, depositional
and stable) in relation to the complete dataset for the longitudes and the latitudes separately. Detailed percentages for each site are
available in the supplementary table SM8.

(−3.4m yr−1, std 3.6m yr−1) and depositional trends
(3.5 m yr−1, std 4.3 m yr−1) in comparison to weak
linear and non-linear shoreline categories (supple-
mentary table SM6). The differences between strong
linear, weak linear and non-linear shoreline beha-
viours with both depositional and recessional trends
in relation to r are presented in supplementary table
SM7 and figures SM4 to SM9.

For the 7 087 transects in the 52 coastal NWHS
showing strong linear shoreline behaviour, 52.8%had
a recessional trend, 43% were accreting and 4.2%
were stable. Among the sites with more than five
remaining linear transects, The Sundarbans, Danube
Delta (Romania), and Sundarbans National Park
(India) had the highest percentage of transects with a
strong linear behaviour. The Volcanoes of Kamchatka

6



Environ. Res. Lett. 15 (2020) 104047 S Sabour et al

(Russia), The Sundarbans and Ujung Kulon National
Park (Indonesia) had the highest percentage of
coasts with strong linear recessional shoreline change
(97.6%, 84.9% and 84.6%were recessional of the total
strong linear transects consecutively) (figure 3, sup-
plementary table SM8). The Banc d’Arguin National
Park (Mauritania), High Coast/Kvarken Archipelago
(Sweden/Finland), and Redwood National and State
Parks (United States) had the highest percentage with
strong linear depositional shoreline change (98.3%,
91.1%, 90% were depositional of the total strong lin-
ear transects respectively) (figure 3, supplementary
table SM8). Among all sites, Río Plátano Biosphere
Reserve (Honduras) had the highest mean recessional
SCR (−11.8 m yr−1, std 7 m yr−1) and The Wadden
Sea (The Netherlands, Germany and Denmark) had
the highest mean depositional SCR (10.9 m yr−1, std
5.7 m yr−1) (table 3, supplementary table SM9).

4.2. Geomorphological analysis
The second objective was to evaluate the geomorpho-
logical conditions associated with different shoreline
behaviours (based on their linearity against time)
and shoreline trends (recessional, depositional and
stable). First, a comparison of the geomorpholo-
gical compositions of strong linear, weak linear and
non-linear shoreline behaviours was conducted (fig-
ure 4). Transects with strong linear behaviour had a
higher percentage of tidal systems (30%) and arheic
systems (19%) while transects with non-linear and
weak linear behaviours had a higher percentage of
fjords/fjärds (14% and 9% consecutively) and islands
(13% and 12% consecutively). Strong linear transects
had a higher percentage of mangroves (40%) in com-
parison to non-linear and weak linear transects. Non-
linear and weak linear transects had a higher percent-
age of different rock types (such asmetamorphic, acid
plutonic, basic plutonic, and intermediate plutonic
rocks) while transects with a strong linear behaviour
had the highest percentage of unconsolidated sedi-
ments (74%). Transects with strong linear behaviour
had a higher percentage of extremely low-lying (18%)
and low-lying areas (61%).

Second, the geomorphological conditions associ-
ated with strong linear recessional, depositional and
stable shoreline trends were evaluated. For 297 stable
transects in 18 sites, 62% of the transects had their
mean elevationwithin [1–10 m] and 29%within [10–
50 m]. Stable transects consisted of 42% small deltas,
31% arheic systems and 13% tidal systems (figure 5).
Within these coastal types, vegetated areas and man-
groves were the prevailing land cover types (figure
5). They represented respectively 53% and 34% of
the totality of stable transects. 71% of stable transects
were unconsolidated sediments, 6% siliciclastic sed-
imentary rock and 5% acid volcanic rocks. Further
analysis were not conducted for transects with stable
strong linear shoreline trend as they represent only

4% of the totality of strong linear transects in 35%
of the sites displaying a strong linear behaviour.

Within 3 664 recessional transects in 47 sites,
14% of the transects had their mean elevation within
[0–1 m] and 68% within [1–10 m]. Recessional tran-
sects consisted of 36% tidal systems, 36% small deltas
and 15% arheic systems (figure 5). Within these
coastal types, mangroves and vegetated areas were the
prevailing land cover type (figure 5). They represen-
ted respectively 52% and 38% of the totality of reces-
sional transects. 81% of recessional transects were
unconsolidated sediments, 6% siliciclastic sediment-
ary rock and 5% basic volcanic rocks. Within 2 986
depositional transects in 45 sites, 23% of the tran-
sects had their mean elevation within [0–1 m] and
51% within [1–10 m]. Depositional transects con-
sisted of 36% small deltas, 23% tidal, and 23% arheic
systems respectively (figure 5). Within these coastal
types, mangroves and vegetated areas were domin-
ant (figure 5). Vegetated areas, mangroves and coral
reefs represented respectively 60%, 25% and 11%
of the totality of accretive transects. 67% of accret-
ive transects were unconsolidated sediments, 11%
metamorphic rocks and 7% siliciclastic sedimentary
rocks. The depositional trenddecreased exponentially
with increases in elevation (supplementary figure
SM13). The highest depositional SCR were observed
for transects with a mean elevation lower than 1 m
(table 4).

Among all elevations categories, the comparison
of land cover categories shows that transects within
the elevation category [0–1 m] with vegetated areas
had the highest mean rate of shoreline recession
(−5.9 m yr−1, std 4.3 m yr−1) (table 4). Transects
within a 1 km geodesic distance from coral reefs had
the lowest recessional trend (mean − 1.7 m yr−1,
std 1.8 m yr−1). For elevations <1 m, among all
geomorphological categories, the highest mean rates
of recession (−8.1 m yr−1, std 5.2 m yr−1) was
observed in transects composed of unconsolidated
sediment within the category of vegetated tidal sys-
tems in theWadden Sea (supplementary table SM10).
For low-lying areas, the highest mean recession of
−8.9 m yr−1 (std 4.2 m yr−1) was observed in
transects composed of siliciclastic sedimentary rocks
within the category of vegetated tidal systems (supple-
mentary table SM11). For the middle-elevation cat-
egory, the highest mean shoreline recessive trend was
observed within metamorphic rock transects situated
in vegetated fjords (−7.5 m yr−1, std 7.2 m yr−1)
in Te Wahipounamu (New Zealand) (supplementary
table SM12). For the high-elevation category, the
greatest mean recession was in metamorphic rock
transects in vegetated fjords and fjärds situated in Te
Wahipounamu and West Norwegian Fjords (Norway)
(−13.1 m yr−1, std 6.2 m yr−1) (supplementary table
SM13).

For all topographic categories, extremely low-
elevation transects within vegetated areas had the
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Figure 4. Number and percentage of transects for the three categories of shoreline behaviour: non-linear, weak linear and strong
linear classified by coastal type (a and b), land cover (c and d), lithology (e and f) and topography (g and h).

highest mean accretive trend (7.0 m yr−1, std
5.8 m yr−1) (table 4). Transects within a 1 km
geodesic distance from coral reefs had the low-
est accretive trend (table 4). Within extremely low-
elevated transects, the highest mean accretive trends
were observed in transects composed of vegetated
tidal systems (12.5 m yr−1, std 5.4 m yr−1, in the
Wadden Sea) and vegetated large rivers within a tidal
delta (11.0 m yr−1, std 5 m yr−1, in the Islands and
Protected Areas of the Gulf of California (Mexico))
(supplementary table SM14). Within low-elevated

transects, the highest mean depositional trend of
13.6 m yr−1 (std. 5.3 m yr−1) was observed in tran-
sects composed of evaporites within the category
of vegetated small deltas situated within the Namib
Sand Sea (Namibia) (supplementary table SM15). For
the middle-elevation category, the highest accretive
trend was observed within transects situated in tidal
coastal systems covered by mangroves (4.6 m yr−1,
std 5.4 m yr−1) (supplementary table SM16). Coastal
ecosystems with this shoreline trend were found in
Kakadu National Park (Australia), Lorentz National
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Figure 5. Number of transects with a strong linear depositional (a and b), recessional (c and d) and stable (e and f) shoreline
trends within the categories of coastal types and land covers: coastal types are classified in term of land covers and land covers are
classified in term of their coastal type conversely.

Park (Indonesia) and The Sundarbans. For high elev-
ation transects, the greatest mean accretive shoreline
change was found in tidal systems with mixed sedi-
mentary rocks in Tasmanian Wilderness (4.4 m yr−1,
std 6 m yr−1, in Tasmania) (supplementary table
SM17).

4.3. Climate variability and sea-level change
analysis
The third objective was to determine the impacts of
historic sea-level change and climate variability on
shoreline behaviour in coastal NWHS. The compar-
ison of yearly transect-based time-series of shorelines

10
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Figure 6. Correlation between recessional shoreline change rates and relative sea-level change for low lying transects (0 to 10 m)
with a strong linear behaviour. The categorisation of transects is based on their land cover (a) and coastal type (b). The results for
strong linear depositional shoreline trends are available in supplementary figure SM14.

(within the three categories of linear shoreline change
behaviour) against ten climate indices indicated no
significant statistical association on a global scale
(supplementary table SM18). Globally and for differ-
ent geomorphological categories and sub-categories,
there was no positive correlation between shoreline
change and relative sea-level change for transects
with strong linear recessional or depositional trend.
Thus the absolute value of recessional SCR did not
increase and the value of depositional SCR did not
decrease with increasing relative SLR values for low
lying transects (0 to 10 m) (figure 6 and supple-
mentary figure SM14). A weak positive relation-
ship was observed between recessional strong linear
shoreline trend and relative sea-level change in veget-
ated tidal systems below 1 m in the Wadden Sea (fig-
ure 7). No correlation has been found between the
average shoreline change rate and the average rel-
ative sea-level change for each site (supplementary
figure SM15).

5. Discussion

This paper has presented the first global assessment
of trends and drivers of shoreline change in coastal
NWHS from 1984 to 2016. The data showed that
both extreme erosional and accretional tendencies
were apparent and one tendency did not domin-
ate in these sites. A classification of linear beha-
viour with time indicated that strong linear shoreline
trends have a significant contribution to the reces-
sional (−3.4m yr−1, std 3.6m yr−1) and depositional
trends (3.5m yr−1, std 4.3m yr−1). The prevalence of
unconsolidated sediment in transects with strong lin-
ear behaviour demonstrates the potential contribu-
tion of coastal sediment processes (affected by human
disturbances, waves, tides and tidal currents, wind,
currents and sea-level change).

Drivers of strong linear recessional and depos-
itional trends were assessed using geomorphological
categorisation of transects, including analysis of case

12
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Figure 7. (a), (b) and (c) Maps of strong linear recessional shoreline change positions for transects below 1 m in theWadden Sea
vegetated tidal systems. (d) Latitudinal distribution of shoreline change. (e) Correlation between strong linear recessional
shoreline change rates and relative sea-level change. The categorisation of transects is based on their lithology.

studies (supplementary A.3 Discussion). Low lying
transects had the highest mean depositional and
recessional linear shoreline trends with (6.7 m yr−1

and −5.3 m yr−1) for transects in [0–1 m] and
(2.7 m yr−1 and −3.1 m yr−1) for transects in [1–
10 m]. This is partly explained by the lithological
compositions of these low-lying environments and
the presence of lagoons, sandy beaches, large rivers
and large rivers under tidal influences. Río Plátano
Biosphere Reserve has the highest mean shoreline
recession (−11.8 m yr−1, std 7.01 m yr−1) due to the
2002 opening of an inlet 12 km northwest of Iban
lagoon inducing new accretive and erosive processes
within the site boundaries that are influenced by
Paulaya river sediment discharge and the southeast-
northwest ocean current from Honduras to Yucatan
[67]. Sediment deposition, shaped by the Benguela
Upwelling system, southwest of the Namib Sand
Sea’s Conception Bay (evaporite basin) and Sand-
wich harbour had induced the highest mean accret-
ive shoreline of all coastal NWHS (13.6 m yr−1, std
5.3 m yr−1) [68]. Transects with high mean rates of
change (10.1 m yr−1 and −7 m yr−1) were found in
large rivers within tidal delta situated in the veget-
ated shorelines of Islands and Protected Areas of the
Gulf of California. This extreme trend is linked to nat-
ural forcing (wave and tides) but also to the decadal
legacy of distant human alterations that interrupts
completely constructive processes within the delta
and creates new hydrological circulations accompan-
ied by ‘unnatural’ erosive/accretive processes [69–71].
High sedimentary movements, found in vegetated
shores (6.9 m yr−1 and −5.1 m yr−1) and marshes

(5.4 m yr−1 and −5.7 m yr−1) in large river systems
are due to the construction of engineered structures
along the rivers and on the coasts. These extreme rates
are observed in the Danube Delta that underwent a
large decrease in its sediment discharge due to up-
stream damming projects (1970 and 1983) in par-
allel to the undesirable effects of extreme downdrift
erosion southward of Sulina Jetties engineered in the
second half of the 19th century [72–75]. Extreme
rates of changes are also observed within vegetated
tidal systems (8.2 m yr−1 and −6.8 m yr−1) and
more specifically within barrier islands in the Wad-
den Sea. The largest unbroken system of intertidal
sand and mudflats in the world is a result of dramatic
morphodynamic adjustments due to land reclama-
tion (at the boundaries of the NWHS) within the cli-
matic environment of the Frisian coast, which sup-
ported the reduction of inlet width (and tidal prism)
and thus the growth of the islands [76, 77]. The
mainland and some islands of the Wadden Sea are
engineered (sand nourishment, breakwaters dykes,
and dunes protection) and accretive transects are pre-
valent (supplementary figure SM19) [78–82]. Thus,
both depositional and recessional large shoreline
trends in coastal NWHS can be linked to coast-
lines that are highly altered by human intervention,
external and internal to a site’s boundaries.

Transects within small deltas and arheic systems
inside 1 km geodesic buffer from coral reefs have
the lowest accretive and recessional shoreline trend
((1.5 m yr−1 and −1.5 m yr−1) and (1.7 m yr−1

and −0.9 m yr−1) respectively). This trend may
be explained as coral reefs provide sediments and
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coastal protection from waves, storms and floods and
minimise the effects of coastal processes on the coast-
lines [83–85]. Most of the sites with coral reefs (such
as the Great Barrier Reef (Australia), Shark Bay (Aus-
tralia), and Komodo National Park (Indonesia)) are
under frequent bleaching events in recent years (for
instance the third bleaching event 2014–2017 was
among theworst ever observed) [86, 87]. Unconsolid-
ated sediments within tidal systems protected by coral
reefs show less stability than non-tidal systems with
higher rates of erosion (−3.4 m y−1; std 1 m y−1) and
accretion (2.1 m y−1; std 1.5 m y−1) in the Great Bar-
rier Reef and Lagoons of New Caledonia: Reef Diversity
and Associated Ecosystems (France). The reef systems
within the latter coastal NWHS are among the most
affected by present and projected future bleaching
events [86]. Coral reefs also deteriorate through over-
fishing, sewage and agriculture pollution and invasive
species [88, 89]. Further deterioration of coral reefs
wouldweaken their function tomaintain stable coast-
lines, especially beaches [85, 86].

While the shoreline change dataset describes well
the changes for continental unconsolidated sediments
or sedimentary rocks, it does not demonstrate well
shoreline change for coastal transects situated within
complex narrow bodies of water as fjords (such as
Te Wahipounamu, and the West Norwegian Fjords)
or remote rocky cliffs (such as the Galápagos Islands
(Ecuador)). A visual verification using Google Time-
lapse does not show the extreme linear shoreline
trend captured by the SDS for these natural systems
and informs on the limitation of shoreline detec-
tion methodology using satellite images. These errors
may occur during (1) image detection: geometric
distortion and radiometric errors [90] or (2) image
processing: geo-rectification, ortho-rectification [91]
and shoreline extraction.

Overall, there are no statistically significant cor-
relations between transect-based shoreline change
and the climatic indices of sea surface temperature
and pressure anomalies. This may be explained by
the limited spatial and temporal resolution of the cli-
matic data and the underlying satellites images used
to assess shoreline trends. In Low Elevation Coastal
Zones, the analysis of shoreline trends demonstrate
that no major historic role of relative sea-level change
in accretional or recessional shoreline trend can be
identified. One issue is that SLR shows limited vari-
ability in time and space over the study period. Fur-
ther, the high variability at many sites emphasises
that other processes, in addition to SLR, are oper-
ating. This may be due to different responses of
sites to sea-level change, the lack of observations on
coastal dynamics and their driving processes and that
even in rapidly subsiding coasts other processes (i.e.
storms, wave action, human activities) may dominate
the shoreline trend [36, 92]. However, for tran-
sects below 1 m in the vegetated tidal sediment-
ary systems and marshes of the Wadden Sea, a weak

correlation between increasing relative sea-level and
shoreline strong linear retreat was detected. This may
be explained by rising sea-levels resulting in more
inundation but also coastal erosion in low-lying areas
[93, 94]. The detection of this weak correlation may
be related to the better quality of tide gauge data
available in the Wadden Sea and to the site’s highly
dynamic tidally influenced inlets that experience one
of the highest mean recession (−8.1 m yr−1, std
5.2 m yr−1) in NWHS worldwide [76, 95]. This find-
ing is supported due to the accuracy of shoreline
detectionmethods (0.5 m yr−1) allowing observation
of increased shoreline change as a result of SLR. For
instance, following the Bruun rule [96], 1 mm yr−1

of SLR could induce at least an incremental horizontal
change of 1.65m in a beach slope of 1:50 over 33 years.
Detection of climate variability and sea-level change
effects on shoreline behaviour could be improved by
using higher satellites image resolution (e.g. 1 m),
developing monthly time-series of shoreline change
(instead of annual time-series) and improving the
spatial and temporal resolution of sea level and cli-
matic data especially in remote areas.

The intensification of human interferences, cli-
mate change, SLR and wave climate change will affect
coastal processes inducing variations in sediment-
budgets [97]. Future SLR may become the main
driver of recession [97] effecting geomorphological
responses. Eroding low-lying shorelines within tidal
systems, large rivers and large rivers under tidal influ-
ences, altered by human interferences to coastal pro-
cesses, may become the most affected coastal NWHS
by future SLR and its related changes in sediment
dynamics. In the Wadden Sea while contemporary
slow sea-level change has expressed itself in losses
of beaches or island displacements [98–100], future
acceleration of SLR may induce back-barrier erosion
and sediment deficit in the tidal basin and result in the
transformation of the inter-tidal system to a lagoon
system [19, 101]. The mapping of shoreline linear
behaviour and depositional/recessional trends distin-
guishing abrupt and gradual changes at the tran-
sect level, coupled with socio-economic and ecolo-
gic indicators, can be used by coastal managers as a
preliminary classification of shorelines in term of the
importance and urgency of their management, sup-
porting NWHS conservation triage (process of prior-
itising actions) [102, 103]. The enhanced predictive
capacity of strong linear shoreline behaviour and the
improved understanding of the factors causing this
strong linear changes need to be followed by more
appropriate management actions, monitoring and
planning of coastal NWHS evolving shorelines (when
required and to the extent possible). Unconsolidated
sediment shorelines in coastal NWHS, not affected
by external human interferences, which exhibit a
strong linear behaviour of shoreline change, may
become primary observatories to assess SLR impacts
on natural coastal processes such as in Río Plátano
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Biosphere Reserve and theNamib Sea. Thus, this study
contributes to informing coastal management plans
and decisions of coastal and marine protected areas
by providing a quantitative evaluation of shoreline
behaviour that could improve the guide for Planners
andManagers forMarine andCoastal ProtectedAreas
(developed by Salm & Clark [104]).

6. Conclusions

Despite the high local and international values of
coastalNWHS, shoreline change has not been system-
atically monitored or reported to date. Therefore, it
was unclear how NWHS coasts have been changing
across the world. This study comprises the first global
assessment of multi-decadal shoreline change from
1984 to 2016 within coastal NWHS asking: ‘how are
coastal NWHS shorelines changing around the world
and why?’.

Based on newly available open-access datasets,
shoreline change was analysed for 67 NWHS world-
wide, in terms of linear behaviour, recessional or
accretive trends, and potential drivers of change.
Shorelines with strong linear erosional or accret-
ive trends comprise 14% of total coastal NWHS
shorelines. They occur within 52 coastal NWHS and
demonstrate the largest shoreline erosive and accret-
ive trends (mean of −3.4 m yr−1 and 3.5 m yr−1,
respectively). Among the transects with strong lin-
ear behaviour, the highest recessional and accret-
ive trends are found within low-lying unconsolidated
sediments shorelines (<1m) in vegetated tidal coastal
systems, and vegetated tidal deltas at the mouth of
large river systems. These extreme shoreline trends
can be linked to natural coastal morphodynamics
such as the opening of inlets or gradient of along-
shore sediment transport. In other cases, they can
be associated with direct or indirect human inter-
ferences such as land reclamation and damming of
rivers upstream of a delta. Conversely, the most stable
soft coasts are associated with shorelines protected by
coral reefs ecosystems. In the future, these shorelines
may be subject to increased instability due to the
intensification of climate change and human deteri-
oration degrading the natural protective capacity of
coral reefs. A positive correlation between recessional
(strong linear) shoreline change and relative sea-level
change was found in the Wadden Sea, but glob-
ally, the effects of SLR on shoreline change are not
apparent.

In most cases, shoreline monitoring had not been
the main priority in the management of coastal
NWHS. The availability of open-access datasets cre-
ates opportunities to better understand shoreline
change so to inform management actions where
necessary. These analyses can be repeated and refined
providing new insights, as data extend in time
and improve in resolution. Continued systematic

monitoring is advised, especially for sites undergoing
direct or indirect human interferences.
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