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Abstract This paper proposes a supervised machine learning approach
for the imputation of missing categorical values from the majority of
samples in a dataset. Twelve models have been designed that are able
to predict nine of the twelve ATT&CK tactic categories using only one
feature, namely the Common Attack Pattern Enumeration and Classi-
fication (CAPEC). The proposed method has been evaluated on a 867
sample unseen test set with classification accuracy in the range of 99.88%-
100%. Using these models, a more complete dataset has been generated
with no missing values for the ATT&CK tactic feature.
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1 Introduction

Software vulnerabilities are a representative cause of security policy violations in
computer systems. The omnipresent nature of vulnerabilities as evidenced by the
constantly increasing number of discovered vulnerabilities per year has triggered
significant efforts in their study. The importance and impact of vulnerabilities on
practical computer security have led to the development of vulnerability man-
agement frameworks and analysis approaches, see for example the vulnerability
lifecycle [1]. At the same time, the progress in the field of machine learning
and its applications in a number of domains has sparked a body of research on
analytics for cybersecurity related problems.

Unsurprisingly, datasets are a key ingredient to such thread of research and
in cybersecurity there are many readily available datasets published by the re-
search and academic community as well as by the cybersecurity industry. In
cybersecurity we could distinguish two types of dataset based on the way they
are generated; one type consists of datasets that are synthesised from emulated
or simulated data in order to enable the research community to study a particular
computing environment. The other type consists of datasets that are generated
from actual security incidents, i.e. real-world data. Honeynet and honeypot data
are also included in this category as they capture events from real attackers,
but their actions do not have an actual impact on the target infrastructure and
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business. Interestingly, vulnerability related data fall under the second category.
This makes the collection of the relevant data challenging, as it requires one to
invest on a systematic effort to triage, evaluate, consolidate and catalogue the
vulnerability data from different sources in order to develop a meaningful data-
set. Acknowledging the limitations and challenges the development of a complete
vulnerability dataset entails, this research proposes an approach to bridge the
gap between the two dataset types by enriching a vulnerability dataset with
synthetic data in a way that it will enable further study of vulnerabilities.

1.1 Motivation

Obtaining and maintaining complete and high quality datasets is not a trivial
task. Despite the wealth and availability of disparate datasets in many domains,
information sharing of cybersecurity related data displays certain nuances; re-
searchers may have a financial motivation not to share vulnerability information
and particularly any associated with zero-day vulnerabilities. This is mitigated
to some extent by bug bounty programmes and responsible disclosure policies.
Organisations who deploy and use the software to deliver their business models
on the other hand may not be forthcoming in disclosing attack and vulnerability
information as this may result in a higher risk of exposure. Finally, third parties
who have developed business models on the commercialisation of threat inform-
ation sharing are understandably reluctant to support the wider community
with freely available data and prefer to make these available to their premium
customers.

All the above contribute to a tessellated landscape of cybersecurity datasets
that can be of varying reliability and trustworthiness as well as being incom-
plete. Furthermore, despite the ongoing attempts to standardise the expression
of threat data through a number of taxonomies, the actual datasets end up
having conflicting or contradictory values.

Contribution. This paper focusses on the incompleteness aspect of a vulner-
abilities dataset by proposing a supervised machine learning approach for the
imputation of missing categorical values from the majority of samples. The fea-
ture selected for the imputation is the ATT&CK tactic, which is typically used
to communicate the high level modus operandi of an attacker. Twelve models
have been designed that are able to predict nine of the twelve ATT&CK tactic
categories using only one feature, namely the Common Attack Pattern Enumer-
ation and Classification (CAPEC). This has been evaluated on a 867 sample
test set with classification accuracy in the range of 99.88%-100%. Using these
models, a more complete dataset has been generated with no missing values for
the ATT&CK tactic feature.

2 The emerging ecosystem of software vulnerabilities

Vulnerabilities constitute a key element of ICT systems security as they enable
both threat actors and defenders to realise their respective and competing agen-
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das; an attacker would exploit the vulnerability in order to succeed in system
compromise, whereas a defender would use the knowledge to conduct, inform,
and eventually establish an effective and practical risk management plan. As
vulnerabilities contribute to actionable cyber threat intelligence, they also in-
herit the properties and quality requirements of such type of information, such
as relevance, timeliness, accuracy, completeness, and ingestibility [2]. Moreover
the description of vulnerabilities has been fairly standardised, with the Common
Vulnerabilities and Exposures (CVE) [3] programme being the most popular con-
vention for cataloguing and classifying vulnerabilities. The CVE catalogue has
been enriched with further initiatives such as the CVSS scoring system which
attaches a quantitative measure of the severity of a particular vulnerability,
the Common Attack Pattern Enumeration and Classification (CAPEC) [5] pro-
gramme that associates vulnerabilities with attacks, and the more generic Com-
mon Weakness Enumeration (CWE) [4] that attempts to represent the software
weaknesses through a standardisation language. A vulnerability that enters the
aforementioned ecosystem has a minimum requirement of a CVE identification
(CVE-id), whereas any other information could be optional. Although there is
in principle an “authoritative” database with the CVE-ids, ensuring that these
ids are unique and refer to vulnerabilities in an non-arbitrary manner, all other
descriptors are not necessarily complete or correct. In fact, it was found in [6]
that CVSS scores for the same CVE-id can differ significantly between different
versions or databases.

Apart from the generic quality criteria that vulnerabilities inherit form be-
ing actionable cyber threat intelligence items, they also have their own, esoteric
ones. The authors in [7] list two main categories that a vulnerabilities data-
base (or dataset) should cover, namely information coverage and capabilities. In
terms of the former, the evaluation criteria cover the scope, impact & risk, res-
olution, vendor, products, exploit, categorisation, and relations. Regarding the
capabilities of the database, the authors highlight the supported standards, the
existence and prevalence of a community adopting and supporting the data, the
interfacing capabilities, and freshness of the contained data.

Vulnerabilities are also observed through their so-called vulnerability lifecycle
[8]. The lifecycle introduces a chronological contextualisation to the vulnerabil-
ity by identifying significant milestones and events that define risk-transitioning
boundaries. More specifically, upon the discovery of a vulnerability, the associ-
ated risk follows an upward trend which spikes when a practical exploit is created;
if this happens prior to the notification of the software vendor the risk reaches
the highest peak, as the exploit will be considered a zero-day. The researcher
who discovered the vulnerability may choose to notify the vendor following a
responsible disclosure practice, or publicise its details. Bug bounty programmes
attempt to regulate and streamline the vulnerability discovery and reporting
process through financial incentive schemes. It should be evident that for each
of the aforementioned events the risk will be affected. As such, timing - and
timeliness - are significant and influencing factors.
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The vulnerabilities may also be studied through an organisational and geo-
political perspective. In [9] the authors examine whether there are differences
between different China-based organisations in respect of their status or sector
(established, public sector, education, or startup), revealing that startups exper-
ienced the biggest challenges. Such a study was possible by employing publicly
available vulnerability data.

The efforts to increase both the understanding and effective sharing of vul-
nerabilities are also reflected through the emergence of frameworks and tools
such as STIX and the ATT&CK framework. In STIX, the specification language
for structured cyber threat intelligence sharing, vulnerabilities are expressed
through a dedicated and specific object type. The ATT&CK framework is a
curated knowledge-base of adversarial techniques and tactics. As these have re-
cently gained popularity, not all published vulnerabilities have been mapped or
assigned to the above schemes. Enriching the datasets with these dimensions is
expected to generate considerable added value.

3 The ENISA vulnerabilities dataset

When constructing a dataset from multiple sources it is anticipated that this
would inevitably lead to having empty values, as the different data sources do
not necessarily overlap horizontally. The vulnerability dataset contains missing
values due to the missing data from the source database but also due to the op-
eration of joining the different sources. In December 2019, the European Union
Agency for Cybersecurity (ENISA) published a report entitled “State of Vul-
nerabilities 2018/2019: Analysis of Events in the life of Vulnerabilities” [6]. This
dataset covers the period of vulnerabilities published between January 1st 2018
to August 31st (Q1 – Q3) 2019. The vulnerabilities were collected and hosted in
the compiled dataset until the cut-off date of September the 30th. The data is
organised into a two-dimensional tabular structure in the shape of (27471 rows
× 59 columns). Out of the 59 columns, those containing the vulnerability id,
CVSS scores (both versions), Common Weakness Enumeration (CWE), and the
number of exploits had completely filled values, although the number of exploits
had the value of 0 on over 90% of the vulnerabilities. The noteworthy columns of
missing values are CAPEC (77% completed), ATT&CK techniques and tactics
(approx. 29% complete), and price information (approx 12% complete). In terms
of the Common Platform Enumeration (CPE), the vendor and product inform-
ation was complete at 84%, but the platform information had low completion,
with only 8.6% of the values being populated. The smallest measure of com-
pleteness was observed in the sector information with only 0.5% completion. In
terms of absolute numbers, this amounted to 137 vulnerabilities annotated with
sector information. Although this allowed the execution of some rudimentary
statistical tests, this is was not considered adequate for more advanced research
techniques using machine learning.

The dataset combines different open sources such as the National Vulnerab-
ility Database (NVD), Common Weakness Scoring System (CWSS), Common
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Vulnerabilities and Exposures (CVE), Shodan, Zerodium, and so forth. Table 1
presents data sources. The dataset was made publicly available4 together with
the associated Jupyter Notebooks in order to allow the research community to
scrutinise the findings contained in the report, but also to enable further re-
search.

Table 1: Data sources characteristic[6]

Source Type Data Type Description

NVD database CVE data The NVD is the U.S. government repository
of standards-based vulnerability manage-
ment data. The NVD includes databases of
security checklist references, security-related
software flaws, misconfigurations, product
names, and impact metrics 5.

ATT&CK Attacker’s
patterns (tech-
niques &
tactics)

MITRE ATT&CKTM is a globally-
accessible knowledge base of adversary
tactics and techniques based on real-world
observations 6.

Shodan Number of ex-
ploits

Database of internet connected devices (e.g.
webcams, routers, servers, etc.) acquiring
from various HTTP/HTTPS - port 80, 8080,
443, 8443) 7.

Exploit data-
base

Non-CVE data Contains information on public exploits and
corresponding vulnerable software. The col-
lection of exploits is acquired from direct
submissions, mailing lists and other public
sources 8.

CVE details CVE data The database containing details of indi-
vidual publicly known cybersecurity vulner-
abilities including an identification number,
a description, and at least one public refer-
ence 9.

4 https://github.com/enisaeu/vuln-report
5 bibitemnvdhttps://nvd.nist.gov
6 https://attack.mitre.org
7 https://www.shodan.io
8 https://www.exploit-db.com/about-exploit-db
9 https://cve.mitre.org
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Table 1: Data sources characteristic[6]

Source Type Data Type Description

Zero-Day Initi-
ative

CVE and non-
CVE

Encourages reporting of zero-day vulnerab-
ilities privately to affected vendors by fin-
ancially rewarding researchers (a vendor-
agnostic bug bounty program). No tech-
nical details on individual vulnerabilities
are made public until after vendor released
patches. ZDI do not resell or redistribute the
vulnerabilities 10.

ThreatConnect Number of in-
cidents related
to CVE

Automated threat intelligence for Intel sys-
tems 11.

VulDB Exploit prices
and software
categories

Vulnerability database documenting and ex-
plaining security vulnerabilities and exploits
12.

US CERT Industry sector The US Department for Homeland Secur-
ity’s Cybersecurity and Infrastructure Se-
curity Agency (CISA) aims to enhance the
security, resiliency, and reliability of the
USA’s cybersecurity and communications
infrastructure 13.

Zerodium Bug bounty ex-
ploit prices

A zero-day acquisition platform. Founded by
cyber security experts with experience in ad-
vanced vulnerability research 14.

4 Dataset imputation through machine learning

Since the influential publications of Rubin many decades ago, e.g. [12,11], there
has been increasing awareness of the drawbacks associated with analyses con-
ducted on datasets with missing values. This is prevalent in many fields of study,
particularly medical (clinical) datasets which can often be missing values for over
half of the samples available [15].

Classical imputation methods often relied on the use of measures of central
tendency of available data to populate the missing values, e.g. the arithmetic

10 https://www.zerodayinitiative.com
11 https://threatconnect.com
12 https://vuldb.com
13 https://www.us-cert.gov
14 https://zerodium.com
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mean, mode, and median. However, these methods are now considered to be
ineffective for computing candidates for the population of missing data and are
more likely to reduce the accuracy and integrity of a dataset [10], e.g. in the
case of heteroskedasticity. Hot-deck imputation, an approach which uses ran-
domly selected similar records to impute missing values, performs poorly when
the majority of samples contain missing values and are outperformed by other
approaches [18].

More recent studies suggest that artificial neural networks, particularly mul-
tilayer perceptrons [16] and autoencoders [17], can outperform these classical
methods, including regression and hot-deck, for the imputation of categorical
variables. Artificial neural network methods have also been shown to outperform
Expectation-Maximisation techniques in the presence of non-linear relationships
between sample variables [19].

Following the suggestions in the literature a machine learning approach, i.e.
artificial neural networks, will be used for the imputation of missing categorical
values. This experiment aims to estimate categorical variables where there are
missing values in the tactics feature of the ENISA vulnerabilities dataset. This
will be achieved by detecting patterns in the sub-components of the CAPEC and
their mappings to one or many tactic categorical values. This will be treated as
multiple sub-problems, whereby each tactic can be considered a flag on a binary
string where the binary value is determined by a binary classifier. The dataset
consists of 27471 samples, where 19404 of these samples have no value for the
tactic feature. Each sample can be labelled with multiple unique tactic categories
from the following list:

– Initial Access
– Execution
– Persistence
– Privilege Escalation
– Defense Evasion
– Credential Access
– Discovery
– Lateral Movement
– Collection
– Command and Control
– Exfiltration
– Impact

Figure 1 illustrates the distribution of tactic category assignments where
it can be seen that three of these twelve categories are not represented at all.
Without examples for all twelve categories it is expected that a dataset populated
through imputation will also not represent these entirely missing categories.

The CAPEC cannot be used directly and therefore it must first be prepro-
cessed and encoded. For reproducibility, this consisted of the following steps:

1. All CAPEC IDs were obtained using the Domains of Attack resource from
Mitre (https://capec.mitre.org/data/definitions/3000.html).
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Figure 1. The distribution of ATT&CK tactic labels within the original dataset.
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2. The CAPEC IDs are then used to create a truth table with all elements
initialised to false.

3. Using the CAPEC feature in the ENISA Vulnerabilities dataset, the corres-
ponding CAPEC ID in the truth table is changed to true.

The tactic feature required similar encoding as it exists as a comma separated
variable in the ENISA vulnerabilities dataset:

1. The tactics were obtained using the ATT&CK Matrix resource from Mitre
(https://attack.mitre.org/)

2. The tactics are then used to createa truth table with all elements initialised
to false.

3. Using the tactic feature in the ENISA Vulnerabilities dataset, the corres-
ponding tactic in the truth table is changed to true.

These two truth tables were used to design individual models per tactic using
supervised machine learning. The inputs for all the models were to be the same,
the CAPEC truth table, whereas the output for each of the twelve models could
be either True or False.

Each model was designed to have the same architecture presented in Figure
2, a 2 hidden layer feedforward neural network. The hidden layers used ReLu
nonlinear activation functions and batch normalisation, with the first hidden

8 MCSS2020, 022, v1: ’A Machine Learning Approach to Dataset Imputation for Software . . .
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layer consisting of 200 nodes and the second one consisting of 100. We selected
this architecture based on successful examples on tabular data in the literature
[21] [20].

Figure 2. The model architecture configuration for each tactic category.

Input  200 nodes
ReLU

200 nodes
Batch Normalisation

100 nodes
ReLU

100 nodes
Batch Normalisation True/False

Hidden Layer 1 Hidden Layer 2Input Layer Output Layer

The optimiser employed during the supervised learning process was the Adam
algorithm configured with 0.9 and 0.99 respectively as the beta coefficients used
for computing running averages of gradient and its square, a weight decay rate
of 1e − 2, and a learning rate of 1e − 3. Adam was selected because of its per-
formance and memory advantage over other optimisation algorithms, especially
for multivariate data [22].

All twelve models were trained on a 6500 sample subset of the 8067 samples
for which the tactic categorisations were present. A further 700 of these samples
were used for validation, with the final 867 samples reserved for testing.

Each model was trained for 5 epochs before achieving at least 99.88% accur-
acy, indicating the likelihood of a prominent pattern in the mappings of CAPECs
to tactics.

On the unseen data reserved for the test set the models predicting Persist-
ence, Privilege Escalation, Defence Evasion, Credential Access, and Collection
achieved 99.88% accuracy, with the remaining classifiers achieved 100%.

The models were then used to collectively predict the tactics for the en-
tire dataset, including those 19404 samples which had missing values. Figure 3
illustrates the distribution of tactic category assignments in the dataset with
imputation, where it can be seen that as expected the same three categories are
still not represented at all.

5 Discussion

Whilst from a machine learning perspective the results are completely satisfact-
ory, a number of limitations need to be acknowledged.

First, the ATT&CK tactics which are closely coupled to the concept of the
Cyber Kill Chain (CKC) [23], inherit the limitations and disadvantages of such
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Figure 3. The distribution of ATT&CK tactic labels within the imputed dataset.
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taxonomy. Specifically, the CKC phases were mainly intended to help commu-
nicate the main stages of a cyber attack as a sequence of events, similar to
the description of an attack vector. Mapping a particular attack action to the
respective kill chain phase carries a degree of subjectivity. This can be easily
evidenced by studying the structure and approach of the ATT&CK framework,
where the techniques do not have an exclusive membership under the tactics.
In fact, there are some techniques that can appear in as many as four different
tactics. As such, when investigating a particular cyber incident, the placement of
an identified technique is a task for the security analyst. Therefore, the proposed
machine learning method has not taken into account such implicit knowledge.
This is a much more complex problem and certainly deserves a separate and
dedicated research thread. A way forward for future research is to include more
features and particularly the techniques which can appear having multiple values
per vulnerability. This multiplicity will allow the application of machine learning
techniques to identify the distances of the data points.

Second, there were differences between the original distribution and that
of the imputed dataset. As the accuracy was high, we can conclude that the
imputation revealed some interesting information on the tactics. Specifically,
the original dataset showed that Defence Evasion was by far the most frequent
attack, but in the imputed data Persistence and Privilege Escalation are now
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comparable. Intuitively it is likely that this is correct as these three tactics can
be seen to have a symbiotic relationship.

Finally, it should be noted that the dataset itself contains potentially con-
tradictory data. This is an inherent problem when ingressing data from multiple
sources. In addition, as noted in the vulnerability study, the transition to a re-
vised vulnerability scoring system (namely from CVSS version 2 to version 3.x)
resulted in discrepancies, despite the two scoring systems being obtained from
the same and relatively “authoritative” database [6]. This could potentially be
problematic when performing an imputation if it is not clear which of the com-
peting features are ”correct”, as in this case the accuracy performance of the
imputation algorithm may be irrelevant.

6 Conclusions and Future Work

In this paper we attempted to enrich a real-world dataset using supervised ma-
chine learning. We demonstrated that it is possible to completely fill a sparse
column of the dataset and we selected the ATT&CK tactic feature to showcase
this approach.

The significance of the results is two-fold. First, the high accuracy achieved
showed the performance and feasibility of the proposed approach. Second, we
demonstrated that it is possible to escape from the inherent limitation where
only real-world data are available due to the nature of the problem, e.g. the
study of vulnerabilities which cannot be created by completely synthesised data.

As a future direction, we will investigate the imputation of other features,
including those that describe financial aspects of the vulnerabilities.

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research
and innovation program under the grant agreement no 830943 (ECHO).

References

1. Joh, H. and Malaiya, Y. A Framework for Software Security Risk Evaluation using
the Vulnerability Lifecycle and CVSS Metrics, Proc. International Workshop on
Risk and Trust in Extended Enterprises, pp. 430–434 (2010)

2. ENISA: Actionable Information for Security Incident Response. Heraklion, Greece
(2015) https://doi.org/10.2824/38111

3. MITRE, Common Vulnerabilities and Exposures https://cve.mitre.org/. Last ac-
cessed 16 Feb 2020

4. MITRE, Common Weakness Enumeration https://cwe.mitre.org/. Last accessed 16
Feb 2020

5. MITRE, Common Attack Pattern Enumeration and Classification ht-
tps://capec.mitre.org/. Last accessed 16 Feb 2020

MCSS2020, 022, v1: ’A Machine Learning Approach to Dataset Imputation for Software . . . 11



12 S. Rostami et al.

6. ENISA: State of Vulnerabilities 2018/2019 - Analysis of
Events in the life of Vulnerabilities, Heraklion, Greece, 2019.
https://www.enisa.europa.eu/publications/technical-reports-on-cybersecurity-
situation-the-state-of-cyber-security-vulnerabilities/at download/fullReport

7. Kritikos, K., Magoutis, K., Papoutsakis, M., Ioannidis, S.: A survey on vulner-
ability assessment tools and databases for cloud-based web applications. Array
3–4(100011), 1–21 (2019)

8. Arbaugh, W., Fithen, W., McHugh, J.: Windows of Vulnerability: A Case Study
Analysis. IEEE Computer 3(12), 52–59 (2000)

9. Huang, C., Liu, J., Fang, Y., Zuo, Z.: A study on Web security incidents in China
by analyzing vulnerability disclosure platforms. Computers and Security 58, 47–62
(2016)

10. Royston, Patrick. ”Multiple imputation of missing values.” The Stata Journal 4.3
(2004): 227-241.

11. Rubin, Donald B. Multiple imputation for nonresponse in surveys. Vol. 81. John
Wiley Sons, 2004.

12. Rubin, Donald B. ”Inference and missing data.” Biometrika 63.3 (1976): 581-592.
13. Rubin, Donald B. ”Multiple imputation after 18+ years.” Journal of the American

statistical Association 91.434 (1996): 473-489.
14. Rubin, Donald B., and Nathaniel Schenker. ”Multiple imputation in health-are

databases: An overview and some applications.” Statistics in medicine 10.4 (1991):
585-598.

15. Clark, Taane G., and Douglas G. Altman. ”Developing a prognostic model in
the presence of missing data: an ovarian cancer case study.” Journal of clinical
epidemiology 56.1 (2003): 28-37.

16. Silva-Ramı́rez, Esther-Lydia, et al. ”Missing value imputation on missing com-
pletely at random data using multilayer perceptrons.” Neural Networks 24.1 (2011):
121-129.

17. Choudhury, Suvra Jyoti, and Nikhil R. Pal. ”Imputation of missing data with
neural networks for classification.” Knowledge-Based Systems 182 (2019): 104838.

18. Wilmot, Chester G., and Shivaprasad Shivananjappa. ”Comparison of Hot-deck
and Neural-network Imputation.” Transport survey quality and innovation (2003):
543-554.

19. Nelwamondo, Fulufhelo V., Shakir Mohamed, and Tshilidzi Marwala. ”Missing
data: A comparison of neural network and expectation maximization techniques.”
Current Science (2007): 1514-1521.

20. Guo, Cheng, and Felix Berkhahn. ”Entity embeddings of categorical variables.”
arXiv preprint arXiv:1604.06737 (2016).

21. De Brébisson, Alexandre, et al. ”Artificial neural networks applied to taxi destin-
ation prediction.” Proceedings of the 2015th International Conference on ECML
PKDD Discovery Challenge-Volume 1526. (2015).

22. Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic optimiza-
tion.” ICLR (2015).

23. Hutchins, E., Cloppert, M. and Amin,R. Intelligence-Driven Com-
puter Network Defense Informed by Analysis of Adversary Campaigns
and Intrusion Kill Chains. Bethesda, MD: Lockheed Martin Corpor-
ation (2010) https://www.lockheedmartin.com/content/dam/lockheed-
martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf. Last
accessed 16 Feb 2020

12 MCSS2020, 022, v1: ’A Machine Learning Approach to Dataset Imputation for Software . . .


