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Abstract. In this paper we propose an approach for hunting adversarial tactics 
technics and procedures (TTPs) by leveraging information described in struc-
tured cyber threat intelligence (CTI) models. We focused on the properties of 
timeliness and completeness of CTI indicators to drive the discovery of TTPs 
placed highly on the so-called Pyramid of Pain (PoP). 
We used the unit42 playbooks dataset to evaluate the proposed approach and il-
lustrate the limitations and opportunities of a systematic intelligence sharing pro-
cess for high pain TTP discovery. 
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1 Introduction 

The continuous evolution and adaptability of cyber threat actors reflected in 
their fluid modus operandi is mandating radical changes in the cybersecurity sector. At 
the same time, the constantly increasing number of cyber-physical and IoT devices, the 
use of new tools with extended capabilities and devices with limited consideration to 
security bring forth new attack vectors that are reshaping the threat landscape [1], in-
troducing new or advanced threat actors. Advanced Persistent Threat (APT) groups 
with enhanced means and recourses to cause significant damage to operations both in 
private and public sector cannot be confronted by the standard incident management 
mechanisms [2] and require new approaches in organizing cybersecurity in the tech-
nical, tactical, operational and strategic level [3].   

Information sharing offers the potential of building a trusted network of partners 
with the purpose of circulating cyber threat related information in order to raise aware-
ness for newly discovered cyber threats and provide with solutions to already known 
security issues. This action of information sharing is encumbered with mitigating fac-
tors that constitute the process challenging. It requires a coordinated approach from 
partners that could enable a common culture in terms of the sharing practice. The 
amount of data produced and consumed by organizations is constantly increasing, forc-
ing them to adopt automation in order to analyze and evaluate threat information over 
a number of properties such as its value, relativity, context, timeliness and ingestibility 
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[4]. By overcoming those challenges, the organizations that participate in the infor-
mation sharing constituencies manage to gain information about threats and attacks on 
their information systems, possible countermeasures, patches on vulnerabilities and 
other types of incident response and systems protection that could also increase their 
readiness levels.  

In this research, we contextualized our approach around PoP in order to evaluate 
quality in threat intelligence sharing [5]. Α CTI that contains information about a hash 
or an IP, might be mapped low in the PoP but it will serve critical purpose in order to 
address an urgent incident in a time that can be considered acceptable in terms of inci-
dent response. As long as the levels of completeness of the CTI increase (i.e. the CTI 
contains information about the payload, the attack patterns and the actor) the CTI is 
mapped higher to the PoP and the information shared offers a more complete descrip-
tion of the attack which has higher value. 

The mapping to the PoP allows us to gain a better understanding regarding the level 
of the CTI (technical, tactical, operational, and strategic). CTIs with information that 
hangs low in the PoP belong to the technical level, where information is provided with 
the forms of Indicators of Compromise (IoCs), Indicators of Attack (IoAs), forensic 
evidence and technical description. The tactical level contains information related to 
the upper levels of the PoP which are harder to obtain; tools and TTPs offer context to 
the analysis of the attack and provide information regarding the actors, thus increasing 
the completeness of the report, with time being the trade-off of that case. For the oper-
ational and strategic levels of threat intelligence a higher-level analysis of data is re-
quired. The information derived from such analysis has the potential to offer not only 
incident managing solutions for post-mortem or live isolated artefacts but also to pre-
dict impending attacks or analyze attack behaviors in enterprise level. 

The relationship between PoP and the levels of CTI can be defined by timeliness and 
completeness. The two dimensions have an inversely proportional relationship that can 
be illustrated with the use of a kill chain. The discovery of an incident at the early stages 
of a kill chain provides with a timely incident detection; the indicators lie in the low 
levels of the PoP and threat intelligence levels addressed are the technical and opera-
tional level. On the other hand, when an incident is detected at one of the later stages 
of a kill chain, the event is mapped on the higher level of the pyramid of pain, since its 
detection is more onerous. The dimension of completeness is reflected by the number 
of mapped stages in the kill chain.  

The increased number of the identified stages in the kill chain provides with adequate 
information of the organizational and strategic levels of threat intelligence and possibly, 
an understanding of the timeline of the investigated attack. For this reason, we propose 
a novel approach of constructing a timeline using low pain indicators in order to reach 
to TTP level of the PoP. 

The paper is organized as follows. Section 2 discusses the landscape of challenges 
that complicate the process of sharing threat intelligence. Section 3 introduces the pro-
posed approach and methodology. Evaluation is discussed in Section 4. Finally, con-
clusions are drawn, and future work is suggested in Section 5. 
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2 Challenges of Cyber Threat Intelligence 

Cyber threat intelligence (CTI) sharing has been highly acknowledged in the last decade 
as a promising answer to the ever-increasing complexity of cyberattacks [1, 6, 7]. De-
spite the possible benefits, CTI producers and consumers are facing several issues and 
challenges [8].  

At the top of this list is the Threat Data Overload; the first and most common struggle 
for those who try to acclaim the benefits of the CTI sharing process and are actively 
involved in it. The aim of the Threat Intelligence Sharing Platforms (TISPs) is to man-
age CTI data and feed consumers and threat management teams with actionable infor-
mation. However, there are still lots of limitations and obstacles to achieve that goal. A 
recent survey among 1200 IT and IT security practitioners, showed that most respond-
ents are partially or not satisfied at all regarding the CTI feeds they receive [9].  For 
example, high percentages (from 30% up to 70%) reflect the significant inadequacy of 
CTI information in terms of relevance, timeliness, accuracy, completeness, and ingest-
ibility; which, according to the European Union Agency for Network and Information 
Security (ENISA)  , are the five criteria an information should meet to be actionable 
and support decisionmakers [10]. 

The Data Quality (DQ) of the shared feeds is also among those challenges, with 
implications in the decision-making processes which mainly derive from the fact that 
data quality is inherently subjective and directly related to the actionability of infor-
mation [10]. These criteria are used to measure the quality of data and further evaluate 
the available threat intelligent feeds (i.e. mainly public blacklists) in the literature [11]. 
The same approach was followed by M. Faiella et al. [12] to define the “weighting 
criteria” and use them as part of the proposed Threat Score (TS) function; a function 
used to evaluate IoCs collected from various sources in order to support Security Op-
erations Center (SOC) analysts to prioritize the incidents’ analysis. However, this was 
only a part of their overall contribution towards enriching threat intelligent platforms 
capabilities. Also, the study in [4] investigates the qualities (i.e. timeliness, complete-
ness, robustness) of IoCs collected by several open sources in order to understand how 
effective these sources are.  

The challenges of data quality in threat intelligence sharing platforms were also in-
vestigated by Sillaber et al. [13]. Aiming to address the factors affecting data quality of 
CTI at each of the following levels (i.e. gathering, storing, processing, and sharing 
data), the authors conducted studies, starting from interviewing several security-related 
stakeholders operating within international organizations. Their analysis was based on 
five traditional data quality dimensions which include accuracy, completeness, con-
sistency, timeliness, and relevance respectively. As a result of that research they pre-
sented various findings and recommendations regarding threat intelligence data quality. 
The authors of [14], focused on the topic of quality of data generated by incident re-
sponse teams during investigations. Their methodology was based on a case study 
within a financial organization to empirically evaluate data quality. During the second 
phase of data gathering they conducted analysis in terms of the accuracy, timeliness, 
completeness, and consistency of the collected data. According to this analysis, there is 
still a lot of future work to be done towards enhancing the quality of data generated by 
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incident response teams in order to facilitate and support CTI. The same metrics were 
suggested by S. Sadiq in his handbook [15] under the category of data values which is 
one of the three main categories defining the dimensions of data quality. 

The list of challenges also consists of issues related to Privacy and Trust, as infor-
mation disclosure and the potentially negative after-effects are big concerns for the 
companies involved in CTI sharing. In addition, diverse data models, tools and stand-
ards are used to exchange threat intelligence feeds impose Interoperability issues to 
TISPs. For that reason, the aim is to standardize the way threat intelligence platform 
vendors and open-source CTI developers communicate cyber threat intelligence data. 
Among the foreseeable benefits, is the improvement of analytical and management ca-
pabilities which will further increase the value of the shared CTI. 

3 Proposed Approach 

3.1 Justification of the Methodology  

As mentioned, CTI data can be incomplete, unreliable or subjective. At the same time, 
a significant amount of work has been invested into standardizing and harmonizing the 
description and sharing of CTI data. In this section, we propose an approach to assess 
the quality aspects of CTI data via mining and exploring the captured information, and 
to evaluate the quality of the underlying information sharing scheme while identifying 
areas for improvement. As such, in order to assess the quality aspects of CTI data, we 
propose an approach that builds upon a widely accepted threat intelligence sharing 
standard and show how though mining and exploring the captured information we can 
evaluate the quality of the underlying information sharing scheme as well as identify 
areas for improving it.  

Our proposed approach builds upon a widely accepted threat intelligence sharing 
standard, more specifically, we sample a number of incidents and campaigns that have 
been studied and expressed in a STIX notation. Although a STIX diagram may effec-
tively reveal relationships between the different objects (such as threat actors, victims, 
campaigns, IoCs and so forth), it does not show the sequence of the underlying attack 
vector, although timeline information may be included as a field in the object proper-
ties. We conjecture that timing information is critical when extracting TTP descriptions, 
as this is inferred and assumed in other threat modelling approaches such as the cyber 
kill chain. For instance, since APT type of attacks involve more than one stages and are 
prescribed through a sequence of actions, we explore how timeline information can 
trigger the understanding and extraction of the TTP descriptors. Moreover, this infor-
mation will be used not only to show the sequence of an attack, but also to use attack 
tree views to express the TTP. This will also allow the identification of bottlenecks in 
the attack sequence and the establishment of highly disruptive security controls and 
remedies, yielding the highest “pain” to the threat actor. 

The overall approach is described in Figure 1. Starting with a given case study, it is 
assumed that a group of expert security analysts have extensively studied the case and 
developed a narrative describing the incidents in the most accurate manner. As such, 
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the narrative constitutes the ground truth. Following the free text description, a number 
of modus operandi are extracted and enriched with IoCs in order to construct the STIX 
model. 

In this work, we use the STIX model and respected narrative as input to the proposed 
process. More specifically, we first consider the STIX model and use this to generate 
two models, a timeline of events and an attack tree. The timeline is constructed from 
the available timestamp information contained in the STIX objects. In addition, we lev-
erage the standardized description of the threat actors’ tactics by referencing the inci-
dents using the ATT&CK framework. This also helps to map the events to the Cyber 
Kill Chain. In order to be as inclusive as possible, we adopt the unified kill chain [16] 
that can in principle cover for any foreseeable permutation of the dataset.  

The kill chain also helps to evaluate the quality of the STIX model as well as the 
correctness of the examined data captured in the STIX object properties. As the kill 
chain suggests a loosely coupled – yet in some cases strict – sequence of events and 
attack patterns, we can evaluate the correctness of the captured data. Formally, given 
an alphabet 𝑆 representing elements of an attack set (that is, standardized attack tech-
niques or tactics), we define the range of all possible valid words that compose the 
attack space 𝐴ௌ , that is, all actions that can be potentially observed as an attack vector. 
The attack space is a subset of the free monoid 𝑆∗, under the word concatenation oper-
ation. By following such convention, 𝐴ௌ would be constructed following a number of 
rules using formal expressions that leverage the field of combinatorics on words. In 
essence, the informal description of the rules will still be provided by the expertise and 
knowledge found in the cybersecurity domain, but the modelling will be formally con-
structed leveraging the aforementioned field of theoretical computer science.  

An example of such an arrangement is as follows. Let 𝑆 contain elements of a cyber 
kill chain phases. The number of phases would be |𝑆|. Let ݑ be a word describing a 
sequence of phases that need to proceed an attack pattern described by the phases of 
word ݒ. Then, a valid attack ݓ containing ݒ, is the one where ݑ is the prefix of ݒ, that 
is ݑ =   .1−ݓݒ
Let ݓோ be the actual attack and wT  the attack pattern specified by the generated time-
line. ݓோ  is a member of 𝐴ௌ, but for ்ݓ  the following can hold:  
ோݓ • = ்ݓ . In this case the timeline describes the attack accurately, and the quality 

of the CTI can be considered as high; 
ோݓ • ≠ ்ݓ  and ்ݓ א  𝐴ௌ . In this case the timeline describes a valid attack, but not 

the actual one. The CTI can be considered to be of a medium quality; 
ோݓ • ≠ ்ݓ  , and ்ݓ ב 𝐴ௌ. In this case the timeline describes an invalid, unrealistic 

type of attack and the CTI can be considered to be of a low quality. 
Moreover, in the case where ݓோ ≠  ௌ , a distance metric can be applied in order toݓ

establish the proximity of the timeline CTI to the actual attack, as described by the 
narrative.  

This research also leverages attack trees in order to enrich the description of an attack 
and identify potential TTPs. In a general setting, attack trees have significant drawbacks 
mainly due to the complexity of attacks, making them an uninviting tool for security 
assessment and management exercises. Attack trees can be effective when the com-
plexity is relatively low, or when we study a particular attack subset. As such, whilst 

MCSS2020, 027, v1: ’On the assessment of completeness and timeliness of actionable cyber . . . 5



6 

attack trees are not suitable for security assessments, they can be employed in post-
mortem analysis of security incidents, following the investigation and to contribute to 
the “lessons learned” phase of the incident response process [17]. By doing this, we 
argue that TTPs will be evident in the generated attack trees, as they will describe the 
actual attack rather than some instance of a likely attack.  

3.2 Methodology 

The followed methodology for this research starts with importing the STIX docu-
ments given in the dataset section. STIX v2 [18] documents are composed of entries 
from the types of indicators, observables, attack patterns, incidents, threat actors, re-
ports, campaigns, exploit targets, packages, course of actions, TTPs (tactics, techniques 
and procedures). The dataset analyzed in this research contains 25 STIX files con-
structed from campaigns of advanced persistence threats (APTs); regarding the intelli-
gence data, these files contain indicators formed of the malicious executables, payloads, 
malicious websites and IP addresses. These indicators are connected to the attack pat-
terns from MITRE’s ATT&CK framework through relationships within the CTI data.  

As explained in the challenges section, the indicators given in the CTI file are con-
sidered as low-pain intelligence data. It is relatively easy for an attacker to evade the 
security measurements generated for these indicators comparing to the case where the 
TTP and modus operandi of the adversary is known. In this study, we argue that an 
approximation to the TTP by exploring the timeline and the relationship between indi-
cators and attack patterns. In this study, the processed STIX documents are converted 
to an attack tree on the time axis and an attack vector formed from unified kill chain 
phases of attack patterns ordered by the timestamps of indicators. The methodology is 
given in Figure 1.  

 

 
Figure 1. The General Methodology of Generation of the Timelines Attack Trees and Kill-

Chain Attack Vectors 
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Construction of Timeline of Attack Trees and Kill Chain Attack Vectors – A show-

case 

For the demonstration of our methodology, this section contains the construction of 
the attack trees and the kill chain vectors for a simple STIX file provided within the 
dataset by the UNIT42 group [19]. This STIX file is a fictional one created to demon-
strate their playbook viewer given in the references. The attack patterns from MITRE’s 
ATT&CK Framework provided in this scenario is given in Table 1. This CTI document 
describes an attack campaign where a spearfishing (hyper)link is sent and through 
scripting on commonly used ports more than one communication is established to the 
targeted system. Indicators in this event shows that at least one screenshot is captured 
from the targeted system as an objective.  

 
Table 1. Attack Patterns provided for the simple-playbook 

Attack Technique Code Description 

T1192 Spearphishing Link 

T1043 Commonly Used Port 

T1064 Scripting 

T1108 Redundant Access 

T1113 Screen Capture 

  
In the first step of the methodology, the attack patterns and indicators are filtered 

from the CTI document and merged. There are eight indicators given for the above five 
attack patterns. The indicators are as follows in Table 2. As can be seen from the table, 
there are three dates provided for each indicator. ‘Created’ date represents the 
timestamp when the indicator is created, ‘modified’ is the last modified date and the 
date ‘valid from’ represents the date that this indicator is started to be observed.  

 
Table 2. Indicators for the simple-playbook scenario 

Name Created Modified Valid From 

<SHA1 value placeholder>  

2019-06-25 

18:13:55.619 

2019-06-25 

18:24:15.157 

2019-06-25 

18:13:55.619 

https://verysuspicious.com:443  

2019-06-25 

18:10:03.432 

2019-06-25 

18:24:15.157 

2019-06-25 

18:10:03.432 

https://notsuspicious.com 

/givecreds 

2019-06-25 

18:07:17.633 

2019-06-25 

18:24:15.157 

2019-06-25 

18:07:17.633 

https://dailymemes.net  

2019-06-25 

18:15:42.452 

2019-06-25 

18:24:15.157 

2019-06-25 

18:15:42.452 

<SHA1 value placeholder >  

2019-06-25 

18:17:50.493 

2019-06-25 

18:24:15.157 

2019-06-25 

18:17:50.493 

<SHA1 value placeholder >  

2019-06-25 

18:21:42.106 

2019-06-25 

18:24:15.157 

2019-06-25 

18:21:42.106 

https://canhazcreds.xyz/kthanks  

2019-06-25 

18:23:00.359 

2019-06-25 

18:24:15.157 

2019-06-25 

18:23:00.359 
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As can be seen from the indicators, the attack campaign ends within approximately 
20 minutes and the attack patterns containing indicators are given in the timeline. The 
number of indicators shows the count of the indicators grouped by the timestamps. If 
there are more than one type of attack pattern for a given timestamp, they are separated 
with a comma as can be seen from Figure 2.  

In order to further map this information onto vector space, the attack patterns are 
vectorized using unified kill chain. The unified kill chain is a merge of kill chain stand-
ards that show some degree of recognition and adoption by the security community. As 
it will be explained in the next section on dataset details, the data that this proof of 
concept work has been implemented on is using ATT&CK and Lockheed kill chain 
definitions. Thus, how these two definitions are merged in this research is shown on the 
following Table 3. This merging implementation is adapted from the work of [16]. 

 
Figure 2. Resulting timeline of the simple-playbook file. 

Table 3. Unified Kill Chain Mapping 

ATT&CK  Lockheed-Martin Unified Kill Chain Vectorization 

Initial Access Reconnaissance Reconnaissance 0 

Execution Weaponization Weaponization 1 

Persistence Delivery Initial Access 2 

Privilege Escalation Exploitation Delivery 3 

Defense Evasion Installation Exploitation 4 

Credential Access Command and Control Execution 5 

Discovery Actions on Objectives Privilege Escalation 6 

Lateral Movement  Defense Evasion 7 

Collection  Installation 8 
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Exfiltration  Persistence 9 

Command and Control  Credential Access 10 

Impact  Discovery 11 

  Lateral Movement 12 

  Collection 13 

  Command and Control 14 

  Exfiltration 15 

  Impact 16 

  Actions on Objectives 17 

Hence, following this vectorization scheme, the attack vector of the simple-playbook 
document maps onto the following vector: ݒ𝑠𝑖௠௣௟𝑒 ௣௟௔𝑦௕௢௢௞  = ሺ ʹ, ͳͶ, 7, ͷ, 7, ͷ, ʹ, 7, 9, 7, ͷ, ͳ͵ሻ 

3.3 Utilization of Levenshtein Metric  

As given in the introduction, a good level of maturity is reached among the cyber threat 
intelligence sharing platforms on which format to share the intelligence data. However, 
to measure the quality of the intelligence data and analyzing its merits is still an open 
question. By providing an approach to mapping onto vector space and a metric integra-
tion, this study aims to extend the literature further on this ramification. For this aim, 
the Levenshtein Metric on vectors is chosen to be similarity metric. The pseudocode of 
the straightforward calculation of this metric is given as follows: 

 

Input: ݓோ , ௌݓ א 𝐴ௌ, two attack vectors with length |r| and |s| respectively,  

Output: Levenshtein distance of these two vectors  

Procedure levenshtein(ݓோ,  :(ௌݓ
    |r| = len(ݓோ) + 1, |s| = len(ݓௌ) + 1 
    matrix = Zero matrix with dimensions (|r|, |s|). 

    for x in range(0, |r|): 

        matrix [x, 0] = x  

    for y in range(0, |s|): 

        matrix [0, y] = y 

    for x in range(1, |r|): 

        for y in range(1, |s|): 

            if ݓோ[x-1] == ݓௌ[y-1]: 
                matrix [x,y] = min(matrix[x-1, y] + 1, 

                         matrix[x-1, y-1], 

                         matrix[x, y-1] + 1) 

            else: 

                matrix [x,y] = min(matrix[x-1,y] + 1, 

                         matrix[x-1,y-1] + 1, 

                        matrix[x,y-1] + 1) 

    return (matrix[|r| - 1, |s| - 1]) 
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In an ideal analysis, where all the evidence and indicators are extracted in the right 
chronological order, we expect the order of the attack vector to have a small distance 
from the order of the kill chain. However, in a real-world scenario, it is rarely the case; 
the timelines of the indicators are not aligned in most cases. This can be witnessed not 
only in the CTI dataset of the Unit 42 [19] but also in other datasets as well. To converge 
the ideal chronological order from the kill chain phases, application of machine or deep 
learning algorithms over huge datasets which is out of the scope of this paper is re-
quired. Despite the limiting factors of our metric, to show our methodology, we used 
the order of the unified kill chain phases described in section 3b. 

The timeline of the kill chain might not be aligned for several reasons. For example, 
in the attack patterns of muddy water CTI document, see Figure 3, the indicators begin 
with the identification of a communication channel between the targeted system and 
the malicious adversary. This is the point where the forensics investigation starts. After 
the point of the discovery, other indicators and evidence are collected and mapped on 
the timeline. In an ideal and successful incident identification and response, it is ex-
pected to trace an attack event from the beginning of the kill chain (i.e. the reconnais-
sance stage) or at least at the delivery stage of the kill chain and continue tracing the 
stages of the kill chain in the order that derives from the theoretical analysis of kill 
chains.   

 

Figure 3. Timeline generated for muddy water STIX data. Note that the x labels are 
not placed proportionally for the sake of readability. The indicators timeline starts with 
the discovery of an attack pattern T1043 – Commonly used port.  
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The analysis utilized in this research also reflects on the data quality dimensions di-
rectly. The quality dimensions of completeness and accuracy can be considered of 
“higher” quality by having at least one indicator on every possible kill chain; timeli-
ness- having started recording attackers’ actions and sharing accordingly through indi-
cators from the delivery phase; relevance and consistency – presenting only the related 
indicators in a CTI document and not inserting unrelated events.  

4 Evaluation 

4.1 Dataset 

The dataset used in this research is gathered from the STIX documents created from 
the Palo Alto Unit 42 cyber security reports. These reports and the STIX data can be 
found in [19]. There are 23 CTI data provided in STIX v0.2 format. Each document is 
formed of several campaigns, and each campaign has a set of attack patterns described 
by their ids of MITRE’s ATT&CK framework [20].  

4.2 Findings 

In this section, two examples from the dataset are inspected and interpreted. The first 
one is adversary group named “Scarlet Mimic” and the attack timeline is given in Figure 
4.  

 

Figure 4. Scarlet Mimic Adversary - timeline. The top graph shows the frequency and distribu-
tion of the attack patterns generated with the methodology described in Section 3. The timeline 
is then reformatted to the graph in the lower part of the image in order to improve the readability. 
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By extraction of the TTP (can be seen in Table 3), we understand from the generated 
timeline that the analysis starts from the discovery of persistence phase of the attack 
pattern “T1060 – Registry Run Keys/Start-up Folder”.  This leads to the revealing of 
custom payloads which is given by the attack pattern T1345. Next step is the utilization 
of obfuscation in the payloads and malicious files. Their attack pattern includes usage 
of defense evasion techniques by leveraging the standard communication and crypto-
graphic protocols through the uncommonly used ports.  

 

Table 4. Extracted TTP from the timeline of "Scarlet Mimic" 

T1060 Registry Run Keys / Startup Folder 

T1345 Create custom payloads 

T1001 Data Obfuscation 

T1071 Standard Application Layer Protocol 

T1065 Uncommonly Used Port 

T1032 Standard Cryptographic Protocol 

 

 

Figure 5. Sofacy's Timeline 

By analyzing the chronological order of the events, we can deduce the timeline 
from the attack pattern. This analysis gives us an overview of Sofacy’s deployment.  As 
can be seen, the adversary initiates the attack by sending an email which contains a 
malicious code (T1367, T1193). Additionally, the tactic id, T1319, identifies the fact 
that the script in the malicious attachment is obfuscated. This is a common technique 
to avoid AV detection. The malicious code affects the .dll Rundll32 (tactic id T1805). 
The purpose of the Rundll32 is to load and run 32-bit dynamic-link libraries (DLLs). 
From this attack pattern code, we can understand that some piece of malicious code is 
being installed in the infected computers. From the attack ID T1071 we conclude that 
the malware uses the application layer protocol (OSI layer 7 applications, such as 
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HTTP, HTTPS, SMTP, or DNS) to communicate with the adversaries’ command and 
control servers (T1094). Finally, with the information given from the attack pattern 
codes T1346 and T1112, we can observe that the malware code has features that render 
it persistent. The above information can offer to the analyst a quick overview of the 
Sofacy’s malware features and operations in order to respond in a more organized and 
accurate manner, in case of an incident. 

Table 5. Extracted TTP from the timeline of "Sofacy" 

T1367 Spearphishing messages with malicious attachments 

T1319 Obfuscate or encrypt code 

T1085 Rundll32 

T1193 Spearphishing Attachment 

T1094 Custom Command and Control Protocol 

T1071 Standard Application Layer Protocol 

T1346 Obtain/re-use payloads 

T1112 Modify Registry 

 
 
By utilizing the knowledge of the list of techniques (Table 4 and Table 5), the time-

line and any constraint rules, we can obtain the following representations of TTPs in 
the form of an attack tree. The root of the tree is the goal which is set as the “deepest” 
observed phase of the kill chain (in this case Command and Control), whereas the leaves 
are the observed techniques prioritized through valid kill chain sequences (or words). 
Figure 6 illustrates the attack trees for both playbooks, Scarlet-Mimic and Sofacy. 

 

 

Figure 6. Attack trees for Scarlet-Mimic and Sofacy playbooks. 
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Finally, we apply the Levenshtein algorithm on each attack in order to calculate the 
distance between the attack vector constructed from the kill chain phases and the order 
of the unified kill chain (Figure 7). The bigger the distance of the attack vector from 
the unified kill chain, the more distorted the timeline could be from the actual chronol-
ogy of the attack. As can be seen in Figure 7, the distance of 14 (observed in th3bug, 
chafer, darkhydrus) is recorded as the minimum distance. 51 is the highest distance 
observed in Sofacy.  

 

Figure 7. The distances from the unified kill chain order. 

5 Conclusion 

In this paper, we presented an approach to represent and visualize CTI data for fur-
ther analysis in a timely manner. The proposed method constructs a timeline and a uni-
fied kill chain using indicators of varying “pain” level, in order to reach to the highest 
TTP level of the PoP. The unified kill chain can be very useful in the hands of a security 
operations analyst. An analyst can use this more practical approach of the unified kill 
chain as guide to perform various of tasks in his day to day activities. An analyst can 
use the proposed methodology for prevention. Given a CTI document such as the 
“muddy waters” from Figure 3 one can analyze and investigate the patterns. Having a 
timeline and the attack pattern codes in a single graph as shown in the Figure 2, the 
analyst has a quick reference guide on how the cyberattack has been deployed and 
which attack patterns codes have been deployed in each stage. Then the analyst can 
extract valuable information related to the attack pattern and use this information to 
create alerts, in a Security Information and Event Management (SIEM) in order to iden-
tify or even to prevent future attacks that follow similar patterns.   

The proposed method may also be of use in incident response. The analyst can com-
pare his incident flags and attack patterns, with the pre-analyzed datasets form the pre-
vious analyses and observe if any of the previous attack patterns match the current at-
tack pattern. Consequently, the necessary counter measures and mitigation strategies 
can be decided.  
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As a future work, we will apply our approach into more populated datasets and try 
the methods with larger incidents. Another line of future work will be to apply this 
model to combinatorics on words for generating a pattern-matching approach for kill 
chain phased attack trees.   
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