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ABSTRACT 

Damage accumulation in glass fibre woven reinforced epoxy laminates manufactured from two 

different fabrics have been investigated under three different loading conditions. One of the 

woven fabrics was non-hybrid glass using E-glass fibre yams in both warp and weft (fill) 

directions, the second fabric was a hybrid woven fabric using E-glass fibre yams in the warp 
direction and R-glass fibre yams in the weft direction. 

Destructive tests such as interlaminar shear, flexural and uniaxial tension tests were carried out 

on two different categories. In the first category four different fibre volume fractions of non- 
hybrid E-glass woven fabric reinforced epoxy resin laminates have been investigated. In the 

second category hybrid and non-hybrid woven fabric reinforced epoxy resin laminates for 

similar fibre volume fractions have been investigated. 

Acoustic Emission (AE) and Scanning Electron Microscopy (SEM) were employed as non- 

destructive tools to predict and characterise the damage events in the composites. All laminates 

were fabricated using the wet hand lay-up process to laminate the fabric layers prior to curing. 

Epoxy resin (L20-SL set) was the sole matrix used for all composites. 

Test results showed higher mechanical performance for the hybrid composites and 

improvements in mechanical properties for higher fibre volume fraction in the non-hybrid 

composites. DMTA tests were carried out on the laminates of the categories mentioned above, 

the test results indicated the effect of fibre surface treatment concentration on the performance 

of mechanical properties of woven composites. DMTA data has been used to correlate the 

results of ILSS, flexural and tensile tests. 

A model was developed in this study based on the damage event sequential process of glass 

woven fabric reinforced epoxy resin composites. The model is an experimental analysis model, 

supported by DMTA, AE, SEM and visual examination of specimen fracture surface. 
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Damage Accumulation in Hybrid Woven Fabric Composites Introduction 

CHAPTER ONE 

1-1 Introduction 

The literature review in chapter two indicates that the fibres most widely used for composites 

today are those manufactured from E-glass. It has been the standard material for Fibre 

Reinforced Composites (FRC) with a usage approaching two million tonnes per year worldwide 

(Bader and Lekakou 1997). E-glass became available in various industrialised forms in order to 

accommodate the numerous manufacturing processes. During this boom it became apparent that 

the physical, chemical and dielectric properties of Glass Reinforced Plastics (GRP) were not 

sufficient to fulfil the specific needs of certain final applications. The aerospace sector was 

demanding higher performance material with regard to strength and modulus. These demands 

were met by R-glass. Subsequently a series of research programmes, including 200 types of 

glass were conducted in 1982 (Molinier, 1982), (Vetrotex, 1999). 

Glass compositions of some fibreglass are illustrated in table (2 - 1). The strength of glass fibres 

when measured at room temperature is a function of the glass composition according to 

Loewenstein and Aslanova (Loewenstein and Dow 1968) and (Aslanova 1985). It can be seen 
from the results in table 4-1 that the highest strength is obtained from R-glass. This explains 

the use of such fibre in areas where a high resistance to working stress is required. (Molinier, 

1982), (Vetrotex, 1999). 

The literature review in chapter two emphasised the need for material, which was easy and 

convenient to handle in order to reinforce polymer matrices and properties to provide for a range 

of markets. Woven fabric reinforcement added a new dimension to the field of composites. The 

fabric pattern is often called the construction or fabric architecture, the essential construction 

requires only four weaving yarns: two warp and two fill. This basic unit is called the pattern 

repeat, (Dominguez 1987). Fabrics may be woven in a variety of patterns such as plain weave, 

twill weave, satin weave. The satin weaves represent a family of constructions with a minimum 

of interlacing. 

The general requirement now is for composites to be of attractive structural materials enabling 

more cost-effective utilisation in the introduction of hybrid fabric in the world of composites. 



Damage Accumulation in Hybrid Woven Fabric Composites Introduction 

Hybrid fabrics are those woven from two or more different types of fibre. Hybrid fabrics have 

also demonstrated weight savings, reduced notch sensitivity, improved fracture toughness, longer 

fatigue life and excellent impact resistance (Chou and Kelly 1980a). 

The review further indicates that since 1982, no research work has been undertaken into 

utilisation of R-glass. This is possibly due to the high cost of R-glass production or the 

availability of E-glass at low cost in various industrialised forms to accommodate the numerous 

commercial needs. Meanwhile the demand for glass fabric woven material of higher mechanical 

performance has continued to grow in the aerospace sector. Interglas Technologies has recently 
designed a fabric using R-glass. It is a hybrid 8-harness satin woven fabric of E-glass in the 

warp and R-glass in the weft as compared with non-hybrid 8-harness satin woven fabric of E- 

glass both in the warp and the weft. The materials specification details are highlighted in chapter 
four. 

The lack of experimental data and conclusions on R-glass prompted the setting up of a research 

programme at Bournemouth University in collaboration with Interglas Technologies, Sherborne 

UK. The results of this research programme using R-glass will provide a useful contribution 

expanding the field of glass fabric composites. 

The aims of this research are to examine and highlight the significant differences in the 

properties of R-glass compared to those of E-glass in woven fabric composites and, specifically, 
to answer the following: 

" Does R-glass complement E-glass in the hybrid and lead to improved properties? 

" Does the fabric weave architecture significantly influence the micro- and macro-mechanical 

properties of the E- and R-glass composites? 

" Is it possible to achieve higher mechanical performance without hybridisation? 

The objective of the research is to determine the role of fibre hybridisation and fibre volume 
fractions on the damage mechanisms in glass fibre woven composites under different loading 

conditions. 
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Results of mechanical tests including ILSS, flexural, tensile and viscoelastic properties of glass 

woven composites are discussed in chapter five and summarised in chapter six. 

Acoustic Emission (AE) was successfully employed on glass woven fabric composites during 

mechanical testing (ILSS, flexural and tensile). The AE ring down count complemented the 

stress-strain or load-displacement curves in order to contribute a better understanding of 

micromechanical failure of the composite. Features such as knee points and stress at breaking 

point for each stress-strain curve could be analysed accordingly through the use of AE zone 

classification. AE was used successfully to detect the damage caused by the different loading 

modes such as crack initiation, debonding, matrix damage, and fibre/matrix interfacial failure 

and fibre breakage of composite materials of woven fabric laminates. 

In chapter five, a model has been developed derived from the damage events sequential process. 
The model is an experimental analysis model, supported by DMTA, AE, SEM and visual 

examination of specimen fracture surface. The damage event sequential process analysis has 

been used in relation to the outcome of a theoretical bridging model introduced by Ishikawa and 
Chou (Chou1992) as further development to the model. This work has shown that applying 

available test data into a mathematical model is an essential progression. 

The DMTA is used to characterise the influence of fibre surface treatments in the glass woven 

composite and its interphase region. This is an issue of great importance; the interphase 

properties often dictate the overall mechanical performance and structural integrity of the 

composite. 

The fabric weave architecture, which was chosen to investigate the hybrid effect, seems to have a 

major influence on the mechanical properties. Other weave hybridisation can be predicted from 

the outcome of the analysis which indicates higher mechanical performance (see further future 

work - chapter six). 

One of the main aims of this research is to study material costs from an industrial point of view, 

and also to provide the designer with the necessary tools to develop the application. For example 

the cost of an E-glass bobbin is £7 while the cost of an R-glass bobbin is F. 49 (Vetrotex, 1999). 

4 
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1- 2 Objectives and Scopes of the Research 

The main objective of this research is to determine the role of fibre hybridisation and the role of 
different fibre volume fractions in the mechanical properties of glass woven composites. Glass 

fibre woven fabric reinforced epoxy resin composites were used to investigate the following: 

9 Uniaxial tensile, flexural and interlaminar shear tests of non-hybrid E-glass woven fabric at 
four different fibre volume fractions in reinforced epoxy laminates. 

" Uniaxial tensile, flexural and interlaminar shear tests on hybrid woven fabric composites in 

reinforced epoxy laminates. Tests were carried out in warp and weft directions and to be 

compared with non-hybrid fabric composites. 

" The viscoelastic properties of the above composites were investigated in order to determine 

the role of fibre surface coating on the composites by using dynamic mechanical and thermal 

analysis (DMTA) tests. 

9 Acoustic Emission (AE) during testing and Scanning Electronic Microscopy (SEM) was 

employed to analyse the damage event sequential process after testing. 

9 Test results of the hybrid and the non-hybrid composites to be compared based on one to one 
for similar fibre volume fraction and specimen dimension for both the warp and weft. 

Test results of the hybrid at fixed fibre volume fraction to be compared with the non-hybrid 

at different levels of fibre volume fraction composites for similar specimen dimensions. This 

methodology can contribute to the understanding of the role of fibre hybridisation and that of 

different fibre volume fraction influence. The results deal with the comparison in the 

mechanical properties of glass woven fabric composites. 

5 
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CHAPTER TWO 

Hybrid Glass Reinforcement 

2-1 Characteristics of Glass Fibre 

The fibres manufactured from E-glass are so called because of their good electrical insulation 

properties. E-glass is by far the most common composition of glass used for fibre manufacture. 
It was initially produced for manufacture of composites in the 1930s; since then, and for the last 

thirty years in particular it has been the standard material for fibre reinforced composites (Bader 

and Lekakou 1997). There are a number of commercial compositions of glass fibre produced 
today. These are mainly based on silica (Si02) with additions of oxides of calcium, magnesium, 
boron, iron and aluminium (Hull 1996, Jones 1994, Mettes and Lubin 1969). Some of these 

compositions are shown in table (2 - 1). 

In the production of glass fibres, various glass compositions are synthesised to provide the 

desired properties. For example, C-glass is chemical resistant, alkaline (more than 10%) and 

contains soda lime-silicate; A-glass is good for thermal and sound insulation and has a very low 

alkaline (less than 1%) content (Hull and Clyne 1996). 

Generally, it should not be considered that there is only one glass for a given name. For example, 

the code "E" glass covers a multitude of variations around a theoretically standard composition 
(Molinier 1982). These variations depend on the origin of the vitrifiable raw material, the 

technological skill used by each manufacturer and the legislation existing in the manufacturing 

countries (for example anti-pollution) (Interglass Technologies 1999 and 1998). 

The strength of glass fibres when measured at room temperature is a function of the glass 

composition according to Loewenstein (Loewenstein and Dow 1968). It has been detected that 

there was variation in fibre strength when fibres were taken from the virgin glass during the 

manufacturing of fibreglass. Aslanova reported strength measurements on glass fibres with 

various compositions, e. g. the strength for A, C and E glasses are 1.5,2.0,3.7 GPa respectively 

for these types of glasses, the modulus of elasticity varies relatively from 55-86 GPa (Aslanova 

1985). The breaking stress values as mentioned were obtained with virgin filaments; filaments 

refers to the basic unit formed during spinning, which are gathered into yarn for use in the 

composite. Filaments usually are of extreme length and very small diameter, usually less than 25 

7 
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gm. Designers are not directly interested in the properties of virgin filaments yet these values 

enable comparisons to be made between various fibres. However, it must be remembered that 

the properties of reinforced plastics, particularly the mechanical ones, are also dependent on the 

nature of the reinforcement, the standard of the manufacture, the resins used, the process and the 

yam employed (ASM International 1987). 

The other types of glass fibres including S-glass and R-glass, exhibit better mechanical 

properties than E- and C-glass, and both S-glass and R-glass have a high resistance to chemical 

corrosion. Glass mechanical properties of some types of fibreglass are presented in table (2 - 4). 

Glass physical properties such as density and hardness for some glass fibre are illustrated in table 
(2 - 2). Glass thermal properties such as the softening point, strain, linear coefficient of thermal 

expansion, specific heat and coefficient of thermal conductivity are given in table (2 - 3). 

2 -1-I Glass fibres manufacture 

Glass fibres are manufactured as continuous filaments drawn from the molten glass raw material 

mixed in a furnace. Good mixing is very important to achieve the required homogeneous 

composition. The molten glass is then drawn under gravity through a series of bushings each 
having about 200 holes, each of which is typically in the range of 5-30 µm in diameter. The 

filaments are cooled and formed into bundles commonly containing between 200 and 2000 

individual filaments. Since the drawn glass bundles are susceptible to abrasion and moisture 

attack, a fibre surface coating (known as a size) is applied. This size is generally applied in 

solution form and usually contains a polymer to coat and bind the filaments together in the 

bundle, a lubricant to reduce abrasion damage and increase handleability and a coupling agent 

which aids the filaments in adhering to the polymer matrix (Loewenstein 1983). 

2- 2Fabric Structure 

The first use of textile glass fibre on an industrial basis was around 1940 and this was for the 

insulation of electrical conductors used at high temperatures. It was the appearance of the 

thermosetting laminating resins, some years later, which gave continuous glass fibre its second 

application namely that of a reinforcement material. 

8 
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This application increased extensively after the end of the Second World War, to an ever-greater 

number of thermosets and thermoplastics. This is the basis of the ever-increasing demand for 

glass fibre today. This remarkable expansion in the use of E-glass with high performance quality 
is the result of exceptional combinations of mechanical, electrical, dielectric and corrosion- 

resistant properties, e. g. glass-woven and glass-roving. 

In the majority of cases fibres need to be processed into an intermediate form of reinforcement 
before they can be used in the production of composite structures. The type of reinforcement as 

chosen for a specific application is very important as it affects cycle times, determines fibre 

volume fractions, permeability and the final mechanical properties of the composite product. The 

list below describes some of the more common types of fabric reinforcement (ASM International 

1987). 

Chopped Strand Mat (CSM). 

Continuous Random Mat (CRM). 

Woven Fabric (WF). 

Triaxial Fabrics. 

Knitted Fabrics. 

Braided Fabrics. 

Three-Dimension Fabrics. 

Non-Crimp Stitch Bond Fabrics 

2 -3 Glass Woven Fabrics 

Fibres can be woven into many different types of weave patterns, widths, and thickness. The 

warp yams, or ends lie in the lengthways (machine) direction of the fabric, whereas the filling 

yams, or picks, lie cross-wise, at right angles to the warp yam. Fabric construction is specified 

by the number of warp yams per centimetre of fabric width and the number of filling yams per 

centimetre in the length-wise direction. Therefore, fabric weight, thickness and breaking strength 

are proportional to the number and types of warp and filling yams used in weaving. 

Woven fabrics are widely used to reinforce polymer matrices, since they are easy and convenient 

to handle. The volume fractions of fibres are not high, because of the interlacing of fibres, yet 

the composite products have adequate properties for a range of markets. 

9 
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2-4 
, 
Weave Pattern 

The fabric design pattern often called the construction is the x, y co-ordinate system. The y-axis 
lies along the direction of the warp yarns and is the long axis of the fabric roll. The x-axis is the 

fill (weft) direction, that is, the roll width. The basic fabric weaves are few in number, but 

combinations of different types and sizes of yarns with different warp/fill counts allow hundreds 

of variations. The fabrics may be woven in a variety of patterns some of these weave patterns 

are presented in figure 2-1, (Interglass Technologies 1999 and 1998). 

2-4 -1 Plain weave 

Plain weave, which is the most highly interlaced, is therefore the tightest of the basic fabric 

designs and most resistant to in-plane shear movement. In a plain weave the warp and weft 

yams are interlaced in a regular sequence of one under and one over (see figure 2- 1). The plain 

weave demonstrates the greatest degree of stability with respect to yarn slippage and fabric 

distortion. The closely spaced yams prevent sideways movement of yarns in the fabric, thus 

providing good distortion resistance and reproducible laminate thickness. The stiffness of the 

fabric in the warp and weft directions depends on the tightness of the weave and the properties of 
the yam (Hofstee and Van Keulen 2001). 

2-4-2 Basket weave 

Basket weave, a variation of plain weave, has warp and fill yarns that are paired: two up and two 

down. The basket weave is less stable than'the plain weave; it is more pliable and will conform 

more readily to simple contours. 

2-4 -3 Twill weave 

The twill weave interlaces one or more warp yarns over one and under two or more filling yarns 

in a regular pattern, e. g. in a 2x 1 twill, weft yarns passes over one and under two warp ends (see 

figure 2- 1). While in a 2x2 twill, the weft yarns pass over two and under two warp ends, 

producing a regular diagonal pattern in the cloth. Twill weave cloth has good drapability. This 

produces either a straight or a broken diagonal line in the fabric and consequently it has greater 

pliability and better drapability than both plain-woven and basket-woven fabric. 
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2-4-4 Satin weaves 

The satin weaves represent a family of constructions with a minimum of interlacing. In these 

weaves, the weft yarns periodically skip, or float, over several warp yams, as shown in figure (2 

- 1). In the satin weave, there is only one interlacing point per pattern as repeated per yarn. The 

eight-end satin weave has one warp yarn interlacing over seven under one filling yarn in an 
irregular pattern, yielding to a pliable fabric that will readily conform to compound contours. 
Since this weave pattern allows a comparatively high yarn count per centimetre and fewer fibre 

distortions, it translates into better strength properties in all directions than a tighter weave, such 

as the plain weave. 

The floating yarns that are not being woven into the fabric create considerable looseness or 

suppleness. The satin weave has excellent drapability that can produce a construction with low 

resistance to shear distortion and is easily moulded (draped) over compound curves as indicated 

in figure (2 - 2). This is one reason why the satin weaves are preferred for many aerospace 

applications, mainly for the aircraft wingroot area. Satin weaves can be produced as standard 
four, five, or eight-harness forms. Fabric woven with heavy warp yams and fine filling yams in 

long-shaft (such as the 8-end) satin weave patterns are called unidirectional fabric. These fabrics 

are characterised by a high strength contribution to composite in the heavy-yarn (warp) direction 

(Chou and Ko 1989). 

Woven fibre reinforcements offer the following advantages compared with unidirectional 

reinforcements: 

" Improved formability and drape 

" Bi-directional reinforcement in a single layer 

" Improved impact resistance 

" Balanced properties in the fabric plane 

" Enhanced through-thickness properties 

" Elimination of interlaminar weaknesses, improved fracture toughness 

" Yield constructions of tailorable thickness with enhanced through-thickness properties. 
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2-4-5 Hybrid fabrics 

Hybrid fabrics are those woven from two or more different types of fibre (see figure 2- 3), in 

contrast to fabric woven from a single type of fibre (Interglas Technologies 1999 and 1998). 

Combining fibre reinforcement allows the designer a considerable amount of flexibility. The 

hybridisation of glass fibres in composites provides higher material with a greater strength and 

modulus. The glass fibre composites can be improved by adding high-strength fibres (such as R- 

glass) with a greater strain-to-failure than the E-glass. Glass hybrid composites can be lubricated 

using conventional techniques. Hybrids usually have the same matrix and can be fabricated by 

the co-curing process (Chou and Ko 1989). 

2-5 Types of Hybrid Laminates 

Composites containing more than one type of fibre material are known as `Hybrid'. The term 
`hybrid' is commonly used to denote the incorporation of two different types of material into one 

single material, and the level of mixing can be either on a small scale (fibres, tows) or a large 

scale (layers, pultrusions, ribs). Hybrid composites are attractive structural materials for the 
following reasons. 

" Firstly, they provide designers with the new freedom of tailoring composites and achieving 

properties that cannot be realised in binary systems containing one type of fibre dispersed in 

a matrix. 

" Secondly, a more cost-effective utilisation of expensive fibres such as carbon and boron can 
be obtained by replacing them partially with less expensive fibres such as glass and Aramid. 

" Thirdly, hybrid composites provide the potential of achieving a balanced chase of stiffness, 

strength and ductility, as well as bending and membrane-related mechanical properties. 
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Hybrids can be categorised into the following types: 

Intrapl 

The different fibre materials are intimately mixed together and infiltrated with a matrix 

simultaneously. The hybrid in this case is described as intraply or intermingled as presented in 

figure (2 - 4a) (Chamis and Lark 1978) (Aveston and Kelly 1980). 

2-5-2Inte 1 

Hybrid is made by bonding together separate laminae each containing just one type of fibre in a 

matrix, and is known as Interply (Chamis and Lark 1978) or interlaminated (Aveston and Kelly 

1980) as indicated in figure (2 - 4b). 

2-5-3 Interwoven 

Hybrids consist of fabric reinforcements where each fabric contains more than one type of fibre 

and it can be termed as interwoven (Chou and Kelly 1980a) as presented in figure (2 - 4c). 

2-5-4 Hybrid interface 

An attempt is made to fabricate glass woven fabric composite laminates containing layers of 

different fibre surface treatments, based on the so-called `hybrid interface' concept. The 

mechanical properties of hybrid laminates, including strength and elastic moduli are 

characterised and compared with those for non-hybrid laminates. The results show some 

improvements in tensile and bending strength when the laminates consist of hybrid layers 

containing low and high silane concentrations (Sham, Kim and Hamada, 1998). 

2- 6Fibre Surface Treatments 

When the fibre is made from a continuous filament, winding is the final process at the time of 

forming, and refers to the process whereby a continuous filament of fibre is wound on to a 

supporting form. Such a treatment is called a size such as a silane-coupling agent. 
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Silane coupling agents are hybrid molecules: a mixture of lubricant, binder, coupling agent and a 

greater part of demineralised water. The lubricant is added to prevent abrasive damage to 

filaments while handling because glass has a very high coefficient of friction. Antistatic agent 
hampers the build-up of static electricity during processing. The binder provides compatibility 

with specific resins or polymers. High mechanical strength and wet strength retention in 

composite materials can only be obtained when a high quality and durable glass-matrix bond 

exists (Plueddemann 1974). Silane coupling agents (Organo-functional) are designed to improve 

the performance of interfacial properties of glass fibre reinforced polymer matrix composites 
(Plueddemann 1974). 

R-Si-X3 + 3H20 -º R-Si- (OH)3 +3XH 

R is an Organo-functional group that is chosen to be compatible with the matrix resin to be 

employed. For epoxy matrices the functional group is often an amine or an amine slat and X is a 

group that is easily hydrolysable (Hull and Clyne 1996). Park and Kim studied surface 

treatment of carbon fibres; they reported that, increasing the surface functional groups on fibres 

increased composite mechanical behaviour. The study revealed that oxygen functional groups 

on fibres had a dominating effect on the interlaminar shear properties of the composite whereas 

the nitrogen-functional groups were not affected in this system (Park and Kim 2000). 

For the treatment of fibreglass, it is required that the silane should be soluble in water and the 

dilute aqueous solution remains predominantly monomeric for at least one day in the treating 

bath. When dried on the glass surface, the coupling agent must condense to polysiloxane 

structures that retain a degree of solubility in order to be compatible with the resin. 

Silane coupling agents are usually applied to glass fibre surfaces as part of the sizing resin, 

which is commonly in the form of an aqueous solution adjusted to pH4 with acetic acid. When 

comes into contact with the glass surface a layer of silane molecules is formed on the surface. 

Silane agents are intended to act as a protective coating for glass fibre surfaces and as a coupling 

agent to promote the adhesion with the polymer matrix. The silane agents are applied to the 

glass fibre surface as a size along with other components. A wide variety of organofunctional 

silanes have been developed, prominently by Plueddemann and co-workers. The silane 

hydrolyses during the preparation of the solution. A condensation reaction resulting in the 
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formation of oligomeric siloxanes (Plueddemann 1974a, 1991 and Pape and Plueddemann 1991) 

follows the hydrolysis of silanes to silanols. It is thought that fast hydrolysis is followed by a 

slow condensation process (Plueddemann 1974b) as the higher oligomers are probably not as 

good as the monomeric cilantro, at promoting adhesion (Plueddemann and Stark 1977). 

Hydrolysis of silanes, and the subsequent condensation reaction are dependent on the 

organofunctionality of the silane and the concentration and pH of the solution (Ishida et al. 

1989a, b) 

There are other modes of applying silanes such as dry blending used for mineral fillers, and the 

additive method in which the silane is added to the polymer phase. Silane diffuses and reacts to 

inorganic surfaces (Drown et al. 1992, Cheng et al. 2001). 

In order to enhance the bond between fibre and matrix, modified fibre surfaces need to be 

achieved by coating the fibres with silane reactive end groups (silane coupling agents) (Tesero 

and Wu 1991; Drzal 1985). 

The rubber emulsion coating is a solution of different polymers such as polyurethane and 

polystyrene (Schlud and Lambla 1985), elastomer coating (Gerald et al. 1998), PVAL (Park and 

Kim 2001) and Chromium complex, orthosilicates and titanates (Ahlstrom et al. 1995). 

2-7 Interface 

If the surfaces of two bodies come into intimate contact, the combination of two dissimilar faces 

in composite materials creates an interface between the two. In theory, this interface represents a 

2D surface of contact between the components. To achieve efficient stress transfer, optimum 

adhesion is required between the matrix resin and the fibres. It is understood that, to attain good 

composite properties, it is necessary to transfer stress efficiently from the matrix resin to the 

load-bearing fibres in a given composite system. (Hull et al. 1996). Hence the adhesion between 

fibre and matrix is a key consideration with respect to understanding the interfacial properties of 

composite materials. The theories of adhesion including wettability, inter-diffusion and 

chemical reaction covalent bonding, electrostatic inter-attraction, mechanical inter-locking and 

residual stresses are important interfacial adhesion phenomena in fibre reinforced composites. 
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The interfacial region of the composite will be affected not only by the composition of the 

coating, but also by its distribution on the glass fibre surface and in the composite matrix 
(Thomason 1995). 

2-8 Interphase 

It has been suggested recently that there is an existing three-dimensional region, interphase (or 

Mesophase) adjacent to the reinforcing fibre, where properties differ from both the fibres and the 

bulk matrix as represented in figure 5- 27 (Drzal 1985), (Theocaris 1987). The properties 
depend on how this interphase is formed. It may be homogeneous and distinct or exhibit a 

composition, and hence a property and gradient which approaches that of the bulk matrix some 
distance away from the fibre. Traditionally, a two-dimensional surface of contact (interface) 

between fibre and matrix has been assumed to be responsible for the effective transfer of stress 
from matrix resin to load bearing fibres (Hull and Clyne 1996). It has been proposed that the 

interphase may be a chemical reaction zone, a diffusion zone, a nucleation zone, or a 

combination of them all (Ranade et al. 1997) and (Agrawal and Drzal 1996). 

The interphase region possesses features such as: a finite dimension and thickness (Kim and 
Sham 2001), the bond mechanism to the fibres and bond mechanism to the matrix, properties of 
its own such as strength, modulus, Poisson's ratio, etc. (Drzal 1985) and (Thomason and Adzima 

2001). 

The influence of the interphase region on the mechanical properties of the composite has 

received wide attention. A good description of the mechanical properties of the interphase 

region between fibre and matrix allows a good prediction of the mechanical properties of the 

composite. The overall properties of a fibre-reinforced composite material are dependent upon 

the mechanical and chemical stability of the interfaces, or interphase, formed between the 

reinforcing fibres and the surrounding matrix (Ranade et. al. 1997) and (Agrawal and Drzal 

1996). 

Fibre/resin interface in composite materials is very important for material design because the 

interphase properties greatly affect the macroscopic mechanical properties of the composite. 

Various evaluation methods for interphase in composite materials have been proposed, such as 

" Single-filament embedded tensile test, 

16 



Damage Accumulation in Hybrid Woven Composites Hybrid Glass Reinforcement 

9 Pull-out test, 

9 Push-out test, etc. 

It is considered that 'interphase' should mainly be divided into four types such as 
1. Pure interphase between filament/matrix (Class I), 

2. Fibre bundle interphase between filament/matrix (Class II), 

3. Intersection interphase between two fibre bundles, which often appears in woven fabric 

(Class III) and 
4. Interlaminar interphase in laminated composites (Class IV). 

Each classified interphase is evaluated using various testing methods. This classification is one 

of the concepts to assist with the understanding of micro-macro interaction in composite 

materials (Hamada 1997). 

Mathematical models take into account the two Mesophase layers (or interphase) formed 

between the main phases as boundary layers responsible for the quality of adhesion between 

phases (Theocaris 1987,1988,1990,1992,1995 and Theocaris et al. 1997). The interphase 

layers are proposed for predicting the mechanical properties of sized fibre-reinforced composites. 
Several micro-mechanical models are developed to calculate the mechanical properties of 

composites; the experimental validation of these proposed models is often carried out on glass 
fibre/epoxy composites (Tirry et al. 1997). 

2-9 Epoxy Resins 

Epoxy resins are used extensively in composite materials for a variety of demanding structural 

applications. They are the most versatile of the commercially available matrices. They make it 

possible to obtain toughness, chemical and solvent resistance, mechanical responses, resistance 

to creep, and excellent adhesion to most fibres, heat resistance and excellent electrical properties. 

Epoxy resins have a broader range of physical and mechanical properties than unsaturated 

polyester and polyamides (Lee and Neville 1967). 

Epoxy is the general classification for resins containing two carbons and one oxygen atom 

bonded in a ring. Such resins may be derived from many different starting materials such as 

phenol, bisphenol and multifunctional phenol (ASM International 1987) 
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Epoxy resins have superior strength and elastic properties with a lower shrinkage on curing. The 

strength of the interface bond between resin and fibre is also higher for epoxy resins. However, 

they have the disadvantage of a higher viscosity before curing, and epoxy is more expensive. 

Commercially available epoxy resins crosslink to a solid by reaction with a variety of hardeners. 

These hardeners may act as catalysts via catalytic action or become directly involved in 

crosslinking formation during the reaction by being absorbed into the resin chain. During curing, 

epoxy resins can undergo three basic reactions (Ashcroft 1993): 

1. Epoxy groups are rearranged and form direct linkages between themselves. 
2. Aromatic and aliphatic hydroxyl groups react with the epoxy groups. 
3. Cross-linking occurs with the curing agent via various radical groups. 

The glass fibre sizing system, containing a silane-coupling agent, results in a composite with a 

higher modulus, and a greater tensile strength, but a lower toughness compared with glass fibre 

without the silane-coupling agent (Drzal et al. 1991). 

2- 10 Acoustic Emission (AE) 

Acoustic Emission testing procedures have been well established in codes of practice for 

monitoring damage processes and characterisation of composite structures. Because of the 

complex nature of the composite material, the fracture processes occurring in composites are 

very complex and difficult to study. Hence, AE techniques can be used advantageously to study 

the micro-fracture phenomena during straining of composites. The simplicity of its application, 

the acquisition of data in real-time and its potential for monitoring damage progression and 

accumulation make acoustic emission a useful experimental tool. 

Non-destructive testing methods such as Ultrasonic, Radiography and Eddy currents are also 

commonly used for detection of flaws in composites. The AE technique on the other hand 

allows the characterisation of the initiation and growth of flaws by utilising the information 

supplied by the deformation, as the deformation propagates in the material. 
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2 -10 -1 Acoustic Emission in glass and glass fibre 

Glass is a brittle material. Fracture occurs in the elastic portion of the stress-strain curve, where 

the slope is constant and equal to Young's Modulus. In comparison to glass, metals undergo a 

certain amount of deformation by plastic flow before failure. Plastic flow requires breaking 

bonds at one position, with subsequent movement of the atoms and bond formation at some other 

site. In glass, plastic flow is restricted. Hence, in an amorphous solid, such as glass, fracture 

rather than flow is the natural consequence of bond breakage (LaCourse 1972). 

Glass exhibits a complex interdependence of strength on degree of surface damage, loading rate, 

temperature and nature of environment. 

The recording of AE events shows that these correspond with the number of fibre breakages; 

failure modes can be identified. The large number of events occurring at final failure is usually 

associated with fibre breakage. In bending tests of single-fibre composites, AE parameters 

especially the peak frequency and its power energy obtained by a power spectrum analysis are 

useful in the interpretation of damage events. (Don and Roderic 1996). A transition of failure 

mode from fibre break accompanied by a matrix crack and debonding to buckling is observed 

when the stress in the embedded fibre changes from tension to compression. The debonding 

length is greatest near the loading point for the specimen with fibres near the tensile surface 

(Jinen et al. 1997). 

2- 10 -2 AE in composites 

In composites, the stress waves are generated by a variety of actions involving cracking and 

separation in the fibres and the matrix. Material strain is required to release or generate the 

emissions; the simplest method to obtain an indication of AE activity is ring down counts (RDC). 

Appendix B gives more details on (RDC). 

The AE signal in fibre-reinforced polymer (FRP) composites will be mainly from the matrix, the 

fibre and the interface between the matrix and fibre. Experiments using continuous glass fibre 

reinforced polyphenylene sulfide (PPS) composite, loaded in flexure, show that the first 

detectable AE signal is at about 0.3% strain level (Chen et al. 1992). 
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The acoustic emission (AE) technique appears to offer a very practical procedure for monitoring 

the failure processes in polymer matrix composites. Polymer matrix composites subjected to 

stress emit acoustic signals when micro-cracks occur, due to failure of the matrix, delamination, 

or fibre rupture. Moreover, this technique is more readily used in actual service conditions. An 

important aspect of the AE technique is that the information obtained is in real time. Once the 

instrumentation settings have been properly selected for a given assessment, the technique is 

very simple to utilise. On the other hand, AE by its nature is applicable only during proof 
loading. This may limit its usage in certain aeronautical and aerospace applications, although it is 

widely used to assess the integrity of composite structures in the chemical and automotive 
industries. For small-scale laboratory testing on well-defined samples, the AE technique can 

serve as a supportive test procedure for research into the failure process of new composites. It 

provides a non-destructive inspection of the material in order to locate and indicate the extent of 

non-visual damage. 

A significant amount of research during the past two decades has addressed the viability of AE 

as a non-destructive test technique for composite materials. 

Narisawa and Oba established a correlation between an acoustical signal and the fibre breakage 

by analysing the amplitude signals in a composite containing one or two fibres (Narisawa and 
Oba 1984). Mehan and Mullin first identified the possibility of correlating a specific failure 

from an acoustic signature (Mehan and Mullin 1971). They established the relevance of 
frequency spectral analysis to reconstruct the whole failure process. The problem in establishing 

a relationship between a specific failure mode and its acoustic signal is the simultaneous 

occurrence of different failure modes. Therefore, listening to noise in real-time using 

piezoelectric sensors makes it possible to give an interpretation of the events taking place in the 

material. Observations indicate that fibre-reinforced composites fail as a result of discontinuities 

generated by progressive damage that occurs during loading, making it possible to determine the 

integrity of composite materials (Arrington M. 1987). 

The fibre and matrix dominated failure modes contribute to AE in composites. Matrix 

dominated failure modes include matrix cracking and ply delaminating (Ma et al. 1990). Failure 

modes for fibre include fracture and fibre micro buckling (Mittleman and Roman 1987). AE has 

also been employed by many researchers to probe the fibre-matrix interfacial failure between a 

fibre and a matrix (Netravali et al. 1991 and Bondt et al. 1993) and (Okoroafor et al. 1996). It is 
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important to identify and understand the AE characteristics of each of these modes individually 

in order to estimate flaw growth in relation to strength properties of composites (Choi and Lee 

2001). Applications of AE of interest to research and industry are ongoing and the future in 

these areas appears unlimited. 

In unidirectional composites matrix cracking and voiding are typically associated with the first 

signs of non-linearity on the stress-strain curve of a composite. Low AE activity corresponds 

with matrix damage i. e. cracking and voiding (Wevers 1997 and Kander 1991). 

The intermediate AE activity corresponds with fibre-matrix interfacial damage in these 

composites. Debonding of fibres from the matrix resin typically leads to a decrease of the 

stiffness in the composite. The lowest level of intermediate AE activity could indicate shear 
lines initiating along the neutral axis. The highest level of intermediate AE activity indicates 

fibre-matrix damage and demonstrates a very small decrease in stiffness at the initiation of 
intermediate AE activity (Kander 1991 and Okoroafor et al. 1996). High AE activity indicates 

layer delaminations (Wang et al. 1995) or ultimate fibre damage and final breakage (Kander 

1991). 

Using two wide-band differential piezoelectric transducers allowed the location of the damage 

events to be determined by measuring the difference in the time-flight to each transducer for a 

given acoustic wave in the acoustic emission digitised signals location (Holford and Carter 

1999). 

A new methodology for the analysis of failure modes in composite materials by means of 

acoustic emission techniques has been developed. A single-carbon-fibre composite based on a 

polyester matrix has been used as a simple model. The occurrence of fibre-breakage during 

tensile loading tests has been observed by a polarised light microscope and concurrently detected 

by a resonant acoustic probe (Giordano et at. 1998). 
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Table (2 - 1) Glass compositions of some fibreglass* 

E-Glass R-Glass C-Glass S-Glass 
Silicon Dioxide 52.4 60 64.4 64.4 Si02 . 
Calcium Oxide 17.2 9 13.4 - (CaO). 

Aluminium Oxide 14.4 25 4 1 25 (A1203) . 
Boron Oxide 10.6 - 4 7 - (B203) . 

Magnesium Oxide 4.6 6 3.3 10.3 (M O. 
Sodium & 
Potassium 0.8 - 9.6 0.3 

OxideNa2O & K20 

* Data from (Hull and Clyne 1996), (Molinier, 1982), (Vetrotex 
2000) and (Interglass Technologies, 1996,1998). 

Table (2 - 2) Physical properties of some fibreglass** 

Physical Properties 
Properties Unit E-Glass R-Glass D-Glass 

Density g/cm 2.6 2.53 2.14 
Hardness 

(Vickers 50g-15s) - 5.6 6.2 

Sound Velocity m/s 5680 5940 
_ 
LI 

**Data from (Vetrotex 2000) 
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Table (2 - 3) Thermal properties of some fibreglass* 

properties Unit E-glass R-glass D-glass 
Softening °C 840 986 _ 769 
point(Littleton) 
Strain Point °C 617 738 
Linear Coefficient of m/m/°C 5.3 * 10 4.0 * 10" - 3.0* 10--' 
thermal expansion 
Specific heat J/g. °K 0.764@20'C 0.732@20T 1 

0.958 200 °C 0.983 200 °C 
Coefficient of thermal W/m. °K 1.0 1.0 0.8 
conductivity 

*The glass fibre manufacturer (Vetrotex) provided these values in correspondence with 
author April 2000. 

Table (2 - 4) Mechanical properties of some fibreglass** 

General Glass with Glass with Dielectric glass 
Purpose resistance to acids high 
Glass mechanical 

performance 
E Glass A Glass C Glass R Glass D Glass Silica 

Specific Gravity 
(g/cm3) (filament 2.59 2.46 2.45 2.53 2.14 2.2 

glass) 
Modulus of 

Elasticity (GPa) on 73 71 71 86 55 62-73 
filament 

Breaking Stress 
(MPa) on virgin 3400 3100 3100 4400 2500 4000- 

filament 5000 

** Data from (Molinier, 1982), (Vetrotex 2000). 
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Figure (2 - 1) Three different weave patterns of fibre woven fabrics. 

Figure (2 - 2) The difference in drapability between various weave patterns. 
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Figure (2 - 3) Hybrid weave patterns. 

0 c00" O. O "o0 0.0 000 
C. 00 CEO "O ", 0 

0.000 0 O00 00 0 

00 
on0 o" o" 00 

" O" D0 "O O" 
O 

0o 
o 

cý" O 00 O "O 
" 0O " 

1: 11 

()OO 
00 

OO0 
C) 0 (1 

" "" """ """ """" 
""" "" "" """ 

L) OO 00 0O 00 O 00 O 00 O 
0o 000 0() 00 on 

(11 

00 iý 

Figure (2 - 4) Three types of hybrid composites (After Chou 1996). 

(a) Intraply or intermingled (b) Interply or interlaminated (c) Interwoven. 
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CHAPTER THREE 

Mechanical Characterisation 

3 -1 Elastic Properties of Woven Fabric Composites 

This section presents models which enable the elastic properties of woven fabric reinforced 

composite materials to be predicted. There are many models that have been developed to predict 

the elastic properties of composite materials based on continuous non-woven reinforcement. 
However, the number of these models which may be used to predict the properties of woven 

reinforced materials is small (Halpin 1984,1994). For the purposes of this investigation, the 

theories and models that have been specifically developed to predict the elastic properties of thin 

laminated composites are the classical laminate theory and simple rule of mixture. The 

predictions of the models that are compared with the results of experimental data are discussed in 

chapter five. 

3 -1-1 Classical Laminate Theory (CLT) 

In the Classical Laminate Theory it is possible to predict the macroscopic elastic properties of 

the laminate from knowledge derived from the individual lamina (layer) properties, and 

retrospectively to calculate the individual stress system within each lamina when the laminate is 

subjected to an applied loading. CLT treats individual laminae as macroscopically homogeneous, 

yet orthotropic in their elastic properties. The material constants such as stiffness do not vary 

with strain, the strains in the deformed plate are small, and also shear strains in planes 

perpendicular to the surface are assumed to be zero. The theory assumes that the laminate is in a 

state of plane stress, hence ignoring the interlaminar effects and the out-of-plane stress 

components. More details can be found in appendix A. 

When the thickness direction properties significantly contribute to the response of the laminate to 

an externally applied elastic field, the classical plate theory breaks down (Chou 1992, Enie and 

Rizzo1970). The analysis is applicable to thin plies in which out-of-plane stresses and 

deformations can be neglected (Ashton et al. 1969), (Jones 1975), (Griffin et al 1981), (Enie and 

Rizzo 1970), (Whitney 1967) and (Rosen and Humphreys 1987). General lamination 

assumptions can be found in appendix A. 
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The classical thin laminated theory has been extended to take into consideration the effects of 

thermal and moisture diffusions, with particular emphasis on the transient behaviour. Because of 

the large differences in the magnitudes of the thermal conductivity and moisture diffusion 

coefficients, the thermal and hygroscopic problems can be solved separately and their linear 

elastic fields can be superposed to yield the stress concentrations due to transient thermal effects 
(Chou 1992). 

The classical lamination theory has been applied to derive the constitutive equations for a 

cracking layer so as to describe laminate constitutive behaviour in the cracking process, in an 

analytical model of laminated composites with cracking layers (Wada, Motogi and Fukuda 

2000). 

The classical lamination theory describes the damage evolution in Fibre Reinforced Plastics 

(FRP) laminates with off-axis cracked plies in another analytical model for predicting the matrix 

crack which induces stiffness reduction of FRP laminates. With the predicted number of cracks, 

the variation of the laminate stiffness with the crack density is evaluated (Wada, Motogi and 
Fukuda 1999). 

3 -I -2 Software packages 

Over the years many software packages have been developed to analyse elastic constants of the 

composite laminates. Attention is focussed on currently available design analysis procedures for 

fibre-reinforced polymer composites. Johnson describes some of the microcomputer programmes 

available to simplify laminate analysis (Johnson AF 1988,1990 and 1995). The National 

Physics Laboratory (NPL) has also developed software to analyse laminates in the project 

entitled "predictive modelling of fibre reinforced polymer composites" (Broughton 1992). 

Similar software to that of NPL is produced by SDRC in their "IDEAS" package. The SDRC 

software package gives the user the choice of using micro-mechanical theories for the property 

predictions. This implies that the user needs to be familiar with the different theories before 

using the software. In both the NPL and SDRC packages, the through-thickness properties whilst 

said to be important are not determined. 
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Some other software computer packages by Cirese (Cirese 1988), COMPO (Blankenship et 

al. 1992) and a further commercial package called Mistra analyses the geometry of a unit cell of 

the material which is input by the user. 

There are many software packages to determine mechanical properties of woven fabric 

composites. Stellbrink has developed the micro-mechanical software called Microlam to analyse 
laminated composite structures; this software can treat fabrics with different fibres in the warp 

and fill directions. However, Microlam assumes that both thread types in the same direction 

follow the same geometric shape. Some of the Microlam software inputs are related to the 

woven structural parameters and others are related to the fibre mechanical properties of the 

material. The software allows the user to select some of the fabric identification such as the fibre 

type, weaving pattern type (unidirectional, twill, satin etc. ); details are given in chapter five, 

section 5-7. 

The package will then calculate the strength of unidirectional or woven laminate plates, for 

example, and also predict the material properties of the laminate using the classical laminate 

theory in the calculation (Stellbrink 1996). The mechanical properties of woven laminate can 

theoretically be predicted and then compared to test results; details are given in chapter five. 

3 -1- 3 The simple rule of mixtures 

The geometry of thin, continuous fibre in a unidirectional array ensures that, when loaded in the 

fibre direction, the strains in the fibre and resin matrix are equivalent. For this reason the rule of 

mixture can be used with reasonable accuracy (Kelly and Nicholson 1971 and Vinson and Chou 

1975), to predict the longitudinal modulus and tensile strength, i. e. 

El = EfVf+ E, (1-Vf) (3 . 1) 

and 

a1 = ofVf+ ßm0 
-Vf) (3.2) 

Where 

El = composite longitudinal modulus 
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Ef = fibre longitudinal modulus 
Em = matrix modulus 
Vf = fibre volume fraction 

6, = composite longitudinal tensile strength 

a'm matrix stress at fibre failure strain 

of= fibre strength 

The rule of mixture strength prediction above is valid only where the matrix failure strain is 

greater than the fibre failure strain. This is the case for most practical polymer matrix 

composites. 

A modified law of mixtures was used to predict the longitudinal Young's modulus for woven 

material composites (Johnson 1986). 

EI =Em (1-Vf) +a EfVf (3.3) 

The parameter "a" depends on the efficiency of reinforcement, which allows for slight fibre 

misalignment. 

Theocaris modified the equation in (3.2) by introducing a third term to account for the modulus 

(E; ) of a third phase, called the (Mesophase) or interphase (Theocaris 1987). 

E1= EfVf+ En, Vm + E; V; (3.4) 

In a typical composite, both V; and E; are expected to be rather small. The longitudinal stiffness 

of the composite should be almost insensitive to the interface properties. Mathematical models, 

which take into account the two Mesophase layers (or interphase) formed between the main 

phases as boundary layers responsible for the quality of adhesion between phases, are proposed 

for predicting the mechanical properties of sized fibre-reinforced composites. Application of the 

models to an analysis of' composites based on silane-coated glass fibres and epoxy resin are 

discussed by (Theocaris 1987,1988,1990,1992,1995 and Theocaris et al. 1997). 

The rule of mixture strength prediction is found experimentally to be a good approximation, as 

the above approach neglects the statistical nature of fibre strength, which results from the 
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distribution of flaws of varying severity within fibres. This mechanism considers that not all the 

fibres fail at a single stress level, allowing a progressively greater numbers of fibres to fail as the 

stress increases until a stress is reached at which point separation occurs. The statistical 

distribution of fibre flaws leads to a marked dependence of measured average strength on the 

length of fibre tested: the longer the fibre the greater the probability of encountering a severe 

flaw and the lower the average strength. In practice, the fibre strength is usually calculated as a 

strength measurement from the composite of the known fibre volume fraction (Chou 1992). 

3-2 Woven Fabric Models 

The three models that may be used to analyse the elastic properties of woven fibre composite are 

the mosaic model, a fibre undulation or crimp model and a bridging model that have been 

developed by Ishikawa and Chou (Ishikawa and Chou 1983b, Chou 1992). 

3-2 -1 Mosaic model 

The mosaic model, a weave in its simplest form, see figure (3 - 1), idealises basically two layers 

of cross-ply lamina of a width equal to the thread width. This idealised laminate is simplified 

further by restricting the material, which is considered to be a single strip along each of the 

orthogonal weave directions. Figure (3 - 2) shows the strips within the unit cell of the materials, 

which are used in the parallel and series models. For the parallel model, it is assumed that a 

known force per unit length, applied uniformly across the sample cross-section, causes a state of 

uniform strain and curvature at the laminate mid-plane. This model is combined with the 

isostress and isostrain assumptions to predict the upper and lower bounds of the elastic moduli 

by using classical lamination theory. The mosaic model, however, does neglect the continuity 

and undulation of the fibres, and therefore only provides a "rough estimate" of the properties of 

fabric composite (Chou and Ishikawa 1989). 

The overall fibre volume fraction increases with increase in the number of repeat cell units in 

woven cloth. This is because of the increase in the cross-ply region. Young's moduli increase 

with the increase in the number of repeats due to both the increases in the straight cross-ply 

region and overall fibre volume fraction (Naik 1994). This fact shows the relationship between 

the number of repeat units and Young's moduli of a woven composite and has been used in the 
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damage process analysis as part of the model developed (see the first application 5-5-2 in 

chapter five). 

Using the mosaic model for simplifying woven fabric composites to account for the inter-yarn 

deformation, a one-dimensional analysis has been developed to predict the local elastodynamic 

and elastostatic behaviour. The analysis focuses on the unit cell of an orthogonal woven fabric 

composite, which is composed of two sets of mutually orthogonal yarns of either the same fibre 

(non-hybrid fabric) or different fibres (hybrid fabric) in a matrix material (Chen and Chou 2000). 

3-2-2 Fibre undulation model 

The second model deals with a fibre undulation or crimp model, as represented in figure 3-3. 

This model is concerned with the interlaced region of the woven fabric and considers fibre 

continuity and undulation in the loading direction within the unit cell. The model also considers 

the thread thickness, the length of undulation, and the angle of the threads as they weave around 

one another. Each cell contains regions of pure matrix and the overall fibre volume fraction can 
be different to the fibre volume fraction in the threads or yams in such a model. 

The model uses the unidirectional transformation equations to determine the thread properties 
due to the angle of undulation. The classical lamination theory is then used to determine the 

overall properties as with the mosaic model. Classical lamination theory is applicable for each 

tiny microscopic slice of the material of a certain width in the case of the hybrid weave figure (3 

- 4). 

Chou reports that the results for the moduli obtained from this model coincide exactly with the 

upper bound results from the mosaic model. This model is a 2D model and takes no account of 

fibre undulation in the transverse direction. It is reported that taking into account the existence of 

the yarn angle leads to a reduction of the effective elastic moduli (Ishikawa and Chou 1982b, 

1983b) and (Chou 1992). 

An analytical model to predict the moduli of a 2D woven fibre composite that takes into account 

voids in the structure has been developed by Farouk and is based on the undulation model. It is 

stated that the moduli predicted by this model are within 10% of the experimental values (Farouk 

et al. 1991). 
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3-2-3 Bridging model 

The, `bridging' model developed by (Ichikawa and Chou 1982b, 1983b, 1989) and (Chou 1992) 

considered interlaced regions in a satin weave composite that are remote from each other, (refer 

to figure 3- 5). The bridging model is used to predict the properties of satin weave composites 
(Chou 1992). The bridging model is a combination of the mosaic model and the crimp model. 

The repeating cell of this model consisting of the central interlaced region where the undulation 

occurs, and four separate regions making up its surrounding area which is modelled as layers of 

cross ply lamina (the mosaic model). Regions II, III and IV act as bridges for the load transfer 

between regions V and I, while region III has an interlaced structure with an undulation filling 

yam. 

A three-dimensional view of the bridging model for 8-harness hybrid woven fabric is shown in 

figure (3 - 6) (Ishikawa and Chou 1983d). 

The elastic properties of a woven fabric layer are functions of the fabric structure and material 

system used in the woven composites according to (Ishikawa et al. 1985) and (Naik 1994). 

A basic difference between hybrid and non-hybrid composites is that of material variation as 

well as geometric variation over the cell repeat units in the composite. The distributions of stress 

and strain over the laminate mid-plane vary with location in the hybrid fabric composite (Chou 

1992). These two facts show the relationship between the elastic properties and the material 

used in a woven composite and have been used in a damage event sequential process model seen 

as the outcome from the bridging model (see e. g. the second application in chapter five - section 

5-5). 

In one of the published papers Ishikawa compares the theoretical and experimental results for the 

moduli of woven carbon fibre composites based upon the above models (Ishikawa et. al. 1985). 

Ishikawa agrees with Zhang and Harding (Zhang and Harding 1990) by stating that the fibre 

undulation ratio (h/a) is a very important parameter, which strongly affects the elastic moduli of 

plain weave composites. The values of the elastic moduli are also dependent upon the laminate 

ply number `n', as neighbouring layers in a fabric that tend to suppress the warping of one 

another (Zhang and Hardingl990). It has been found that as the undulation ratio increases, the 

value of E,, decreases (Chou 1992, Zhang and Harding 1990). It was also found that the in-plane 

shear modulus GXy, is mainly influenced by the fibre volume fraction which decreases linearly 
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with `n' (Ishikawa et al 1985). They also report that the mosaic model "shows particularly large 

discrepancies in the prediction of the moduli of plain-weave composites". 

3-3 Mechanical Testing Characterisation 

Mechanical testing as used in this study can be divided into destructive testing such as: 

" Interlaminar Shear Strength (ILSS), 

" Flexural and 

" Tensile 

And dynamic testing such as: 

" Dynamic Mechanical and Thermal Analysis (DMTA). 

3-3 -1 Interlaminar Shear Strength (ILSS) 

The short-beam test for the apparent interlaminar shear strength (ILSS) of composites is a simple 
test widely used in the composite industry. It is a three-point bending test on a specimen with a 

small span, which promotes failure by shearing the laminate. In transferring the shear load across 

the composite, the matrix plays the major role. For the ILSS test, the failure is mainly in the 

shear mode and ideally should occur in the mid-plane of the specimen. This is because the test 

method involves loading a beam under three-point bending with the span-to-depth ratio, L/h, 

chosen such that an interlaminar failure is induced along the centreline rather than a tensile 

failure on the bottom surface of the beam (Pagano and Pipes 1989). The ILSS failure depends 

upon the fibre/matrix adhesion level as well as the frictional effects or mechanical interlocking at 

the fibre/matrix interface (Park and Kim 2001, Schwartz, 1997). Good fibre/matrix adhesion is 

essential for the composite to perform well under shear loading. The ILSS test is used for 

assessing fibre surface treatments, fibre-resin compatibility as well as being used as a quality 

control method (Caldwell 1994). 

Hayashi (1967) appears to be the first who investigated interlaminar shear stresses in an idealised 

laminate consisting of orthotropic layers separated by isotropic shear layers. Other important 

works were carried out by Bogy (1968), who investigated the singular behaviour of stresses at 

the intersection of a boundary and bonded dissimilar isotropic materials. 
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The finite-element formulation for cross-ply laminates as a two-dimensional problem was 

presented initially by (Foye and Baker 1971) and Herakovich proposed the two-dimensional 

finite-element formulation for laminates including off-axis layers (Herakovich et al. 1976). 

Pipes and Pagano presented the first three-dimensional (numerical) analysis of interlaminar 

stresses in laminated composites (Pipes and Pagano 1970). Rybicki immediately followed the 

previous finite-difference solution by Pipes and Pagano with a three-dimensional finite element 

solution (Rybicki 1971). The free edge problem has also been investigated experimentally see 
(Pipes and Daniel 1971 and Herakovich et al. 1984). 

Some other interlaminar analytical solutions have been designed by-Pagano (1978) (Rose and 

Herakovich, 1991), and a solution employing complex stress potentials and eigenfunction series 
by (Wang and Choi, 1982). The above historical/technical reviews are given by Herakovich, 

Pagano and Pipes (Herakovich 1998, Pagano and Pipes 1989) 

The 2-D woven fabric reinforced composites often have poor interlaminar properties such as low 

interlaminar strength and toughness in comparison with their in-plane properties. Delaminations 

are considered to be one of the most common failure forms in such composites (Wang and Zhao 

1995). The crack velocity of glass fibre composites was measured in a recent study by using the 

crack velocity and stress intensity relationship (Pauchard et al. 2001). 

The weave patterns of glass fabrics have a strong influence on the interlaminar fracture 

behaviour of the woven composites. Wang and Zhao reported that the resistance of satin weave 

interlaminar stresses is much better than those such as in plain weave glass fabrics (Wang and 

Zhao 1995). Non-linearity and knee effects on stress-strain response were characterised in glass 

woven fabric epoxy reinforcement (Kumar et al. 2000). ' 

The interlaminar shear strength is improved by increasing the matrix tensile strength. Because of 

better adhesion to glass fibres, epoxies in general produce higher ILSS values than vinylester and 

polyester resins in glass fibre-reinforced composites. For composites having lower fibre/matrix 

adhesion, the shear failure mode is dominated by interfacial failure more than for composites 

with higher fibre/matrix adhesion (Drzal and Larson 1994). 
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3-3-2 Flexural properties 

Flexural strength is not considered an intrinsic property; however, the test is usually considered a 

good quality-control test (Wood and Langer 1987). Flexural test results are influenced by the 

span-to-depth ratio used in the test. The calculation of flexural strength and modulus depends 

upon specimen thickness squared; therefore the measurement of thickness is critical. Flexural 

stress distributions show little improvement over the classical laminated plate theory, hence, the 

requirement is to model the behaviour of thick laminates properly (Chou 1992). Stronger 

interfacial strength leads to an increase in flexural strength as reported by (Park and Kim 2001). 

It was found that the mechanical properties of a composite with a high fibre volume fraction 

were more sensitive to the change of fibre-matrix adhesion than those in a low fibre volume 
fraction (Shiqiang and Lin 1999) and (Vallittu 1999). 

The flexural strength in specimens reinforced with silanized glass fibre were significantly higher 

than those of un-reinforced specimens. The reinforcing effect increases with the increase in the 

glass fibres (Kaniej 2000), the laminate stiffness increased linearly with fibre volume fraction 

Thomason and Vlug 1996. 

The flexural strength results correlated well with the level of interfacial shear strength. The 

interfacial shear strength could also be correlated with the level of fibre surface coverage given 

by the fibre coating (Thomason and Schoolenberg 1994). 

3-3-3 Viscoelastic properties 

Viscoelastic properties of composite materials can be examined by Dynamic Mechanical and 

Thermal Analysis (DMTA). The viscoelastic properties of composite materials dealing with 

matrices reinforced with spherical inclusions and continuous fibres were studied by Hashin 

(Hashin 1965b). Hashin showed that corresponding problems in elasticity could solve 

viscoelastic problems in composite materials fibres (Hashin 1969, and 1972). Examples of this 

are well known, and indicate that there are practical difficulties (Christensen 1971). This is due 

to the fact that very often the creep compliance or relaxation moduli of the constituents of a 

multi-component system are not known (Schapery 1967). 

The work of Laws and McLaughlin on viscoelastic composite materials used a self-consistent 
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approximation. They analysed the creep compliance and numerical calculations performed on 

examples of composites containing spherical inclusions and continuous fibres (Laws and 

McLaughlin 1978). 

(Chou and Nomura 1980 a, b) and (Nomura and Chou 1985) obtained the effective relaxation 

moduli based upon their work on effective elastic properties. Specific expressions of composite 

relaxation moduli are given in terms of the elastic and viscoelastic properties of the constituent 

phases, fibre volume fraction, and fibre aspect ratio. 

Many researchers have employed dynamic mechanical analysis in characterising the interfacial 

properties of composite materials. Lewis and Nielsen observed differences in the amplitude of 

the tan delta signal depending on the concentration of filler additive in an epoxy matrix (Lewis 

and Nielsen 1970). An evolution of the temperature and time in concept of volume or mass of the 

interacting element was inter-related (Mezzenga et al. 2000). 

The influence of the fibre volume fraction of the beads and their surface treatments was 
investigated by dynamic mechanical behaviour of epoxy/A-glass composites. The main 

difference between the different samples was observed in the rubbery modulus plateau 

(Shaterzadeh et al. 1998). 

DMTA can be used to characterise interfacial effects by measuring changes in the amplitude, 

peak broadness, and peak temperature of the tan delta signal. Other researchers have pointed 

towards the importance of restricted chain mobility, due to polymer-filler interactions, which can 

be detected by DMTA (Chua 1987), (Eckstein 1989) and (Jensen et al. 1998). 

Dynamic mechanical analysis has also proved to be useful in studying the interfacial properties 

of laminated epoxy glass composite samples (Heise and Martin 1990). Paggoit has studied the 

effect of the third phase (the interphase) at the interface on fibre composite properties (Paggoit 

1987). - 

It has been noted that dynamic mechanical testing can measure the glass transition temperatures 

(Tg) of a range of commercial and experimental coatings on glass fibres. Thomason discussed 

this, and was inquisitive to find out how the coating (Tg) can influence the formation of an 

interphase around the fibre. The (Tg) of a coating containing only epoxy resin was found to 
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decrease logarithmically with increasing layer thickness. This shows that, contrary to a recent 

suggestion, the effect is not due to preferential absorption of a curing agent (Thomason 1992). 

Thomason pointed out that the interfacial region of the composite will not only be affected by the 

composition of the coating, but also by its distribution on the glass fibre surface and in the 

composite matrix (Thomason 1995). Thomason and Dwight presented and discussed a model to 

speculate how plots of atomic ratios could be used to estimate the surface coverage of the sizing 

on glass fibres and to obtain information on the sizing components. The glass fibres were coated 

with organic sizing (Thomason and Dwight 2000). 

Haessler and his team studied the influence of the interface of differently treated glass fibres in 

epoxy resin composites by dynamic mechanical analysis. The results were compared with 

mechanical measurements of adhesion. It was found that the flexural storage modulus (E') of the 

composites with improved interfacial bonding is increased over the whole temperature range 
investigated. Decrease of the magnitude of tan delta at the a-relaxation corresponded with an 
improvement of interfacial bonding. The behavioural differences could only be attributed to 

interfacial phenomena because the other parameters were kept constant. Dynamic mechanical 

analysis is an additional possibility for quantifying interfacial interactions (Haessler and Keusch 

1999) and (Frenzel et al. 2000). 

The samples of high viscosity epoxide composite are characterised by a lower cross-linked 

density. Conversely for low viscosity a high cross-linked density dynamic mechanical response 

characterises the epoxide composite samples (Kuzenko and Browing 1979) and (Armand 

Soldera, 1998). 

3-3-4 Tensile properties 

Herakovich discussed that the axial tensile strength of a unidirectional lamina is typically 

controlled by the ultimate fibre stress (Herakovich 1998). Kelly and Davies (1965) provided the 

analysis for predicting axial tensile strength as a function of fibre and matrix strengths, and the 

constituent volume fractions, assuming that the fibres are identical, continuous, aligned and 

uniformly spaced. 
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Tensile and flexural tests were carried out using graphite/epoxy composites with two different 

fibre surface conditions to identify the effects of fibre-matrix adhesion on the mechanical 

properties of composites in conjunction with the variation of fibre volume fraction (Shiqiang and 
Lin 1999) 

The bond between the fibre and matrix in a hybrid ensures that both fibres continue to carry part 

of the applied load and to contribute to the overall stiffness after first cracking (Bunsell and 

Harris 1974). The transverse tensile strength decreases as the fibre content increases for glass 

fibre epoxy composites, and their results indicated that the transverse tensile strength is a 

sensitive test for assessing the interfacial bond strength. A strong correlation between tensile 

strength and interfacial strength (fibre surface treatment level) has been reported in several 

studies (Caldwell 1992). 

Mar and Lin reported that the formation of longitudinal splitting in the unidirectional composites 

occurs as a consequence of one or more of the following failure mechanisms: transverse matrix 

cracking, fibre/matrix debonding (Mar and Lin 1979). 

Rapid and extensive longitudinal splitting combined with fibre fracture was found to occur at a 

very late stage of tensile testing of unidirectional composites. Bader has reported that a low level 

of fibre surface treatment results in the classical brush-like failure (Bader 1993). Manders and 

Bader 1981 observed similar behaviour, which showed that the failure of glass/epoxy specimens 

during a tensile test was initiated by longitudinal splitting which progressed to total wearing 

down of the specimen to failure (Manders and Bader 1981). The slow propagation is dominated 

by transverse tensile stresses in the matrix, whereas, the fast growth is driven by shear stresses. 

It has been also reported by Wolla and Goree that the longitudinal splits are initiated in a slow, 

stable manner at the crack tip followed by a rapid longitudinal split growth (Wolla and Goree 

1987). 

Ahlstrom and Gerard studied the adhesion in E-glass fibres where they were subjected to various 

surface treatments with an epoxy matrix to evaluate the effect of the coating process. They 

reported that the tensile strength of the silane-treated glass fibre composite was higher than for 

the untreated fibres which is in compliance with reported data. An additional effect is observed 

for the elastomer-coated fibres, which present the highest tensile strength. This effect could be 
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attributed to an improved protection and/or elimination of the weakest filaments in the glass yarn 
during the treatment (Ahlstrom and Gerard 1995). 

It has been shown that stress concentrations in unidirectional composites containing interfacial 

damage between fibres and matrix and lengths of damaged regions were influenced by interfacial 

shear strength (Qing-Dun et al. 1997). 

To improve the mechanical properties of fibre-reinforced polymer matrix composites, the hybrid 

systems based on unsaturated polyester and epoxy resins with different ratios were investigated 

(Park et al. 1998). The effects of a hybrid matrix system were evaluated by flexural, tensile and 

SEM experiments, Park observed that the hybrid system provided the maximum mechanical 

properties. 

Tensile tests were conducted on a woven glass/epoxy laminate at varying fibre volume fractions 

in order to ascertain the relationship between the fibre content and failure mechanisms. The 

results suggest a brittle tensile failure in fibres of the woven laminate indicating that increasing 

of the fibre volume fraction leads to the likelihood of a matrix dominated failure mode (Okoli 

and Smith 1998). 
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Figure (3 -1) Mosaic model for a unit cell of 8-harness satin (after Chou and Ishikawa 
1983b). 
(a) Cross-section of a woven fabric before resin impregnation; 
(b) Woven fabric composite; 
(c) Idealization of the mosaic model. 
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Figure (3 - 2) Mosaic model of 8-harness satin woven fabric (after Ishikawa and Chou 
1983b) 
a- Repeating region in an 8-harness satin composite; 
b- A basic cross-ply laminate; 

c- Parallel model; 
d- Series model. 
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Figure (3 - 3) Fibre crimp model (after Chou and Ishikawa 1982b). 
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Figure (3 - 4) Fibre crimp model in hybrid woven fabric (after Chou and Ishikawa 
1983d). 
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Figure (3 - 5) Bridging model of 8-harness satin woven fabric (after Ishikawa and Chou 
1983b), 
(a) repeating unit in an 8-harness satin composite, 
(b) modified shape for repeating unit, 
(c) idealization for the bridging model. 
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Figure (3 - 6) A 3D view of the bridging model for 8-harness hybrid woven fabric 
(after Ishikawa and Chou 1983d). 
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CHAPTER FOUR 

Experimental Details 

Z`his work deals with an investigation of fracture behaviour involving two different woven fabric 

composite materials. In this chapter, a description of the fibre, yarn, weave type, fibre coating 
details and the resin system reinforcement is given. The details of specimen preparation and test 

lbethods are explained. A description of techniques required to observe, record and classify the 
damage growth while testing such as AE, visual specimen examination (VSE) and scanning 

electronic microscopy (SEM) is presented. 

4-1 Material Characteristics 

The materials used in the experimental testing, supplied by Interglas Technologies, Sherborne 
IJK, were: - 

1. Non hybrid 8-harness satin woven fabric of EC9 68 TD22 in warp, EC9 68 in weft, SEM 

micrograph of the woven fabric see figure (4 -1). 

Z. Hybrid 8-harness satin woven fabric of EC9 68 in warp and RC9 68 in weft. 

'Where E= E-glass, R= R-glass. C= continuous filament yam. 9=9 micron diameter. 

68 = 68 TEX i. e. 1000 m of yam weighs 68g. 
TD22 silane binder, resin compatible option used as fibre coating for both fabrics. 

4 -1-I Yarn nomenclature 

The yam is composed of a specific number of filaments of-glass of known diameter, typically 

204 to 816 filaments, the weight of yam in units of TEX (Interglass Technologies, 1999,1998). 

The advantages of the yam are: 
(i) High strength to weight ratio, approx. 68gm. TEX 

(ii) Low elongation at break, approx. 3.5% 

(iii) Perfect elasticity, no creep under sustained load 

(iv) High electrical resistance 
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(v) Wide range of temperature resistance, -200C to +550C 

(vi) Non absorption of moisture 

(vii) Highly transparent 

(viii) Non-flammable 

(ix) Low chemical reactivity 
The disadvantages were: 
(x) Poor resistance to abrasion, 
(xi) Poor resistance to flexing through acute angles. 

The hybrid and non-hybrid fabrics of glass fibres used in the test consist of two systems of 

parallel yams, the warp and the weft interlaced at ninety degrees to one another. The fabrics have 

identical or similar numbers of threads in both directions and the yam count is generally the 

same. These are known as bi-directional fabrics. Greater mechanical strength and stiffness of 
laminate is due to limited thread deflection (crimp). The fabrics are more drapable and therefore 

better suited to shape components than plain weave fabrics. 

The major features of hybrid and non-hybrid cloths were the same, i. e. both were eight-harness 

satin weave cloths, of similar weight. The two types of woven glass cloth were chosen, enabling 

not only general damage accumulation to be studied, but also the particular effect of the 

hybridisation of the yarns and fibre volume fraction on the behaviour of the laminates assembled. 

4 -1- 2 Finishin 

In order to achieve a strong bond between the glass surface and the resin, it is necessary to 

modify the un-reactive inorganic glass surface. Coupling agents known as silanes are used for 

this purpose. A silane can be considered as a double-ended molecule based on a silicon atom. On 

one side of the silicon atoms are ethoxy (OEt) or methoxy (OMe) groups and on the other are 

organic reactive groups, R1: - 

OEt 

OEt Si - Rt 

OEt 

46 



Damage Accumulation in Hybrid Woven Composites Experimental Details 

The silane is firstly dissolved in water when the OEt or OMe groups are hydrolysed to give: - 

HO 

HO 

HO 

Si Ri 

When heat-cleaned, the glass cloth is run through the silane solution so that hydroxyl groups on 

the glass surface react with the hydroxyl groups of the silane to form a Si-O-Si bond eliminating 
the water. This leaves the silane strongly bonded chemically onto the glass surface. This 

process has been used and explained by Interglass Technologies (Interglass Technologies, 1999, 

1998). 

4-2 The Matrix Resin System 

The epoxy resin used in tensile, flexural, ILSS and DMTA testing laminates was produced by 

using L20-SL set, bisphenol A- (epichlorydrin) epoxy resin with cyclohexylamine hardener, 

from Bakelite. The resin specification is given in table (4 - 1). Both epoxy resins and hardener 

were supplied by Interglas- Technologies. 

Epoxy is the general classification for resins containing two carbons and one-oxygen atom 

bonded in a ring. Such resins may be derived from many different starting materials such as 

phenol, bisphenol and multifunctional phonemic. The bisphenol-A is prepared as a result of the 

reaction of acetone and phenol. Since both phenol and acetone are readily available'and the 

bisphenol-A is easy to manufacture, this material is comparatively inexpensive. This is one of the 

reasons why it is preferred that dihydric phenol be employed in epoxide resin manufacture. Since 

most epoxy resins are of low molecular weight and its colour is not particularly critical, the 

degree of purity of the bisphenol-A does not have to be great. Bisphenol-A with a melting point 

of 153° C is considered adequate for most applications whilst less pure materials may often be 

employed. 
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4-3 Test and Equipment 

Tensile, flexural and ILSS tests were carried out on the following composites: 

" Non-hybrid E-glass woven fabric composites (weft direction) with four different fibre volume 
fractions for the equal specimen dimension in order to investigate the effect of fibre volume 
fraction on glass woven composites. 

" Hybrid (of R- and E-glass) and non-hybrid glass woven composites for the both warp and 

weft directions at similar fibre volume fraction (Vf) and equal specimen dimension in order 

to investigate the effect of fibre hybridisation on glass woven composites. 

" Additionally tensile and flexural tests were carried out on neat epoxy resin. 

4-3 -1 Tensile test method 

Tensile tests were conducted according to British Standard (BS) EN ISO 527-5 1997; (BS 2782: 

Part3: Method 326G: 1997) for woven composite laminates. The tensile test machine Zwick 50 

could be loaded to 50 kN, using hydraulic grip with an extensometer for 100 mm extension, see 

figure (4 -3 and 4- 4). The tensile specimen was straight-sided and had a constant cross- 

section; sample dimensions were 250 mm long, 15 mm wide, and 1-mm thickness. 

A test specimen was subjected to a longitudinal load at a speed of 2 mm/min, an extensometer 

with 100 mm extension being used to allow a force-extension curve to be drawn without inertia 

at the speed of testing. The requirements for the loading assembly permitted measurements of the 

load and deflection during the time of test period. Stress and strain values were calculated, with 

average and standard deviation adopted in calculations. Tensile stress was calculated using the 

following equation. 

Stress (a) = Load (4.1) 
InitialArea 

A tensile stress-strain curve along with the corresponding AE curve was used for damage 

accumulation analysis of the hybrid and non-hybrid composites. 
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4-3-2 
_Flexural 

test method (three-point bending) 

Flexural tests were conducted according to BS EN 2746: 1998, on Testometric MICRO 350 

using a three-point bending test jig, down-loaded across the width at a speed of 5 mm/min. 

The jig was properly constructed and calibrated to achieve an approximately constant rate of 

relative movement between the loading nose and the supports. Figure (4 - 5) illustrates the test 

configuration. Dimensions of test specimens were 3 mm thickness, 15 mm width and 60 mm 
length. A test specimen was subjected to a three-point bending load. The requirements for the 

loading assembly permit measurements of the load and deflection during the time of the test 

period. Deflection was corrected by abstracting the machine deflection from reading deflection 

before calculating the values of strain, such that: 

Corrected deflection = (Reading deflection) - (Machine deflection). 

The stress and strain values are then calculated, the average and standard deviation, were adopted 
in calculations. Flexural stress was calculated using the following equation: - 

af= 
3FL 

(4.2) 
2bh2 

where: 

6f is the flexural stress, in MPa. 

F is the load applied, in Newton. 

L is the span, in mm. 

b is the width of specimen in mm. 
h is the thickness of specimen in mm. 

The strain was calculated by the following formula: 

EF -Lh (4.3) 

where: 

EF = is flexural strain in % 

d= deflection in mm 
h= thickness in mm 
L= span length in mm 
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4-3-3 Apparent Interlaminar Shear Strength (ILSS) (short-beam method) 

Interlaminar shear strength (ILSS) tests were conducted according BS EN ISO 14130: 1998, on 
Testometric MICRO 350, using a short-beam method, with a speed of 1mm/min. Figure (4 - 6) 

illustrates the test configuration. The ILSS test is similar in nature to the three-point loading 

method used to determine the cross-breaking strength of rigid materials. The loading assembly 

permits measurement of the deflection and load during the test. Deflection was corrected by 

abstracting the machine deflection from reading deflection before calculating the values of strain, 

such that: 
Corrected deflection = (Reading deflection) - (Machine deflection). 

The test specimen dimensions were 2 mm thickness, 10 mm width and 20 mm length; within the 

permissible range defined by the standard. The ILSS values were then calculated according to 

BS, using the following equation: - 

r= 4xF 
(4.4) 

where: 
F is the failure or maximum load, in Newton. 

b is the width of specimen in mm. 

h is the thickness of specimen in mm. 

"Apparent interlaminar shear strength" is the term often used to describe the quantity measured. 

Hence, the results from different size samples or from tests under different conditions are not 

directly comparable; consequently the results obtained are not absolute figures. 

4-3-4 Acoustic Emission analyser 

Acoustic Emission (AE) monitoring used a Marandi 1004 with analysis equipment via a 

piezoelectric transducer during tensile, flexural and ILSS tests. Simultaneously AE parameters of 

the received signal were recorded in the form of ring down count (RDC). The RDC of acoustic 

emission was recorded as an analogue signal on the single channel by mean of a piezoelectric 

short-band transducer to give a classical representation of bar proportional to the rate versus time 

mode. 
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This methodology allowed investigation of the micro-mechanics failure process on woven 

composites. A short-band sensor was held in an improved clamp fixture as shown in figure (4 - 
3). It was optimally aligned to ensure contact with the specimen. This arrangement was 

necessary due to 

(1) limited space available on the specimen to hold the sensor (especially in the case of bending 

test), and 
(2) The necessity to ensure that the sensor would not slip during the test. 

Silicone grease (R5454-124 Silicon grease) was used as a coupling-agent between the sensor and 

specimen to reduce the peak amplitude of noise, and prevent it exceeding the threshold. 

4-3-5 AE system calibration 

Transducer calibration must be done in absolute units of displacement if it is to be correlated 

with dynamic phenomena. It is also necessary to calibrate the frequency response of the 

transducer. In this study the AE calibration of the AE system using a pencil lead breakage 

method has been followed. A 21-1-pencil lead of 0.5mm diameter is usually applied. The lead 

field button is pressed repeatedly to protrude a definite length of lead and then it is made to break 

against an even surface to which the AE transducer to be calibrated is coupled. To obtain a 

repeatable constant AE source, the lead is broken at a fixed distance from the sensor, maintaining 

the same length and angle of contact of the lead with the surface. This method was adopted by 

Arved Nielsen and is sometimes called the Nielsen lead break method. 

4-3-6 Scanning Electron Microscope (SEM) 

The images generated by a SEM result from high-energy electrons striking a target in a fashion 

similar to that, which occurs in a conventional x-ray tube. Whereas the x-ray tube is specifically 

designed to produce x-rays, when the electrons strike the tube, the scattering characteristics of 

the target in a SEM vary with the target material. In most cases, where the target might be an 

engineering sample such as a fracture surface, the signals of greatest interest are the secondary 

and backscatter electrons. These vary with differences in surface topography as the electron 

beam sweeps across the surface. The scattering characteristics of the specimen are used to 

recreate the very high-resolution images that are readily associated with SEM work. Also of 

interest, however, is the field of x-rays that are emitted as a result of the electron bombardment 

(Bray and Stanley 1996). 
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In a preparation of the samples for the SEM inspection, samples were simply cut using a 
diamond wheel cutter. The samples were mounted on 10 mm square steel spools using double- 

sided adhesive carbon pads to hold them straight inside the SEM chamber and to protect them 

from damage. Therefore, the fracture surfaces were held towards the electron beam inside the 

chamber. Each sample was then gold plated in order to charge the electrons on the fracture 

surface. The plating was necessary because of the non-conductive nature of the composite 

samples since only conductive surfaces attract the electrons. This has enabled scanning of the 

enlarged fracture surfaces onto the SEM display for analysis. The scanning electron microscope 

utilised was a Phillips 505 model. Gold plating was carried out in an Agar Auto Sputter Coating 

machine. Black and white micrograph images of the fractured surfaces were scanned into the 

computer and then the images were produced digitally. 

During scanning, the enlargement was adjusted to obtain a suitable image for fracture analysis. 
Depending upon the nature and severity of the fracture, the enlargement scale varied from 10 

times to 1100 times the original fracture size. In order to display the fractures that could be seen 

easily from the surface of the sample, a low scale enlargement was employed, but for the images 

of fractures such as fibre/matrix debonding and fibre pullout, a larger scale was utilised to see the 

details of the fractured surfaces. 

4-3-7 Dynamic Mechanical Thermal Analysis (DMTA) 

Dynamic mechanical thermal analysis (DMTA) was conducted according to the British 

Standard BS 2782: Part 3 Mechanical Properties: Method 323B Flexural vibration - Non 

resonance method: 1996, ISO 6721-5: 1996. A Rheometric scientific dynamic mechanical 

analyser DMTA IV instrument was used for measuring the DMTA properties supported by 

Rheometric Scientific's Orchestrator software on a windows platform incorporating a 

comprehensive multi-modular control and acquisition capability. Figure (4 - 7) illustrates the 

test configuration. A sinusoidal displacement is generated by the vibrator and applied to the 

specimen through moving clamps located close to the opposite ends of the specimen. The 

amplitude and frequency of the vibrator table displacement are variable and monitored by the 

transducer. The specimen is held at its centre by a second fixed clamp and thus undergoes 

sinusoidal flexural deformation. 
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The experimental tests, which were carried out under oscillating load, were monitored against 

time and temperature of oscillation, while the frequency of the sample was programmed at a 

constant 1.0 Hz throughout all tests. The DMTA tests involved with: 

" Test on neat epoxy resin and four different fibre volume fractions of non-hybrid E-glass 

woven fabric composites. 

" Tests on non-hybrid woven fabric composites of E-glass and hybrid woven fabric composites 

of E-glass in warp and R-glass in weft. Test were carried out for the both warp and weft 
directions at 42% fibre volume fraction. 

The test was set up on a dynamic temperature ramp mode; the ramp rate was 3 C°/min. and the 

soak time after ramp is 1 sec. This applies a sinusoidal varying load, holding the frequency of the 

oscillation fixed at 1.0 Hz and strain 0.01%. The ratio of the amplitude of the stress and strain 

sine waves determines the storage modulus (elastic modulus) of the specimen, the phase angle 

between the two waves is called the loss angle and is a function of the internal friction of the 

material. A test specimen is subjected to a sinusoidal transverse force at a frequency of 1.0 Hz, 

significantly below the fundamental flexural resonance frequency. The amplitudes of the force 

and displacement cycles are applied to the specimen and these cycles are measured. The storage 

and loss components of the Young's complex modulus and the loss factor are calculated. The test 

fixtures for three point-bending have sufficient versatility to assure rigid, positive positioning of 

test samples in order to achieve accuracy of measurement. 

Sepe contributed that the best dynamic mechanical analysis can be operated in a controlled stress 

or controlled strain mode, the primary value of the method in the dynamic experiment (Sepe 

1999). In this mode of operation the DMTA instrument applied an oscillatory stress with 

controlled frequency, therefore similar methodology has been used in this study. 

Dynamic modulus values using this method are a function of frequency rather than time; the 

stress function is sinusoidal. In perfectly elastic systems the applied stress and the resulting 

strain will be in the phase. For an ideal fluid the stress will lead the strain by 900. 

Commonly, the glass transition is determined by measuring the specimen using either (tan delta) 

or loss modulus as a function of temperature. As the specimen goes through the glass transition, 
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the modulus drops by several orders of magnitude, and the loss modulus goes through a peak. 
The temperature at which the loss is at a peak maximum is defined as the glass transition 

temperature Tg. 

4-3-8 The DMTA system calibration 

The DMTA requires the following calibration tasks to be performed: 

Removal of Fixtures: a calibration procedure instructs to remove all test fixtures. This means to 

remove the drive shaft attachment, frame and studs or clamps. 

System Calibration: system calibration consists of the displacement, force, and spring 

calibrations, which must be performed in that order accordingly as mentioned by RSl 

Orchestrator guides. 

Displacement calibration: displacement calibration ensures accurate displacement at the 

measurement head for a given commanded strain. 

Force calibration: force calibration ensures the correct amount of force is applied to the 

measurement head. During this calibration step, the weight of the drive shaft is also measured. 

Spring calibration: spring calibration calculates the spring constant of the drive shaft. 

Cal check: cal check is provided to perform daily on abbreviated system calibration by 

performing only the spring calibration (rather than the full system calibration) and is 

recommended to be done daily. 

Compliance calibration: as the measurement head deflects during testing, the instrument frame 

also moves due to its mechanical compliance. A small portion of this movement is measured 

along with the deformation of the sample. Compliance calibration subtracts the mechanical 

compliance of the instrument frame. This calibration can be helpful in obtaining accurate moduli 

when testing relatively thick, stiff samples. 

Phase angle: phase angle calibration ensures accurate measurement of the phase angle between 

stress and strain 
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Tool mass calibration: tool mass calibration is a function that measures the mass of a test fixture, 

and adds this mass to the mass of the motor drive shaft. The inertia of the total mass is then 

calculated for use in compensating for inertia during testing. Inertia must be performed prior to 

the first time a test fixture is used to run tests. Subsequent use of the test fixture does not require 
tool mass calibration. 

4-4 Porosity and Determination of Fibre Volume Fraction 

4-4-1 Porosit 

Pores are formed due to the extraction of volatile products of chemical reactions of hinder 

curing, solvents, air and moisture absorbed by the binder and reinforcing filler. These products, 

expanding when heated, form a system of open and closed pores, varying in shape and size. The 

effect of composite porosity is different, depending on the type of stress condition and strain 
direction (Gunyaev 1985). 

The presence of porosity in a composite may involve a significant decrease in its mechanical 

characteristics by increasing the dispersion of their values. The presence of porosity also 
increases the sensitivity of the composite material to the external environment: increased 

absorption from humidity, decreased resistance to chemical products, etc. It will therefore be 

important to have an estimate of the proportion of porosity as a means of evaluating the quality 

of a composite. A high-quality composite material will contain less than 1% by volume of 

porosity, whereas a mediocre quality composite could have as much as 5% (Berthhelot 1999). 

The presence of porosity is highlighted of the glass woven composite in figure 4-2. The 

method used to determine the volume of porosity content in woven glass fabric was the BS ISO 

7822: 1999. The magnitude of the void content is determined by rapid examination, using a 

microscope type Olympus BX 60, by applying one of the grids to each of the polished sections 

three times, examining a different field each time. Then all the fields, the number of points in 

each field, the number of fields for each section and the number of sections are examined in 

order to calculate the void contents ((0v) as percentage by volume, using the following formula: 

N 
c, v- P (4.5) 
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where 
N is the total number of void points counted 
P is the total number of points examined. 

4-4-2 Determination of fibre volume fraction 

The matrix bum-off technique has been used to determine the volume fraction of glass fibres 

within the test laminates using BS ISO 1172: 1999. Two small samples (approximately 15 mm x 
15 mm) were cut from two different regions of the laminate according to BS. Each sample was 

weighed before being placed in a ceramic crucible and covered with a lid, the weight of the 

crucible and the lid were known. The crucible was placed in the furnace at a temperature of 5500 

C for approximately 1 hour. With the absence of resin confirmed visually, the crucible was set 

aside to cool in the dry controlled temperature shelf-box. The crucibles were re-weighed after 

cooling. 

The mass of the glass fibres (Mf) and the mass of the resin (Mm) within each sample were 
determined by simple subtraction. 

Density of the E-glass was = 2.60 g/cm3, 
Density of the R-glass was = 2.53 g/cm3 
Density of the Epoxy resin was =1.155 g/cm3 (Vetrotex 2000). 

The volume fraction (Vf) of the glass fibres in the composite was calculated using the equation: 

Mj 

Vf= 
M 

Pf 
M 

(4.6) 
Im 

Pf P. 

Volume = 
Mass 

=M Density p 
(4.7) 

where: 

M is the mass (or weight), 
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p is the density, 

Vf is volume fracture of the glass fibre in the composite, 
V. is volume fracture of matrix. 

4-5 Laminate Manufacture 

The reinforcement for all laminates comprised of a number of woven fabric layers positioned in 

orthogonal alignment of warp and weft direction before the resin was applied by a hand lay-up 

process for each layer. In the case of hybrid fabric, the dominating fibre in the warp direction is 

E-glass, while the dominating fibre in the weft direction is R-glass. In the case of non-hybrid 
fabric, E-glass is in both warp and weft directions. This relative positioning was necessary to 

maintain a symmetrical stacking in the correct sequence within the laminate. 

The procedure for the manufacturing of the laminates adopted a hand lay-up process. The resin 

to be used was weighed out and mixed thoroughly at room temperature. A thin layer of this resin 

was then spread on a sheet of silicone; a layer of glass cloth was then laid on the resin followed 

by another thin layer of the resin. The cloth was left until the resin had wetted all of the fibres; 

any entrapped air was removed by the application of gentle pressure with a roller. A similar 

procedure was followed for the remaining layers of the laminate. 

Particular attention was paid to the orientation of the individual layers of wetted cloth to ensure 

that the sequence and symmetry of the finished laminate were correct. The composite laminates 

were cured in a heated press for 3 hours at 130 °C under pressure in order to achieve the correct 

thickness for relevant test samples. Post-curing proceeded in an oven at 80 °C for a further 

sixteen hours. Individual test pieces were then cut by an abrasive circular saw to get samples for 

the following investigations: 

4-5 -1 Investigating the effect of hybridisation 

Laminates for tensile tests with 1 mm thickness have 5 layers of woven glass fabric achieving 

48% fibre volume fractions of the composite. 

Laminates for ILSS tests with 2 mm thickness had 10 layers of woven glass fabric achieving 

48% fibre volume fractions of the composite. 
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Laminates for flexural tests with 3 mm thickness had 15 layers of woven glass fabric achieving 

48% fibre volume fractions of the composite. 

A similar procedure was adopted for both hybrid and non-hybrid fabrics for the purpose of 

comparison. The burn-off technique mentioned in section 4-4 determined fibre volume 
fractions of the composite. 

In the specimen laminated from non-hybrid glass fibre fabric layers and epoxy resin 

reinforcement composites, it is essential to note that E-glass was in both weft and warp directions 

of the fabric. Consequently, the composite test specimen of non-hybrid glass fibre fabric 

contains only E-glass fibre. In the specimen laminated from hybrid glass fibre fabric layers and 

epoxy resin reinforcement composites, E-glass was in the warp direction and R-glass was in the 

weft direction of the fabric. 

The weft direction of hybrid woven fabric laminates had the R-glass yarn in the normal 

direction with the loading axis. The weft direction of non-hybrid woven fabric had the E-glass 

yarn in the normal direction with the loading axis in ILSS and flexural testing. This allowed 

comparison of the two materials and constructions to be made. 

In order to investigate the effect of hybridisation in the composites, test specimens for hybrid 

fabric were cut along the R-glass fibre in the weft direction and test specimens for hybrid fabric 

were cut along the E-glass fibre in the warp direction. The tests of hybrid and non-hybrid 

composites (weft direction) can be compared, as can the tests of the hybrid and non-hybrid 

composites in the (warp direction). 

4-5-2 Investigating the effect of fibre volume fractions in the composites 

Laminates of non-hybrid woven fabric made from E-glass in the weft direction with varying 

number of layers but constant laminate thickness were used in order to obtain different fibre 

volume fractions. These were as follows: - 

Laminates made for tensile tests of 1 mm thickness having 4 layers of non-hybrid glass woven 

fabric achieved 38% fibre volume fractions (Vf) in the composite. Laminates of 1 mm thickness 
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having 5 layers achieved 48% Vf. Laminates of 1 mm thickness containing 6 layers achieved 
56% Vf and finally laminates for tensile tests of 1 mm thickness containing 7 layers of non- 
hybrid glass fabric achieved 64% Vf in the composite. 

Laminates of non-hybrid glass fabric made for ILSS tests of 2 mm thickness with 8 layers 

achieved 38% fibre volume fractions (Vf) in the composite. Laminates of 2 mm thickness 

containing 10 layers achieved 48% Vf. Laminates of 2 mm thickness and 12 layers achieved 56% 

Vf and finally laminates of 2 mm thickness and 14 layers of non-hybrid glass fabric achieved 
64% Vf in the composite. 

Laminates for flexural tests of 3 mm thickness with 12 layers of non-hybrid glass fabric 

achieved 38% fibre volume fractions (Vf) of the composite. Laminates of 3 mm thickness with 
15 layers achieved 48% Vf. Laminates of 3 mm thickness with 18 layers achieved 56% Vf and 
finally laminates for flexural tests of 3 mm thickness with 21 layers of non-hybrid glass fabric 

achieved 64% Vf in the composite. The burn off technique mentioned in section 4-4 

determined fibre volume fractions in the composite. 

59 



PAGE 

NUMBERING 

AS ORIGINAL 



Table 4 -1 Specification of the epoxy resin (L20-SL) system *. 

Properties Units L20 SL 
Density 25 C cm 1.155 -0.01 0.95-0.02 
Viscosit 25 C mPa. s 900-150 90-10 
Epoxide equivalent e uiv. 179 
Amine equivalent g/equiv. 60 
Volatile constituents/60 
0c 

% <0.2 

Flexural strength MPa 125 125 
Tensile strength MPa 56 55 
Compressive strength MPa 390 395 
Elongation at break % 10 9.5 
Glass transition 
temperature (Tg) °C 110 

* The manufacturer (Bakelite) provided these values in correspondence 
with author April 2000. 
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Figure (4 - 1) SEM micrograph of 8-harness glass woven fabric 

Figure (4 - 2) the presence of porosity in the glass woven composite, an optical 

microscopy view of the through-thickness of glass woven composite specimen. 

62 



Figure (4 - 3) Zwick Z050 Tensile Testing Machine. 

Figure (4 - 4) Tensile specimen fixed by hydraulic grip, extensometer for 100 mm 
extension and AE short-band sensor clamped on the specimen. 
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Flexural Test - Three-Points Bending Method 
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Figure (4 - 5) flexural test (Three-point bending method) configurations. 

Interlaminar Shear Strength Test By Short-Beam method 
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Flexural Vibration - Non resonance method 
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Figure (4 - 7) DMTA test configurations. 
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Damage Accumulation in Hybrid Woven Composites - ILSS Results and Discussion 

CHAPTER FIVE 

Results and Discussion 

This chapter is divided into seven sections. The first four sections contain the results and 
discussion of Interlaminar Shear Strength (ILSS), flexural, Dynamic Mechanical and Thermal 

Analysis (DMTA) and tensile properties respectively. Each section deals with results and 
discussion from two different categories of experimental tests, (i. e. the non-hybrid and hybrid 

laminates) which have been carried out in this study. 

Acoustic Emission (AE) was employed during ILSS, flexural and tensile tests. Scanning Electron 

Microscopy (SEM) of the specimen's fracture surface after testing assisted characterisation of 

the damage features. 

The results are classified according to tests carried out, and, where appropriate, the mean and 

standard deviations of the results for sets of specimens are given in each category. The mean and 

standard deviations were used to categorise the -variation of the results into significant or non- 

significant by using the t-test of probability; details are given in section six of this chapter. 

The evaluation of the results has been discussed in section six of this chapter. The model of 
failure process and damage accumulation analysis in the glass woven composites is located in 

section five of this chapter. Microlam in-put and out-put details are located in section seven. 

5 -1 Section One: Interlaminar Shear Strength (ILSS) Results and Discussion 

5 -1-1 The results of ILSS test 

The result of the ILSS tests on non-hybrid glass woven fabric reinforced epoxy resin composites 

with four different glass fibre volume fractions are set out in table (5 - 1), and are graphically 

presented in figure (5 - 1). The quantification of AE values during ILSS tests including four 

different glass fibre volume fractions is summarised in table (5 - 2). These results will 

demonstrate the effect of fibre volume fraction on ILSS in the composite. 
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The investigation of the ILSS test on hybrid and non-hybrid glass woven fabric reinforced epoxy 

resin composites at 48% Vf is studied for both warp and weft directions. The results are shown in 

table (5 - 3) and are graphically presented in figure (5 - 2). The quantification of AE values 
during ILSS testing including the hybrid and the non-hybrid for both warp and weft directions 

are summarised in table (5 - 4). These results will highlight the effect of fibre hybridisation on 
ILSS in the composite. 

5-1-2 Discussion of the effect of fibre volume fraction on ILSS 

The plot of ILSS in figure (5 - 1) allows the direct comparison of the value and performance of 
four different glass Vf composites. The shapes of load-displacement curves vary, and differ in 

their values of the ILSS strength at break point. The first set of composites with lowest fibre 

volume fraction at 38% Vf has the lowest shear strength value. The set of composites with 
highest fibre content at 64%Vf has the greatest shear strength value. The shear strength increases 

approximately by 10% from one fibre volume fraction to another in this investigation. The knee 

point appears on each load-displacement curve that exhibits varying values for each fibre 

volume fraction composite. The knee point and non-linearity response has been examined 
individually for each ILSS test (see figure 5- 3). 

The AE response and details including four Vf composites are shown in figure (5 - 1). The plot 

of AE provides two essential points of information: the starting point of actual deformation after 

a load is applied and continuous information concerning the damage sequential process during 

the test. It provides a clearer insight into the individual stages of the test depending on structure 

and morphology as well as about failure mechanisms taking place. 

The AE zones classification technique has been used in this study in order to obtain the 

maximum information for different deformation levels during ILSS tests. The plots of ILSS 

load-displacement including its AE ring down count (RDC) curve in the figure (5 - 3) has been 

divided into three zones are as follows: 

Zone A: The AE line parallel to the x-axis, until the AE onset point associated with the initial 

linear portion of ILSS load-displacement response, indicates that there is no AE activity in this 

zone. There was no existing record of RDC or any rise on the AE curve to define any plastic 
deformation of the composite specimen under ILSS loading in this zone. The Knee point of the 
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ILSS load-displacement curve is the first indication of non-linearity. The correlation between 

the AE onset point and the knee point of the load-displacement curve has also been examined 

carefully for each ILSS test. The explanation of non-linearity agrees with Wooh who showed 

that no macroscopic damage was found in the linear elastic region (Wooh et al. 1995). 

Zone B: AE rise appears at the onset point, indicating the initiation of the first sign of damage in 

the construction of the composite material. Zone B has been determined from the continuous 
low level of AE ring down count recorded and it is believed this corresponds to matrix micro 

cracking. This is interpreted as being due to possible void formation in the composite and 

possible fibre/matrix interface failures. 

Zone C: The AE ring down count continues rising almost linearly and progressively in zone C 

until specimen fracture. The higher RDC recorded corresponds to fibre/matrix interface damage 

which progressively increases to create layer delamination in the laminate. 

The use of AE has been employed by Okoroafor, Netravali and Bondt to measure the fibre- 

matrix interfacial strength between a fibre and a matrix (see Netravali et al. 1991 and Bondt et al. 
1993) and (Okoroafor et al. 1996). Wang observed high AE activity associated with layer 

delaminations (Wang et al. 1995). The zone classification technique of load-displacement and 
its relating AE curves have been utilised in this study to extract the maximum possible 
information from each variation in the damage events. The knee point of load-displacement and 

AE onset point relationship of woven glass fibre in the composites could be used and interrelated 

to the specimen fracture surface. The ILSS values and qualitative images of damage 

accumulation in woven composites are also interrelated. 

The investigation of the ILSS test on non-hybrid glass woven fabric reinforced epoxy resin 

composites including four different glass fibre volume fractions have been studied carefully. 

The results show that the ILSS (r) increases with the increase in overall fibre volume fraction 

due to an increase in the number of woven layers in the composite reinforcement. The 

representative figure (5 - 3) and the quantification of these values are summarised in table (5 - 
1). The AE activities recorded a variation in the magnitude of the ring down count in each zone 

and distinct values corresponding to break points as summarised in table (5 - 2). It is essential to 

take into consideration that the higher the AE activity the greater the damage especially in 

relation to the interfacial bond and layer delamination. 
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It has been observed that the lower the Vf of the composite, the greater the values of ring down 

counts on the AE curve in each zone. AE activities monitored during ILSS (comparison view in 

figure 5- 1), reveal that a higher Vf in the composite shows failure at lower displacement levels 

compared with those of low Vf composites. Therefore, the variations of the ILSS are considered 

to be due to differences in the overall fibre coating concentration and their interaction with the 

matrix caused by the variation of fibre volume fraction. This causes some changes in the overall 

fracture performance of the specimens. This is evidence that the variation in fibre volume 

fraction in the composites leads to a change in fracture performance and, presumably, refers to a 

change in the interphase mechanism. The interphase refers to a region between the bulk matrix 

and the glass fibres in the composite. Further details concerning the interphase phenomenon can 

be found in the DMTA analysis section three. Scanning Electron Microscopy (SEM) of the 

fracture surface of the specimen identifies variations in the damage performance for each 

individual composite. 

It should be mentioned that the composite of 64% Vf was laminated with 14 woven layers. It 

should also be pointed out that the composite of 38% Vf was laminated with 8 layers only while 

the composite of 56% Vf was laminated with 12 layers and the composite of 48% Vf laminated 

with 10 layers. 

The ILSS load-displacement together with its AE rate curves of woven fabric reinforced epoxy 

resin composite are represented in figure (5 - 4). The rate of the AE recorded and the number of 

peaks for each composite has been studied individually. The quantification of rate values for 

each composite is summarised in the table (5 - 2). It was observed that the number of peaks 

decreased with increasing fibre Vf in the composites, which clearly demonstrates a case of 

increased overall adhesion. 

ILSS fracture performance of (four different Vf) woven composites was investigated by SEM. 

The objective of investigating the fracture surface of the test specimens after the ILSS test is to 

identify the damage performance for each individual composite. 

The micrograph of SEM in figure (5 - 5) of non-hybrid glass woven fabric composite at 38% Vf 

exhibits the shear path with very little shear cusps and debris on the fibre surface indicating poor 

fibre/matrix interfacial bonding. The poor fibre/matrix interfacial bond causes the failure in the 
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matrix resulting in fewer fabric layers in the composites and high matrix volume fraction (V. ). 

The SEM micrograph shows a number of delamination paths in the composite. 

The SEM micrograph in figure (5 - 6) of the ILSS fracture surface of non-hybrid glass woven 

composite at 48% Vf shows the shear fracture path with a small amount of irregular debris and 

shear cusps on the fibre surface indicating a weak fibre/matrix interfacial bond. The shear 

propagates through the composite primarily near the fibre/matrix interface. This infers a fragile 

matrix/fibre adherence. The SEM micrograph shows a number of delamination paths of shear 
fracture in the composite. 

The SEM micrograph in figure (5 - 7) of the ILSS fracture surface of non-hybrid glass woven 
fabric composite at 64% Vf exhibits ILSS fracture with a single path and large number of hackles 

on the fibre surface. The large number of hackles indicates the ILSS path was shaped from a 

good fibre/matrix interfacial bond within the woven layer in the composite. 

5 -1- 3 Discussion of hybridisation effect on ILSS. 

The result in table (5 - 3) shows that the interlaminar shear strength (r) of the hybrid composite 

is superior to the non-hybrid composite for the weft direction by approximately 12% and for the 

warp direction by approximately 5%. The shapes of load-displacement curves of the hybrid and 

non-hybrid composites in figures (5 - 2) vary and differ in their values of the ILSS (r). 

The AE response of the hybrid and non-hybrid composites shows that the knee points appearing 

on each load-displacement curve indicate individual values for each composite (see table 5- 4). 

The zone classification methodology of plots has been followed in a similar manner to the 

previous section. An essential feature is that there is a distinct value in each zone and at breaks 

(the shear strength) for each composite. It can be seen that the AE of non-hybrid composite 

leads to an increase in the values of ring down count and rate compared to the hybrid composites 

in each zone. 

The AE pattern recognition, including (figure 5- 2) the selection and classification feature of 

hybrid and non-hybrid glass woven reinforced epoxy resin composites at equal fibre volume 

fraction, has been analysed in this section. The AE ring down count and rate in hybrid woven 

composites differentiates the hybridisation performance of the R-glass and E-glass while the 
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non-hybrid woven fabric contains only E-glass in the composites. The hybrid composites 

exhibited higher stress at the knee point and higher ILSS than the non-hybrid composites. The 

effect of hybridisation appears on the AE and load-displacement curves in each zone, details of 
the values are illustrated in table (5 - 4). This is an indication of greater shear fracture occurring 
in the non-hybrid composite, which is substantiated by the SEM micrograph showing a higher 

number of delamination paths and shear fractures as follows: 

ILSS fracture performance of composites presented by the SEM micrograph in figure (5 - 8) 

shows the ILSS fracture surface of the hybrid glass composite (weft direction). The ILSS 

fracture path and resin hackles along the shear path reveals that the crack path passes round the 

pocket of woven fibres indicating good fibre/matrix interfacial bonding. The debris and shear 

cusps are the result of the matrix failure, which dominated fracture along fibre bundles under the 

effect of undulations created by weaving. 

The SEM micrograph in figure (5 - 6) of ILSS fracture surface of non-hybrid glass woven 
fabric composite at 48% Vf indicates a weak fibre/matrix bond as has been discussed in the 

previous section. The number of delamination paths of shear failure was higher in the non- 
hybrid composites than the number of delamination paths in the hybrid composites. 

Theocaris has reported that the two Mesophase layers (or interphase) formed between the main 

phases as boundary layers dictate the quality of adhesion between phases. Their properties are 

thus critical for predicting the mechanical properties of sized fibre-reinforced composites 

(Theocaris 1987, Theocaris 1992, Theocaris and Stavroulakis 1997). The dynamic property 

results further provide the evidence of the effect of the interphase properties on the ILSS 

performance (see the DMTA analysis in section three of this chapter). Many researchers have 

observed similar behaviour. (Ranade et al. 1997, Agrawal and Drzal 1996) reported that the 

overall properties of a fibre reinforced composite material are dependent upon the mechanical 

and chemical stability of the interfaces, or interphase, formed between the reinforcing fibres and 

the surrounding matrix 

The following results can be outlined from the above discussion: 

. Table (5 - 1) shows the ILSS (r) increases with the increase of overall fibre volume 
fraction in the composites. The increase in the number of layers in the composite leads to a 
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change in the interphase mechanism (properties) as explained by DMTA analysis in section 

three. The interphase property dictates the gross mechanical performance and structural 
integrity of the composite as a whole. Therefore the higher fibre volume fraction in 

composites produces greater interphase strength. A detailed specification concerning the 

interphase phenomenon can be found in chapter two - section (2 - 8) and section three of 

chapter five. 

" The shear failure path in each set of laminates was the result of multiple matrix cracking and 
fibre/matrix debonding, which led to delamination path extension. The number of 
delamination paths of shear failure was higher in the low Vf composites than in high Vf 

composites. The SEM micrographs as shown-provide a clearer view of the individual test 

failure mechanism in the composites. 

" It has been observed that the declining glass Vf in the composite leads to growth in the 

magnitude of the AE ring down counts in each zone, (see figure 5- 1). The number of peaks 
in the rate and the peak length decrease with increasing Vf in the composites. This clearly 
demonstrates a case of increased overall adhesion, (see example plot of the rate in figure 5- 

4). 

" The AE values obtained (table 5- 2) correspond to different levels of micromechanical 
failure. An example would be matrix failure, which results in a number of fibre-matrix 

interfacial failures including layer delamination. The AE activities monitored during ILSS, 

leads to the conclusion that higher levels of Vf in the composite show failure earlier or at less 

deflection values than those of low Vf composites (see figure 5- 1). 

" Table (5 - 3) shows the ILSS (r) of non-hybrid composites compared with those of hybrid 

composites for both well and warp directions. The chemical composition of R-glass fibres 

differs from that of E-glass (See the chemical composition of each glass in table (2 - 1). It is 

believed that differing fibre composition influences the fibre-coating distribution on the R- 

and E-glass fibres. This could lead to different micro- and macro-mechanical performance 
between the hybrid and non-hybrid composites. Therefore, the hybrid composite had higher 

interlaminar shear strength in composites compared to the non-hybrid composite. The 

dynamic property result further provides the evidence of the effect of the fibre treatment 
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distribution on the composite performance (see the DMTA analysis in section three of this 

chapter). 

" The AE curves of hybrid and non-hybrid glass woven fabric reinforced epoxy resin 

composites vary both in form and magnitude. The AE activity reveals that both composites 

were brittle. The hybrid composite exhibits higher toughness than the non-hybrid 

composites. Therefore the hybrid composite could absorb more energy with a sustained 

crack growth stability through crack surface bridging and crack tip blunting. 

" It is observed that ILSS of the hybrid composite leads to a reduction in the magnitude of ring 
down count in each zone compared with that of the non-hybrid composite. The variation in 

AE ring down counts values at ILSS indicates accumulated damage events were higher in the 

case of non-hybrid compared with hybrid composites. The higher the AE activity, the greater 
is the damage. The hybrid composite exhibits less delamination when observed by SEM. 
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Figure (5 - 1) ILSS plot of Load-Displacement and its RDC curves of Non-hybrid glass 
woven fabric reinforced epoxy resin composites including four different fibre volume 
fractions. 
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Figure (5 - 2) ILSS plot of L-D and its RDC curves of Hybrid and non-hybrid glass 
woven reinforced epoxy resin composite for weft direction at 48% Vf. 
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Figure (5 - 3) the zone classification technique used in the ILSS plot of Load- 

Displacement and its AE ring down count curves of non-hybrid glass woven reinforced 

epoxy resin composite. 
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(a) 

(b) 

Figure (5 - 5) SEM micrograph of ILSS fracture surface of Non-hybrid glass woven 
fabric composite at 38% Vf shows (a, ) 85x view of the ILSS fracture path. (b) 500x very 
little shear cusps on the fibre surface indicating poor fibre/matrix interfacial bond. 
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(a) 

(h) 

V, ' - T. 
J 

Figure (5 - 6) SEM micrograph of ILSS fracture surface of Non-hybrid glass woven 
fabric composite at 48% fibre volume fraction shows (a) 40x view of the ILSS fracture 

path. (b) 420x higher magnification shows small debris and shear cusps on the fibre 

surface indicating weak fibre/matrix interfacial bond. 
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(a) 

(b) 
Figure (5 - 7) SEM micrograph of ILSS fracture surface of non-hybrid glass woven 
fabric composite at 64% Vr shows (a) view of single path in the ILSS fracture (30x). (b) 

a large number of hackles on the fibre surface indicating good fibre/matrix interfacial 
bond (240x). 
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(b) 

Figure (5 - 8) SEM micrograph of ILSS fracture surface of hybrid glass woven 
composite (weft direction) at 48% Vt shows (a) view of the ILSS fracture path (420x). 
(b) debris and shear cusps along the fracture path indicating good fibre/matrix interfacial 
bond (350x). 
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5-2 Section Two: Flexural Properties 

5-2 -1 The results of flexural tests 

The results of flexural tests on non-hybrid glass woven fabric reinforced epoxy resin composites 
including four different glass fibre volume fractions are set out in table (5 - 5). They are 

graphically presented in figure (5 - 9). The relative AE ring down count and rate is summarised 
in table (5 - 6). These results will highlight the effect of fibre volume fraction on flexural 

properties in the composite. 

The results of the flexural test on hybrid and non-hybrid glass woven reinforced epoxy resin 

composites at 48% Vf are summarised in table (5 - 7). They are graphically presented in figures 

(5 -10 and 5- 11). The relative values of AE activities monitored during the flexural tests are 

summarised in table (5 - 8). These results will reveal the effect of fibre hybridisation on flexural 

properties in the composite. 

5-2-2 Discussion of the fibre volume fraction effect on flexural properties. 

The result in table (5 - 5) confirms that the flexural strength significantly increases with the 

increase of Vf. This is due to the increase in the number of woven layers of the composite 

reinforcement. The. highest flexural modulus is achieved by the highest fibre volume fraction 

composite at 64% Vf, and the lowest flexural modulus is achieved by the lowest fibre volume 

fraction composite at 38% Vf. The flexural strength increases from 38% to 48% Vf and from 

48% to 56% Vf (both by approximately 23%). However the flexural strength increase only a 7% 

from 56% Vf to 64% Vf, which further shows the limitation effect of Vf reinforcement in the 

composite. The plot of flexural tests in figure (5 - 9) allows a direct comparison of the values 

and performance of four different fibre volume fraction composites. The stress-strain curve 

shapes are almost identical due to the effect of the 8-harness pattern in the woven fabric 

composites. They differ in their values of the ultimate flexural strength. This is particularly 

noticeable at the Knee points. The knee point and non-linearity response has been examined 

individually for each flexural test (see figure 5- 12). The knee points appear on each stress- 

strain curve with distinct values for individual fibre volume fraction composites as summarised 

in table (5 - 5). 
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AE activity monitored during the flexural tests including the four different Vf non-hybrid E-glass 

woven composites are presented in figure (5 - 9b). The AE zones classification technique (figure 

5- 12) has been used in a similar methodology to that in the previous section in order to obtain 

the maximum possible detail for failure process analysis. The quantification of AE values is 

summarised in table (5 - 6). 

The stress-strain trends of four Vf composites are presented in figure (5 - 9a) and the 

corresponding AE curves presented in figure (5 - 9b). The correlation between the AE onset 

point with the knee point of the flexural stress-strain curve has been evaluated individually for 

each flexural test. The values are recorded in table (5 - 6). The RDC provides the two lowest 

values of 56% Vf and 64% Vf, and the highest two records for composites of 48% Vf and 38% 

Vf. It was found, after careful study of the rate for each composite, that the number of peaks 
decreases with increase of Vf in the composites (see the example plot of the rate in figure 5 -13). 

The high level of AE ring down count was recorded due to low Vf in the composites. This clearly 

reveals that the greater damage, such as fibre pullout and fibre rupture, is associated with the low 

Vf composites. This is shown by the SEM micrograph of the flexural fracture surface. The SEM 

micrograph further reveals that the interlaminar cracking and fibre buckling dominates in the 

high Vf composite. 

The flexural fracture performance of four different Vf composites were investigated by SEM. 

The SEM micrograph in figure (5 - 14) shows the flexural specimen of the non-hybrid E-glass 

woven composite of low composite Vf illustrating: 

(a) through-thickness view indicating the fracture surface dominated by tensile failure. 

(b) fibre bundle pullout. 

(c) rear view of matrix deformation resulting in curved plates of resin. 

(d) fibre bundle fractures formed in the undulation region of woven fabric. 

The SEM micrographs in figure (5 - 15) show the flexural specimen of non-hybrid E-glass 

woven fabric composite of high composite Vr and indicate: 

(a) through-thickness view of the fracture surface dominated by shear side of the three-point 

bend and buckling of fibre under the effect of weaving formed by beam compressive stress. 

(b) shear path propagated from the midpoint of the specimen towards the end of the specimen. 

(c) matrix crack propagation tending to form a shear path due to the fibre-rich region. 
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(d) fibre bundle pullout occurring in the high Vf in the undulation region near the transverse 

fibres. 

The flexural load imposes tensile, compressive and shear stresses on different locations within a 

structure. The top surface is in compression, the bottom in tension and the shear is through- 

thickness. The change in flexural strength (af) is attributed to differences in the failure mode and 

the fibre/matrix adherence. It was indicated in the ILSS section that the higher the fibre volume 

fraction, the greater the ILSS in the composite. The greater interfacial strength leads to an 

increase in flexural strength (af). This means the fibre/matrix interaction depends on the number 

of woven fabric layers in the composites. In other words, the fibre/matrix adhesion was 

dependent upon the fibre surface treatment concentration and interaction in the composites as a 

result of fibre volume fraction variation. 

In the composites where there is the strongest interface bond, there is a significant increase in the 

flexural strength due to a change in the failure mode from an interface-initiated mode to a 

predominantly tensile (or compression) mode. This observation may be explained in terms of 

the non-uniform stress distribution across the thickness of the specimen in three-point bending 

where the principal stress directions vary according to their distance from the surface. 

5-2-3 Discussion of the fibre hybridisation effect on flexural properties. 

The results show the UFS (af) of the hybrid composite in the weft direction are superior to non- 

hybrid composites by approximately 19%. This variation is considered to be significant by the t- 

test (as discussed in Appendix C). The result of the weft direction test further shows the 

modulus of hybrid composites is superior to the modulus of rion-hybrid composites. The shapes 

of stress-strain curves (in the weft direction) are different, and are distinct in their values (see 

figure 5- 10). The Knee points of the stress-strain curves follow a similar pattern. A higher 

stress was recorded at the knee point of the hybrid composite when compared to the non-hybrid 

composite. The AE activities of the hybrid composite show a significant reduction compared 

with the non-hybrid composite and this mainly related to the number of damage events. The 

SEM micrograph reveals that fibre rupture is primarily associated with non-hybrid composites 

and layer delamination in the hybrid composite (see figures (5 - 14) and (5 - 16)). 
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The AE ring down count during the flexural test for both hybrid and non-hybrid composites is 

shown in figure (5 - 10). The zone classification methodology of AE (figure 5- 12) has been 

followed in order to analyse the damage progress throughout the AE activities in a similar 

manner to the previous section. The correlation between the AE onset point with the knee point 

of the flexural stress-strain curve has been identified for both hybrid and non-hybrid composites. 
It can be seen that the hybrid glass fibre woven in the composite reduces the magnitude of the 

ring down counts compared with the non-hybrid composites during the flexural test (in the weft 
direction). Consequently the rate of the non-hybrid was higher compared with that of the hybrid 

composite. This was found after individual and careful study of the rate for each composite (see 

rate plot e. g. in figure 5- 13). The values of AE of hybrid and non-hybrid woven fabrics are 

summarised in table (5 - 8). 

The AE (weft direction) curve shapes of hybrid and non-hybrid glass woven reinforced epoxy 

resin composites differ in their values. These values represent the effect of a fibre hybridisation 

on the mode failure, as well as micromechanical failure progress in the composite. This refers to 

the fibre bundle pullout and fibre rupture in the non-hybrid composite, whereas the hybrid 

composite shows buckling, limited bundle pullout and shear cracking, as shown by the SEM 

micrograph (figure 5- 16). The variation in AE ring down count values. at ultimate flexural 

fracture refers to generated damage events and were higher in the case of non-hybrid compared 

with the hybrid composites. 

The performance of flexural fracture surface investigated by SEM. The SEM micrograph in 

figure (5 - 16) shows the flexural specimen of hybrid glass woven fabric composite in the weft 

direction, and indicates: 

(a) view of through-thickness with the shear side dominating the fracture surface starting from 

the midpoint and continuing towards the edge of the specimen and a buckling of fibre under the 

effect of weaving as result of compressive stress, 
(b) shear pockets next to the transverse fibre bundle around fabric undulation, created by 

weaving, 

(c) in higher magnification, evidence of a good fibre/matrix adhesion in the hybrid near the 

transverse fibre bundle fracture and matrix crack propagation tending to form a shear path along 

resin-rich regions, 

(d) matrix-rich region next to the R-glass fibre bundles that caused the shear fracture. 
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The SEM micrograph in figure (5 - 14) of a non-hybrid glass woven composite flexural 

specimen (weft direction) has been discussed for a low Vf composite in the previous section. 

The fracture of non-hybrid composites (weft direction) is dominated by the tensile failure mode 

promoted by fibre rupture. Conversely, the fracture of hybrid composites (weft direction) is 

dominated by ply delamination and is accompanied by matrix cracking. 

The SEM evidence shows that the variation in the results were due to differences in the overall 
fibre properties and their fibre coating interaction with the matrix, causing some changes in the 

overall fracture performance of the specimens. 

In figure (5 - 11) the stress-strain curves shape of hybrid and non-hybrid composites (warp 

direction) appear similar to each other. The results show almost identical values of the UFS (of) 

for both hybrid and non-hybrid composites in the warp direction. Knee points appear on each 

stress-strain curve exhibiting similar values of flexural stress. Fracture performance of the 

flexural specimens of hybrid and non-hybrid woven composites in the warp direction were 

similar to each other see figure 5- 14. The fracture surface dominated the tensile side of the 

three-point bend specimens. The fibre rupture and matrix deformation was shown to be the 

result of the tensile failure mode. The RDC and rate of hybrid and non-hybrid glass woven 

composites warp direction, show similar performance as recorded in table (5 - 8). 

The result indicates no improvement of flexural strength in the warp direction. The difference 

between the hybrid and non-hybrid composites is that the hybrid composite is composed of R- 

glass and E-glass, whereas the non-hybrid composite contains the E-glass only. It is essential to 

mention that the R-glass was in the weft direction of the hybrid weave, whilst the E-glass was in 

the warp direction. Therefore, there was significant improvement of flexural properties in the 

weft direction but no improvement in the warp direction. 

From the above discussion the following results can be identified: 

The lowest level of ultimate flexural strength (UFS) value was associated with the lowest 

fibre volume fraction composites. The lowest fibre volume fraction contains the lowest 

number of layers. The composite containing a higher number of layers exhibited higher 

stress-to-fail. Conversely, the composite containing the lowest fibre volume fractions had the 

lowest level of flexural stress-to-fail. 
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" The fractures of the low Vf composites were dominated by tensile failure mode and 

accompanied by matrix cracking and fibre rupture. The fracture of high Vf composites was 

dominated by ply delaminations accompanied by matrix cracking. 

" The lower the glass fibre volume fraction in the composite the higher is the magnitude of the 

AE ring down count at each zone as shown in figure (5 - 9b). Consequently the rate was 
higher, see the representative plot in figure (5 - 13). It was found, after careful study of the 

rate that the number of peaks and peak length decrease, with the increase of Vf in the 

composites. This clearly demonstrates a case of overall increased failure events in the low Vf 

composites and a case of overall decreased failure events in the high Vf composites. 

"A comparison of AE activities monitored during flexural tests for differing Vf is shown in 

figure (5 - 9b). The figure reveals that in the low fibre volume fraction composites, the 

failure appears earlier or at less strain than in those of high Vf composites. This is clearly 

due to the greater stiffness and higher resistance to flexural stress caused by the high Vf in 

the composite. 

The result indicates no improvement of flexural properties in the warp direction and a 

significant improvement in the weft direction. The variation in UFS (af) of hybrid and non- 

hybrid composites in the weft direction can be summarised as; 

" The lower ultimate flexural strength (ßf) values were associated with non-hybrid composites. 

The hybrid composites exhibited higher of. This clearly demonstrates the case of increased 

flexural strength and the subsequent adhesion bonding in the composite promoted by fibre 

properties. 

The non-hybrid composites are dominated by a tensile failure mode accompanied by matrix 

cracking and fibre rupture. The hybrid composites are dominated by ply delamination 

accompanied by matrix cracking. 

The hybrid composite exhibited a higher modulus than the non-hybrid composite, 

demonstrating the case of increased overall stiffness in the composite. It has been noticed 

that the non-hybrid composites show failure at less strain than those of hybrid composites. 
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The AE activities monitored during the flexural test, (figure 5- 10) shows the hybrid 

composite having more resistance to the flexural stress than the non-hybrid composite. 

" It was observed that the non-hybrid composite shows a higher magnitude of ring down 

counts on the AE curve at each zone compared with the hybrid composites (figure 5- 10). 

The rate consequently was higher as shown by the number of peaks recorded (see the 

representative figure 5- 13). This is clearly another demonstration that an increased overall 

composite flexural property appears to be promoted by fibre properties. 
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Flexural Test of four different Vf 
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Figure (5 - 9) (a) flexural stress-strain curves of non-hybrid woven reinforced epoxy resin 
composite including four different fibre volume fractions. (b) the corresponding RDC 
activity curves of the stress-strain curves of (a). 
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Figure 5 -10 Flexural stress-strain and its RDC curves of hybrid and non-hybrid glass 
woven reinforced epoxy resin composite (weft direction) at 48% Vf. 
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Figure (5 - 11) Flexural stress-strain and its RDC plot of hybrid and non-hybrid glass 
woven fabric reinforced epoxy resin composite (warp direction) at 48% Vf. 
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Figure (5 - 12) Zone classification technique used in the flexural stress-strain and its 
RDC curves of glass woven fabric reinforced epoxy resin composite. 
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Figure (5 - 13) Zone classification technique used in the flexural stress-strain curve and 
its AE rate of glass woven fabric reinforced epoxy resin composite. 
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Figure (5 - 14) SEM micrograph of flexural through-thickness fracture surface of non- 
hybrid E-glass woven glass fabric composite at 48% fibre volume fraction shows. a- 
(80x) tensile mode failure. b- (200x) fibre bundle pull-out. c- (60x) backside view of the 
specimen shows the matrix deformation in the crimp area. d- (100x) fibre fracture. 
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Figure (5 -15) SEM micrograph of flexural through-thickness fracture surface of E-glass 

woven glass composite at 56% Vf shows a- (30x) shear failure. b- (30x) shear failure 

path. c- (30x) fibre-rich area in shear path. d- (200x) fibre pull-out due to fibre 

concentration. 
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(a) 

(c) 

(b) 

(d) 

Figure (5 - 16) SEM micrograph of flexural fracture surface of hybrid glass woven 
composite (weft direction) at 48% Vf shows a- (100x) through-thickness fracture 

surface. B- (100x) shear pockets around fabric undulation created by weaving. c- 400x 

transverse fibre bundle in the fracture surface. d- (140x) matrix-rich area caused shear 
fracture. 
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5-3 Section Three: Dynamic Mechanical and Thermal Analysis (DMTA) 

The DMTA plots provide the following information on the composite: 

(a) the storage modulus (i. e. the elastic response), 

(b) the loss modulus (i. e. the viscous response), 

(c) the glass transition temperature (Tg), the (Tg) is taken, in this study, to be the temperature of 

the maximum peak of the loss modulus, 

(d) tan (6), delta (S) stands for the out of the phase angle between stress and strain. 

5-3-I The results of DMTA tests. 

The results of the DMTA tests include the data from neat epoxy resin and four different fibre 

volume fractions of non-hybrid glass woven reinforced epoxy resin composites and are 

summarised in table (5 - 9). The results are graphically presented in figures (5 - 17), (5 - 18) and 

(5 - 19). These results highlight the effect of fibre volume fractions on DMTA properties in the 

composite. 

The results of the hybrid and non-hybrid glass fibre woven fabric reinforced epoxy composites 

tests at a similar fibre volume fraction of 48% Vf are given in table (5 - 10). They are graphically 

presented in figures (5 - 20) and (5 - 21). These results highlight the effect of fibre hybridisation 

on DMTA properties in the composite. 

5-3-2 Discussion of composites fibre volume fraction effect on DMTA properties 

The loss moduli curves figure (5 - 17) represent the neat epoxy resin and three E-glass woven 

reinforced epoxy resin composites that contain different fibre volume fractions. The shape of the 

loss moduli (E") curves were identical, but distinct values of the glass transition temperature (Tg) 

for each fibre volume fraction composite is summarised in table (5 - 9). 

The glass transition temperature (Tg) is considered to be a maximum peak of the loss modulus. 

The glass transition temperature of the epoxy set (L20-SL) was determined in this research to be 
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approximately 110.30 °C compared with 110 °C obtained by the manufacturer as shown in table 

(4 -1). The epoxy is an example of a cross-linked system and has distinct temperature-dependent 

behaviour. However, in general these materials all have a well-defined glass transition 

temperature that produces the typical behaviour of a storage modulus. 

The glass fibre in the woven fabric reinforcement is a typically inorganic material with very high 

softening points (840 °C) for E-glass as shown in table (2 - 3). This is well above the temperature 

at which organic polymers such as epoxy resins degrade. This reveals the fact that glass fibres are 

purely elastic systems while the epoxy resins and fibre glass/epoxy interphase are viscoelastic. 

The composite with 38% Vf gave the highest Tg value (approximately 140.96 °C) and the 

composite at 56% Vf had the lowest T. of (approximately 121.62 °C). The fibre surface treatment 

concentration varied with the number of woven fabric layers in the composites. In other words, 

the fibre surface treatment concentration varied when varying the fibre volume fraction. This 

indicates that the crosslinking option of the epoxy system is consequently dependent on both the 

fibre coating and matrix volume fraction variation. Therefore, the epoxy/glass fibre composites 

exhibit distinct temperature-dependent behaviours. The higher the fibre volume fraction in the 

composites, the more tightly is the crosslinking mobility between the matrix and fibre surface 

treatment. This can be used as evidence that the glass transition temperature of composites 

depends on fibre volume fraction. The Vf is reflected in the matrix crosslinking mobility, the fibre 

surface treatment concentration and its interaction in the composite. Therefore, it is believed that, 

the variation in glass transition temperature of glass woven composites is caused by the fibre 

surface treatment concentration in the composite. 

This shows that the silane/sizing interaction with the epoxy matrix produces a material with 

different properties than the bulk matrix. This is termed interphase. The fibre coating 

concentration affected the fibre/matrix interphase formation and consequently the fibre/matrix 

adhesion, composite shear and flexural strengths. (Al-Moussawi et al. 1993, Larson and Drzal 

1994) reported that the interphase has a lower Tg than the bulk matrix, the interphase modulus is 

generally higher than the modulus of the bulk matrix. In this particular system, the Tg of the 

composite declines as the Vf increases. 
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The plots of tan delta in figure (5 - 19) allow the direct comparison of the value and 

performance of the neat epoxy resin and three different Vf non-hybrid E-glass woven/epoxy 

composites. The high tan delta value implies that once the deformation is induced, the material 

will not recover its original shape. It is considered to be soft and pliable. The values of tan delta 

for each composite are summarised in table (5 - 9). 

The a-relaxation refers to the main relaxation rising to peak maximum in the tan (S) or loss 

moduli curves. The a-relaxation peaks in the tan (S) curves for the composites with higher Vf is 

broader than that of lower Vf composites. However, the peak positions moved to a lower- 

temperature region with an increase in fibre volume fraction. The decrease in tan delta 

magnitude at the a-relaxation is associated with an improvement of interfacial bonding according 

to Haessler and Keusch (1999). This could assist in explaining the ILSS improvement with an 

increase in fibre volume fraction as discussed in section one. 

The tan delta curves follow closely the loss modulus curve. The rapid rise in the tan delta curve 

coincides with the rapid decline in the storage modulus (E) up to the maximum peak. The 

storage moduli of the composite shown in figure (5 - 18) are reduced by 3-4 orders of magnitude. 

The reductions in the storage modulus depend on the fibre volume fraction in the composite (see 

table 5- 9). After this stage, the storage moduli continue declining very similarly for each 

composite. Once the glass transition was completed the loss modulus and tan delta dropped back 

to the level close to the pre-transition values. The storage modulus can represent a comparison of 

the plastic material and load-bearing capability for different volume fraction composites. This 

explains the tensile property improvement. 

DMTA scans of epoxy resin materials and resin/fibre glass woven with different fibre volume 

fraction counterparts show that the increase in room temperature properties is only a small part of 

the improvement. The highest values of storage moduli determined for the glass fibre reinforced 

composite at 64% Vf is not only higher at the Tg and a-relaxation but also over the entire 

temperature range. The low storage modulus indicates that an applied load easily deforms the 

material. 
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5-3-3 Discussion of the fibre hybridisation effect on viscoelastic properties in the composite 

In figure (5 -20), the loss moduli plot shapes were identical, possibly due to the effect of the 8- 

harness pattern in the woven fabric composites. They differ in their values of the glass transition, 

Tg showing individual values for each composite. The result shows that the glass transition 

temperature of the hybrid composite (approximately 119.7 °C) has a lower value of Tg than the 

non-hybrid composite (approximately 130.22 °C). 

The difference between the hybrid and non-hybrid composites is that the hybrid composite is 

composed of R-glass and E-glass whereas the non-hybrid composite contains E-glass only. Glass 

fibre is a typically inorganic material with very high softening points (840 °C) for E-glass and 

(986 °C) for R-glass. This is well above the temperature at which organic polymers like epoxy 

resin degrade. It is therefore believed that the variations in the Tg of hybrid and non-hybrid 

composites depend on the fibre surface treatment concentration or its distribution in the 

composite. The fibre properties influence its surface treatment distribution and its concentration 

in the composites. Consequently it is believed that the glass transition temperature (Tg) of hybrid 

composites is lower than the Tg of non-hybrid composites due to fibre surface treatment 

concentration in the composite. This variation can therefore be due to the concentration of fibre 

surface treatment on the glass fibre surface and later its interaction density with matrix. 

The result further emphasises that the storage moduli values of the hybrid composite are higher 

compared to those of the non-hybrid composite. The tan delta values of the hybrid are less than 

those of non-hybrid composites. Any change in the mobility of the composite structure will 

appear as a peak in the loss modulus and the tan delta curves as well as a step reduction in the 

storage modulus. The reduction in tan delta magnitude of the hybrid is associated with an 

improvement of interfacial bonding and ILSS compared to those of the non-hybrid. 

The magnitude of tan (5) and log (E') plots in figure (5 - 21) as well as the a-relaxation allow a 

good comparison of the hybrid and non-hybrid glass woven fabric/epoxy reinforcement. The 

peaks in the tan (S) curves for the hybrid composite have a similar shape to the non-hybrid 

composite. However, the peak positions of hybrid composite move to lower-temperature regions 
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when compared to the non-hybrid composite. The logarithmic storage moduli scale of y-axis 

shows the hybrid composite drops by 5-6 in order of magnitude while the non-hybrid composite 

drops down by 4-5. This variation which, occurs before and after glass transition is related to 

different properties of the fibres in the woven material. The storage modulus (E') curve, figure (5 

- 20), shows a similar pattern to log (E'). The storage modulus can represent a comparison of the 

plastic material and load-bearing capability for hybrid and non-hybrid at similar fibre fraction 

composites. The values of DMTA parameters of hybrid and non-hybrid composites are illustrated 

in table (5 -10). 

This can be used as evidence that the variation of Tg in the composites is dependent on the region 

of fibre surface treatment interaction with the matrix and is called interphase. The interphase 

possesses features such as a finite dimension and thickness (Kim and Sham 2001). It has been 

suggested that the interphase may be a chemical reaction zone, a diffusion zone, a nucleation 

zone, or a combination of them all. Thomason compared between 1995 - 2001 a number of 

techniques to probe the interphase region in the glass fibre / epoxy matrix composite. He stated 

that the thickness of the interphase region is about (1 gm) surrounding the fibre. 

The visualisation of the three-dimensional interphase in figure (5 - -22) shows two possible 

interpretations. The interphase region with spatially varying properties promotes fibre surface 

treatment around the single fibre in the micro level (fibre). The figure further shows the possible 

number of fabric interlayers that are imposed by glass fibre surface treatments, matrix and fibres 

constituents in the composites at the laminate level (interlayer). The two interpretations can be 

interrelated, however, the relationship between the two levels, is obvious. 

The interphase material created by interdiffusion of silane sizing is either more ductile or more 

brittle than the bulk matrix material. Therefore, the interphase in the composite can be divided 

accordingly into a ductile form (e. g. the low Vf non-hybrid composite) or a brittle form (such as 

the hybrid and high Vf non-hybrid composite). This is in concurrence with literature, see (Chua et 

al 1987) and (Drown and Drzal 1992). 

The interlaminar shear, flexural and tensile strengths are increased as the principal effects of 

fibre surface treatment and its concentration on composite properties. 
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The following results can be gathered from the discussion: 

" The Tg of composite declines from approximately (140.96 °C) for a low Vf composite 

to approximately (121.64 °C) fora high Vf composite table (5 - 9). This variation in 

the Tg refers to the variation of the glass fibre treatment concentration as a result of Vf 

variation in the composites. 

" It is further shown in table (5 - 9) that the Tg of a composite at 64% Vf rises to 

approximately 125.9 °C compared with 121.6 °C for a composite of 56% Vf. This 

indicates the limitation which Vf can mutually be imposed in the composites. This 

change in the Tg can contribute to the limitation of Vf effect on mechanical property 
improvement (such as ILSS and flexural properties). Further detailed discussion 

concerning the limitation phenomenon can be found in section six. 

" The higher the Vf level in the composite, the lower the magnitude of tan delta at the 

a- relaxation. The lower the magnitude of tan delta the higher is the improvement of 

interfacial bonding (ignoring the Vf limitation effect). 

" The higher the Vf in the composites, the higher is the crosslinking mobility. This 

leads to a higher level of interaction consistency in the composite. In other words, 

there is more crosslinking density in the composite. This variation is due to the 

variation in silane and matrix concentration resulting from the variation of Vf in the 

composites. 

Therefore, the fibre/matrix adhesion and consequently the tensile, interfacial bond 

and flexural property relies on the fibre surface treatment concentration in the 

composites. In other words the matrix cross-linking density and fibre/matrix 

networking is a result of the number of fibre layers in the composite. 
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" It is shown in table (5 - 10) that the Tg of hybrid composite is less than the Tg of non- 
hybrid composite by approximately 10 °C. This is a result of the variation in the 

concentration of glass fibre surface treatment and its interaction in the composites. 

9 The result further shows that the magnitude of the tan delta at the a-relaxation of the 

hybrid composites is lower compared with those of the non-hybrid composites. The 

lower magnitude of tan delta leads to an improvement of interfacial bonding and 
ILSS of the hybrid compared to the non-hybrid composites. 

" The distribution of fibre surface treatment in the composites can generate different 

levels of interphase properties. This appears to be promoted by the crosslinking 

mobility in the composites that is performed at different levels of interaction 

consistency in the composite. 

. The glass fibre shows a purely elastic system while the epoxy resins and fibre 

glass/epoxy interphase are viscoelastic. 
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Loss Moduli of Glass Woven Composites including four different Vf. 
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Figure (5 - 17) loss moduli plot of the non-hybrid glass woven reinforced epoxy resin 
composites including four different fibre volume fractions. 

112 



Storage Moduli of Glass Woven Composites including four different VI 
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Figure (5 -1 8) the storage moduli plot of non-hybrid glass woven fabric reinforced 
epoxy resin composites including four different fibre volume fractions. 
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Tan-delta of the Glass Woven Composites including Three Different Vf. 
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Figure (5 - 19) the tan delta plot of non-hybrid glass woven fabric reinforced epoxy 
resin composites including three different fibre volume fractions. 
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Loss and Storage Modulus of Hybrid and Non-hybrid Composites (weft direction) 
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Figure (5 - 20) DMTA of hybrid and non-hybrid glass woven reinforced epoxy resin 
composites (weft direction). Plot of loss and storage moduli at 48% Vf. 

115 



Log(E') and Tan(delta) of Hybrid and Non-hybrid Composites (weft direction) 
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Figure (5 - 21) DMTA of hybrid and non-hybrid glass woven composites (weft 
direction); plot of tan (S) and log (E') curves at 48% fibre volume fraction. 
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Figure (5 - 22) Visualisation of three-dimensional interphase. The interphase layer promoted by 

the number of woven layers in the composites, in the laminate level, as a result of interaction with 

spatially varying properties elevated by glass fibres surface treatment, in the micro (fibre) level. 
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Damage Accumulation in Hybrid Woven Composites Tensile Results and Discussion 

5-4 Section four: Tensile Properties 

5-4 -1 The results of tensile tests 

The results of the tensile test on non-hybrid glass woven fabric reinforced epoxy resin 

composites including four different glass Vf are summarised in table (5 - 12). The results are 

graphically presented in figures (5 - 23) and (5 - 24). The quantification of AE values during 

tensile tests including four different glass Vf is given in the table (5 -13). 

The result of the tensile tests on hybrid and non-hybrid glass woven reinforced epoxy resin 

composites, weft and warp directions are set out in table (5 - 14). The results of weft direction 

are graphically presented in figures (5 - 25) and (5 - 26). The results of warp direction are 

graphically presented in figures (5 - 27). The quantification of AE ring down count (RDC) and 

rate, including the hybrid and non-hybrid composites for both well and warp directions, are 

summarised in table (5 -15). 

5-4-2 Discussion of the effect of Vf on tensile properties 

Figure (5 - 23) shows a comparison of four Vf composites including the stress-strain and the 

corresponding AE ring down count curves. The stress-strain curves are similar in shape, but 

differ in their values of the ultimate tensile strength. The result further shows that the highest 

magnitude of ultimate tensile strength (UTS) was associated with the highest level of fibre 

volume fraction at 64% Vf composite. The lowest values of UTS was associated with the lowest 

level of Vf in the composite at 38% Vf. The appearance of two knees on each stress-strain curve 
having distinct values for each composite is due to differences in fibre volume fractions. 

In figure (5 - 24) a comparison of four Vf composites including the stress-strain and the 

corresponding AE rate'curves are presented.. It has been observed that the number of peaks of 

the rate, including the peak length, decrease with increasing Vf in the composites. This clearly 

reveals the high damage associated with the low Vf in the composites. 

The tensile moduli and strengths were higher than the flexural moduli and strengths for all 

woven glass/epoxy composite investigated in this project (see tables 5-5 and 5- 12). It is 

believed that the higher tensile strength is attributed to the differences in the critically loaded 
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volume of tensile and flexural specimens. In flexural tests, only the outer fibres at the mid-span, 

the beam, are loaded up to their maximum stress, whereas under the tensile loading, the whole 

composite volume is critically loaded, yielding a higher probability of strength. 

AE activities including four Vf glass woven composites, the representative plots of stress-strain, 

together with the corresponding AE curves for the woven glass composite at 48% Vf, are shown 
in figure (5 - 28). The stress-strain curve in the plot, shows that the non-linear shape of the 

curve is due to the non-linear response of the matrix material. Two knees appear on the stress- 

strain curve of glass woven fabric reinforced epoxy composites. The first knee point is visible in 

the stress-strain curve at less than 1% strain. The moduli of elasticity are usually obtained from 

the initial linear portion of the stress-strain curve. The correlation between the first knee point 

and the acoustic emission onset point has been indicated and examined to evaluate the failure 

process analysis objective. The zone classification technique of stress-strain corresponding AE 

curves has been utilised in this study in order to obtain the maximum possible information from a 

group of samples. The use of zone classification technique divides the plots in figure (5 - 28) 

into three zones as follows: 

Zone A: a portion of the AE curve, between the origin and the onset point, is associated with the 

initial linear portion of stress-strain response until the first knee point portends the first indication 

of non-linearity. The RDC reading in this zone exhibits that there is no existing record of any 

rise in the curve to define plastic destruction of the composite specimen under tensile loading. 

The correlation between the AE onset point with the first knee point of the stress-strain curve has 

been examined carefully for each individual tensile test. 

Zone B is defined as the distance between the first and second knee points under the second 

linear portion of the stress-strain curve. The AE rise appears instantaneously at the onset point 

indicating the initiation of the first destructive damage in the construction of the composite 

material. The AE curve then rises up gradually consistent with existing regions of uniform 

strain, which may fail simultaneously with continuous tensile stress drops. The low RDC values 

of AE recorded in this zone are believed to correspond to the matrix cracking and damage due to 

possible voids in the composite. 

The AE curve in the first half of zone B indicates matrix damage progressively including 

fibre/matrix interface damage initiation. The AE curve in the second half of zone B rises more 

119 



Damage Accumulation in Hybrid Woven Composites Tensile Results and Discussion 

rapidly with higher RDC recording indicating fibre/matrix interface damage progressively 
increasing. The interfacial failure grows rapidly as it reaches a critical size, followed by matrix 

continuous cracking and possibly failure in the fibre-matrix interphase region. The interphase 

failure refers to the failure in a region between the bulk matrix and the fibre woven layer in the 

composite. The formation of matrix damage is due to a number of fibre-matrix interfacial 

damages resulting from a multi-microcrack. 

Zone C: The AE continues to rise linearly from the second knee point until final tensile 

specimen failure occurs. The AE in this zone recorded the highest level of ring down counts in 

the life history of the composite test. This corresponded to the recording of higher emission 

results from the continuing destruction of the composite specimen under tensile loading. The 

high emission presumably corresponds to fibre debonding in the off-axis of the laminate, layer 

delamination, fabric weaving distortion and fibre rupture. A more detailed discussion of the 

damage sequence and zone classification can be found in section five, the damage event process 

model. 

The explanation of non-linearity agrees with Wooh who showed that no macroscopic damage 

was found in the linear elastic region (Wooh et al. 1995), while the use of AE has been employed 

to analyse the damage event in unidirectional composites (see Wevers 1996, Kander 1991, and 

Mittleman and Roman 1987). In this study the zone classification technique of stress-strain and 

its relating AE curves have been utilised to extract the maximum possible information from each 

variation, in the interpretation of the damage event sequence. Thus the stress-strain knee point 

and AE onset point relationship of woven glass fibre in the composites could be investigated in 

some detail. The stress values and qualitative images of damage accumulation in woven 

composites are also interrelated. 

It was noticed that the lower the glass fibre volume fraction in the composite the greater is the 

magnitude of AE ring down count at each knee point (see figure 5- 23). The higher the AE 

activity the greater is the damage. Furthermore, the lower the fibre volume fraction in the 

composite the higher the AE activity recorded at the ultimate tensile fracture accompanied by the 

layers delamination and fibre rupture. Low AE activities at knee points and ultimate tensile 

fracture recorded for high Vf composites refers mainly to fibre yam debonding and weave 

distortion. The high AE activity at ultimate tensile fracture recorded for lower Vf composite 

refers mainly to the fibre yam debonding in the off-axis of the laminate, layer delaminations, and 
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fibre rupture. The values represent different micromechanical failure as indicated by the SEM 

and visual examination of the tensile fracture surface. The failure sequence in all four laminates 

follows a similar pattern. Furthermore the AE distinct value is reflected in the curve pattern 

promoted by sequential damage events. This damage mainly occurs next to the second knee 

point. The stress values at knee points and their corresponding RDC reveal that the different 

fracture mechanisms generated are due to the variation in the interphase properties of 

composites. The interphase property is a function of the variation in the fibre volume fraction. 

The visual examination of tensile specimens after tests is examined individually so as to 

observe the failure mode of each test and each specimen. The mode of failures can be divided 

into the following categories: - 

Tensile failure mode (1) - This mode of failure is associated with low fibre volume fraction in 

the composites. The specimen of non-hybrid E-glass woven composite at 38% Vf in figure (5 - 
29a) shows the tensile specimen split into two pieces. This includes a complete longitudinal 

fibre rupture and matrix deformation. Some fibre bundle debonding in the transverse-axis is 

created by weave crimp in the composite. The fibre rupture indicates poor tensile properties in 

the loading axis and poor interlaminar shear strength (ILSS). 

Tensile failure mode (2) - This mode of failure is associated with lower intermediate Vf 

composites. The tensile specimen of the non-hybrid E-glass woven fabric composite at 48% Vf 

in the figure (5 - 29b) shows the specimen broken into two pieces. The fracture includes signs 

of fibre bundle pull out and complete longitudinal fibre rupture. A complete matrix deformation 

and fabric delamination including fibre bundle pullout in the longitudinal axis can be seen. The 

delamination in the off-axis direction is affected by the weave construction of the fabric in the 

composite. The fracture mode indicates intermediate tensile properties and ILSS. 

Tensile failure mode (3) - This mode of failure is associated with high-intermediate Vf 

composites. The tensile specimen of the non-hybrid E-glass woven composite at 56% Vf as 

shown in figure (5 - 30a), remains coherent. The fracture surface shows a change in the 

alignment of the specimen as a whitening area that is approximately at a 30° angle to the loading 

axis. The length of fracture (whitening area) in the specimen is between 50 - 60 mm. Some 

signs of woven fabric delamination occur including fibre bundle debonding in the off-axis 
direction affected by the weave construction of the fabric in the composite. This indicates high 
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tensile properties and very good performance of ILSS in such composites. The specimen after 
fracture shows signs of stability, indicating very good composite reinforcement. 

Tensile failure mode (4) - This mode of failure is associated with high Vf composites at 64% Vf. 

The tensile specimen of non-hybrid E-glass woven fabric composite as shown in figure (5 - 
30b), remains coherent. This includes a change in the specimen alignment to approximately 45° 

angle to the loading axis. The length of fracture (with wide whitening area) in the specimen is 

between 40-50 mm. This indicates that such a high Vf employed in the composite reinforcement 

was not as good as the previous composite reinforcement at 56% Vf. There are signs of woven 
fabric layer delaminations including fibre bundle debonding in the off-axis affected by 

undulation created by weaving. 

The SEM micrograph in figure (5 - 32) shows the fracture surface of non-hybrid glass woven 
fabric composite of 38% Vf, which indicates: 

(a) Brittle fibres were mainly ruptured rather than pulled out. The few shear cusps of the epoxy 

resin on the glass fibre surface indicate poor fibre/matrix adhesion. 
(b) Poor fibre/matrix interfacial bond. The failure seems to have occurred at the fibre/matrix 

interface. The fibre/matrix interface failure followed by some obvious fibre breakage and 
fibre pullout could have produced the final failure. The fibre/matrix adhesion is 

comparatively low in these composites. This is because the composites hold a low level of 

strength and modulus promoted by the low Vf of the composite. 

The SEM micrograph of the fracture surface at 48% Vf composite in figure (5 - 33) displays 

(a) The presence of surface debris and shear cusps of the matrix on the fibre surface. This 

indicates an intermediate interfacial strength between fibres and matrix compared with the 

previous composite. The figure exhibits brittle fibres mostly pulled out rather than ruptured 

under the effect of undulation created by weaving. 
(b) A layer delamination in the through thickness side. 

The SEM micrograph of the fracture surface at 56% Vf composite in figure (5 - 34) shows 

(a) A change in the specimen alignment occurred due to the multiple fibre bundles debonding in 

the damage location. The misalignment of the laminate left whitening mark on the specimen 

surface. 

122 



Damage Accumulation in Hybrid Woven Composites Tensile Results and Discussion 

(b) An obvious weave distortion in the specimen surface. The weave distortion refers to the 

general distortion in the weave repeat unit. Furthermore the micrograph shows fibre 

debonding and a layer delamination. 

(c) A higher magnification of (b) indicates some fibre rupture at crimp curvature. 

The SEM micrograph in figure (5 - 35) displays the damage location of 64% Vf composite, 
(a) shows the change in the specimen alignment is a result of multiple matrix cracking, 
(b) shows the crack propagation along the interface at the edge of woven fibres, the crack path 

passes round the pocket of woven fibres, 

(c) shows the fracture of fibre bundles under the effect of undulations created by weaving. The 

elevated fracture shows a tortuous curved failure path that is possibly related to a brittle 

interphase formed in the composite. 

The VSE and SEM micrograph along with the AE used in this study were interrelated to the 

micromechanics of the damage events sequence occurrence. This will be used in damage 

sequence modelling (see section 5- 6). 

5-4-3 Discussion of fibre hybridisation effect on composite tensile properties 

The result shown in table 5- 14 indicates that the ultimate tensile strength (UTS) of the hybrid 

composite for the weft direction is superior to the non-hybrid composite by approximately 20 %. 

The Young's modulus and UTS values show that the hybrid composite is stiffer and greater in 

strength than the non-hybrid composite. 

AE activities of weft direction: the non-hybrid glass woven composite in the weft direction 

displays a higher magnitude of RDC and rate compared to the hybrid composite. The results of 
RDC and rate activities during the tensile tests are summarised in table (5 - 15) and graphically 

presented in figures (5 - 25) and (5 - 26) respectively. The shapes of stress-strain curves are 
identical, but differ in magnitude. Two knees appear on each stress-strain curve having different 

values. The two knee points divide the curves into three linear portions. The appearance of two 

knees on each stress-strain curve with distinct values for each composite is due to the different 

fibre mechanical properties of R-glass and E-glass. This shows the hybridisation effect on 

composite properties. The zone classification technique has been utilised as discussed in the 

above section. The features at the knee points and ultimate tensile strength in each curve possess 
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distinct values. A higher magnitude of the AE at ultimate tensile fracture was recorded for the 

non-hybrid composite. The higher the AE activity the greater is the damage. The damage refers 

mainly to layer delamination and fibre rupture. A lower value of AE was recorded for the hybrid 

composite. This is because of the fibre debonding in the off-axis of the laminate, and fabric 

weaving distortion including specimen misalignment. The AE activity represents different 

micromechanical failure mechanisms as indicated by the SEM and visual examination of tensile 

fracture surface. 

The visual specimen examination shows the tensile mode failures of the hybrid composite, weft 

direction in figure (5 - 30) and the non-hybrid composite in figure (5 -29b). The hybrid 

specimen after fracture remains coherent and shows signs of stability, indicating good composite 

reinforcement. The non-hybrid composite shows a specimen split into two pieces and indicates 

signs of complete longitudinal fibre rupture and fibre bundle pullout. The visual specimen 

examination of the non-hybrid composite has been discussed in the previous section. 

The SEM micrograph in figure (5 - 36) shows: 
(a) The initiation of the fibre/matrix debonding on the fracture surface of the hybrid composite 

at 48% Vf. 

(b) The presence of surface debris and shear cusps of the matrix on the fibre surface indicates a 

good fibre/matrix bond. It is believed that the presence of surface debris and cusps of the 

matrix on the fibre surface possibly lead to layer delamination. The regular hackle pattern 

dominating the fracture surface is left by fibres after shear failure. The SEM micrograph 

further shows a change in the specimen alignment resulting from multiple fibre debonding. 

It is believed that a well-developed interphase has been formed by the hybrid woven 

composites. The SEM micrograph figure (5 - 32) of a tensile specimen of non-hybrid 

woven glass fabric composite (weft direction) at 48% Vf has been discussed in the previous 

section. 

The stress values at knee points and UTS including its corresponding RDC reveal that the 

different fracture mechanisms generated are due to differences in the interphase properties of the 

composites. The visual specimen examination and SEM evidence suggest that the variation in 

the results is due to differences in the interphase property. The interphase property generated by 

fibre coating and their interaction with the matrix is revealed by DMTA. The fibre coating is 

influenced by the fibre properties and causes the changes in the overall fracture performance of 

the specimens. 
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The results in table (5 - 14) show the UTS of the hybrid are close to non-hybrid composites in 

the (warp direction). The results in table (5 - 15) show that the AE ring down count value of 
the non-hybrid E-glass woven composites are close to the magnitude of the AE ring down count 

of the hybrid composites during the tensile test. The results indicate no improvement of tensile 

strength in warp direction. 

The shapes of the stress-strain curves in figures (5 - 27) are identical. The damages sequence in 

hybrid laminates follows a similar pattern of non-hybrid laminates (in warp direction). The AE 

ring down count in figure (5 - 27) of the composite warp direction represents the performance of 
E-glass in both the hybrid and non-hybrid glass woven composites. Therefore, the features at 
knee points and ultimate tensile strength for each curve have similar values. The zone 

classification technique has been followed and discussed in the previous section. The final 

reading of RDC on the AE curve as recorded in table (5 - 14) identifies the fibre rupture 

occurrence in both composites. 

The visual specimen examination indicates that the tensile mode failures of the hybrid and non- 
hybrid composite warp direction are similar to each other (see figure 5- 30b). The SEM 

micrograph of the fracture surface of non-hybrid and hybrid glass woven composites (warp 

direction) at 48% Vf is similar (see figure 5- 32). Thus the work in this particular investigation 

shows no effect of hybridisation on the composite warp direction. 

The main difference between the hybrid and non-hybrid composites is that the hybrid composite 
is composed of R-glass and E-glass whereas the non-hybrid composite contains E-glass only. It 

is essential to mention again that the R-glass was in the weft direction of the hybrid weave while 
E-glass was in the warp direction. Therefore there was significant improvement of tensile 

properties in the weft direction, which did not occur in the warp direction. The failure sequence 
for both laminates follows a similar pattern due to the effect of 8-harness woven fabric 

composites having individual values for contrary failure mechanism on stress-strain and AE 

curves 
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From the above, the following results can be identified: 

9 The tensile strength (Q) and tensile modulus increases with increasing overall fibre volume 
fraction in the composites see table (5 - 12). This is due to the increase in the number of 
layers. This clearly demonstrates the effect of Vf on tensile properties. 

" The tensile specimen of high Vf composites remains coherent despite changes in the 

specimen alignment with the whitening area on the specimen. Conversely, the tensile 

specimens of low Vf composites splits into two pieces and include signs of complete 
longitudinal fibre rupture. This indicates the greater tensile strength is associated with high 

Vf composites compared to those of low Vf composites. 

9 The AE activities monitored during tensile tests indicate that the high Vf composites were 

more brittle than the low Vf composites. It has been observed that the higher the glass Vf in 

the composite the lower the AE activity. This comparison is presented in figures (5 - 23 and 
5- 24). This clearly demonstrates a case of increasing overall fibre strength promoted by 

fibre volume fraction of the composite. 

The higher level of UTS (Q) and tensile modulus is associated with the hybrid composite in 

the weft direction compared to the non-hybrid composite see table (5 - 14). This is due to 

the presence of the R-glass, in the hybrid composite (weft direction). The result shows the 

level of UTS (Q) and tensile modulus of the hybrid composite and non-hybrid composite 
(warp direction) are close to each other. This is due to the presence of the B-glass in the 

warp direction for both composites. This clearly demonstrates the variation effect of fibre 

mechanical properties on the tensile property of the composite. 

" The tensile specimen of the hybrid composite (weft direction) remains coherent in one piece 

with a change in the alignment. The tensile specimen of the non-hybrid split into two pieces 
indicating complete longitudinal fibre rupture. This indicates the tensile strength of the 

hybrid is superior to that of the non-hybrid. Meanwhile the tensile specimen of the hybrid 

and non-hybrid composites (warp direction) broke into two pieces. This indicates no 
improvement of tensile strength in the warp direction. 
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" The hybrid composites (weft direction) showed greater toughness performance as compared 

to non-hybrid composites (compare views in figures 5- 25 and 5- 26). 

" The AE activities level of the non-hybrid composites (weft direction) is higher compared 

with the hybrid composites (see figure 5- 25). Conversely the AE activities show that the 

hybrid and non-hybrid composite (warp direction) hold close values (see figure 5- 27). 

This clearly is another demonstration of R-glass strength and its resistance to tensile stress in 

the composites. 
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Figure (5 - 23) the tensile stress-strain and its AE ring down count activity curves of non- 
hybrid woven composites including four different fibre volume fractions. 
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Figure (5 - 24) the tensile stress-strain and its AE rate curves of non-hybrid woven fabric 

composites including four different fibre volume fractions. 
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Figure (5 - 25) The tensile stress-strain curve of hybrid and non-hybrid woven fabric 

composites (weft direction) at 48% Vf, and its AE ring down count activity. 
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Figure (5 - 26) The tensile stress-strain and its AE rate curves of hybrid and non-hybrid 
woven fabric composites (weft direction) at 48% Vf. 
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Figure (5 - 27) the tensile stress-strain and its AE ring down count activity curves of 
hybrid and non-hybrid woven fabric composites (warp direction) at 48% Vf. 
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Figure (5 - 28) the zone classification technique used in tensile stress-strain and its AE 

curves of glass woven fabric reinforced epoxy resin composite. 
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(a) Mode 1 at 38% Vf (b) Mode 2 at 48% Vf 

Figure (5 - 29) Tensile specimens after test of non-hybrid glass woven fabric reinforced 
epoxy resin composites; (a) Tensile failure model at 38% Vf, (b) Tensile failure mode 2 
at 48% Vf. 
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(a) Mode 3 at 56% Vf (b) Mode 4 at 64% Vf 

Figure (5 - 30) The tensile specimens after test of the non-hybrid glass woven fabric 
reinforced epoxy resin composites, (a) Tensile failure mode 3 at 56% Vf, (b) Tensile 
failure mode 4 at 64% Vf. 
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Tensile failure of hybrid 

Figure (5 - 31) The fracture surface of the tensile specimen of the hybrid glass woven 
fabric reinforced epoxy resin composites at 48% V( (weft direction). 
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(a) 

(b) 

Figure (5 - 32) SEM Micrograph of the fracture surface of the non-hybrid glass woven 

composite at 38% V, shows: 

a- (105x) brittle fibres mostly ruptured rather than pull-out 
b- (21Ox) poor fibre/matrix interfacial bond and weave repeat unit deformation. 
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(a) 

(h) 

Figure (5 - 33) SEM Micrograph of the tensile fracture surface of the Non-hybrid glass 
woven composite at 48% fibre volume fraction shows 
a- (220x) brittle fibres mostly pull-out rather than rupture under the effect of undulations 

created by weaving. 
b- (90x) layer delamination. 
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(a) 

(b) (c) 

Figure (5-34) SEM Micrograph of tensile fracture surface of non-hybrid glass woven 
composite at 56% fibre volume fraction shows 
a- (1000x) presence of surface debris and shear cusps of the matrix on the fibres exhibits 

good interfacial bond. 

b- (120x) weave distortion and multi fibre debonding and layer delamination 
c- (200x) fibre rupture at undulation curvature in the higher modification of b. 
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(a) 

ý) (C) 

Figure (5 - 35) SEM Micrograph of the non-hybrid glass woven fabric composite at 64% 
Vf shows 
(a) (21Ox) change in the specimen alignment as result of multiple matrix cracking. 
(b) (270x) Crack propagation along the interface when it meets woven fibres, the crack 

path passes round the packet of woven fibres. 
(c) (400x) Debonding of fibres bundles under effect of undulations created by weaving. 
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Figure (5 - 36) SEM Micrograph of the fracture surface of the hybrid glass woven fabric 

composite at 48% Vf shows 
a- (81Ox) fibre/matrix interface debonding initiation, 
b- (400x) presence of surface debris and shear cusps of the matrix on the fibre surface, 

indicating good fibre/matrix bond. 
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5-5 Section Five: Damage Events Process Model 

The damage event process model section deals with two different categories of modelling, which 
have been carried out, in this study: 

5-5 -1 Damage event sequence modelling 

One of the main objectives of this study is to identify the initiation of each damage event during 

the tensile loading process and to quantify the type of damage event in order to classify it in the 

right stage and category. 

The properties of the composite constituents play an important role in quantitative and 

qualitative event classification. Figure (5 - 37) describes the damage event process for glass 

woven composites during the tensile loading. The closed circular arrow represents damage 

process data input into the analysis model according to the properties of the tensile specimen 

constituents. The constituent properties, including fibre properties, fibre volume fraction and the 

fibre coating and its concentration vary from one composite to another. Hence the design of the 

circular arrow assemblage represents the variation of data input with the constituent properties of 

the composites. More details can be interpreted from the applications of the model in the next 

section. 

The sequence of the damage events for the woven glass composite system during the tensile test 

is summarised as follows: 

The zone classification technique of stress-strain corresponding AE curves has been utilised in 

this study in order to obtain the maximum possible information from a group of samples. The 

representative plots of stress-strain, together with the corresponding AE curves for the woven 

glass composite, are shown in figure (5 - 28). It is possible to divide the curves into three 

separate zones A, B and C: 

Zone A, corresponds to the linear portion of the stress-strain curve. During this stage no AE 

signal was detected. 
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Zone B corresponds to the area between the first and second knee points. The damage initiation 

starts from the end of the first linear portion of the stress-strain curve. The first knee point 

coincides with the onset of the AE ring down count. The AE onset point was considered to show 

the beginning of the stress wave corresponding to a damage initiation such as matrix micro- 

crack. There is then a gradual process of matrix failure and fibre/matrix interfacial damage, 

which eventually occurs over a long period of time. The entire woven composite specimen 

tested in this study undergoes this process at 50% of ultimate tensile stress. The maximum 

recorded ring down count (RDC) in zone B was 0.25 x 106. The progress of matrix-micro crack 
leads to matrix fracture, which results in premature fibre/matrix debonding as the stress 

continues to drop. The SEM micrograph, in figure (5 - 36a), shows a case of such debonding. 

The sequence of the damage events within zone B of the stress-strain plot in figure (5 - 28) 

be identified by the following: 

1. matrix micro crack 

2. fibre/matrix debonding 

3. matrix fracture 

The deformation in zone C can be divided into two different levels: 

The first level is the prelude to ultimate fracture. The process to ultimate fracture is a 

continuation of damage events represented by the second knee point of the stress-strain curve. 

The second knee point reveals that the damage progresses from matrix failure to different 

fracture mechanisms, such as higher levels of interfacial fracture, which are associated with 

higher stress levels. This is a gradual process of failure, which eventually occurs over a short 

period of time when woven composite specimens undergo about 75 % of the ultimate tensile 

stress. The fibre/matrix debonding roughly coincides with the end of zone B and beginning of 

zone C. Crossing the second knee point during continued stress on the specimen, leads to 

complex failure, such as weave repeat unit distortion (see figure 5- 33b) and damage in the yarn 

form (see figure 5- 34a). 

The weave repeat unit refers to the pattern of the woven fabric. The woven fabric used in this 

investigation was 8-harness satin weave. The yarn form deformation refers to the damage in the 

yarn form construction. The destruction of weave unit promotes the initiation of fabric 

deformation. The SEM micrograph, in figure (5 - 35c), shows the effect of weave undulation on 

the fracture surface. The weave repeat unit's distortion could lead to transverse yarn debonding 
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and layer delamination as detected by SEM micrograph and visual specimen examination, as 

shown in figures (5 - 33b) and (5 - 30). The yarn debonding in transverse direction and layer 

delamination refers to a higher level of fabric deformation. 

The AE activities recorded a variation in the magnitude of the AE ring down count 

corresponding to the second knee point for each individual composite. The second knee point 

values, and the corresponding RDC values, reveal that there is a variation in the damage 

mechanisms generated as a function of the variation in the constituent properties of the 

composites. The variation in the constituent properties of the composites generates a variation in 

the interphase properties. This is responsible for the variation in the values of knee points and 

the corresponding AE values. 

The second level deals with initiation of ultimate fracture. These failures are associated with 
fabric deformation1 such as transverse yarn debonding and layer delamination. The evidence 
from the SEM micrograph, in figures (5 - 35b and 5- 34b) and visual specimen examination in 

figure (5 - 30), detected such failure. This type of failure occurs in the second part of zone C as 

a consequence of previous damage. This type of failure was associated with a high level of 
tensile stress and a higher level of AE records and activities. This damage process of woven 
fabric failure ultimately occurs over a relatively short period of time and the woven composite 

specimen undergoes this at 90% - 95% of ultimate tensile strength and the record of RDC, in 

figure (5 - 28 - zone C), is expected to be over 0.7 x 106. 

The damage events process within zone C of the stress-strain plot in figure (5 - 28) can be 

identified by the following: 

1. interfacial fractures 

2. weave repeat unit destruction 

3. yarn form deformation 

4. yarn debonding in the transverse direction 

5. layer delamination 

The ultimate fracture, which occurs in the end of zone C, can be divided into two modes: 

1. Specimen splits into two pieces and fibre fracture occurs. 

2. Specimen alignment distortion. 
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In the first case, where the specimen splits into two pieces, complete fibre rupture occurs and no 

existence of the bridging in such composites is indicated (see figure 5- 29). In the second case, 

the change in the specimen alignment (or specimen alignment distortion) occurs when the 

specimen does not split into two pieces and thus represents a case of bridging in the composites 

as indicated in figures (5 - 30 and 5- 31). This will be discussed later in more detail in the 
bridging validation section, which will help to clarify the model by using two applications. 

A quantitative and qualitative relationship is established in this model so as to obtain further 

details of the damage event identification as presented in figure (5 - 38). The quantitative 

values of viscoelastic properties, for example, such as storage modulus, loss modulus, the glass 

transition temperature (Tg) and (tan 8) have been calculated- using DMTA. In addition the 

quantitative values of ILSS and flexural tests were used. The qualitative views of the fracture 

surfaces are represented by SEM and visual specimen examination (VSE). The AE profile 

represents the life history of the damage process during the testing. The model correlates the 

AE profile with quantitative values and qualitative views in order to identify the damage event 

and the level of failure. The relationship between quantitative values and qualitative images of 

damage accumulation in woven composites assembled in this model is shown in figure (5 - 38). 

The significance of this relationship highlights the necessity of using, simultaneously, different 

tools in the damage event sequence analysis as mentioned earlier. The applications of the 

quantitative and qualitative relationship have been presented in the next section of bridging 

criteria validation. 

5-5-2 The Bridging Validation Modelling, The objectives of bridging validation is to identify 

the damage event process in order to classify the bridging support that can prevent the 

catastrophic failure by splitting the specimen into two pieces. This bridging phenomenon has 

been presented mathematically by Ishikawa and Chou (Chou 1992) and was discussed in chapter 
two. 

Application (1) the objective of this application is to study the effect of the fibre volume fraction 

in the composite on bridging validation. In other words, it aims to identify the damage event 

sequence of the low and high fibre volume fraction in woven glass composites to facilitate the 

implementation of bridging support. 
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Young's moduli increase with the increase in the number of cell unit repeats due to increases in 

the straight portion and cross-ply region of the weave (Naik 1994). The increase in the fibre 

volume fraction leads to an increase in the number of cell unit repeats of woven fabric. This fact 

could establish a relationship befiveen the Young's moduli and the number of the cell unit 

repeats in the woven composite. 

The results of the tensile test of non-hybrid glass woven fabric reinforced epoxy resin 

composites, using four different glass fibre volume fractions, are summarised in table (5 - 12) 

and are graphically presented in figure (5 - 23). The highest magnitude of Young's modulus and 

ultimate tensile strength (UTS) was associated with the highest level of fibre volume fraction at 
64% Vf in non-hybrid woven composite. The lowest values of Young's modulus and UTS were 
associated with the lowest level Vf in the non-hybrid composite at 38% Vf. 

The variation in the Young's modulus and UTS were interrelated with the variation in fracture 

mechanisms generated due to the variation in the fibre volume fraction. Therefore a 
relationship could be established between the variation of damage sequence mechanisms 

and the number of cell unit repeats in the composite. 

The visual examination of a tensile specimen of a low Vf composite (figures 5- 29a, b) reveals 

that the specimen failed due to the fibre fracture, indicating that no bridging was involved. The 

shape of the tensile mode failure, which split into two pieces, showed signs of complete 
longitudinal fibre rupture and complete matrix fracture. Furthermore, the evidence from the SEM 

micrograph in figure (5 - 32) indicates brittle fibres and that most ruptured rather than being 

pulled out and poor fibre/matrix interfacial bond. The ILSS of the 38% Vf composite was 

(approximately 18.1 MPa) and flexural strength was (approximately 279.4 MPa). This represents 

a case of low Vf composite, whilst the ILSS of the 64% Vf composite was approximately 29.13 

MPa and flexural strength was approximately 488.5 MPa. Therefore, the ILSS of the low Vf 

composite sustained higher shearing failure and a transfer of high stress concentration across the 

interface compared with those of high Vf composite. The initial damage sequence of the low Vf 

composite seems to engross fracture of individual fibres at weak points. As each fibre breaks, 

redistribution of stress occurs, leading to additional stresses on neighbouring fibres associated 

with a local stress magnification effect. Thus, there is an increased probability that the fracture 

will occur in the closely adjacent fibres. 
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The highest Vf composite possesses the highest ILSS value and indicates good fibre/matrix 

adhesion. The result denotes that the increase in flexural strength and modulus and interlaminar 

shear strength is due to the increase of fibre volume fraction in the composites. The ILSS and 
flexural properties have been discussed earlier in this chapter. 

The visual examination of the tensile specimen of a high Vf composite in figure (5 - 30) 

displays the appearance of good bridging. The figure exhibited debonding under the effect of 

undulation created by weaving, as well as layer delamination on the fracture surface leading to a 

change in the alignment of the specimen. Furthermore, the evidence from the SEM micrograph 
in figures (5 - 34 and 5- 35) display debonding, as well as layer delamination at the fracture 

surface. The tensile specimen therefore remains integral whilst including a change in the 

alignment of the specimen of approximately 30° - 45°. The length of fracture (white area) on the 

specimen was between 40-70 cm. It should be pointed out that the composite of 38% Vf was 
laminated with only 4 layers and that the composite of 49% Vf was laminated with 7 layers. The 

visual examination of a tensile specimen of the high Vf composites in figure (5 - 30) shows that 

delamination was found to affect only the outer layers of the laminate. The fracture surface of 

the low Vf composite in figure (5 - 29a) exhibited complete layer delamination and gives the 
impression that the delamination occurs in the early stage of the second knee point. 

Thus, a relationship between the fracture surface performance and the number of cell unit 

repeats is obvious. An increase in the number of cell unit repeats could prevent 

catastrophic failure by splitting the specimen into two pieces. 

Application (2) the objective of this application is to study the effect of fibre hybridisation in the 

composite on bridging validation, in other words, to identify the damage event sequence of the 

hybrid and non-hybrid woven glass composites that facilitate bridging support. 

The bridging considered by Chou, as a basic difference between hybrid and non-hybrid 

composites is the material variation over the cell unit repeat in the composite. Moreover the 

distribution of stress and strain over the laminate mid-plane varies with location in the hybrid 

fabric composite (Chou 1992). This fact could establish a relationship between the stress 

and strain distribution over the laminate mid-plane and material location over the cell unit 

repeat. 
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The results of the tensile tests on hybrid and non-hybrid glass woven reinforced epoxy resin 

composites at 48% fibre volume fractions (in table 5- 14) are graphically presented in figure (5 

- 25). The variation in the E-Modulus of the non-hybrid and the hybrid composites shows the 

hybrid is stiffer and greater in strength than the non-hybrid composite. The result shows the UTS 

of hybrid composites is superior to non-hybrid composites (weft direction) by approximately 

21%. The stress values of the non-hybrid are 345 MPa and for the hybrid composite 419 MPa at 

the second knee point. The variation in the stress values at the second knee point is believed to 

be due to the variation in the interphase properties of the composites as a function of the 

variation in fibre hybridisation. This clearly produces a modification in the damage sequence 

mechanisms. 

Therefore a relationship could be established between the variation of damage sequence 

mechanisms and material location over the cell unit repeat. The difference between the 

hybrid and non-hybrid composites from the material point of view is that the hybrid composite is 

composed of R-glass and E-glass whereas the non-hybrid composite contains E-glass only. 

The ILSS of the non-hybrid composite was 23.3 MPa and flexural strength 361.50 MPa, whilst 

the ILSS of the hybrid composite was 26.5 MPa and flexural strength 430.67 MPa. The result, 

which is statistically significant, as obtained by the t-test, for flexural strength denotes that the 

increase in flexural strength and modulus and interlaminar shear strength is due to the fibre 

hybridisation in the composites. The ILSS of the non-hybrid'composite appears to promote 

higher shearing failure in the matrix region and the transfer of high shear load across the 

composite compared with the hybrid composite. As each fibre breaks, redistribution of stress 

occurs, leading to additional stresses on neighbouring fibres associated with a local stress 

magnification effect. Thus, there is an increased probability that the fracture will occur in the 

closely adjacent fibres. The value of hybrid composite ILSS is higher in value and is 

characterised by good fibre/matrix adhesion. The flexural test is thus shown to be able to 

differentiate between the properties of hybrid and non-hybrid composites. 

The visual examination of the hybrid tensile specimen in figure (5 - 31) exhibited good 

brid gin and the SEM micrograph in figure (5 - 36) shows the presence of surface debris and 

shear cusps of the matrix on the fibre surface, indicating a good fibre/matrix bond. The visual 

examination of the non-hybrid tensile specimen in figure (5 - 29a) exhibited fibre fracture 

indicating that no brid ing was involved. The appearance of the tensile mode failure in the non- 
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hybrid composite, which split into two pieces, showed complete longitudinal fibre rupture and 

complete matrix fracture. Furthermore the evidence from the SEM micrograph in figure (5 - 
33), indicates (a) that fibre bundles fractured, and that most were pulled out rather than ruptured 

under the effect of undulations created by weaving and (b) layer delamination. 

The relationship between the fracture surface performance and material location over the 

cell unit repeat is obvious. The fibre hybridisation over the cell unit repeat of the woven 

fabric could prevent catastrophic failure by splitting the specimen into two pieces. 

The above two applications highlight the relationships between the number of cell unit repeats of 

the woven fabric and the material properties over the cell unit repeat and fracture surface 

performance of the tensile specimen. These relationships could validate the principle of the 

bridging model, such that, the elastic properties of a woven fabric layer are functions of the 

fabric structure and material system used in the woven composites according to (Ishikawa et al. 
1985) and (Naik 1994). 

Moreover, the AE activities also recorded a variation in the magnitude of the AE ring down 

count corresponding to the second knee point for each individual composite. The quantification 

of AE values is summarised in table (5 - 13). The higher the fibre volume fraction in the 

composite, the lower the AE activity recorded. The higher the AE activity the greater the 

damage. This is due to the layer delamination at the second knee point. This occurs in the 38% 

Vf composite, whilst the composite of 64% Vf prevents similar delamination. The knee point's 

values and its corresponding RDC values reveal the different fracture mechanisms generated due 

to the variation in the interphase properties of composites as a function of the variation in the 

fibre volume fraction. The lower the fibre volume fraction in the composite the higher the AE 

activity recorded at ultimate tensile fracture, possibly due to fibre rupture. 

The AE activities also show that non-hybrid glass fibre woven in the composite leads to growth 

in the magnitude values of ring down counts compared to the hybrid composites during tensile 

tests. The AE ring down counts of hybrid and non-hybrid composite (weft direction) values is 

summarised in table (5 -15). The AE activities also recorded a variation in the magnitude of the 

ring down count corresponding to the second knee point for both hybrid and non-hybrid 

composites. The higher AE activity, the greater the damage, which is caused mainly by layer 

delamination towards the second knee point in the non-hybrid composite. The hybrid composite 
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exhibits less delamination. The variation in AE ring down count values at ultimate tensile 
fracture illustrates accumulated damage events and were higher in the case of non-hybrid 

compared with hybrid composites. This is mainly due to fibre bundle pullout and fibre rupture. 

Furthermore, the magnitude of (tan S) for 38% Vf composite was measured to be approximately 

0.110 and the value of the Tg was approximately 141 °C while the magnitude of tan (5) for 64% 

Vf composite was measured to be approximately 0.037 and the value of the Tg was approximately 

126 °C. This indication reveals that strong interfacial bonding is associated with high fibre Vf 

composite. The Tg magnitudes decreased with increasing fibre volume fraction in the 

composites; the highest Tg was for the 38% Vf composite. The Tg of the composite clearly 

influences the formation of the interphase surrounding the fibre. The magnitude of (tan S) for 

the non-hybrid composite at 48% Vf was measured at 0.070 and the value of Tg were 130.2 °C. 

The magnitude of tan (6) for the hybrid composite at 48% Vf was measured at 0.051 and the 

value of the T. was 119.7 T. This magnitude of tan (8) indicates that strong interfacial bonding 

is associated with hybrid composite, as discussed in the DMTA section. The Tg can be 

considered to be a function of fibre surface treatment concentration, i. e. a component of R-glass 

in the hybrid. The T. of the composite was influenced by the formation of an interphase around 

the fibre. 

The flowchart in figure (5 - 39) is designed for quality control purposes to ensure a satisfactory 

woven glass composite. Designers must be familiar with the effect of the interphase structure of 

the individual composite and the DMTA data, specifically the function of tan (5) and Tg as the 

critical parameters promoted by data. This allows the increase in efficiency of composite 

reinforcements, and eliminates any possible poorly reinforced composite. The RDC values 

under tensile tests are correlated with the tan delta from DMTA and the extraction of results must 

be performed mechanically by a classification of bridging conditions. The flowchart is made up 

of three essential data: the tan (S), the RDC and the classification of the bridging condition. On 

one hands the tan (8) parameter enables the depiction of acceptable fibre/matrix adhesion and on 

the other the AE activities determine the acceptable damage event level in the composite. The 

bridging condition dictates the performance of any possible fracture in the woven glass 

composite. Quality control can be used together with figure (5 - 39) to ensure that the research 

objective i. e. a satisfactory fabric weave architecture and hybridisation effect can be considered 

more simply. 
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Summary of the section 

Two applications have been discussed to emphasise that bridging can prevent catastrophic failure 

by cutting the specimen into two pieces such as in cases of high Vf and hybrid composites. 

The ILSS test promotes failure by shearing the laminate; the shear failure mode is dominated by 

interfacial failure, while the matrix plays a major role by transferring the shear load across the 

composite. Good fibre/matrix adhesion is essential for the composite under shear loading. The 

ILSS test is therefore used for assessing fibre-resin compatibility. The flexural test is used for 

assessing fibre volume fraction and fibre properties. This is in agreement with the literature 

Chamis (1974,1987), Caldwell (1992), Drzal and Larson (1994), ASM International (1987) and 

Kaniej (2000). 

The viscoelastic property is influenced by the effect of fibre coating distribution or the fibre 

coating concentration in the composite. The quantitative values of viscoelastic properties of 

composites such as the magnitude of tan (S) represent the quality of the interfacial bond in the 

composite. The fibre surface treatment concentration can influence the Tg of the composite, 

which influences the formation of an interphase around the fibre. 

The ILSS, viscoelastic and flexural properties of the composites could contribute to the 

interfacial and fibre constituents leading to improved understanding of the damage event 

processes under the tensile test for individual composites. This includes the evidence provided 

from the SEM micrographs and visual specimen examination, and the use of quantitative- 

qualitative relationships to identify the damage events. The damage sequence analysis, indicated 

in this study, has not, it would appear, been mentioned in previous research. 

The construction of the damage event sequence for the glass woven composite system during the 

tensile test is illustrated by the circular arrow assemblage in figure (5 - 37), and considers the 

variation in the quantitative values and qualitative images of damage accumulation of woven 

composites. This model could present new methodology to identify and classify the damage 

event sequence as follows: 

The model employs different tools in assembly such as AE, SEM, VSE and DMTA, which is 
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a new technique. 

" The zone classification technique of stress-strain and its relating AE curves has been utilised 

in this study so as to ascertain the maximum possible information from each experiment, and 

is considered to be a new technique in the identification of damage event sequence of woven 

composites. 

" The relationship between quantitative values and qualitative images of damage accumulation 

in woven composites is also considered to be a new methodology in the identification of 
damage event sequence as assembled in figure (5 - 38). 

" The implementation of bridging validation on the tensile specimen is considered to be a new 

application in the investigations of tensile properties. 

9A flowchart in figure (5 - 39) is designed for quality control purposes to ensure a satisfactory 

woven glass composite. 
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Figure (5 - 37) The damage events process modelling during tensile test of glass 
woven fabric composites. 
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5-6 Section Six: Evaluation of the Results 

5-6 -1 The correlation of experimental results with DMTA 

The comparison of test results for flexural moduli and ILSS of non-hybrid woven composites at 

different fibre volume fractions with the values obtained from DMTA are laid out in table (5 - 
16). The DMTA values refer to the values of storage moduli, glass transition temperature (Ts) 

and tan (6). A similar comparison for identical fibre volume fraction between the hybrid and 

non-hybrid glass woven composites values are set out in table (5 -17). 

The relation between the glass transition temperature (Tg) and ILSS corresponding to four Vf 

composites is presented in figure (5 - 40). These Vf composites are selected from the 

experimental results. The figure shows the linear increase of ILSS among the first three Vf 

composites and linear decrease of the corresponding values of the Tg. The figure further shows 

that the Tg for the 56% Vf composite was approximately 122 °C rising to approximately 126 °C 

for the 64% Vf composite. This relation further indicates the limitation effect of Vf on ILSS in 

the composite. The limitation effect was obvious in the case of 64% Vf which was clearly 

excessive for the composite. Therefore, the composite of 64% Vf cannot be the optimum 

composite. Similar relations between the glass transition temperature (Tg) and UFS were 

established including the Vf limitation effect and are presented in figure (5 - 41). The Vf 

limitation effect has been considered whilst discussing the ILSS and flexural results. 

The Vf limitation effects are mainly due to the limitation of crosslinking between the epoxy resin 

and glass fibre surface treatments. The glass transition temperature (Tg) as determined by DMTA 

reveals the role of fibre surface treatment concentration in each composite. This explains the role 

of fibre surface treatment on the mechanical properties of the woven composites. It is therefore 

considered that the fibre surface treatment concentration of the glass woven fabric composite 

influences the ILSS and flexural properties. The DMTA can contribute some more advantages: 

it is a non-destructive test, several elastic constants such as storage and loss moduli, and tan (S) 

over a range of temperatures can be found in a single experiment. The DMTA test is capable of 

producing accurate results, and can improve the interpretation of the destructive test. 
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The reduction of the glass transition temperature (Tg) values as a function of fibre surface 

treatment concentration due to the increment of Vf in the composite leads to a good correlation 

with the increases of ILSS in the experimental results. The experimental results show that the 

ILSS (r) increases with the increase of overall fibre volume fraction in the composites. 

Moreover, a similar trend for tan delta could be observed, the reduction in tan delta magnitude is 

associated with an improvement of interfacial bonding in the composites due to the increment of 

Vf in the composite, see tables (5 - 16) and (5 -17). 

The storage modulus (E') represents the capability of load bearing for each composite, this 

correlates with the values of UTS of the composites. The UTS level of the hybrid composite for 

example was superior to the UTS of the non-hybrid composite, hence agreeing with the storage 

modulus (E') values of DMTA. 

The values of the storage modulus (E') of DMTA were close to the values of the flexural 

modulus obtained from the flexural mechanical test, which show good correlation between the 

two tests. 

The relation between the Tg and both ILSS and UFS reveals the Vf limitation effects on the 

mechanical properties of the composites and this relation should be considered in the application 

of the rule of mixtures. The rule of mixture application on the tensile modulus and UTS does not 

show the Vf limitation effects, for example. The results of the tensile modulus and UTS are 

examined by the rule of mixtures as presented in figure (5 - 42); the figure exhibits a linear 

dependence on the fibre volume fraction composites. This implies that the rule of mixture is 

applied to these cases. When the fibres in woven fabric composites are identical, continuous, 

aligned and uniformly spaced, the rule of mixture then provides the tool for predicting the axial 

tensile and flexural strength as a function of fibre and matrix strengths, and the constituent 

volume fractions. This corresponds to the literature (Herakovich 1998). 

5-6-2 Classification of the results between significant and non-significant 

The results of ILSS, tensile and flexural properties have been tested by the t-test of probability 

(see the details oft-test method in appendix Q. The values of tensile and flexural strength of the 

hybrid and non-hybrid composites for similar Vf exhibit significant variation in properties see 

table (5 - 18). The ILSS indicates insignificant variation for similar Vf in the composite and 

160 



Damage Accumulation in Hybrid Woven Composites Results Evaluation 

similar specimen dimensions between the hybrid and non-hybrid composites. The values of 

tensile and flexural strength of the non-hybrid including four different fibre volume fraction 

composites exhibit significant property variation. In the other words, the tensile and flexural 

strengths exhibit significant improvement for each fabric layer added in the composite laminate 

body for similar specimen dimensions. 
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Table 5-18 t-test of Tensile, ILSS and Flexural Test Results Hybrid and Non 
hybrid (Weft Direction' 

t-test of Tensile, ILSS and Flexural Test Results 
Hybrid and Non-hybrid (Weft Direction) 

UTS (MPa) UFS (MPa) ILSS (MPa) 
Mean Hybrid 609.29 4 30.67 26.498 
Mean Non- 

hybrid 
5(ºl. 90 361.50 23.288 

d 107.38 69.17 3.20 
Stand. Deg. 

Hybrid 36.57 22.78 2.860 

Stand. Dev. 
Non-hybrid 

;:. 33.71 21.66 2.671 

Sx(A) 16.5 10.19 1.28 
Sx(B) 15.08 9.69 1.19 

Sd 22.24 14.06 1.75 

t. 4.53 4.92 l 
.St 

Table 5-19 Percentage points oft distribution* 

Percentage point oft distribution 
df alpha=0.05 alpha=0.01 
1 12.71 63.66 
2 4.31 9.93 
3 3.19 5.85 
4 2.78 4.61 
5 2.58 4.04 
6 2.45 3.71 
7 2.37 2.45 

...........::..... 
2.31 ^x. 36 

. 9 2.27 3.25 

10 2.23 3.17 

11 2.21 3.11 

12 2.18 3.06 

13 2.16 3.02 

14 2.15 2.98 

15 2.14 2.95 
16 2.12 2.63 

100 

1 200 

1.99 
1.97 

2.61 
2.59 

infinit 

L 
1.96 2.58 

* Data have been provided by (Michael S. Lewis-Beck, 1993b). 
NOTE: Table value calculated by authors M. S. Beck. 
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5-7 Section Seven Microlam software 

Microlam, micro-mechanical software, was developed by Stellbrink to analyse the structures of 
laminated woven composites. The CLT was the basis of Microlam software calculations; the 

details of CLT have been discussed in chapter three and appendix A. The aim is to employ the 

software to forecast variations of mechanical properties as they affect fibre hybridisation and V1 

in the composites. 

5-7 -1 Microlam software input 

The following is the main input menu, for describing a composite. The user presses C to 

specify.... Composition. Then, to specify from the sub-menu, the type of reinforcement U for 

unidirectional, R for random, F for fabric or P for particulate reinforcement. The bold face letter 

specifies the topic 

i(MICROLAM 2.2; LIGHT) 
Input or edit constituents data -º Jý 
Table of materials data sets (view databank) 

--- (reinforcement)---- -- 
specify composite Composition -º unidirectional 
view composite Properties random/swirl mat 
Graphics (impact of fibre volume, direction) -4 fabric 

particulate 
Fiber properties from composite i matrix data -º (F1)-+Info, (LSCI-ºEnd - 

save (input/output) data to disk -º 

temporarily to DOS 

exit MICROLAM (or back to LAMICALC) 
(713-+Info, (! SC)-ºEnd 

(How many different fibre types ?) 
Identical fibre types in warp and fill 
Different fibre types in warp and fill 
Two fibre types within warp and/or fill 
+identical matrix within the entire laminate+ 
warning: all current composite data will be 
lost! -+hit (ESC) if you want to save them 

(F11-ºInfo, (ESCJ-4End - ---- 

Figure S-1: Menu sequence for fabric type specification. 

F specifies fabric reinforcement from the sub-menu. The woven fabrics are often made of 

different fibre types, such as glass and carbon or carbon and Kevlar. There are two main 

principles of combinations: firstly, warp strands are made of one fibre type and fill strands are 

made of another fibre type or, secondly, the strands in one direction (warp or fill) alternatively 

consist of different materials. Microlam masters both methods and their combinations. Therefore, 
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the first characteristics the user must specify with fabric reinforced composites is the number of 
different fibre types and the way they are combined. For now, in order not to make things too 

complicated, Identical fibre types in the whole cloth is selected for non-hybrid and different fibre 

types for hybrid. 

Then, the following list of chooseable matrices is displayed, marked by ranked identification 

letters. The user chooses the corresponding letter: A for low modulus matrix has been chosen for 

epoxy resin in the matrix ID submenu. The list of chooseable reinforcements is then added on 

screen. Again, the user has to make a choice by typing the corresponding letter: G for E-glass in 

the fibre ID submenu, in order to investigate the principal difference of the available fibre 

hybridisation methods. The non-hybrid fabric could be specified with E-glass fibre in both warp 

and weft directions. The hybrid fabric could be specified with E-glass fibers in warp direction 

and S-glass fibre (instead of R-glass fibre due to non-availability) in fill direction. 

WARP elements: specify ID-# 
(fiber-ID-1 ) {matrix-ID-f }- 
A: BORon A: LowMod 
B: HMS B: MiMod 
C: AS C: HiMod 
D: T300 D: Polyimid 
E: KEVLAR E: PMR 
F: S-glass F: LY556+HT976 
G: E-glass (F1j--ºInfo, (ESCJ-9End- 

(F11gInfo, (ESCJ-l End 

Fibre volume (%) local 11 80 

Figure S-2: Menu sequence for fibre identification in the fabric and matrix type specification. 

In order to investigate the principal difference of the available fibre volume fraction methods, the 

programme asks for the fibre volume fraction, a number between 20% and 90% is keyed in. 

With fabric composites the fibre volume fraction to be specified at that point has a special 

meaning. In fabric reinforced laminates, resin is distributed very unevenly. Within a strand, fibre 

content is high; where fill and warp strands cross, neat resin lumps exist. The global fibre content 

in a woven fabric reinforced laminate must be much lower than locally within a strand. 

Suggestions are also made for an appropriate local fibre volume fraction within a strand. The 

proposed values are then confirmed or specified. Microlam then displays the data of a 

unidirectionally reinforced composite with the specified local Vf. This is a basic data set for 
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estimating properties of fabric reinforced laminates. If the fabric is composed of several fibre 

types, this step is repeated for each type. Due to limitation of text screen performance, subscripts 

are not printable so, El stands for El, Rlt for Rlt ... etc. 

LAMINATE in-plane PROPERTIES 
(modulus E_1 (MPa) )---ý 

304440 ý 

(Poisson's ratio 21) 
--ý 

0.246 

(thenn. exp. a1 (m/mK) ) 
-B. 54E-07 

(moist. exp. ß_1 (%I%) ) 
3.09E-09 

(strength R 
_lt 

(MPa)) 
1362 

(strength R 
_lc 

(MPa)) 
1120 

(strength L12 (MPa)) 
73 

(SI units): ) 
(modulus L2 (MPa) ) 

5202 

(shear mod. G_12 (MPa) ) 
6640 

(therm. exp. c L2 (m/mK)) 
3.00E-05 

(moist. exp. L2 (%/%) ) 
4.46E-02 

(strength L 2t (MPa)) 
75 

{strength R_2c (MPa)) 
113 

(laminate thickn. (mm) ) 
0.125 

Figure S-3 the analysed ply properties screen presentation. 

The next screen shows a sketch of weave patterns, which illustrates the prompt for weave pattern 

specification. The user has to reply with two numbers describing the numbers of consecutively 

crossed transverse fibre strands. Microlam masters only symmetric weave patterns, similar in 

warp and fill directions. 
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total arc,, i I y-2: 
ma s rci-1: 4', !i -s=-rý" hr" zsrt: 1 

Z45 weave pxtfcrn 1/I 

thread spacing and thickness 

Figure S-4 Data input screen for fabric geometry specification. 

KF 44. 
. 

x 

ýJ 

T 

eý 

Now, it is recommended to select 11/71, which means 8-harness vNeavc pattern in the vvea' e" 

pattern ID instead of the default value Il/]]. The mass area of 305-fig/m2 for the fabric used 

instead of the default value of 245 
--/m 

2, with the default mass ratio of fill/warp equal to 1. It is 

essential to mention that Microlam software input such L1: the thickness of laminate. I, c: tile 

crimp portion length of the výoven cell repeat unit and Ls the straight portion length of' \\o\ ell 

fabric cell repeat unit are kept constant for each calculation. Microlam finally asks fier av md 

volume content. Further information for specifying the fabric geometry is required. Aticrolani 

has built in default v aloes. vvhich describe an ordinary glass fabric. To input data the user 

presses [ENTERS step by step. 

5__2 Microlam software output 

Microlam then uses classical laminate theory to calculate the of ectke I ihric reinforced 

laminate properties and displays this data on screen, see figure S-3. 
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A key assumption made in the fibre crimp model is that classical laminate theory (CLT) is 

applicable to each infinitesimal slice of material of width dx. Then the local plate extension 

stiffness coefficient for the portion where the filling is composed of a material, is given by: 

Aa; y 
(x) = QM J 

(h 
2'+A 

a (X) - hat (X)) + Qg Fa (X) 
tt 

+ QJW ý (n2a (X) 
-i (X)) 

2 

where the superscripts F, W and M denotes the filling yam region, warp yarn region, and pure 

matrix material, respectively; ý stands for a or ß material as presented in figures (3 -4 and 3- 

6) and h denotes the total laminate thickness, including the pure matrix layers. 

For comparison purpose, the data output of Microlam software such as stiffness and shear 

moduli are illustrated in table (5 - 20). In general, the user will see that stiffness is roughly 

determined as an arithmetic average, following the rule of mixture. 

It has been observed from the output calculation of the software that the longitudinal and shear 

moduli increase with the increase in the overall, fibre volume fraction of the glass woven 

composites. Similar relationships were highlighted from the experimental results. The different 

laminate thickness input values for the chosen Vf in the glass woven composite also hold 

individual values affected by the laminate thickness as illustrated in table (5 - 20). The variation 

between the hybrid and non-hybrid composites in the weft direction has been observed: this is 

consistent with the CLT, which is the basis of Microlam software calculations. It has been further 

observed that the hybrid longitudinal and shear moduli values are higher than the non-hybrid 

glass woven composites for similar Vf, primarily similar relationships were highlighted from the 

experimental results. Classical lamination theory is applicable for each tiny microscopic slice of 

the material of certain width in the case of the hybrid weave. 

It is essential to mention that experimentally, the ILSS specimen with 3mm thickness contained 

8 to 14 woven fabric layers. The stresses in the plane of the laminate c, ay and T,, y only are 

considered in CLT as discussed in chapter three and appendix A. The CLT considered the 

laminate to be very thin; the interaction between the plies is not taken into account according to 

this theory (more details in appendix A). Hence, the above reason was considered, while 

analysing the ILSS values. Consequently, the existence of ILSS in the experiments is deemed to 

relate to the thickness of the laminated test specimen. This is in agreement with the literature 

(Chou 1992, and Enie and Rizzo 1970). 
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Damage Accumulation in Hybrid Woven Composites Summary 

CHAPTER SIX 

6-1 Summary 

Damage accumulation in woven fabric composites has been analysed in this study based on two 

reinforcement categories. The first category was to investigate the effect of Vf in the composite 

mechanical performance using non-hybrid woven fabric of E-glass in four different fibre volume 
fractions for similar specimen dimensions. The second category examines the effect of fibre 

hybridisation of the composite mechanical performance using hybrid woven fabric of E-glass in 

the warp and the R-glass in the weft compared with non-hybrid E-glass woven fabric 

composites. The comparison was for similar fibre volume fractions and specimen dimensions. 

TD22 is a silane binder; which is a resin compatible option as a fibre coating for both fabrics. 

Epoxy resin (L20-SL) set was the sole matrix used for all laminated composite material. 

The destructive tests ILSS (short-beam method), flexural (three-point bending) and uniaxial 

tension tests were carried out on these sets of composites. The AE technique was successfully 

employed on glass woven composites during mechanical testing (ILSS, flexural and tensile). The 

AE results were supported by specimen visual examination (SVE) and scanning electron 

microscopy (SEM) of fracture surfaces was performed to visualise the damage events occurring 

in glass woven reinforced epoxy resin laminates. 

The composite properties including ILSS, flexural strength and modulus and tensile strength and 

modulus have been analysed in chapter five. The test results reveal higher tensile, flexural and 

improvement of ILSS mechanical performance for the hybrid compared with non-hybrid 

composites. The improvements were significant on well fill direction, where R-glass fibre 

dominated. The hybrid composite failed to exhibit similar mechanical improvement for the warp 

direction, where E-glass dominated. 

The results further showed a significant improvement in flexural and tensile mechanical 

properties and an improvement in ILSS for higher fibre volume fraction in the non-hybrid 

composites compared with low Vf. 
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In Dynamic Mechanical and Thermal Analysis (DMTA) tests (Flexural vibration - non- 

resonance method), the glass transition temperature (Tg) was measured for each composite by 

taking the maximum peak of the loss modulus. The DMTA is used to characterise the variation 
in the interphase properties in the glass woven composite. This is an issue of great importance 

since the interphase properties often dictate the gross mechanical performance and structural 
integrity of the composite as a whole. 

The glass transition temperature of hybrid woven fabric composites was lower than the Tg of 

non-hybrid woven fabric composites. Thus the fibre surface treatment concentration in the 
hybrid composites was higher than that of the non-hybrid composites. The increase in fibre 

volume fraction reduced the Tg of non-hybrid E-glass woven fabric composites. In general, the 
increasing interaction density with the matrix caused this reduction due to the increased fibre 

surface treatment concentration in the composites. The Tg measurements of composites have 

been highlighted in this study to reveal the role of the fibre coating concentration in the 

composites and the relation of the fibre/matrix bond in the mechanical performance. 

The correlation of DMTA results with destructive testing such as tensile, flexural and ILSS 

results have been established. The tensile and flexural properties and ILSS showed good 

correlation with DMTA results. The DMTA storage modulus as a function of load-bearing 

capability correlated with tensile strength. Furthermore, the DMTA storage modulus correlated 

to the flexural modulus at room temperature. The magnitude of tan delta was associated with the 

status of interfacial bonding of the composite as the outcome of Vflevel or the fibre properties in 

the composites. The tensile modulus and strength showed a linear dependence on the fibre 

volume fraction, which means the rule of mixture is applicable to the results in this research. 

Microlam software based on the classical laminate theory (CLT) calculation has been used to 

highlight the variation of elastic properties of different classes of glass woven fabric composites. 

The calculations gathered from Microlam software output data showed the longitudinal moduli 

increase with the significant increase in the overall fibre volume fraction of the glass woven 

composites. Microlam software output data further showed the longitudinal moduli of hybrid 

composite in weft direction was superior to non-hybrid composites in the weft direction. 

Classification of the mechanical testing results between significant and non-significant was 

examined using the t-test of probability. 
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A model has been developed in this study based on the analysis of damage event sequential 

process modelling. The experimental analysis relied on viscoelastic investigation of the 

composite using DMTA and AE techniques including AE zone classification in each zone. 

Specimen visual examination (SVE) and SEM of the fracture surface supported the AE results. 

This analysis has been applied to the bridging mathematical model introduced by Ishikawa and 

Chou (Chou1992), as a further development of the model. The bridging is worked effectively 

when increasing the fibre volume fraction in the composites. The results of tensile, flexural and 

ILSS tests indicate that bridging is found in the higher fibre volume fraction composites, by an 

increase in the number of woven cell unit repeats, but does not exist in the lower Vf composites. 

The hybrid glass material used over the woven cell unit repeats improved the bridging 

performance, which was not the case for non-hybrid glass woven fabric composites with similar 

Vf. The results of tensile, flexural and ILSS provided the evidence that the bridging exists in 

hybrid composite. The DMTA and AE parameter could be used as a quality control. The 

flowchart in figure (5 - 39) was designed for quality control purposes to generate satisfactory 

woven glass composite. 
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6-2 Conclusions and the originality of the research 

1. The DMTA is used to characterise the variation of the interphase properties in the glass 

woven composite. This is an issue of great importance because the interphase properties 

often dictate the overall mechanical performance and structural integrity of the composite. 

2. The mechanical properties of hybrid glass woven fabric composites (%%-cf direction) 

improved compared to the non-hybrid glass woven fabric composites for similar fibre 

volume fraction and similar specimen dimensions. During the Interlaminar Shear Strength 

(ILSS) tests (short-beam method), the shear strength improved by approximately 6%. In 

flexural (three-point bending method) tests, the flexural properties (strength and modulus) of 

hybrid glass woven fabric composites were significantly increased by approximately 19%. 

In the uniaxial tensile tests, the tensile properties (strength and modulus) of hybrid glass 

woven fabric composites were significantly increased by approximately 18%. 

3. The hybrid glass woven fabric composite failed to show a similar mechanical improvement 

in the warp direction. The difference between the hybrid and non-hybrid composites is that 

the hybrid composite is composed of R-glass and E-glass whereas the non-hybrid composite 

contains E-glass only. It is essential to mention that the R-glass was in the weft direction of 

the hybrid woven composites while E-glass was in the warp direction. Therefore there was a 

significant improvement of flexural and tensile properties in the weft direction, which did not 

occur in the warp direction. This clearly demonstrates the significant change in the properties 

of the woven fabric composites promoted by R-glass properties. 

4. The above two points can conclude that the fabric weave architecture significantly 

influences the micro- and macro-mechanical properties of glass composites. This is 

promoted by fibre properties. Other weave hybridisation has been suggested to provide the 

designer with alternative tools for development (see the future work). 

5. The flexural and tensile properties were significantly increased and an improvement achieved 

in the ILSS due to the increase of fibre volume fraction in the non-hybrid E-glass wovon 

fabric composites for similar specimen dimensions. 
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6. It is essential to consider the cost of R-glass from the industrial point of view. For example 
the cost of an E-glass bobbin is £7 while the cost of an R-glass bobbin is £ 49 (Vctrotcx, 

1999). Therefore, it is fair to mention that similar micromechanical properties of hybrid 

composites can be achieved through the variation of Vf of non-hybrid composites %%ithin 

certain limits of Vf. 

7. A model has been developed in this study based on the analysis of micro- and macro- 

mechanical damage process modelling during the tensile loading as presented in figure (5 - 
37). A quantitative and qualitative relationship is established in this model so as to obtain 
further details of the damage event identification as presented in figure (5 - 38). The model 

correlated the AE profile with quantitative values and qualitative views in order to 

identify the damage event and the level of failure. The quantitative values of each 

mechanical test and the qualitative views of the fracture surfaces are represented by SEM and 

visual specimen examination (VSE). While the AE profile represented the life history of 
damage process during the testing. 

8. The zone classification technique of stress-strain and its relating AE curves has bccn 

utilised in this study to extract the maximum possible information from each variation in the 

damage events. 

9. Further development to the model is to identify the damage event process in order to classify 

the bridging support to maintain the coherency of the tensile specimen. Thus the catastrophic 

failure by the specimen splitting into two pieces can be avoided. The so-called "bridging 

validation" to which the analysis refers, was presented mathematically by Ishika%va and Chou 

(Chou 1992). 
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The originality of this research can be highlighted as follows: 

" The results of the research programme in the absence of any other research work on R-glass 

are essential in the field of glass fabric composites. The material is original and has not 

previously been examined. The test results are considered to be an addition to previous 

knowledge on R-glass. 

" The zone classification technique of stress-strain and its relating AE curves have been 

utilised in this study to extract the maximum possible information from each variation in the 

damage event. This technique does not appear previously to have been discussed in the 

context of woven fabric composites. 

"A model has been constructed in this study based on the micro- and macro-damage cvcnt 

sequential process. The experimental analysis relied on viscoelastic investigation of the 

composite using DMTA and AE. techniques including AE zone classification. The visual 

specimen examination and SEM of fracture surface supported the AE results. This analysis 

has been applied to the bridging mathematical criteria introduced by Ishikawa and Chou 

(Chou1992) as a further development of the model. 

The new technique of the model is to employ different tools in combination such as AE, 

SEM, VSE and DMTA for clearer damage events process modelling. 

The use of viscoelastic properties of fabric composites is an innovative approach facilitating 

the DMTA technique in the woven fabric composites. The role of the fibre properties may 

be studied as well as the coating concentration on the fibre surface in the composites. 

DMTA data has been used as an accurate parameter for the first time to correlate the results 

of ILSS, flexural and tensile studies. 

The test results of ILSS, flexural property and tensile property of non-hybrid glass twwovcn 

fabric composites can also be improved by increasing the fibre volume fraction of non-hybrid 

composites. These composites compete with hybrid material. Other weave hybridisation 

can be predicted in order to hold higher mechanical performance as a result of this research. 
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6-3 Further Work and Development 

This research work has concentrated on a single weave hybridisation. Thcre are many othcr 
hybridisation architectures, which can be employed for design application development. These 

should be investigated as a separate study. 

Other weave hybridisation can be suggested from the outcome of the results analysis to predict 
better mechanical performance. 

For example alternating the R- and E-glass fibres in both warp and weft could give a 50% fibre 

volume fraction for each fibre and possibly balanced mechanical properties for both w%-cl and 

warp directions. 

Another variation might lie in varying the numbers and order of R- and E-glass yarn in both 

warp and weft directions to obtain different fibre volume fractions. A collection of many woven 
fabrics could be obtained to enable the designer to select the optimum composite for the 

application under development. 
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APPENDICES 



Appendix (A) 

Classical Laminate Theory (CLT) 

The laminate is assumed to be made up of a number of perfectly bonded laminae with the bond 

assumed to be infinitesimally thin (Jones 1975). The laminate is thus assumed to be a single 
layer of material. 

General assumption of classical laminate theory 

The general assumption of classical laminate theory for prediction of both stiffness and strength 

requires that vertical stress does not vary through the thickness and that stress normal to the plate 

surface is negligible: 
1. Stress normal to the thin ply surface and shear strain in planes perpendicular to the surface 

are negligible. Through thickness and interlaminar shear stresses are considered to be zero. 

2. The elastic constants are invariant with strain (linear elasticity) elastic constants are invariant 

with temperature. 

3. Measurement of the lamina in the laminate of the unidirectional composite represents the 

input data. 

4. No stress concentration in an undamaged ply results from cracking in an adjacent damaged 

ply. 
5. No viscoelastic relaxation and thermal expansion coefficients are constant 
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Figure A. Classical Laminate Theory view of deformation geometry in x-z plane. 

(after Robert M. Jones 1999). 
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Because line ABCD remains straight under deformation of the laminate, the displacement at 

point C is. 

ß=ua-zcß 

But because, under deformation, line ABCD further remains perpendicular to the middle surface, 
J3 is the slope of laminate middle surface in x- direction, that is 

(3 = 0-, wo/ax 

Then, the displacement u, at any point z through the laminate thickness is 

u_ua - zöwo/öx 

similarly, the displacement v, in y-direction is 

v= vo - öwjay 

The laminate strains have been reduced to c,,, cy and yu by virtue of the Kirchhoff hypothesis. 

That is c= Yxz = Yyz =0 

For small strains (linear elasticity), the remaining strains are defined in the terms of displacement 

as 

ex = aulax, cy = ? v/ay , 'yxy = may + av/Ox 

Thus, for the derived displacement u and v, the strains are: 
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where the middle-surface straina are 
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and the middle-surface curvatures are 

a2wo 
Kx 2 

7 

a 

In classical lamination theory, only the stresses in the plane of the laminate, c;,,, ay and r,, y are 

considered. Thus in CLT no account was taken of stresses such as ßz, and and Try. These 

stresses are called interlaminar stresses and exist on surfaces between adjacent layers although 

they exist within the layers but are usually largest at the layer interfaces. Accordingly, classical 
lamination theory does not include some of the stresses that actually cause failure of a composite 

laminate. High interlaminar stresses are the basis for one of the failure mechanisms uniquely 

characteristic of composite laminates, namely, free-edge delaminations. Classical lamination 

theory often implies values of vy and t,, y where they cannot possibly exist, namely at the edge of 

a laminate. 

This analysis can be found in the references such as (Jones 1999) (Chou 1992), (Naik and 

Ganesh 1992), (Chawla 1987), (Carlsson and Pipes 1987) and (Christensen 1979). 

The material constants such as stiffness do not vary with strain, the strains in the deformed plate 

are small. Shear strains in planes perpendicular to the surface are assumed to be zero. The 
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theory assumes that the laminate is in a state of plane stress hence ignoring the interlaminar 

effects, and the out-of-plane stress components. 

The extensional stiffness `A' is given by: - 
A; j = ZQ; j hk where hk is the thickness of each ply. 

Where each ply has the same thickness hk, 

the stiffness ̀ Qij' is given by: - 
Qii =Eil/(1- v 12v21) 
Q22 = E22/(1- v 12 V 21) 

Q12 =V 12E22/(1-V12v21) 

Q66 = G12 

The overall laminate strain system resulting from an applied mechanical stress is calculated 

using the laminate stiffness matrix. The overall laminate strain system, which exists equally in all 

the laminae, is used to calculate the individual lamina stress via each lamina stiffness matrix. 
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Appendix (B) 

Ring Down Counting (RDC) 

Emissions as received by the transducer contain information on: 

(1) Rate of emissions received, 
(2) Frequencies within the emitted pressure wave, 

(3) Amplitudes within the emitted pressure wave arriving at the transducer. 

Additionally, energy parameters can be generated from the transducer signals. 

The simplest way of characterising a pulse or series of pulses produced in an acoustic emission 

experiment is called 'ring-down' counting. The time-amplitude trace of a pair of typical signals 
bursts at the transducer. Counting the number of times per second the amplitude exceeds a pre- 

set voltage gives a simple number characteristic for the signal. An experienced operator can use 

this number to make observations concerning the severity of the rate of growth of a defect under 

study. 

It will be noted that this simple approach relies in some cases, on the measurement of an 

averaged signal. Sophisticated equipment, now generally preferred, adds energy to simple 

counting because: 

(1) A ring down count is a function of signal frequency, 

(2) The count is only indirectly dependent upon amplitude because a large amplitude signal, i. e. 

the count, is biased towards large amplitude pulses. 

Energy analysis can mean any of the following: 

(1) The square of the initial pulse amplitude is measured for each burst. 

(2) The area under the envelope of the amplitude-time curve is measured for each burst. 

(3) The area under the actual amplitude-time curve is measured for each burst. (William 1980). 

Acoustic emission (AE) is the elastic energy that is spontaneously released by materials when 

they undergo deformation (Zwebwen 1972). The electrical signal from a transducer is 

subsequently amplified and as the crystals are left un-damped, the signal resulting from a single 
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surface displacement will be similar to that in the figure B. In an ideal situation the voltage, V, 

versus time (t), relationship for such a signal approximates to a decaying sinusoid: 

V= Vpsin2rc ft exp (-t/ti) 

The simplest method to obtain an indication of AE activity is to count the number of amplified 

pulses, which exceed an arbitrary threshold voltage [Vt] (Harris et al. 1980). 

The number of ring down counts (RDC) depends on the peak voltage and is given by 

RDC = fnln (Vp/Vt) 

where f is the resonant frequency of the transducer, i is the decay time, t is the time and VP is the 

peak voltage. The threshold voltage is usually determined after trials where the discontinuity is 

detected, sometimes it is set at IV for convenience. 
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Figure B the relationship between the voltage and RDC, (after Matthews 1983). 
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Appendix (C) 

t-Test 

Very few researchers use t-tests to classify their results. Significance tests satisfy the goal of the 

scientist more frequently than interval estimates, by indicating whether or not a certain 

relationship or quantity is worth further thought whether it might repay additional research effort 
(Lewis-Beck 1993a). 

significance test is a test of a hypothesis; Ho: µA - µB =0 

Where Ho is the null hypothesis, p is the mean value. The alternative hypothesis, H1, remains 

viable in the event Ho is judged untenable, then 

H1: µA-µB*0 

These are two competing versions of reality, and in order to determine the probability of Ho 

being correct, the appropriate statistical tests must be undertaken to make a choice between them, 

(Lewis-Beck, 1993a, b). 

In choosing between Ho and Hl it is first necessary to evaluate the dispersion of scores within 

each group in order to conclude with confidence that the two groups are different from one 

another in certain characteristics. Any difference between them must substantially exceed the 

differences within them with respect to that characteristic. 

In order to evaluate the hypothesis that d =µA - µB, any dissimilarities in performance between 

the group Ho and H1 need to be compared with dissimilarities within the two groups. As noted 

previously, the standard -deviation (S) is an indicator of the average extent to which each 

individual score deviates from the group mean. S therefore applies to raw scores. A comparable 

expression applicable to the mean is the standard error of the mean: 

S8=S/4n 
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Example 

Taking two groups: A=UTS of hybrid composite (weft direction) and B=UTS of non-hybrid 

composite (weft direction), then: 

S8 (A) = 36.57/x/(5) = 16.355 

S8 (B) = 33.71/4(5) = 15.076 

With regards to the data of particular group, taking a distribution of mean values in addition to 

the Standard Deviation for that group gives a more reliable reading than simply taking the 

Standard Deviation in relation to individual scores. S. would be a rough indicator of the average 

amount by which each sample mean would deviate from the population mean, which is 

unknown. 

Because the scores in each group comprise a sample rather than the entire specimen sets, Sy (A) 

and Sy (B) both represent unexplained variability. They are expressions of the extent, on 

average, to which a group of specimens that have been treated identically have inexplicably 

failed to behave in the same way. It is therefore permissible to combine these two conceptually 

equivalent figures into a single measure of collective within-group variability, which is referred 

to as the standard error of the difference between means: 

Sd = '/(SX (A) 2+ SX (B) 2) =, / ((16.355) 2+(15.076)2 )= 22.24 

The ratio between average within-group difference (d =µA - µB = 107.38) and Sd = 22.24) (and 

group difference is referred to as a t-test, 

t= d/ Sd = 107.38/22.24= 4.83 

The smallest magnitude which a score must reach in order for its associated mean difference to 

be judged significant is given in t (table 5- 19) for 

df=nA+nB-2 
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and selected alpha levels where (a) refers to probability levels considered too low to support the 

null hypothesis. In this example, 

df=5 +5 -2 = 8; at a= 0.05, 

therefore, t would have to exceed (2.35). 

The variability between the two specimen sets would have to be almost 2.5x greater than the 

standard error before the null hypothesis could be rejected and the groups could be declared to 
have performed in significantly different ways (Lewis-Beck, 1993a, b). 
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