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Abstract
The development of new features and approaches in pro-
gramming languages is a continuous and never-ending task,
as languages are ultimately tools for expressing and solving
problems. The past decade has seen a surge in languages
implemented for the BEAM as part of a search to combine
the fault-tolerance and scalability of the BEAM with a set of
desired language features.

In this paper we present Clojerl, an implementation of the
Clojure language with a rich set of data processing capabil-
ities and the expressive power of Lisp for the BEAM. The
main design principles of Clojerl are to provide (1) seam-
less interoperability with the BEAM to enable frictionless
interaction with other BEAM languages and (2) portability
with Clojure to enable existing Clojure code to run on the
BEAMwith little or no modifications. We evaluate Clojerl by
running a set of experiments that analyse the performance
of eight most widely used expressions. While the results
of complex expressions show that Clojerl requires further
optimisations, Clojerl significantly outperforms Clojure in a
set of basic expressions, confirming that Clojerl has the po-
tential to provide a competitive performance while offering
a rich set of programming language features.

CCS Concepts: • Software and its engineering→ Func-
tional languages.

Keywords: BEAM, Clojure, functional programming, pro-
gramming language, fault tolerance, scalability, concurrency
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1 Introduction
In the past couple of decades platforms built around virtual
machines and language engines, such as the Java Virtual
Machine (JVM), the Erlang VM (BEAM), .NET’s Common
Language Runtime (CLR), and Javascript’s V8 Engine, have
grown and matured into ecosystems of tools and libraries.
These platforms have also enabled and encouraged the imple-
mentation of programming languages other than the official
group supported by each platform. As a result, people look-
ing to take the best from the two worlds, combining their
language of choice with the power of a specific platform,
have created new language implementations.

A programming language is ultimately just a tool for solv-
ing problems. When adding a new language to a platform,
the language benefits from what the platform’s ecosystem
has to offer, and the platform benefits from having a new
tool available for people to use. A clear example of this is
Elixir [11], a programming language implemented on the
BEAM, with Ruby-inspired syntax, Erlang-inspired concur-
rency model, and a number of features inspired by other
languages.
This paper presents the addition of another language to

the BEAM’s tool-belt: Clojerl, an implementation of Clojure
on the BEAM. Clojerl is a bridge between the two worlds
(i.e. BEAM and Clojure), in an attempt to include the best of
both. The resilient and highly available way to build systems
in the BEAM, together with the expressive power and rich
data processing capabilities of Clojure.

The contributions of this paper are as follows:

• We introduce a new language to the BEAM family
called Clojerl (Section 3), an implementation of Clo-
jure, and present the benefits of having a modern Lisp
implementation on the BEAM (Sections 4, 5, 6, 7 and
8).

• We evaluate the performance of this implementation
by comparing it against the canonical Clojure imple-
mentation on the JVM (Section 9).

• We demonstrate that in basic expressions Clojerl out-
performs Clojure (experiments #1–#4 in Table 5).

• We identify directions for further improvements and
optimizations in Clojerl (Sections 9, 10).

https://doi.org/10.1145/3406085.3409012
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2 Related Work
2.1 Clojure
Clojure is a modern Lisp created in 2007 to provide better
tools to deal with concurrency in an established platform, the
JVM. It does this by "directly supporting concurrent software
development using functional programming techniques, and
[...] provides an environment conducive to agility" [4].

Clojure was designed to be a hosted language in order to
take advantage of the host platform’s existing ecosystem,
such as libraries and tools. Therefore the language aims to
enable frictionless interaction with the underlying platform,
so that programs written in Clojure can seamlessly call and
use code written in other languages for the same platform
(e.g. Java).

Clojure is implemented as a Lisp to reap all the benefits
this family of languages brings, such as:

• almost no syntax: code is built from lists and can be
easily manipulated;

• lambda calculus: yields an extremely small core for the
language;

• expressive power: through macros it is possible to cre-
ate custom language constructs that are closer to the
problem space;

• homoiconicity: code is data and data is code [14].

Clojure stands out from other existing Lisp languages due
to its focus on concurrency, its usage of immutable persistent
data structures (Section 5), and its design principle of being
a hosted language. Additionally, protocols (Section 6) and
multi-methods (Section 7), though not unique to Clojure,
enable extensible and flexible polymorphism.

Clojure on the JVM is not the only existing official imple-
mentation. There are currently two other officially supported
host platforms: ClojureScript [6] for JavaScript engines and
ClojureCLR [8] for the CLR.

The goal of ClojureScript is to bring the power of Clojure
to the ubiquitous platform that is the browser, as well as to
backend JavaScript engines like NodeJS [12]. ClojureScript
diverges in some aspects from Clojure on the JVM. For ex-
ample, it only supports the numerical data types present
in JavaScript, which are a subset of what Clojure on the
JVM supports. Another important difference is that since
most JavaScript environments do not provide support for
concurrent programming, it is not possible for ClojureScript
to include Clojure’s concurrency constructs.

ClojureCLR is an implementation of Clojure for the Com-
mon Language Runtime. The CLR is very similar to the JVM
in a number of aspects [9], which makes the translation
of code and concepts from one platform to another a very
simple and straightforward process. The result is an imple-
mentation that provides the same capabilities, tools, and
features as Clojure on the JVM, and expands the number of
available alternatives when choosing a platform for Clojure.

There is no formal definition of the Clojure language,
which makes the canonical implementation on the JVM the
closest thing to a definition. Some existing official implemen-
tations make some trade-offs based on the capabilities of
the platform they are using, but are still considered imple-
mentations of Clojure. Therefore we have taken this same
approach when implementing Clojure on the BEAM.

2.2 BEAM
The BEAM (also known as the Erlang VM) is a platform
designed to build highly concurrent, massively scalable and
highly-available systems [10]. Its concurrencymodel is based
on independent light-weight processes that share nothing
and communicate through message-passing. This concur-
rency model is very powerful as it allows systems to handle
errors and crashes in a safe way by isolating and monitoring
failures and recovering from them as necessary.
The native data structures available in the BEAM are all

immutable and some even persistent, such as lists and maps.
This alignswith the "share nothing" approach to concurrency,
since immutable values by definition cannot be modified by
other processes or threads. This is why Clojure’s focus on
concurrency, immutable persistent data structures and the
large active community around it, make Clojure a well suited
language for running on the BEAM.

The main language used on the BEAM is Erlang [2]. How-
ever, in the past 10 years there has been a surge in the im-
plementation of alternative languages, such as Elixir, Lisp
Flavoured Erlang, Alpaca, to name just a few. This has proven
beneficial for the usage of the BEAM and also for the commu-
nities that have been growing around these new languages.

Apart from Clojerl, there are at least two other languages
on the BEAM that are part of the Lisp family: Lisp Flavoured
Erlang (LFE) [15] and Joxa [7]. Both languages proved to be
very useful when learning concepts about language imple-
mentation on the BEAM, and both were created with very
specific goals in mind, which differ from Clojerl’s.
Lisp Flavoured Erlang was born to provide a Lisp syntax

for Erlang. It was designed to stay as close to the Erlang
semantics as possible. This allows a direct translation from
Erlang code into LFE code and also ensures that performance
is at least as good as the original.

Joxa was mainly designed as a platform for creating DSLs
that could take advantage of the Erlang VM. Joxa’s syntax
was inspired by Clojure but its creator was not interested in
implementing all of Clojure’s features.

Even though Elixir is not from the Lisp language family, it
took a number of ideas from Clojure. Protocols, macros, and
usage of abstractions as a central tool to build the language’s
data manipulation libraries, are some of the concepts that
Elixir borrowed from Clojure. Elixir’s source code is another
good reference for techniques regarding language imple-
mentation on the BEAM. The implementation of macros in
Clojerl is heavily inspired by Elixir’s implementation.
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Finally, it is important to mention Core Erlang, an inter-
mediate representation of Erlang, intended to lie at a level
between source code and the intermediate code typically
found in compilers [3]. This is the representation we chose
to use in the Clojerl compiler, instead of Erlang’s abstract
format [1]. Core Erlang provides a lower-level representa-
tion giving more control to the user when deciding how to
compile an expression.

Another advantage of using Core Erlang is that its seman-
tics and language features are more aligned with Clojure’s
than Erlang’s. As an example, single assignment to variables
is not a feature that is present in Core Erlang which becomes
very useful when using it to implement Clojerl.

3 Clojerl Overview
Clojerl is an implementation of the Clojure [5] language for
the BEAM with two main design principles.

The first design principle is to keep Clojerl as close to Clo-
jure as possible in terms of philosophy, features and semantics
to allow code portability between different platforms. This
means that a Clojure library or an application built for the
JVM, can be adapted to run using Clojerl on the BEAM (and
vice-versa) after addressing the platform-dependent bits in
the code.
The second principle is interoperability with the BEAM’s

native constructs, to enable seamless interaction with existing
libraries and tools in the BEAM ecosystem. A lot of produc-
tion ready libraries written in other BEAM languages (e.g.
Erlang) are already available, and being able to reuse these
libraries delivers a lot of value to anyone starting a new Clo-
jerl project. This reusability is possible because all BEAM
languages ultimately compile their code down to BEAM
modules and functions, and Clojerl provides the mechanism
necessary to be able to call any function that can be loaded
by the BEAM.

Clojure is composed of a small set of special forms (Table 1).
The rest of the language is built up using these special forms
to define the functions and macros (Section 8) that are part
of Clojure’s standard library.

Clojerl supports almost all the special forms in Table 1, and
these have a one-to-one mapping to the primitives available
in Core Erlang [3]. For example, both languages define let
expressions which bind one or more values, to one or more
names. Core Erlang also provides some additional features
that are not available in the Erlang language (e.g. letrec),
but are required to implement some Clojerl language fea-
tures (e.g. letfn). The letrec primitive allows to define a
set of named functions that can reference each other and
themselves. This is the underlying construct that enables
creating recursive anonymous functions in Erlang with an
expression such as fun F(X) -> F(X + 1) end.

Special Forms Description
def Creates and interns or locates a global

var
if Classic conditional
do Evaluates expressions in order and re-

turns the value of the last one
let Evaluates expressions in a lexical con-

text in which the symbols in the bind-
ing forms are bound to their respective
initialization expressions

quote Yields the unevaluated provided form
var The symbol must resolve to a var, and

the Var object itself (not its value) is
returned

fn Defines a function
loop loop is exactly like let, except that it

establishes a recursion point at the top
of the loop

recur Tail recursive call to the current recur-
sion context

throw An expression is evaluated and thrown
try try..catch..finally

monitor-enter JVM synchronization primitive
monitor-exit JVM synchronization primitive

Table 1. Clojure Special Forms

Clojerl does not support only two of the special forms from
Table 1: monitor-enter and monitor-exit, which are re-
lated to JVM synchronization primitives for concurrency
handling using locks. The BEAM’s message-passing model
allows for concurrency without the complexity of using ex-
plicit locks, and Clojure’s philosophy is aligned with the goal
of avoiding the usage of explicit locking when dealing with
concurrency. Since there is no support in the BEAM for ex-
plicitly holding locks on values or processes, there is no place
in Clojerl for these two special forms. The reason Clojure
still provides these low level lock constructs in its implemen-
tation on the JVM, is interoperability with the underlying
platform, as it is one of Clojure’s guiding principles.

Following this same principle Clojerl introduces the platform-
specific special forms shown in Table 2. They are tailored
for the BEAM to enable such things as message-passing, bit-
string expressions and interacting with Erlang behaviours.
In the following sections we present some important as-

pects of Clojerl and discuss how they compare to Clojure. In
particular we discuss code organisation, mapping of BEAM
modules, and mechanisms that allow to easily use Clojerl
code from any other BEAM language (Section 4). Available
data types and data structures are central to any language,
therefore we discuss supported data types and data struc-
tures in Clojerl and also provide rationale behind the missing
ones (Section 5). We then present Clojerl’s main tools for
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Special Forms Description
receive* Receive messages sent to the process
erl-fun* BEAM fun (i.e. fun m:f/a)

erl-binary* BEAM binary expression
erl-list* Literal BEAM list
erl-alias* Alias an expression

erl-on-load* Run expression when a namespace loads
behaviour* Behaviour for the current namespace

Table 2. Clojerl Additional Special Forms

creating abstractions, which give the language its expressive
power – protocols (Section 6), multimethods (Section 7), and
macros (Section 8).

There are other important Clojerl aspects that are not dis-
cussed in this paper, such as the implementation of variadic
functions and Clojerl’s compiler. However, we consider these
to be non-essential to understand the type of language Clo-
jerl is and the principles it is built on. Further details on the
inner-workings of specific Clojerl aspects will be addressed
in future publications.

4 Namespaces & Vars
Every language needs to provide a way to organize the code
written in them. Clojure does this through namespaces and
vars and so does Clojerl, following the design principle of
keeping as close to Clojure as possible.
A namespace holds any number of vars. Each var has a

root binding which can be any value (e.g. an integer, a map or
even a function). A var can also be instantiated, this means
it is possible to get a runtime value that represents the var
itself. This instantiated value holds data about the var (e.g. its
documentation string), and is used extensively in the REPL
(i.e. Clojerl’s interactive shell, short for "Read, Eval, Print
and Loop") to show information for namespaces and the vars
they hold.
The BEAM provides modules as a way to structure code

and group functions in a logical way. A compiled namespace
in Clojerl is represented as a BEAM module. All information
thatmight be needed during runtime, after the BEAMmodule
is loaded, is kept in the module’s attributes.
Each var in a Clojerl namespace is implemented with

either one or two underlying functions in the BEAM module.
When the var’s root binding is a Clojerl function then the
following two BEAM functions are created in the module:

1. An implementation function that executes the body
of the Clojure function.

2. A value function which returns the instantiated var
value.

For a var whose root binding is any value other than a
function, a single function that returns this precise value is
created in the BEAMmodule. As a way to illustrate this, List-
ing 1 shows a Clojerl namespace f followed by Listing 2, its

equivalent (simplified) underlying representation in Erlang
after it is compiled.

Listing 1. f.clje - A simple namespace
(ns f)
(def g 1)
(def (fn h [] 42))

Listing 2. f.erl - Erlang representation
-module(f).
-export([g__val/0, h__val/0, h/0]).
g__val () -> 1.
h__val () -> #{...}.
h() -> 42.

The fact that a namespace maps directly to a BEAM mod-
ule, makes calling a Clojerl function from another BEAM
language trivial. For example, calling the function h defined
in Listing 1 from Erlang code would be as simple as the
following: f:h().
Additionally, it makes calling an Erlang function from

Clojerl, indistinct from calling any other Clojerl function. A
function call in Clojerl is expressed as follows:

(namespace/function arg1 arg2 ... argN).
Since Clojerl namespaces and BEAM modules are equiva-

lent, namespace can be any Erlang module. For example, the
expressions (erlang/self) and erlang:self() produce
the same result – the identifier of the current process.

The disadvantage of bundling all vars in the same BEAM
module is that the compilation process ends up being more
complex. For example, Clojerl allows any var to be redefined
through its interactive shell, which involves a recompilation
of the namespace (i.e. BEAM module) where the var belongs.
A recompilation of the namespace requires the compiler to
keep a representation of the whole BEAM module, including
the unmodified vars, so that only the redefined var can be
replaced.
There are other complications during compilation that

arise from mapping a namespace to a BEAM module than
the one described above, but they are all encapsulated in the
compiler. We make the trade-off of increasing the complexity
in the compiler, in order to present a simpler model to the
users of the language, i.e. a namespace is equivalent to a
BEAM module.
An alternative implementation for namespaces and vars

that we considered but discarded, is to create a BEAMmodule
for each var in a namespace. The advantage of this approach
is that it makes the compiling mechanism a lot easier, since
every var’s BEAM module can be compiled (and recompiled)
in isolation from any other. The main disadvantage is that
it makes calling a Clojerl function from Erlang a lot more
complicated, as the name of a var’s BEAM module would
need to be unique and therefore some name mangling in-
volved. For example, the Clojerl function f/h would map to
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Data Structure Literal Representation
List (+ 1 2 3)

Vectors [:one 2 "three"]
Map {:one 1, :two "two"}
Set #{:one 2 "three"}

Table 3. Clojerl Data Structures

a module named clojerl_f_h or similar. Another disadvan-
tage is that given the BEAM’s hard limit on the amount of
atoms it can keep in memory, the creation of as many unique
modules as vars, would considerably increase the number of
atoms and the likelihood of surpassing this hard limit.

5 Data Types & Structures
Clojerl supports all of the data structures available in Clojure;
however, only some of the data types are supported. There
is a number of reasons behind this.
One reason for supporting all data structures is that Clo-

jure is part of the Lisp family of languages, and as such its
code is represented using the language’s data structures (Ta-
ble 3) – without them there is no language. Another reason
is that Clojure’s persistent immutable data structures are an
essential part of its approach towards a better concurrency
model, i.e. immutable values can be shared without having to
worry about concurrent modifications. The BEAM includes
some immutable data structures out of the box, which greatly
simplify the implementation of Clojure’s data structures in
Clojerl (Section 5.2).
The reason behind supporting only some Clojure data

types (Section 5.1), is that most of them are native data types
provided by the host platform, e.g. JVM supports int, float,
long, double, byte, boolean. For example, implementing
support for double-precision floating-point in Clojerl would
involve either a low-level implementation on the BEAM
using C or a high-level implementation that most likely will
result in a poor performance.

5.1 Data Types
Similar to some other Clojure implementations in different
host platforms, such as ClojureScript, Clojerl takes the ap-
proach of using the native data types available in its own
platform (BEAM) and maps these as best as possible to the
ones in the canonical JVM implementation (Table 4). It is
worth noting that the decision to map a char to an Erlang
binary()with a single UTF-8 character, is to avoid the repre-
sentation of single chars as simple integers, and also follows
the same approach as ClojureScript.
Clojure also provides data types which are not native to

the JVM platform, i.e. arbitrary precision integer, arbitrary
precision decimal, ratio, keyword and symbol. Some of these
are supported in Clojerl as User Defined Types (Section 5.3),
others are mapped following the same principle as described

JVM BEAM
boolean boolean()
byte, short, int, long integer()
float, double float()
String binary() (UTF-8 encoded)
char binary() (UTF-8 encoded)
Clojure Clojerl
BigDecimal Unsupported
BigInt BEAM’s integer()
Keyword BEAM’s atom()
Nil BEAM’s literal undefined

atom
Ratio Unsupported
Regex User Defined Type
Symbol User Defined Type

Table 4. Mapping JVM-to-BEAM and Clojure-to-Clojerl
Data Types.

above by other implementations (e.g. arbitrary precision
integer), and some others are not supported at all (e.g. ratio).
Table 4 shows how the Clojure specific literal data types are
implemented in Clojerl.
Clojure keywords are "symbolic identifiers that evaluate

to themselves" [5]. Since their usage and properties are very
close to Erlang’s atoms, this is how they are represented in
Clojerl.
Clojure symbols are "identifiers that are normally used

to refer to something else" [5]. They are widely used in the
language for different purposes and are implemented as a
User Defined Type (5.3).
The available numeric operations in Clojerl are the ones

the BEAM provides, and these only work with the numeric
data types included in the platform. This is in line with Clo-
jerl’s interoperability design principle (Section 3). Clojure’s
BigDecimal and Ratio data types are therefore not included
in Clojerl, because these types would not work with the
BEAM’s numeric operations. Implementing new operations
to support both these types and the BEAM’s types, would
result in poor performance and sacrifice interoperability.

5.2 Data Structures
Clojerl implements all four main Clojure data structures
(Table 3) plus all other Clojure secondary and auxiliary data
structures, such as sorted maps and sorted sets. These data
structures are all immutable and persistent by design, just
like in Clojure.
The BEAM provides a set of immutable, persistent data

structures (i.e. lists, tuples, and maps) that can be used for the
purposes of representing their Clojerl counterparts. However,
Clojerl’s data structures have a crucial requirement which is
not available in the BEAM: being able to attach metadata to
them. Metadata in this context is defined as "a map of data
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about the data structure" [5]. In Clojerl metadata is mostly
used to signal the compiler about different aspects regarding
the code, e.g. type hints are provided by adding a :tag entry
in the metadata.
The metadata requirement means that it is not possible,

for example, to use native BEAM lists as a drop-in replace-
ment for Clojerl lists, as this would mean excluding a central
feature for the list data structure. Therefore most Clojerl
data structures are implemented as User Defined Types (Sec-
tion 5.3) to enable both custom features (such as metadata
support) as well extension through protocols (Section 6).

5.3 User Defined Types
User defined types can be created in Clojerl using the deftype
macro (also present in Clojure) as shown in Listing 3.

Listing 3. Defining a type Person
(deftype Person [first-name last-name ])

Clojerl represents the value of a User Defined Type as a
tagged Erlang map. This means the map contains a special
key (i.e. Erlang atom __type__) with the name of the type
as an associated value. The fields defined for the type are
added as extra key-value entries in the map. Listing 4 shows
the Erlang map representation of a value of the Person type,
where the value for first-name is "Jane" and for last-name
is "Doe".

Listing 4. Map representation of a User Defined Type value
#{ '__type__ ' => 'Person '
, 'first -name' => <<"Jane">>
, 'last -name' => <<"Doe">>
}

As discussed in Section 5.2, Clojerl data structures are
implemented as user defined types to be able to support the
addition of metadata. Listing 5 shows the type specification
for a Clojerl list illustrating how metadata is kept for it. The
items entry holds the elements in the list, and the metadata
entry holds any value representing its metadata. The same
approach applies to all user defined types that have metadata
associated with them.

Listing 5. Erlang type spec for a Clojerl list
-type type() ::

#{ '__type__ ' => 'clojerl.List'
, items => list()
, meta => undefined | any()
}.

An alternative representation of user defined types in
Clojerl that was considered uses Erlang records, defined as
shown in Listing 6. The record’s name field contains the
type’s name, data holds the most important underlying in-
formation and info keeps additional values that are not part
of the type’s value, e.g. metadata. Since Erlang records are

just tagged tuples, the idea is that any tuple with the special
?TYPE tag, is a value of a user defined type whose name is
in the name field.

Listing 6. Record representation for a User Defined Type
-defined(TYPE , '__type__ ').
-record (?TYPE , { name = ?MODULE :: atom()

, data :: any()
, info = #{} :: map()
}).

However, the record representation has two main short-
comings. First, it results in code that is hard to read. And
second, any changes to the record (e.g. adding a new field)
triggers a lot of changes in other parts of the codebase, which
are not relevant or necessary in most places. Therefore we
considered and explored the approach of using tagged maps
instead.
Clojerl uses maps as the representation because they are

less obscure than records. Maps are open for extension as
new fields can be added as needed, which is more aligned
with Clojure’s philosophy.

Usage of maps for user defined types produces code that
is readable and simpler to maintain. Whereas having a fixed
record for all user defined types, would result in occasionally
having a complex internal representation in the data field,
that would then need to be pattern matched each time a
value is retrieved or set.

The downside of using maps is that operations on these
demonstrate worse performance than on records (i.e. tuples).
Operations of creating a new tuple and accessing an element
in a tuple are generally faster than the equivalent opera-
tions using a map. The results of a simple benchmark we
performed1 showed that some operations were up to 40%
slower.
Clojerl makes the conscious choice of using maps. Even

though maps perform worse than records for certain op-
erations (e.g. creating a new record is faster than creating
a new map), they provide a simpler and more extensible
representation for user defined types.

6 Protocols
Like in Clojure, applications and libraries in Clojerl are writ-
ten in terms of abstractions [5]. However, while Clojure’s
language abstractions are defined mainly by Java interfaces,
Clojerl defines its abstractions exclusively through protocols.
Support for protocols in Clojerl slightly deviates from

what is provided by Clojure, due to the BEAM not offering
any kind of type hierarchy that is available in other plat-
forms, such as JVM and Javascript V8 engine. Therefore it
is not possible in Clojerl to implement a protocol for a type
and have that implementation automatically applicable for a
group of derived types.
1https://github.com/clojerl/clojerl/issues/364

https://github.com/clojerl/clojerl/issues/364
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Importantly, this does not reduce the power of protocols,
since their main goal is still fulfilled: solving the expression
problem [13], i.e. allowing to "[...] define a datatype by cases,
where one can add new cases to the datatype and new func-
tions over the datatype, without recompiling existing code
[...]". Protocols open up the extension of possible closed data
types that the user might not own.
A protocol in Clojerl is defined similarly to Clojure (List-

ing 7). The implementation of each protocol is done through
a BEAM module that exports the functions defined in the
protocol, plus two more helper functions:

1. ’__satisfies?__’/1: determines if a value satisfies
the protocol.

2. ’__extends?__’/1: determines if a type extends the
protocol.

Listing 7. Defining a protocol IFoo
(defprotocol IFoo

(bar [x] "Description"))

The body of the functions defined in the protocol contain
the dispatch logic necessary to find the correct implementa-
tion function, if one is available. The dispatch logic is equiv-
alent to the Erlang case expression in Listing 8, where the
value in the case expression is the type of the first argument.
Each case clause matches on specific types that implement
the protocol. When the type does not implement the protocol
a default clause throws an error informing the user there is
no such implementation.

Listing 8. Dispatch logic for function bar from protocol
IFoo.
bar(X) ->

case type(X) of
'clojerl.List' -> 'clojerl.List':bar(X)

;
%% ...
_ -> error("Type␣does␣not␣implement␣

protocol")
end.

A protocol can be extended either when a new type is
created (Listing 9) or by implementing the protocol for an
existing type (Listing 10).

Listing 9. Implement protocol for new type
(deftype MyType [x]

IFoo
(bar [_] "Implementation␣for␣MyType"))

As discussed in Section 5 every type is backed by a BEAM
module and, additionally, all types are open for extension.
As a result, every time a protocol is implemented for a type,
two things need to happen.
T-1: The dispatch logic described above needs to be up-

dated.

T-2: The functions that implement the protocol need be
added to an existing or new module.

Clojerl accomplishes T1 by updating the BEAM module
for the protocol with a new clause in the dispatching case
expression. And T2 is accomplished either by creating a new
protocol-type specific BEAM module, if the type already
existed; or by adding the implementation function in the
module that backs the type, if it is a new type that is being
created.

Listing 10. Implement protocol for existing type
(extend-type clojerl.Integer

IFoo
(bar [_] "Implementation␣for␣Integer"))

;; or
(extend-protocol IFoo

clojerl.Integer
(bar [_] "Implementation␣for␣Integer"))

The reason for creating a new protocol-type specific BEAM
module when the type exists, comes from the fact that when
a module is recompiled and loaded, the previous version
needs to be purged and deleted. This involves killing all
BEAM processes that might have been using the code from
the deleted version. This is a side-effect that can bring unin-
tended consequences, which is what the creation of a sepa-
rate protocol-type specific BEAM module tries to avoid.

7 Multimethods
Clojerl supports multimethods in the same way as Clojure.
Multimethods provide runtime polymorphism and are a tool
to create abstractions, just like protocols. Themain difference
is that multimethods perform the dispatching based on the
value returned by a user-defined function, whereas protocols
do so only based on the type of the first argument.
A multimethod is initially defined by providing a name

and a dispatching function, as show in Listing 11. The user
then needs to specify implementations for the multimethod,
these are referred to as its methods. Each method consists of
a dispatch value and the code to be executed for that value.
It is possible to register multiple methods for a multimethod
either at compile time or at runtime.

Listing 11. Defining a multimethod and registering meth-
ods.
(defmulti foo keyword)
(defmethod foo :bar [x] :do-bar)
(defmethod foo :baz [x] :do-baz)

A multimethod is used like a regular function. When a
multimethod is called, its dispatching functionwill be applied
to the multimethod’s arguments to produce a dispatching
value, which will then be used to match one of the registered
methods. This mechanism is illustrated by the Erlang code
shown in Listing 12.
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Listing 12. Equivalent Erlang code for multimethod foo.
foo(X) ->

Val = keyword(X),
DispatchMap =

#{ bar => fun (X) -> 'do-bar' end ,
, baz => fun (X) -> 'do-baz' end
},

Fun = maps:get(Val , DispatchMap),
Fun(X).

The implementation of multimethods in Clojerl differs
from Listing 12 in that it keeps the dispatch map in a separate
module. This is due to adding entries (i.e. methods) at runtime
would trigger a modification and reloading of the module
containing the map. Any process that uses the module at
that time would be killed. We minimize the likelihood of
a process dying by keeping the dispatch map in a separate
module. This module contains a single function whose return
value is the multimethod’s dispatch map.

8 Macros
Macros are an essential feature of Clojure. A big part of the
language are the macros provided in the standard library
that allow to build idiomatic expressions. For that reason,
Clojerl provides the same support for macros as Clojure.
Macros are arguably also an essential part of any Lisp

language, not just Clojure. They are a way to transform code
at compile time, which is somewhat similar to Erlang’s parse
transforms. But macros in a Lisp language bring even more
power to the user, since the representation of the code that
is being transformed is the same as the code that is written:
lists. In the case of Clojerl and Clojure, there’s not only lists
used in code, but also the other data structures presented in
Table 3 (e.g. vectors and maps).

By using macros the user can define new syntactic con-
structs that adapt better to the problem they are trying to
solve, effectively creating a Domain Specific Language.
Most languages from the Lisp family implement macros

in a similar way: as a function evaluated at compile time
whose result is fed into the compiler. Clojure and Clojerl are
no exception. The implementation of macros in Clojerl is
very close to the one in Clojure, where macros differ from
regular functions in two aspects:

1. The var associated to the macro contains a :macro tag
in its metadata, to signal the compiler this is a macro.

2. The macros always receives at least two arguments:
a. &form: the actual expression (as data) that is being

invoked.
b. &env: a map of local bindings at the point of macro

expansion.
To better illustrate the power ofmacros consider defmacro,

which is provided in Clojerl to define new macros. defmacro
is itself a macro defined in the standard library through the
use of metadata (Section 5.2) and the special forms def and

fn (Table 1). Listing 13 presents an extract from the definition
of defmacro. It shows how the two special forms are com-
bined and also the usage of metadata to signal the compiler
a macro is being defined.

Listing 13. Definition of defmacro
(def ^{: macro true}

defmacro
(fn [&form &env name & args]

;; removed code
))

9 Evaluation
In this section we evaluate the performance of Clojerl by
comparing the execution time of its expressions with the
corresponding expressions of Clojure (in the JVM). The ex-
pressions we chose as points of the comparison, are ones we
consider either fundamental to the language itself or heavily
used in practice. The full list of expressions that we evalu-
ated to investigate the performance of Clojerl is presented
in Table 5. In this paper we discuss a representative subset
of these expressions.

A) Simple function call (Section 9.2)
B) Dynamic function application (Section 9.3)
C) Get last item in a Range (Section 9.4)
Further details of the experiments from Table 5 are avail-

able at https://github.com/clojerl/benchmarks. The exper-
iments are run using the same code base for both Clojerl
(using the BEAM) and Clojure (using the JVM). This is possi-
ble due to Clojerl’s guiding principle of allowing portability
between the two languages.

9.1 Configuration & Setup
Table 6 shows the hardware and software configurations
used in the experiments. A script starts the execution of each
experiment, first for Clojure using the Leiningen 2 build tool
(the default tool for the language) and then for Clojerl using
the rebar3_clojerl 3 plugin.
Each experiment’s expression is run a 100 times before

collecting the samples for the individual runs, to warm up the
VM. This is mostly necessary for Clojure on the JVM which
includes JIT compilation, but it also benefits the execution
time in Clojerl to enable the loading of all required modules.
Each experiment runs the expression 10,000 times and

records the time it takes each individual run to complete.
The time is measured using erlang:monotonic_time/1 in
Clojerl and System.nanoTime() in Clojure. Both functions
return the results in nanoseconds (ns).

The number of collected samples (i.e. 10,000) is chosen to
make sure the expression runs for a considerable amount
of time, and also to get a sample size big enough to extract
2https://leiningen.org/
3https://github.com/clojerl/rebar3_clojerl

https://github.com/clojerl/benchmarks
https://leiningen.org/
https://github.com/clojerl/rebar3_clojerl
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# Experiment Units Clojure Clojerl
Mean Std. Dev. Median Mean Std. Dev. Median

0. No expression (measurement cost) ns 70.0063 3.7815 69.0000 120.7284 97.4033 118.0000
1. Constant expression

ns

7.2791 161.5242 4.0000 7.7721 172.8567 5.0000
2. Simple function call 94.9017 193.0736 87.0000 17.4028 255.3728 10.0000
3. List creation 503.3183 632.7734 346.0000 99.7628 357.3604 91.0000
4. Protocol dispatch 106.3395 172.7034 95.0000 77.8360 243.7750 70.0000
5. Read expression from string µs 11.2877 2.8173 11.6320 76.2471 22.1090 74.2530
6. Tight loop 93.9456 28.3197 93.4420 1513.17 30.9575 1507.98
7. Dynamic function application ms 38.7237 1.6787 38.1172 102.3978 0.7210 102.0682
8. Last item in range 50.1421 0.5774 50.0696 463.8561 2.9287 463.5184

Table 5. List of Evaluated Expressions.

Hardware
Vendor Dell Inc.
Model PowerEdge C6220 II

Memory 62 GiB
CPU Intel(R) Xeon(R) CPU E5-2640 v2

@ 2.00GHz
Software

Operating System Ubuntu 18.04.2 LTS
Java OpenJDK 1.8 (build 25.212-b03)

Clojure 1.10.1
Erlang/OTP 21.1

Clojerl 0.6.0
Table 6. Hardware and Software Configuration

statistics. The large number of samples means that it is very
likely some will be outliers. This is because other factors
come into play when running a program for a period of time,
e.g. garbage collection, processes at the operating system and
platform level that use the same resources such as memory,
CPU, and I/O. These other processes cannot be eliminated
since they are necessary for the operating system and the
platform to be able to run.
To eliminate the measurement cost introduced by the

recording of the measurements, we ran the "No Expression"
experiment (Table 5). The experiment collects each sample
by capturing two consecutive timestamps with no expres-
sion in between the captures. We estimate the measurement
cost as the lower quartile of the samples – a conservative
compromise between the "median" and the "minimum" val-
ues. This estimated measurement cost is already subtracted
from the values shown in Table 5 (for experiments 1-8), as
well as the figures shown in the experiment sections that
follow.

9.2 Experiment-A: Simple Function Call
This experiment aims to analyze the performance of a sim-
ple function call, identity, which only returns the provided

argument without doing any operations on it (Listing 14).
Function calls are an essential tool in any functional program-
ming language. Therefore it is important for their execution
to be as fast as possible.

Listing 14. Simple Function Call
(identity 1)

Results in Table 5 (experiment #2) show that a simple func-
tion call is approximately five times faster in Clojerl than in
Clojure, i.e. mean times are 17.4ns and 94.9ns respectively.
We attribute this to Clojerl’s identity call being compiled
down to an equivalent Erlang function call; that is the BEAM
considers functions as first-class citizens and a function call
gets compiled to a low-level virtual machine assembly in-
struction. The JVM offers low-level instructions for function
calls as well; however, Clojure on the JVM introduces one
extra level of indirection for a function call. Since identity
is a var (Section 4) whose root binding is a function, perform-
ing a function call involves the following two operations: (1)
fetching the value of the root binding (i.e. an instance of the
function) and (2) making the call to the function. This level
of indirection for a function call in Clojure is likely to be the
root cause for the time penalty we see in the results.

Figure 1a shows a number of outlier spikes in both Clojerl
and Clojure samples. In both cases they happen throughout
the experiment; therefore, they are very likely to be neither
language nor VM specific, but caused by external factors.
Since these outliers overshadow the details around the sam-
ples’ mean in both Clojure and Clojerl, we include Figure 1b
which shows the same data as Figure 1a but without the out-
liers. The criteria to identify a value as an outlier is whether
it is over 3 standard deviations above the mean. Using this
criteria three outliers are removed from Clojure’s samples
and eight outliers from Clojerl’s, out of a total of 10,000
samples in each case.
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(a) All Measurements (b) Without Outliers

Figure 1. Simple Function Call

(a) [100K; 1M] step 100K elements (b) 1M elements

Figure 2. Dynamic Function Application.

9.3 Experiment-B: Dynamic Function Application
In this experiment we analyse the performance of applying
a list of a large number of arguments – between 100,000 and
1,000,000 elements – to a function. Listing 15 illustrates the
application of a function with a list of 1,000,000 elements.
The outer let expression is not included in the measurement,
only the inner (apply + x) expression is sampled.

Listing 15. Dynamic function application
(let [x (into [] (range 1000000))]

(apply + x))

Functions are first-class citizens in Clojerl and Clojure.
Higher-order functions are very common, i.e. functions that
take other functions as arguments. The functions in Clojure’s
standard library (i.e. clojure.core namespace) make heavy

use of apply to call a function provided as an argument. For
example, the frequently used map function takes a function
f and a list of values xs and returns another list where f has
been applied to each value in xs.
The results for a dynamic application of a large list of

arguments to a function are presented in Figure 2a. The
mean time is calculated by collecting 10,000 samples for
each number of elements from 100,000 to 1,000,000 with a
step of 100,000 elements. The results show that for [100K;
1M] elements Clojerl follows the y=42.7x-1.33e6 trajectory,
while Clojure follows the y=105x-0.48e6 trajectory. For the
experiment with 1,000,000 elements themean time for Clojerl
is 102.4ms, which is approx. 2.5 times more than for the
corresponding Clojure results (38.7ms) as shown in Table 5
(experiment #7).
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(a) [100K; 1M] step 100K elements (b) 1M elements

Figure 3. Get Last Item in a Range.

We attribute Clojure’s superior performance in this experi-
ment to the combination of the following two factors: (1) the use
of a specialized implementation for variadic vs. non-variadic
functions and (2) the availability of fast runtime dispatching
using JVM’s interfaces. Both these features are currently absent
in Clojerl.

That is, a dynamic function application in Clojerl requires
some runtime processing to resolve the arity of the function
that should be called. In Clojerl a single function can have
different arities, which in the underlying BEAM representa-
tion translates to different functions each with its own arity.
This should not present an issue, but the runtime processing
is more involved because a Clojerl function can be defined
to accept an indefinite number of arguments as well. This is
referred to as "variadic arity". In Clojerl the logic used for
resolving which arity should be used at runtime is the same
for all functions (variadic and non-variadic).

Clojure also supports defining variadic arity functions and
needs to perform some runtime processing to resolve which
arity to use as well. The resolution for a dynamic function ap-
plication in Clojure makes use of inheritance and interfaces.
Inheritance is used by having a specific implementation (i.e.
class) for functions that include a variadic arity and func-
tions that do not. Interfaces are used to abstract away the
implementation and call the method with the arity that is
being resolved.
The information whether a function is variadic or not is

available at compile-time in Clojerl as well. This should make
it possible for Clojerl to use a similar approach as Clojure in
the future to improve its performance.

As shown in Figure 2b both implementations present some
outliers. Even though some of them are 3 standard deviations
above the mean, none overshadow the values around the
mean as in Experiment-A (Section 9.2). The Clojure samples
show noisier spikes up until approximately the 500th sample,

and then present a consistent and similar behaviour as the
Clojerl samples. This initial noise is likely due to JIT compi-
lation taking place in the JVM during the first few Clojure
samples.

9.4 Experiment-C: Get Last Item in a Range
In this experiment we analyze the performance of the func-
tion lastwhen applied to a range, i.e. getting the last item of
a range. Listing 16 illustrates the expression with the range of
1,000,000 elements. The outer let expression is not included
in the measurement, only the inner (last r) expression is
sampled.

Listing 16. Last item in Range
(let [r (range 1000000)]

(last r))

A range is a sequence of numbers that is generated by
specifying its bounds (start and end) and a step to use be-
tween each consecutive values. Ranges are mostly used in
expressions like for (i.e. Clojerl’s list comprehensions con-
struct) or when there is a need to generate the indexes for a
collection. These situations are quite common when using
both Clojerl and Clojure.
To evaluate the performance of the (last r) expres-

sion we ran the experiment with the range r containing
a number of elements from 100,000 to 1,000,000 with a step
100,000 elements (Figure 3a). The mean time is calculated
by collecting 10,000 samples for each number of elements.
The results show that for the range [100K; 1M] Clojerl fol-
lows the y=50.2x+7727 trajectory, while Clojure follows
the y=442x+1.37e6 trajectory. For a range of 1,000,000 el-
ements, Clojerl’s mean time of 463.8ms is almost an order
of magnitude larger than Clojure’s mean of 50.1ms (Table 5,
experiment #8).
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The optimizations done in Clojure’s range implementation
are very likely to be the main cause of the large difference in
the execution times we see in this experiment.
Getting the last element of a range involves going over

each element until we get to the last one. Ranges in Clojure
are implemented by pre-calculating the elements of the range
in chunks, generating each chunk as needed. In contrast, the
Clojerl implementation is more naive, since it checks the
bounds for the range each time the next element in the range
is needed, therefore doing more work for each item. This
extra work adds up when dealing with ranges that contain a
large number of elements, as the results from this experiment
show.

It should be possible to apply the same optimization tech-
niques to Clojerl’s range implementation, and thus reduce
the overhead when iterating through the items in a range.

There are some outliers that can be observed in Figure 3b,
both in Clojerl and Clojure. At first sight Clojerl seems to
present more outliers than Clojure. However, if we count val-
ues above 3 standard deviations of the mean, we find that the
number of outliers is similar: 61 in Clojerl and 69 in Clojure.
This is due to the fact that even though Clojerl’s outliers are
further away from the mean, its standard deviation is also
larger than Clojure’s in this experiment.

10 Conclusion
We have presented Clojerl – a new language that aims to
combine the expressive power of Clojure with the high avail-
ability and massive scalability of the BEAM. Clojerl is de-
signed to be as close to Clojure as possible, while at the same
time enabling interoperability with the BEAM. This has two
important benefits: (1) Clojure code can be easily ported to
Clojerl (and vice versa) and (2) other BEAM languages can
easily interact with Clojerl (and vice versa).
Clojerl provides a small but powerful set of data types

and data structures (Section 5). Due to all data structures
being built on common abstractions, they can be manipu-
lated and combined using the same functions included in the
clojure.core standard library. The language also provides
a way of creating user defined types (Section 5.3), which
combined with protocols (Section 6) can be used to create
new abstractions or extend existing ones.
Clojerl offers a mechanism for runtime polymorphism

through its multimethods (Section 7). These allow the user
to define a custom dispatching function, along with a set of
expected values and the code to run for each of them. Multi-
methods can be also extended at runtime, which makes them
more flexible and versatile than Erlang’s pattern-matching.
Like all languages from the Lisp family, Clojerl supports

macros (Section 8). Macros are essentially functions that get
evaluated at compile-time and allow extending the syntax of
Clojerl itself, effectively enabling the creation of a domain
specific language, catered to the problem being solved.

By using the same code for Clojure and Clojerl when
running the experiments in Section 9, we have been able to
exemplify the value of our design principle of keeping Clojerl
and Clojure as close as possible (i.e. to facilitate portability).
While the fact that basic Clojerl’s expressions outperform Clo-
jure (experiments #1-#4 in Table 5), provides reassurance
that by applying optimisation techniques, we will be able
to significantly improve the performance of more complex
expressions.
Further experiments are required to identify other areas

where Clojerl could improve its performance, and where
it already outperforms Clojure. Multimethods are a likely
candidate for Clojerl’s improvements, since they are an im-
portant and versatile language feature that has been heavily
optimised in Clojure.

It is currently possible to use any OTP tool by relying on
Clojerl’s interoperability features, but the user experience is
not frictionless. We plan to extend the language to provide
support for all OTP abstractions (e.g. gen_server), making
Clojerl a better equipped language to build OTP applications.

The results from our experiments strongly suggest that Clo-
jerl has a potential to provide a competitive performance while
offering the rich set of programming language features avail-
able in Clojure.
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