
Competitive Regression

by

Waqas Jamil

the thesis is submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

in the

Computing & Informatics department

Bournemouth University





This copy of the thesis has been supplied on condition that anyone who con-
sults it is understood to recognise that its copyright rests with its author
and due acknowledgement must always be made of the use of any material
contained in, or derived from, this thesis.

3





Abstract

This thesis is about investigating the predictive complexity of online
regression. In essence, supervised learning from a data sequence
consisting of n-dimensional input and the corresponding output is
considered. In this work online learning scenario considered consists
of sequential arrival of data, without making any stochastic assump-
tions on the nature of the arriving data. At each trial, the learner
receives the input, it produces a prediction. Then as a second step,
the true output is observed, and the learner suffers a loss which is
consequently used to learn. The goal of online learning regression in
this thesis, is to minimise the regret suffered when considering the
loss of the minimum of the sum of squares.

In the present work, three novel algorithms (Online Shrinkage via
Limit of Gibbs sampler (OSLOG), Competitive Iterated Ridge Regres-
sion (CIRR) and Competitive Normalised Least Squares (CNLS)) are
derived and analysed. The development of these algorithms is driven
by Kolmogorov complexity (known also as “competitive analysis”).
OSLOG appraises the Bayesian approach, CIRR relies on game the-
ory, whereas CNLS makes use of gradient descent methods. The
analysis of the algorithms investigates two aspects: (1) formulating
the upper bound on the cumulative square loss and (2) identifying
the precise conditions under which they perform better than other
algorithms. In fact, the theoretical results indicate that they have a
better guarantee than the state-of-the-art algorithms. The empirical
study conducted on real-world datasets show also that the perfor-
mance of the proposed algorithms is better than the state-of-the-art
algorithms and close to the minimum of the sum of squares.

5





Acknowledgements

This work concludes my rather long process of formal education. My
family,especially my mother and father, have greatly contributed to
the development of my motivation to study. Therefore, my utmost
gratitude and appreciation are reserved for my family, their constant
love, support and encouragement was the main ingredient in produc-
ing this thesis. I dedicate this thesis to them.

I’m very grateful to Professor Abdelhamid Bouchachia for giving
me the opportunity to pursue the doctorate degree. His unprece-
dented kindness and patience allowed me to develop myself as a per-
son and as a researcher. His constant feedback on my work allowed
me to greatly improve my writing and presentation. Above all, he
taught me the ways of science.

Moreover, I thank all my teachers in particular Professor Martin
Ridout, whose suggestion of considering further post-graduate stud-
ies proved to be invaluable. My regular meetings with Dr Owen Lyne
helped a lot in building the foundations of probability. I’m in debt to
Professor Vladimir Vovk and Dr Yuri Kalnishkan for introducing me
to game-theoretic probability and learning theory − I feel, I would
have not found anything more suitable to study for myself.

My colleagues at Bournemouth University also played a vital role
in making my journey pleasant, I thank them for their help and sup-
port.

Last, but not the least I thank all the reviewers of the journals and
conferences who gave me invaluable feedback.

Financial support was given by Bournemouth University and the
European Commission under the Horizon 2020 Grant 687691 related
to the project PROTEUS: Scalable Online Machine Learning for Pre-
dictive Analytics and Real-Time Interactive Visualisation.

7





Acronyms

AA aggregating algorithm

AAR aggregating algorithm for regression

ARMA auto regressive moving average

CIRR competitive iterated ridge regression

CNLS competitive normalised least squares

EGD exponentiated gradient descent

CD coordinate descent

GD gradient descent

HA halving algorithm

LASSO least absolute shrinkage selection operator

LMS least mean squares

LS least squares

NLS normalised least squares

NLMS normalised least mean squares

NGD normalised gradient descent

OSLOG online shrinkage via limit of Gibbs

SLOG shrinkage via limit of Gibbs

OGD online gradient descent

ORR online ridge regression

ONS online newton step

RLS recursive least squares

SLOG shrinkage via limit of Gibbs

RR ridge regression

WMA weighted majority algorithm

LASER last step adaptive regression algorithm

AROWR adaptive regularisation of weights regression

9



APA aggregating pseudo algorithm

WMA weighted majority algorithm

FLA follow the leader algorithm

HA halving algorithm

10



Symbols

Z+ positive integers
N natural numbers
R real numbers
P probability measure
Ω outcome space
Θ decision or parameter space
F filtration
K(.) complexity
H Hessian
O order of complexity
f function
t trial
T data length

O f (.) differential of f (.)
‖.‖p p−norm

x′ transpose of vector x
inf infimum
sup supremum
min minimum
max maximum

argmin minimum point
argmax maximum point

i.i.d independent and identically distributed

11





List of Figures

Figure 1 `1−norm approximation. 52

Figure 2 Tunable loss function (see Theorem 16) 80

13





List of Tables

Table 1 Cook distance, mean & variance 85

Table 2 Algorithms accuracy comparison on real-world
datum 88

15





List of Protocols

1 Experts based prediction system . . . . . . . . . . . . . 24

2 A two player repeated game . . . . . . . . . . . . . . . . 40

3 A prediction game with experts advice . . . . . . . . . 40

4 Bayesian strategy . . . . . . . . . . . . . . . . . . . . . . 41

5 RLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 OSLOG strategy . . . . . . . . . . . . . . . . . . . . . . . 51

7 OSLOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 CIRR strategy . . . . . . . . . . . . . . . . . . . . . . . . 66

9 CIRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

10 CNLS strategy . . . . . . . . . . . . . . . . . . . . . . . . 75

11 CNLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

17





Contents

i introduction 21

1. Online learning 23

2. Online regression 26

3. Research questions 33

4. Publications 34

5. Organisation 35

ii competitive regression 37

1. Background 39

2. Related work 41

3. Problem formulation 45

iii oslog : online shrinkage via limit of gibbs 49

1. Derivation 51

2. Analysis 56

iv cirr : competitive iterative ridge regression 63

1. Derivation 65

2. Analysis 69

v cnls : competitive normalised least squares 73

1. Derivation 75

2. Analysis 77

vi empirical study 83

1. data description 85

2. Experimental setting 86

3. Results 86

vii conclusion and future work 89

1. Conclusion 91

2. Future work 92

References 95

19





The most we can know is in terms of
probabilities.

—Richard Feynman

i

Introduction





1- Online learning

Most learning algorithms fall under the umbrella of supervised or
unsupervised learning. In this work, the discussion is confined to su-
pervised learning problem. This work considers sequentially arriving
data S = {(x1, y1), ..., (xt, yt)} with output yt ∈ R, input xt ∈ Rn and
a fixed pre-defined loss function fS . The learning is defined in the
following sense [73]:
Definition 1. A computer program is said to “learn” from experience, with
respect to some task and a performance measure, if its performance improves
with experience with respect to the performance measure.

Broadly speaking, online and batch mode of leaning are the two
most popular modes of learning. Online mode of learning considers
sequential arrival. At each trial t = 1, 2, ..., an input is observed and
the prediction is made by updating the parameters based on some
pre-defined performance measure. Therefore, the online learning fits
nicely with the Definition 1. In contrast, in batch learning, the data
is divided into training and testing sets, and the performance is opti-
mised on the training set, usually by making several passes [43].

Recently, the framework of online learning has been formalised
using Game theory by Shafer and Vovk [90]. However, the core idea
of online learning can be tracked back to the communication between
Pascal and Fermat [78].

Kolmogorov defines the complexity of a string t, with respect to
an algorithm A that transforms a binary sequences into words by
considering a set of all words over some finite alphabet [60]:
Definition 2. The complexity (K) of the string t with respect to the algo-
rithm A is defined as the length (l) of the shortest program which computes
it, i.e.

KA(t) = min
A(p)=t

l(p) (1)

If A(p) 6= t for all binary strings p, then KA(t) = +∞. By using the result
given in [98], one can consider a base line algorithm B and say:

KA(t) ≤ KB(t) + c (2)

where c is a constant that depends on A and B, but not on t.
Please note that the Definition 2 does not require any stochastic as-
sumptions. This will help to define the scope of this work.

Throughout the thesis, the output is considered to be generated
from some unknown mechanism, which could be deterministic, stochas-

23



tic, or even adversarial. It is assumed that a forecaster observes the se-
quence of observations xt ∈ Rn for t ∈ Z+ and predicts yt ∈ R, where
the vector space Rn is yet to be remarked upon. Instead of predicting
a distribution, a single point is predicted sequentially. Also, since at
each trial only a single point of data is considered by the model, thus,
this approach is memory efficient. Formally, one can say the learning
algorithms receives an input at each trial; makes predictions; receives
the ground truth and then update the parameters, more on this later.
This theory consider, a class of reference forecasters. The predictions
of the reference forecasters are available before the actual outcome
is revealed. This allows the forecaster to predict by considering the
reference forecasters predictions. To measure the performance of the
forecasters prediction, a loss function is used, which measures the
discrepancy between the forecasters predicted value and the actual
outcome. Often the reference forecasters are referred as experts or
decision strategies (used interchangeably). Perhaps, an example will
help in providing the intuition of the protocol for the online learning
used in this work.
Example 1. Say, I am interested in forecasting the probability that it will
rain on a given day. I ask the experts to provide their respective probabilities
of forecast. Then I pass the experts forecasts to the forecaster to predicts
the probability of the rain. Notice, that my reference forecaster is an expert
on weather forecasting. After each round the expert update their prediction
on the basis of the discrepancy between actual outcome and the forecasters
prediction. For, further details please see for example [81, 101, 72]

Example 1 can be generalised using some notation. Suppose, ele-
ments of a sequence ω1, ω2, ..., come from an outcome space Ω. Pre-
dictions are within the prediction space Γ. To measure the quality of
our prediction a loss function λ : Γ ×Ω → [0,+∞] is used. So, the
prediction game is a triplet consisting of (Ω, Γ, λ). Suppose there are
N experts θ1, θ2, ..., θN ∈ Θ that predict the outcome, then the predic-
tions made by experts at time t are γn

t , where n = 1, ..., N, for further
details please see [110, 111]. Protocol 1 is used to contextualise the
generalisation of Example 1:

Protocol 1: Experts based prediction system

L0 = 0
Lθ

0 = 0, θ ∈ Θ
FOR t=1,2,...

(1) Experts θ1,2,...,N ∈ Θ predicts γ1,2,...,N
t ∈ Γ

(2) Learner output γt ∈ Γ
(3) Actual output ωt ∈ Ω
(4) Lt = Lt−1 + λ(ωt, γt)

24



(5) Lθ
t = Lθ

t−1 + λ(ωt, γn
t )

END FOR

Here onward, the key concept for the main topic will be discussed
formally. Next, defining the notion of algorithm’s “competitiveness”
− the mathematical comparison apparatus of the algorithms com-
plexities. Competitive prediction can be viewed as a sub-field of
game-theoretic probability that uses the technique of competitive anal-
ysis. Competitive analysis were invented especially to analyse online
learning algorithms by Sleator and Tarjan [97]. The performance of
the online algorithm is compared to the best learning strategy in the
hindsight. Often, the learning strategy is the optimal offline algo-
rithm that can view all the sequence of observations and outcomes.
From here on, the algorithms that will adhere to the following defi-
nition will be classified as competitive algorithms.
Definition 3. An algorithm is said to be competitive if the difference be-
tween the performance of the online and the optimal offline algorithm is
bounded 1. More precisely:

LT ≤ L∗T + RT (3)

where LT is the cumulative loss of the learning algorithm at trial T, L∗T is
the cumulative loss of the optimal learning strategy and RT is the regret of
the learning algorithm. The measure of competitiveness is the regret term
i.e. it tells how well the learning algorithm learns.

The traditional worst-case analysis are only done for the “hard”
inputs, whereas if an algorithm gives competitive prediction, then it
means it is competitive for the “hard” and the “easy” inputs, where
hard and easy is defined by the optimal offline learning algorithm.
Also, the above definition of competitiveness is a stronger notion
than the Probably Approximately Correct (guarantees hold on expec-
tation) and statistical convergence (algorithm converges to the true
solution in probability).

Competitive analysis can be thought of worst case analysis for on-
line and stochastic algorithms where input can be easy or hard. The
analysis are done by assuming that an adversary deliberately chooses
a strategy that maximises the difference between the algorithm pre-
diction and the actual outcome. An adversary could be oblivious
(unaware of the learner’s moves) or adaptive (adopts according to
the learner’s moves) for a stochastic algorithm. In online learning,
an adversary is considered to be oblivious as adaptive adversary can
always outsmart the learning algorithm for sequentially arriving out-

1 The competitive prediction may be thought of the predictive complexity [53] that
generalises Kolmogorov complexity [115, 116].

25



comes. Thus, the distinction of the adversary make little sense for
online learning algorithms.
Remark 1. Definition 3 directly relates to Definition 2. However, the fun-
damental difference is that the regret term may be some function of t. Also,
throughout this thesis, algorithm is a concept that is computable in one of
the various equivalent ways that have been proposed, e.g. by means of the
theory of partial recursive functions [38].

2- Online regression

Unlike offline learning, online learning observes data as a sequence
of data instances (data stream) where learning happens over con-
secutive rounds without seeing data more than once. Each round
consists of iii) main steps: i) Predict the output: the learner receives
an instance, xt ∈ Rn and predicts an output, ŷt ∈ R. ii) Reveal the
ground truth: the learner obtains the correct output, yt ∈ R. iii) Ad-
just the model: the learner suffers a loss Lt(yt; ŷt) ∈ R and learns
by adjusting its model. Clearly, online learning has been designed
for supervised learning [43] and reinforcement learning [7] and can
be seen as a game between the learner and the nature. Such mod-
elling has given rise to a rich body of theoretical work around online
learning.More on this will follow in subsequent sections and chap-
ters. The previous protocol refers to learning in each round from one
single point, extensive work is done to deal with window (batch) of
data at a time. In batch-based sequential processing, the data is split
into overlapping or independent windows, known in general as slid-
ing windows. Therefore, input is generalised to Xt ∈ Rm×n, output
and prediction is Yt, Ŷt ∈ Rn, and the loss suffered is Lt(Yt; Ŷt) ∈ Rn.

A sliding window can be of fixed or variable length. In sliding win-
dow, a window is formed over some part of data, and this window
can slide over the fixed or a variable length of data to capture different
portions of it. For fixed length window please see [88, 102, 49, 66, 12]
and for variable length please refer to [71, 58, 32, 122, 64]. Sliding
windows, in which time windows do not intersect are known as non-
overlapping windows, for details please see for example [95].

Online learning community has also been motivated by addressing
computationally efficient algorithms to capture dynamic changes in
the data streams. Often, the dynamic change in the data is referred
to as concept drift. The word dynamic change is very broad. Often the
concept of drift is defined in a probabilistic sense. Kelly et al. [55],
Gama et al. [33] and Webb et al. [117] define the concept drift (CD)

26



using prior probabilities, class conditional probabilities and posterior
probabilities, which is equivalent of considering joint probabilities:

CD = P(X|Y)P(Y) = P(X, Y) (4)

where X and Y denote the input and output respectively. Some work
has been done to quantify the level of drift in absolute terms, see
for example [117], where magnitude and the duration of the drift is
quantified by using Hellinger Distance [48]. Webb et al. [117] justifies
the choice of Hellinger Distance by opposing the popular Kullback-
Leibler Divergence [63] due the difficulty of interpretation and gen-
eralisation to many scenarios.

That has been said, the definition of drift might be extended to the
regression case. Another approach to handle concept drift could be
to use ensemble methods. One of the methods could be to have mod-
els to cover certain number of scenarios and use weighted average
of them as final prediction, please see [51, 22]. It is also possible to
use Kriging (Gaussian process regression) to address drift, as an ex-
ample please see [59, 100]. Typically modelling regression tree [15]
based approaches can be used to handle drift in the data. The fun-
damental advantage of using tree-based regression is that there is no
assumption of linearity in input and output, but if there is a linear
relation in input and output, linear models are likely to outperform
tree-based approaches. Furthermore, as the dimensionality of the
data increases the advantage disappears, for details please see [43]. In
[50] it is shown how regression trees can handle gradual and abrupt
drifts. Reflecting on this state-of-the-art of drift handling, our con-
tribution can be summarised as follows. The algorithm competitive
normalised least squares (CNLS) mentioned in Chapter V is not based
on co-variance updates, thus it does not converge and is able to han-
dle the abrupt, incremental and gradual drifts mentioned in [33] Fig-
ure 2. Algorithms online shrinkage via limit of Gibbs (OSLOG) and
competitive iterated ridge regression (CIRR) mentioned in the Chap-
ters III and IV, maybe can be extended to handle drift as done in [75].
The algorithm CIRR mentioned in the Chapters IV handles outliers
(the last case mentioned in Fig 2 of [33]). However, algorithms dis-
cussed in this work consider no generative mechanism on either input
or the output, they are allowed to be any numbers range following
any pattern. Furthermore, the mean and variance may change over
time, providing capabilities to deal with non-stationary data and ex-
cluding any assumption of independence and identical distribution
or other stochastic assumptions. Our main restriction is that there
is one fixed optimal function against which the algorithm competes
over time. The fundamental difference in sequential algorithms pro-

27



cessing batches and processing single data point is that, one predicts
a distribution while the later predicts a real number. Thus, the later
can avoid all the distributional assumptions.

In game-theoretic terms, single data processing with no delayed
feedback of output or the outcome are referred as perfect information
games (for details please see for example [80]). The link to game-
theory has only recently been discovered and talked in lengths by
Shafer and Vovk [91]. The rise of the approach of the game-theoretic
approach can be tracked back to the paradigm of prediction with ex-
pert advice introduced in the late 1980′s by DeSantis et al. [24], who
presented predicting sequentially using experts advice. Then fur-
ther work was done by Littlestone [67], Littlestone et al. [69], Little-
stone and Warmuth [68], Foster [29], Foster and Vohra [30], Freund
[31], Cesa-Bianchi et al. [19, 18], Haussler et al. [45], Vovk [108], Ya-
manishi [120].

Perhaps, a good starting point to explain the online learning frame-
work used in this thesis is by explaining halving algorithm (HA) in
light of the prediction with experts advice paradigm (please see Pro-
tocol 2). In HA it is assumed that there exists an expert among N
experts that predicts correctly, i.e., the loss of the expert at every trial
is null. Initially, giving equal importance to all N experts, but if an
expert makes a mistake, it is discarded.
Theorem 1. (Theorem 1 [67]) The upper bound on HA is as follows:

LT ≤ blog2 Nc (5)

Theorem 1 applies no matter what the outcome is on any trial or
no matter what the experts predict, provided there exist at least one
expert that is always correct. If the nature and the experts unite, the
learner will make blog2 Nc mistakes, provided there exists an expert
that makes no mistake. Notice, unification of nature and the experts,
is the worse that could happen for the learner. The lower bound on
halving algorithm, provided there exist at least one expert who makes
no mistake is equivalent to the upper bound.

LT ≥ b(log2 N)c (6)

Another way of viewing HA is by assigning weights to the experts.
Let sT = ∑N

n=1 wn
T, where w denotes the experts weights. Setting

s0 = N and weights can stay the same or decrease at each trial. If the
learner makes a mistake on the T-th trial then there are at least half
of the experts with non-zero weights. The weights can never increase
and the weight of the expert who makes no mistake is one. Experts
weights are updated according to the following rule:

wn
T = wn

T−1(1− λ(γn
T, ωT)) (7)

28



HA is only applicable when there exists a perfect expert. By rest-
ing this condition, the guarantee does not hold. The weighted ma-
jority algorithm (WMA) algorithm was introduced by Littlestone and
Warmuth [68] with a strong performance guarantee. In WMA, there
is no restriction of having a perfect expert in the pool of experts.
The difference between HA and WMA is in the weights update rule.
When an expert makes a mistake, its weight is multiplied by coeffi-
cient β = e−η < 1, where η > 0. So, instead of (7), the update rule is
reformulated as follows:

wn
T = wn

T−1βλ(γn
T ,ωT) = wn

T−1e−ηλ(γn
T ,ωT) (8)

Notice that η and β have an inverse relation. When β is small weights
are small and vice versa. The mistake bound for WMA is as follows:
Theorem 2. (Theorem 2.1 [68]) For β ∈ [0, 1] and N experts, then for
every outcome arriving sequentially and for any expert the following holds:

LT ≤
ln 1

β

ln 2
1+β

Lθ
T +

ln N
ln 2

1+β

(9)

One can optimise β depending on specific scenarios. For example,
if one expects at least one expert to be very good then β is close to
zero.
Theorem 3. (Main result [110]) For a sequential perfect information pre-
diction game with only two experts and Ω = {0, 1}, no strategy can guar-
antee the following for all outcomes:

LT ≤ cLθ
T + a (10)

where c < 2 and a > 0.
Theorem 2 also directly follows from the main result proven by

Vovk [110]. Each expert can not make more than T
2 mistakes. What-

ever the situation the bound (10) holds because the following holds:

T ≤ c
T
2
+ a⇒ c ≥ 2− a

T
(11)

if c < 2, then, as T → ∞, than a
T → 0 and (11) is violated. The

proof of the case when c = 2 leads to generalisation of WMA. Vovk
[110] shows that there does not exist any learning strategy that can
improve the upper loss bound of the WMA, by showing that for c = 2
the bound mentioned in (11) is violated. A comparable approach to
WMA is an algorithm known as follow the leader algorithm (FLA)
[93]. The algorithm predicts according to the following rule:

γT = argmin
T

∑
t=1

λ(ωt, γn
t ), n = 1, ..., N (12)

29



In (12) the prediction γT is essentially based on the cumulative loss
of all expert(s), and the optimisation problem is solved usually using
online gradient descent (OGD). The expert that has the least loss up
until time T is selected to predict T + 1. The fundamental disadvan-
tage of this approach is that it is impossible to have a good upper
loss bound because the expert that has performed well up until time
T may not perform well at the next step. There is no guarantee that
the expert that performed well until time T will perform well later as
well.

In this thesis, the design and analysis of the algorithms adhere a
similar framework as of the HA and WMA, but the problem consid-
ered is more general. Specifically, the input and outcome space could
be a real number. The supervised learning algorithms proposed in
this thesis are primarily dedicated to regression [43]. They are based
on sequential perfect-information games, Bayesian learning and con-
vex optimisation.

In the literature of signal processing the problem of predicting on
the fly is handled using various filters [41, 25]. The goal of the filter is
to recover the noisy observations, whereas the purpose of the game-
theory based learning algorithms is to predict the response variable.
Despite, having different objectives, signal processing filters can be
adapted to solve the online regression problem, as more clearly de-
fined in this thesis later. Half a century ago Widrow and Walach [118]
developed an algorithm for reducing noise via adaptive filtering, the
algorithm is known as least mean squares (LMS). Bershad [11], Bit-
mead and Anderson [14] performed analysis on LMS showing that
normalised least mean squares (NLMS) is insensitive to scaling of
the input. Hayes [46] proposed recursive least squares (RLS) for on-
line regression. RLS uses a correction factor to update covariance
matrix at each iteration. RLS was mainly inspired from a priori fil-
tering and a posterior filtering. A priori filtering is used to recover
un-corrupted output w′txt, before receiving the output yt. The overall
discrepancy (error) after t steps is given in the form of a cumulative
sum: ∑t

s=1(w′sxs − w′s−1xs)2. In a posterior filtering, filtering out the
noise using the output yt is done. The error is formulated as a cumu-
lative sum: ∑t

s=1(ws, xs − w′sxs)2. Notice in a posterior filtering, one
makes use of the most recent weight vector wt to measure the qual-
ity of the filter (error). In contrast, for a priori filtering, wt−1 is used
due to unavailability of the output yt, which resembles the online
learning setting. However, in filtering the goal is not to estimate the
output, instead to recover the output by assuming that it is corrupted
by some noise.

30



A popular area of deep learning can use some of the discussed re-
gression algorithms as their building blocks. For example, the learn-
ing in Neural Network is done using gradient descent (GD), in this
thesis an alternate approach to is also discussed. One may also be
able to use the other discussed algorithms to perform learning tasks
on specific type of data. For example, please see [82].

On a more practical note, some work has been done to handle
data streams using computationally efficient methods. The two well
known libraries that handle data streams are Massive Online Learn-
ing (MOA) and Spark [3, 40]. In Chapter 2 section 2.2 of [13], same
protocol as the one in this work is considered. In this work, a solid
mathematical foundation to regression algorithms is considered, which
differs from the work done in MOA and Spark for online regression
algorithms. Spark designed for batch processing of data [99]. In con-
trast, MOA defines online processing of batches of data. Almost the
algorithms mentioned in Chapter 9 in [13], make use of stochastic
assumptions, in my understanding they are evaluated by considering
sliding window. Thus, processing batches of data sequentially. Ar-
guably one can adopt Spark and compare it to MOA as done in [3].
Comparing the regression algorithms derived and analysed in this
thesis differ from the regression algorithms in Spark and MOA. Most
of the discussed algorithms in this thesis can be found in SOLMA1,
standing for Scalable Online machine Learning and data Mining Al-
gorithms. This thesis only focuses on regression algorithms men-
tioned in SOLMA library, in particular their theoretical motivation
and analysis. That been said, MOA and Spark libraries have a vast
variety of algorithms, so these libraries have the ability to capture
wider range of scenarios and data sets. SOLMA is limited to least
squares and its variant, but has much stronger theoretical case for
these algorithms than MOA or Spark.

Let us view the classical least squares (LS) approach. Considering
the following model, with Y, ε ∈ Rt×1, w ∈ Rn×1 and X ∈ Rt×n:

Y = Xw + ε

Computing the weight vector w, that minimises the squared sum of
errors:

ε′ε = Y′Y− 2w′X′Y + ŵ′X′Xŵ = 0

1 SOLMA intends to cover two classes of algorithms: basic streaming routines such
as moments, sampling, heavy hitters feature extraction, and advanced machine
learning algorithms such as classification, clustering, regression, drift handling and
anomaly detection.

31



From Gauss-Markov theorem [36] ŵ is normally distributed with
mean w and variance σ2(X′X)−1, for further details please see for
example [92]. Notice, w is:

min
w
‖Y− Xw‖2

2 =⇒ w = (X′X)−1X′Y (13)

In (13) it is necessary for X′X to be invertible. In certain scenarios
the condition of invertibility might not be satisfied. So, a penalty or
regularisation term is added, for instance by adding a‖w‖2

2, where
a > 0 in (13) the following estimate of beta is obtained:

min
w
‖Y− Xw‖2

2 + a‖w‖2
2 =⇒ w = (X′X + aI)−1X′Y (14)

It is easy to see that a‖w‖2
2 and ‖Y− Xw‖2

2 commute and thus, it is
possible to obtain a closed form solution. To obtain an online weights
updating rule, one can write (14) as:

w =

(
T

∑
t=1

xtyt

)′( T

∑
t=1

xtx′t + aI

)−1

(15)

and consequently the forecasts at time t = 1, 2, ... are w′xt. One may
chose to add `1 penalty instead, but then there is no obvious way
to obtain a closed form solution. Often statistical literature refers to
`1 regularised regression as least absolute shrinkage selection opera-
tor (LASSO) and `2 regularised regression as ridge regression (RR).
Both `1 and `2 regularisation have their advantages and disadvan-
tages. `1 and `2 regularisation are probably the two most popular
regularisation methods for regression and are useful for many real
world applications [93, 119]. `1 regularised regression aims to ob-
tain a sparse solution. If the aim is to have a model that outputs
few non-zero entries then `1 regularised regression is a good choice
[44, 47, 39] . On the other hand, `2 regularised regression increases
the bias and has lower variance than regression without regularisa-
tion and is a useful technique for dealing with the data that has high
multicollinearity. For a more a detailed explanation please see [104].

The forecasts by using (15) leads to the time complexity of O(n3)

with the following bound [28, 113, 21]:

LT ≤ L∗T + P2X2 + nP2R2 ln(T + 1) (16)

where LT and L̂T denote the cumulative square loss of the online
prediction algorithm, L∗T denote the total squared loss of the offline
solution. Also, the signals are taken from `∞−ball {x ∈ Rn : ‖x‖∞ ≤
R} and w ∈ Θ from `1−ball {w ∈ Rn : ‖w‖1 ≤ P}

32



It is possible to make use of Sharman-Morrison [94] to achieve time
complexity O(n2) without sacrificing (16). One may make use a gra-
dient based approach to reduce time complexity to O(n), but this
reduction leads to the following bond [20]:

LT ≤ 2.25 inf
w
(LT + (XP)2) (17)

Cesa-Bianchi et al. [20] showed that it is possible to relax the condition
of bounded signals and weights for (17) by using normalised square
loss and obtained the following bond:

L̂T ≤ 2.25 inf
w
(L̂T + ‖w‖2

2) (18)

where L̂T denote the cumulative normalised cumulative square loss.

3- Research questions

The main objective of this work is to address the following questions:

1. Is it possible to have online algorithms that improves the bound
(16)?
→ To answer the question two online algorithms CIRR and
OSLOG are proposed using game theory and Bayesian theory
respectively. Also, a detailed analysis of their upper bounds on
the cumulative square loss are presented. For details please see
Chapter III and IV.

2. If the answer to the first question is yes, then by how much and
under what conditions? Else, why not?
→ The work presents the precise circumstances under which
CIRR and OSLOG upper bounds are better than the state-of-
the-art.

3. Is it possible to have a tuning parameter next to the regularisa-
tion term in the bound (17) and (18)?
→ By making no assumptions on the data Cesa-Bianchi et al.
[20] presented an algorithm, where the performance guarantee
on cumulative normalised square loss is given by using the gen-
eralised gradient descent. In order to obtain the performance
guarantee (17), first a lower bound on the progress (see Lemma
IV.4 in [20]) is computed by assuming that η = α

‖xt‖2 (see The-
orem IV.2 in [20]), where 0 < α < 2. The chosen α ensures
that the performance guarantee on the normalised cumulative
loss is held. Chapter V dwell further on the discussion done by
Cesa-Bianchi et al. [20] and do not impose a similar restriction

33



on η when bounding the progress of the proposed algorithm
CNLS. In Chapter V, a performance guarantee comparable to
(17) is shown first by bounding the input. Later, the algorithm is
studied by considering no conditions on the input, output and
wights with the normalised square loss. Consequently, the pro-
posed algorithm’s guarantees have the tuning parameter next
to the ridge penalty, implying a superior bias variance trade-off
properties than the generalised GD update rule.

4. If the answer to the third question is yes, then at what cost?
Else, why not?
→ For the case when the regularisation parameter is set to one,
the CNLS bound is 4 times worse than the true regression func-
tion instead of 2.25 obtained using generalised GD approach by
Cesa-Bianchi et al. [20], for further details see Chapter V.

5. Does knowing the answers to the above questions have any im-
plications?
→ The implication are given in Chapter VII.

4- Publications

1. Waqas Jamil, N-C Doung, Wenjuan Wang, Chemseddine Man-
souri, Saad Mohamad and Abdelhamid Bouchachia, “Scalable
online learning for flink: SOLMA library”, European Conference
on Software Architecture 2018 (published)

2. Waqas Jamil and Abdelhamid Bouchachia, “Competitive Regu-
larised Regression”, Neurocomputing, ELSEVIER (published)

3. Waqas Jamil and Abdelhamid Bouchachia, “Online Bayesian
Shrinkage Regression”, European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning 2019
(published)

4. Waqas Jamil and Abdelhamid Bouchachia, “Online Bayesian
Shrinkage Regression”, Neural Computing and Applications,
Springer (published)

5. Waqas Jamil and Abdelhamid Bouchachia, “Competitive Nor-
malised Least Squares Regression”, IEEE Transaction on Neural
Networks and Learning Systems (accepted with revisions)

34



5- Organisation

The structure of the thesis is as follows:

• Chapter II contains three sections, where the first section gives
some background on the tools used in the later chapters. The
second section discusses the relevant literature in detail. The
final section presents the problem precisely.

• Chapter III and IV are based on the material from the publi-
cations 2, 3, 4 mentioned in the previous section. Chapter III
presents the derivation and detailed analysis of OSLOG. The
structure of Chapter IV is similar to Chapter III, but instead of
OSLOG, the CIRR algorithm’s derivation and analysis are done.
Also, an explicit link between OSLOG and CIRR is given.

• Chapter V is based on publication number 5, containing the
derivation and analysis of CNLS algorithm.

• An empirical study is given in Chapter VI. The main aim of the
study is to give an illustration of the performance of algorithms
relative to the optimal offline solution. The code is available
publicly, please see publication number 1.

• The conclusion and future directions are given in Chapter VII.

35





Prediction is very difficult, especially if
it’s about the future.

—Nils Bohr

ii

Competitive

Regression





1- Background

In this section, Game-theoretic and Bayesian learning are briefly dis-
cussed respectively to make this work self contained. The Game-
theoretic learning approach is presented in light of the following ex-
ample [79].
Example 2. Consider a zero-sum perfect information game defined by ma-
trix Gi,j ∈ Rn×n such that n is some finite integer. The game is played
between two players A and B. A chooses a strategy α over the rows and
simultaneously B chooses a strategy β that is over columns. So, for a se-
quential play let i, j be pure strategies1 and α, β be the mixed strategies2. If
A plays before B and A chooses α, then B will pick β to maximise Aα,β, so
the loss L will be:

Lα = maxβGα,β = maxjGα,j (19)

So, A should pick α to minimise Lα and the loss will be:

minαLα = minαmaxβGα,β = minαmaxjGα,j (20)

Similarly, if B plays first loss will be maxβminαGα,β. Notice playing second
can not be much worse than playing first i.e.

minαmaxβGα,β︸ ︷︷ ︸
A plays first

≥ maxβminαGα,β︸ ︷︷ ︸
A plays second

(21)

From Von Neumann’s minimax theorem [96] the value (v) of the game is as
follows:

minαmaxβGα,β = maxβminαGα,β = v (22)

which implies order does not matter and the result will always be the same.
Remark 2. Even if player B knows player A’s strategy, player B can’t get
better outcome than v. It is the best possible value. This can be more formally
translated as: ∃ min-max strategy α∗ = arg min-maxGα,β such that for any
β, Gα∗,β ≤ v.
Remark 3. Regardless of player A’s strategy, the outcome at worst is v i.e.
∃ max-min strategy β∗ =arg max-minGα,β such that for any α, Gα,β∗ ≥ v.

1 A pure strategy determines all your moves during the game (and should therefore
specify your moves for all possible other players’ moves).

2 A mixed strategy is a probability distribution over all possible pure strategies (some
of which may get zero weight). After a player has determined a mixed strategy at
the beginning of the game, using a randomising device, that player may pick one of
those pure strategies and then stick to it.

39



For a two player finite zero sum game the best strategy against the
opponent is to find the min-max strategy and always play it. Notice
for Example 2, the Nash equilibrium is (α∗, β∗). In any finite game
with a finite number of pure strategies and a mixed-strategy Nash
equilibrium is guaranteed to exist [76].

What was discussed until now was the classical game theory. With-
out further ado, a direct link between online learning and game the-
ory is presented.

Protocol 2: A two player repeated game

FOR t=1,2,...
(1) Player A chooses αt

(2) Player B chooses βt

(3) Player A loss is f (αt, βt)

(4) Player A observes loss f (i, βt)

for each pure strategy i
END FOR

Protocol 2 matches with Protocol 1 for two experts (N = 2). Now
incorporating the concept of experts and extending the Protocol 2

to N players a protocol synonymous to Protocol 1 can be obtained,
which is as follows:

Protocol 3: A prediction game with experts advice

FOR t=1,2,...
(1) Input xt ∈ Rn arrives
(2) Experts strategy w ∈ Rn

(3) Prediction ŷt made using strategy w
(4) Receive actual output yt

(5) Observe loss f (yt, ŷt)

END FOR

Popular algorithms like HA [67], WMA [68], aggregating algorithm
(AA) [110], etc. operate under these protocols to ensure a guarantee
on the performance. These algorithms are fine examples of the game-
theoretic framework of probability. For further details on the mathe-
matics of game-theoretic probability, please see [108, 112, 109, 90, 91].

Ahead is a briefly overview of an alternative approach (Bayesian
learning) to Protocol 3. Conventionally, probability theory considers
a probability space (Ω,F , P) and then F is a σ−algebra on sample
space Ω, and P is the probability measure on (Ω,F ). Also, F is a
σ−algebra of subsets of Ω.
Definition 4. For two events A, B ∈ Ω, P(A|B) and P(B|A) is:

P(A|B) = P(A ∩ B)
P(B)

& P(B|A) =
P(B ∩ A)

P(A)
(23)

40



such that P(A) & P(B) 6= 0.
Example 3. A simple manipulation of (23) leads to the Bayes rule [4, 9]:

P(A ∩ B) = P(B|A)P(A)⇒ P(A|B) = P(B|A)P(A)

P(B)
(24)

which is at the heart of Bayesian theory.
Bayes rule mentioned in Example 3 can be considered in both dis-

crete and in continuous sense, without making the assumption of
i.i.d. Often, in literature the terms P(A|B), P(B|A), P(A) and P(B)
in (24) are referred as the: posterior probability, likelihood, prior and
normalising constant respectively. In continuous case, measure the-
ory is needed due to the use of the integrals on the likelihood times
prior and the normalising constant, but this use of measurability does
not lead to any distributional assumptions.

Bayesian learning strategy mentioned in Protocol 4 often provides
the probabilistic interpretation to the game-theoretic algorithms and
helps in further understanding of the algorithms.

Protocol 4: Bayesian strategy

FOR t=1,2,...
(1) Input xt ∈ Rn arrives
(2) Predict ŷt by computing posterior
predictive distribution
(3) Actual output yt ∈ R arrives and loss
is observed to update w in the next round

END FOR

2- Related work

Vovk [113], Azoury and Warmuth [8] enriched the literature of learn-
ing theory and performed rigorous analysis on a variant of RLS re-
gression to know its predictive power. They presented the following
type of bound by confining the input and weights to the unit balls in
the metrics `∞ and `1:

LT ≤ L∗T +O(ln T) (25)

Forster [28], Cesa-Bianchi and Lugosi [21] obtain the same bound as
above using a more compact approach. In this thesis, the algorithm
with the bound (25), is referred as the aggregating algorithm for re-
gression (AAR). RLS, AAR and other algorithms have some similari-

41



ties, to notice them considering the following weights update rule of
RLS:

wt = argminw

(
t

∑
s=1

rt−s(ys − w′xs)
2

)

At each iteration, t, the prediction ŷt = w′t−1xt is made and after
receiving the true output, yt and then the weights are updated by
using the following rule:

w = w +
(yt − x′tw)Axt

r + x′t Axt
(26)

Incorporating (26) in Protocol 4 leads to the Protocol of RLS:

Protocol 5: RLS

Initialise: 0 < r ≤ 1 and A−1 = I ∈ Rn×n

FOR t=1,2,...
(1) Input xt ∈ Rn

(2) ŷ = x′tw
(3) Observe yt ∈ R

(4) A−1 = rA−1 + xtx′t
(5) w = w + (yt−x′tw)Axt

r+x′t Axt

END FOR

There exist many similar algorithms such as AAR, RR and adaptive
regularisation of weights regression (AROWR). In particular, the
weight update rule of AROWR is the same as RLS. The only dif-
ference is how the covariance matrix (see line (4) in Protocol 5) is
updated: A−1

t = A−1
t−1 +

1
r xtx′t. AAR’s and RR’s update rules can be

obtained by setting r = 1 in (26) with A−1
t = A−1

t−1 + xtx′t and initial-
isation A = a−1 I, where a > 0. The main difference between AAR
and the other algorithms is that AAR divides its prediction w′t−1xt

by 1 + x′t At−1xt, whereas RR, AROWR and RLS don’t do that. So for
AAR line (2) in Protocol 5 is replaced by ŷt =

x′twt−1
1+x′t At−1xt

. Thus, AAR
is the only algorithm among the four that has the ability to perform
shrinkage on prediction.

The implementation of (26) has the time complexity O(n2) which
is significant for high dimensional data. Often LS [118] is considered
as a less demanding solution since its time complexity is O(n). LS

replaces the term A−1
t−1

r+x′t A−1
t−1xt

by the learning rate η > 0 yielding the

following update weights estimate w at time t:

wt = wt−1 + η(yt − x′twt−1)xt (27)

42



The LS algorithm not only has a better time complexity, but it is also
H∞ optimal for η ≤ 1

‖xt‖2
2

i.e.:

max
w

∑T
t=1(w′xt − w′t−1xt)2

∑T
t=1(w′xt − yt)2 +

‖xt‖2
2

η

≤ 1 (28)

In contrast, in the case of RLS, the right side of (28) is replaced by 4.
For further details on the matter, please see [42].

In practice, often normalised least squares (NLS) performs better
than LS, because NLS is not sensitive to the scale of the input [11, 14].
The existing work on NLS applies a normalised square loss to derive
the update of the weights [20, 57]:

wt = wt−1 +
η

‖xt‖2
2
(yt − ŷt)xt (29)

wt = wt−1 +
η

1 + η‖xt‖2
2
(yt − ŷ)xt (30)

for η > 0. When xt = 0 or η = 0 with the convention that 0
0 = 0, the

rules (29) and (30) output wt = wt−1.
In contrast to this, Cesa-Bianchi et al. [20] studied the bounds of

generalised GD based online regression with square loss. Later Kivi-
nen and Warmuth [57] replaced gradient descent by exponentiated
gradient descent (EGD). The assumptions made in the GD approach
are that for all data points and weights, `2 norm is bounded by 1. For
EGD, it is assumed that `∞ and `1 norm for data points and weights
are bounded by 1. GD based regression is usually computationally
efficient. However, its fundamental disadvantage is that the differ-
ence between the learner and the best linear regression function (L∗T)
is bounded by O(1) under online setting. An example of the upper
bound on the cumulative square loss of a GD-based linear regression
algorithm is as follows [20]:

T

∑
t=1

(ŷGD
t − yt) ≤ 9 inf

w∈Rn

(
T

∑
t=1

(w′xt − yt)
2 + sup

t=1,...,T
‖xt‖2

∞‖w‖2
2

)
(31)

where ŷGD
t denotes the prediction at step t. For the noise-free case,

by assuming ‖xt‖∞ ≤ R, Inequality (31) reduces to [20]:

T

∑
t=1

(ŷGD
t − yt) ≤ 2.25 inf

w∈Rn

(
T

∑
t=1

(w′xt − yt)
2 + R‖w‖2

2

)
(32)

Inequality (31) and (32) are not comparable to the bounds obtained by
Kivinen and Warmuth [57], but EGD has a much smaller loss if only
few predictors are relevant to the prediction. AAR’s upper bound on

43



the cumulative loss of the learning algorithm for the noise- free case
under the assumption ‖xt‖2 ≤ R is not as good as inequality (32) [20].
However, in online setting like AAR’s where true regression function
is corrupted by Gaussian noise, the upper bounds on the cumulative
loss derived by Cesa-Bianchi et al. [20], Kivinen and Warmuth [57]
are of the following type:

LT ≤ L∗T +O(
√

L∗T) (33)

where LT is the loss of the online algorithm at trial T, L∗T is the loss
of the best linear regression function at trial T. Using the GD and
EGD approach, the difference LT − L∗T is at best bounded by

√
T that

requires a priori knowledge about L∗T. Orabona et al. [77] obtained the
upper loss bound using online Newton step of the of type:

LT ≤ L∗T +O(ln L∗T) (34)

Inequality (34) is overall better than AAR’s upper loss bound when T
is large and when L∗T grows sub-linearly. This is because for the case
L∗T = 0, LT ≤ O(1) and at most L∗T = O(T). For AAR’s upper bound
on the cumulative loss when L∗T = 0, is LT − L∗T ≤ O(ln T). However,
upper bound on cumulative loss proven in [77] requires prior knowl-
edge about ‖wt‖1 ≤ P and the multiplicative factor of their bound
is (PR + Y)2, which is strictly greater than AAR’s upper bound on
the cumulative loss [114] multiplicative factor of Y2. AAR and the
algorithm proposed by Orabona et al. [77] both have computational
complexity of O(n2).

Anava et al. [5] and Liu et al. [70] proposed GD based approach
for auto-regression. Their game-theoretic version of auto regressive
moving average (ARMA) algorithms use online GD and online new-
ton step (ONS), that allow the noise term to be unbounded. It is worth
noting that the algorithms based on GD have a worse bound but are
computationally more efficient (O(n)) than ONS based algorithms.

Monti et al. [74] used coordinate descent (CD) to deal with `1 reg-
ularisation. The distinct feature of the algorithm is that it can han-
dle non-stationarity, but with no mention of loss bounds. Few algo-
rithms can handle non-stationarity and give a competitive prediction.
For example, Moroshko et al. [75] extended AAR by using Forster
[28] methodology and called it last step adaptive regression algo-
rithm (LASER). They also considered extension of the algorithms dis-
cussed in [23, 105]. Authors in [54] proved similar bound to LASER
by extending Busuttil and Kalnishkan [17] work.

Recently, Rajaratnam et al. [85] presented a recursive Bayesian de-
terministic algorithm that performs `1 regularisation by considering

44



the limit of Gibbs sampling, along with its bounds on convergence.
Also, Langford et al. [65] developed an online learning algorithm
by replacing the gradient of losses by the sub-gradient of losses in
stochastic gradient descent, showing that such algorithm has a strong
theoretical guarantee for bounded loss functions and weights. Us-
ing topology and considering homotopy of LASSO, Garrigues and
Ghaoui [35] proposed an online regression algorithm. However, they
did not study the bounds.

3- Problem formulation

The description of the linear benchmark or the reference function is
defined as follows:
Definition 5. A sequence of instances and their corresponding outcomes
(x1, y1), ..., (xt, yt) arrive sequentially and w = wt ∈ Θ = Rn denotes
the decision strategy at time t. Where wt,i, for i = 1, ...n denote the i−th
component of the decision vector at time t.

The input signal and the weight vector is defined in the following
sense, unless stated otherwise.
Definition 6. The `∞− ball {xt ∈ Rn : ‖x‖∞ ≤ R} of radius R, the vector
wt is indexed by Θ = {wt ∈ Rn : C ≤ ‖wt‖1 ≤ P} and the prediction on
trial t is given by w′txt.

Following definition, defines some of the notation extensively used.
Definition 7.

bt :=
t

∑
s=1

ysxs ∈ Rn (35)

At :=

(
aD−1

wt−1
+

t

∑
s=1

xsx′s

)
∈ Rn×n, a > 0 (36)

where,

Dwt−1 = diag(abs(wt−1)) = diag(|wt−1,1|, ..., |wt−1,n|) (37)

letting w0 to be initialised in Rn with uniform distribution. Also, we define
the square loss as follows:

Lt = Lt(w) =
t

∑
s=1

(yt − w′xt)
2 & L∗T := min

w
‖Y− Xw‖2

2 (38)

where w ∈ Rn,X ∈ Rt×n, y ∈ R and Y ∈ Rt. Also, in the thesis Lt(.) is
used to represent the squared loss of the algorithm, where (.) is filled with
the name of the learning algorithm. Denoting O f (wt) for the first derivative
and HO f (wt) (where H is for the Hessian matrix) for second derivative
with respect to wt.

45



The aim is to compete against the reference forecaster (38) to achieve
an upper bound on the cumulative loss of the type stated in Defini-
tion 3. Often in literature `p norm penalty is considered for mathe-
matical and statistical reasons. Mathematically, optimal weight up-
date rule requires inverting covariance matrix which can be singu-
lar, while addition of a penalty prevents it, for example by adding
squared `2 penalty, it is still possible to obtain a closed form solu-
tion, since the squared error and the squared norm commute. `1

and `2 regularisation are the two most popular regularisation meth-
ods for regression in the statistical and computer science literature.
`1 regularised regression aims to obtain a sparse solution. `1 regu-
larised regression [44, 47] is useful when the requirement is to obtain
few non-zero entries in the output. For instance, [39] obtains spar-
sity in the model by considering prior belief about the sparsity in
the model. On the other hand, `2 regularised regression increases
the bias, has lower variance than regression without regularisation
and is a useful technique for dealing with multicollinearity. Often
statistical literature refers to `1 regularised regression as Least Ab-
solute Shrinkage and Selection Operator (LASSO) and `2 regularised
regression as Ridge Regression (RR). Both `1 and `2 regularisation
have their advantages and disadvantages. For detailed explanation
see [104]. Formally, following optimisation is considered:

inf
w∈Rn

(
Lt + a‖w‖j

p

)
(39)

where a > 0 and p, j = 1, 2. The problem (39) with j = p = 1 is
very difficult to bound because `1 norm is non differentiable but is
convex. Hence, we may use sub-differentials to differentiate, but the
problem is that the sub-differentiation of `1 norm does not lead to a
unique dual vector [89, 104, 27]. Schmidt [89], Tibshirani [104], Fan
and Li [27] proposed an approximation of `1 norm in batch setting by
considering wk+1 ∈ Rn where k denotes the number of passes with
the condition wi 6= 0 for i = 1, 2, ..., n:

‖wk+1‖1 ≈
n

∑
i=1

(
wk+1

i

)2

|wk
i |

= ‖D−
1
2

wk wk+1‖2
2 (40)

such that D−
1
2

wk = diag(1/
√
|wk

1|, ..., 1/
√
|wk

n|). In [27], it is argued
that (40) is a good approximation to `1 norm, due to its similarities
to the Newton’s method. Using (40) implies solving the following
optimisation problem:

inf
wt∈Rn

(
Lt + a‖D−

1
2

wt−1 wt‖2
2

)
(41)

46



for |wt−1,1|, ..., |wt−1,n| 6= 0. The restriction of the decision strategy
wt not being zero can be easily lifted by simple algebraic manipu-
lation, which will be done latter, but for simplicity considering this
restriction for now. Interestingly, in batch setting solving (41) coin-
cides with a more recent algorithm known as shrinkage via limit of
Gibbs (SLOG) presented by Rajaratnam et al. [85] where it is shown
that under mild regularity assumptions, SLOG converges to LASSO.

In this work, algorithms are only allowed to make one pass over
the data. For the ease of interpretation, Cauchy-Schwartz inequality
is used, thus, the following reference forecaster is considered:

inf
wt∈Rn

(
Lt + a‖D−

1
2

wt−1 wt‖2
2

)
≤ inf

wt∈Rn

(
Lt + aSS‖wt‖2

2
)

(42)

where SS is the sum of squares of the diagonal matrix Dwt−1 elements.
Later, it is shown that the inequality (42) holds. However, the bound
will imply for (41). The use of (42) is for the ease of interpretation.
Remark 4. For completeness, the notion of vector space, refers to the space
V 6= ∅ set that must be closed under vector addition and scalar multi-
plication. In order to classify a vector space, the axiom of commutativity,
associativity, additive identity and distributivity must hold for vectors and
scalars [37]. In this work the vector space is almost always an n-dimensional
Euclidean space Rn i.e. every element of this space is represented by a list of
n real numbers with scalars in R.
Remark 5. In this thesis `p norms for 1 ≤ p < ∞ are defined in a con-
ventional manner i.e. `p norm of a vector xt ∈ Rn with coordinates xt,i is

(∑n
i=1 |xt,i|p)

1
p and ‖xt,i‖∞ = maxi |xt,i|, for i = 1, 2, ..., n.

47





The most probable value of the unknown
quantities will be that in which the sum of
the squares of the differences between the
actually observed and the computed val-
ues multiplied by numbers that measure
the degree of precision is a minimum.

—Carl Friedrick Gauss

iii

OSLOG: Online

shrinkage via

limit of Gibbs





1- Derivation

The SLOG algorithm proposed by Rajaratnam et al. [85] maximises
the posterior distribution w ∈ Rn given the response y ∈ Rn i.e.,
argmaxw∈Rn p(w|y). It is assumed that y|w follows the normal dis-
tribution and w follows the Laplace or double exponential distribu-
tion. To derive SLOG, Rajaratnam et al. [85] tweaks the approach
mentioned by Park and Casella [83] for Bayesian LASSO algorithm.
Both SLOG and the Bayesian Lasso consider a hierarchical model by
writing the Laplace distribution as a scale mixture of the Gaussian
distribution [6]. The weight updating rule of the Bayesian LASSO is
the joint posterior obtained through the hierarchical model. Then, it
is shown that by using the Gibbs sampler on the joint posterior con-
verges to the `1−regularisation regression solution. SLOG uses the
same approach as the Bayesian Lasso with a different tuning param-
eter. SLOG replaces the tuning parameter a > 0 in (39) by a

√
σ2 with

known variance σ2. Consequently, as the limit σ2 → 0 of the Gibbs
sampler, it reduces to a deterministic sequence, giving the weight up-
dating rule of SLOG. For OSLOG, same weight updating equation as
SLOG is obtained but without the use of Gibbs Sampler.

The online protocol which assumes that at each trial the input ar-
rives. Then, the algorithm predicts the outcome before the actual
outcome is revealed and the adjustment of the weights is conducted.
OSLOG follows the following protocol:

Protocol 6: OSLOG strategy

FOR t = 1, 2, ...
(1) Read xt ∈ Rn

(2) Learner prediction ŷt ∈ R

(3) Read yt ∈ R

(4) Learner chooses weights w ∈ Θ
END FOR

p(w) =
( aη

2

)n
exp

(
−aηw′D−1

wt−1
w
)

(43)

The selected prior distribution on weights is inspired by the Laplace
distribution which is written as [104]:

1
2τ

e‖w‖1/τ, τ =
1
λ

, λ > 0

51



50 100 150 200

0.2

0.4

0.6

0.8

1

t

‖D−
1
2

wt−1 w‖2
2

Figure 1: `1−norm approximation.

Considering: τ = 1
aη , with the scalar η = 1

2σ2 such that a, η > 0. Also,

replacing ‖w‖1 by ‖D−
1
2

wt−1 w‖2
2. Clearly in the expression ‖D−

1
2

wt−1 w‖2
2 a

restriction on weights is required. So, at trial T − 1 absolute value
of each element of the weight vector should not to be zero in (43).
Despite this restriction Figure 1 shows reasonable similarity to ‖w‖1.
A visible difference is near the kink point (100, 0). The following
lemma resolves the issue of R

0 :
Lemma 1. For all t = 1, 2, ...(

aD−1
wt−1

+
t

∑
s=1

xsx′s

)−1

= D
1
2
wt−1

(
aI + D

1
2
wt−1

(
t

∑
s=1

xsx′s

)
D

1
2
wt−1

)−1

D
1
2
wt−1

Proof. (
aD−1

wt−1
+

t

∑
s=1

xsx′s

)−1

=

(
aD−

1
2

wt−1 D−
1
2

wt−1 +
t

∑
s=1

xsx′s

)−1

= D
1
2
wt−1

(
aI + D

1
2
wt−1

(
t

∑
s=1

xsx′s

)
D

1
2
wt−1

)−1

D
1
2
wt−1

Lemma 2. For any x, b ∈ Rn and a symmetric positive definite matrix A:

x′Ax− 2b′x = (x− A−1b)′A(x− A−1b)− b′A−1b

52



Proof. Expanding quadratic form:

(x− A−1b)′A(x− A−1b) = x′Ax− 2b′A−1Ax + b′A−1AA−1b

= x′Ax− 2b′x + b′A−1b

To obtain the predictive distribution for Normal/Gaussian likeli-
hood with sequence S considering:

p(y|xT, ST−1) =
∫

Rn
p(y|xT, w)p(w|ST−1)dw (44)

where the (uniformly initialised) prior distribution is as defined in
(43)and the posterior is:

p(w|ST−1) =

(
∏T−1

t=1 p(yt|xt, w)
)

p(w)∫
Rn

(
∏T−1

t=1 p(yt|xt, w)
)

p(w)dw
(45)

Thus, the predictive distribution at time T for y given the sequence
ST−1 = x1, y1, .., xT−1, yT−1 requires evaluation of the following inte-
gral:

∫
Rn

1√
2πσ2 e

(w′xT−y)2

2σ2 ∏T−1
t=1

1√
2πσ2 e

(w′xt−yt)
2

2σ2 exp
(
− a

2σ2 w′D−1
wt−1

w
)

dw∫
Rn ∏T−1

t=1
1√

2πσ2 e
(w′xt−yt)2

2σ2 exp
(
− a

2σ2 w′D−1
wt−1 w

)
dw

(46)

proceeding further in a more structured manner leads to the follow-
ing results:
Lemma 3. If an algorithm follows Bayesian strategy with Gaussian likeli-
hood and prior (43) such that absolute value of the each element of the weight
vector is not zero, w0 is initialised uniformly and a > 0, then the posterior
distribution is:

N
((

∑T−1
t=1 xtyt

)′ (
∑T−1

t=1 xtx′t + aD−1
wt−1

)−1
, 1

2σ2

(
∑T−1

t=1 xtx′t + aD−1
wt−1

)−1
)

Proof. Expanding posterior (45), by using (43) and ignoring the nor-
malising constant to get:

p(w|ST−1) ∝ exp

(
−η

T−1

∑
t=1

(yt − w′xt)
2 − aηw′D−1

wt−1
w

)

= exp

(
−η

(
w′
(

T−1

∑
t=1

xtx′t + aD−1
wt−1

)
w− 2w′

T−1

∑
t=1

xtyt +
T−1

∑
t=1

y2
t

))

53



= exp

−η

(
w−

(
T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1
′

(
T−1

∑
t=1

xtx′t + aD−1
wt−1

)w−
(

T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1


−
(

T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1(T−1

∑
t=1

xtyt

)

+

(
T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1(T−1

∑
t=1

xtyt

)
+

T−1

∑
t=1

y2
t

)

∝ exp

−η

(
w−

(
T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1
′

(
T−1

∑
t=1

xtx′t + aD−1
wt−1

)w−
(

T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1

(47)

The last and the second last equality follows from (38) and (48) re-
spectively. The last proportionality (47) can be recognised as proba-
bility density function of the multivariate Normal distribution.

Theorem 4. If an algorithm follows a Bayesian strategy with Gaussian
likelihood and prior (43) such that weights at trial T − 1 are not null, w0 is
initialised uniformly and a > 0, then the predictive distribution is expressed
as:

N
((

∑T−1
t=1 xtyt

)′ (
∑T−1

t=1 xtx′t + aD−1
wt−1

)−1
xT, 1

2σ2 xT

(
∑T−1

t=1 xtx′t + aD−1
wt−1

)−1
xT

)

Proof. From Lemma 2 immediately follows:

w′
(

T−1

∑
t=1

xtx′t + aD−1
wt−1

)
w− 2w′

(
T−1

∑
t=1

xtyt

)
=w−

(
T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1
′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)
w−

(
T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1
−

(
T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1(T−1

∑
t=1

xtyt

)
(48)

54



The posterior distribution obtained in Lemma 3 can be thought of
an online variant of the posterior obtained by Park and Casella [83].
Since, the posterior predictive distribution is a weighted average over
parameter space where each parameter is weighted by its posterior
probability (see (44) and for further details see for example [86]), thus
the predictive distribution is as follows:

N
((

T−1

∑
t=1

xtyt

)′(T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1

xT,

1
2σ2 xT

(
T−1

∑
t=1

xtx′t + aD−1
wt−1

)−1

xT

)

By applying Lemma 1, the condition on weights (mean of posterior,
see Lemma 3) can be lifted and an explicit algorithm for OSLOG is
obtained, which is as follows:

Protocol 7: OSLOG

Initialise: a > 0, M = 0n×n, b = 0n×1 and w = 1 ∈ Rn×1

FOR t = 1, 2, ...
(1) Read xt ∈ Rn

(2) Dwt−1 = diag(abs(w))

(3) ŷt = w′xt

(4) M = M + xtx′t
(5) A−1 =

√
Dwt−1

(
aI +

√
Dwt−1 M

√
Dwt−1

)−1√Dwt−1

(6) Read yt ∈ R

(7) b = b + ytxt

(8) w = A−1b
END FOR

Remark 6. In Algorithm 7 line 8 can be allowed to make passes until
convergence to have higher level of sparsity. From the sequential compact-
ness theorem (see for example [61]) it follows that any closed and bounded
sequence in Euclidean space converges. Further details can be found in
[1, 87, 103]. Theorem 8 in [85] shows that SLOG converges to the LASSO
solution under some regularity conditions.

Notice the matrix A−1 in Algorithm 7 is symmetric and positive
definite, so its inverse exists at each trial. At each trial, the sys-
tem of equations solved is unique without making any stochastic as-
sumptions. However, calculating the posterior predictive distribution
involves measures and integrals. Therefore, assuming consistency
with the topological space, prediction space is a topological space

55



equipped with σ−algebra, and the set of parameter w ∈ Θ = Rn is
equipped with σ− algebra1.

Theorem 4 implies that the prediction of Algorithm 7 corresponds
to the mean of the posterior predictive parameter w weighted by the
posterior probability [86]. Interestingly, Kivinen and Warmuth [56]
showed that the likelihood of the weighted average can be interpreted
as the loss of the Online Bayesian Strategy.

2- Analysis

Next, the analysis of the OSLOG algorithm are presented, following
are some useful results that are used to prove some of the main the-
orems.
Lemma 4. For D ∈ Rm×n with entries aij and w ∈ Rn with entry wj

‖Dw‖2
2 ≤ ‖D‖2

F‖w‖2
2

Proof. From Cauchy-Schwartz inequality:(
m

∑
i=1

n

∑
j=1

(aij)
2

)
n

∑
k=1

wk =
m

∑
i=1

(
n

∑
j=1

(aij)
2

n

∑
k=1

(wk)
2

)
≥

m

∑
i=1

(
n

∑
j=1

aijwj

)2

Remark 7. For n = m in Lemma 4(
m

∑
i=1

m

∑
j=1

(aij)
2

)
m

∑
k=1

wk ≥
m

∑
i=1

(
m

∑
j=1

aijwj

)2

Notice ‖D‖2
F by definition is Tr(DDH) (where Tr denotes the trace of a

matrix and DH is the conjugate transpose). In other words, ‖D‖2
F is the

Sum of Squares (SS) of the absolute value of the entries of D. Also, if D is
a diagonal matrix then ‖D‖2

F is simply the sum of squares of the diagonal
elements. This justifies the Inequality (42).
Lemma 5. For all t = 1, 2, ..., T, then

‖D−
1
2

wt−1 w‖2
2 ≤ ‖w‖2

2

provided that every element of w ≥ 1.

Proof. Since every element of w ≥ 1, and 0 < ‖D−
1
2

wt−1‖2
2 ≤ 1. There-

fore, the above inequality holds.

1 This is a mild assumption which is always satisfied in practice. Not making such
assumption will lead to counter intuitive results such as Banach-Tarski paradox. For
details see, for example, [103]

56



Theorem 5. For any point in time t = 1, 2, ..., T

LT(OSLOG) ≤ inf
w∈Rn

(
LT + aSS‖w‖2

2
)
+ 4Y2 ln det

(
1
a

AT−1

)
(49)

where a > 0, Y > 0 ,n ∈ N+. Also, if ‖xt‖∞ ≤ R and C ≤ ‖w‖1 ≤ P,
such that C 6= 0, |wt,i| 6= 0 ∀i = 1, 2, ..., n then ∀t:

LT(OSLOG) ≤ L∗T + aP2C−1 + 4Y2n ln
(

C−1 +
TR2

a

)
(50)

provided that all yt ∈ [−Y, Y].

Proof. From Theorem 1 in [113] and Theorem 3 in [28] the upper
bound on the cumulative loss of AAR is as follows:

LT(AAR) ≤ inf
w∈Rn

(
w′BTw− 2w′bT +

T

∑
t=1

y2
t

)
+ Y2 ln det

(
1
a

BT

)
(51)

where BT =
(

aI + ∑T
t=1 xtx′t

)
and w′BTw − 2w′bT + ∑T

t=1 y2
t = L∗T +

‖w‖2
2, here bT and L∗T are defined as (35) and (38) respectively. Notice

(51) is only true for positive definite matrices and AT is positive def-
inite so, replacing Y2 ln det

( 1
a BT

)
with Y2 ln det

( 1
a AT

)
. To elaborate

further, expanding and performing some algebraic manipulation on
the function f (w) in Lemma 1 to obtain:

y2
t x′t A−1

t−1xt + bt−1(A−1
t xtx′t A−1

t − A−1
t−1 + A−1

t )bt−1 (52)

Since, At−1 − At = xtx′t, so A−1
t−1 − A−1

t = A−1
t xtx′t A−1

t−1 and conse-
quently A−1

t−1 − A−1
t − A−1

t xtx′t A−1
t = A−1

t xtx′t A−1
t xtx′t A−1

t . Thus, (52)
can be written as:

y2
t x′t A−1

t xt − (x′t A−1
t−1xt)b′t−1A−1

t xtx′t A−1
t bt−1 (53)

It is easy to see that the term (x′t A−1
t−1xt)b′t−1A−1

t xtx′t A−1
t bt−1 in (53)

can be written as (x′t A−1
t−1xt)ŷ2

t and,

y2
t x′t A−1

t xt − (x′t A−1
t−1xt)ŷ2

t ≤ Y2xt A−1
t xt

summing over t = 1, 2, ..., T and from Remark 3 in [113], the updating
line 4 in Algorithm 9 after making the prediction is at most 4 times
worse leads to the following expression:

LT(OSLOG)− inf
w∈Rn

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
≤ 4Y2

T

∑
t=1

xt A−1
t xt (54)

Notice since at t = 0, Dwt−1 = I, where I denotes the identity matrix.
So, ln det 1

a A0 = 0. For the case when t = 1, 2, ..., T we need to show
that x′t A−1

t xt ≤ ln det At
det At−1

. For xt = 0, clearly x′t Atxt < 1 holds and for

57



xt 6= 0 noticing (xt At−1xt)2 < x′t A−1
t xt. Now since At is symmetric

positive definite thus the determinant of such matrix is bounded by
the product of the entries on the diagonal (see for example [10] The-
orem 7 from Chapter 2). Hence, xt A−1

t xt ≤ ln det At
det At−1

holds, which
indeed shows that by replacing Y2 ln det

( 1
a BT

)
with Y2 ln det

( 1
a AT

)
we obtain the bound stated in (74), when AT is positive definite.

We use the definition of (35), (36), (37) and (38) to write the follow-
ing:

w′ATw− 2w′bT +
T

∑
t=1

y2
t = a‖D−

1
2

wT−1 w‖2
2 + LT

To prove (50) we first need to show the following holds:

w′ATw− 2w′bT +
T

∑
t=1

y2
t ≤ aSS‖w‖2

2 + LT

From Lemma 4:

‖D−
1
2

wT−1 w‖2
2 ≤ SS‖w‖2

2 ≤
P2

C
(55)

By assuming that ‖xt‖∞ ≤ R and C ≤ ‖w‖1 ≤ P for t = 1, 2, ..., T,
continuing as follows:

ln det
(

1
a

AT

)
= ln det

(
aD−1

wT−1
+

T

∑
t=1

xtx′t

)

≤
n

∑
i=1

ln
(

C−1 +
TR2

a

)
≤ n ln

(
C−1 +

TR2

a

)
= n ln

a + CTR2

aC
(56)

Replacing the term ∑T
t=1 xt A−1

t xt in (54) by (56) gives (50).

The following theorem presents a scenario where OSLOG’s upper
bound is better than AAR and online ridge regression (ORR).
Theorem 6. If ‖xt‖∞ ≤ R and C ≤ ‖w‖1 ≤ P such that C ≥ 1, a > 0,
and n is some positive integer, then ∀t the following holds:

LU
T (OSLOG) ≤ LU

T (AAR)

where LU
T denotes the upper cumulative square loss bound.

Proof. Letting:
R∗T(AAR) = LU

T (AAR)− L∗T

R∗T(OSLOG) = LU
T (OSLOG)− L∗T

Proceeding by showing R∗T(OSLOG) ≤ R∗T(AAR) i.e.

aP2C−1 + nY2 ln
(

a + CTR2

aC

)
− aP2 − nY2 ln

(
a + TR2

a

)
≤ 0

58



aP2
(

1
C
− 1
)
+ nY2 ln

(
a + TCR2

aC + TCR2

)
≤ 0

Since, C ≥ 1 and a, n > 0, so P2( 1
C − 1) ≤ 0. Also, a + TR2 ≤

aC + TCR2 =⇒ ln a+TCR2

aC+TCR2 ≤ 0, thus the above inequality holds.
Since R∗T(ORR) ≥ R∗T(AAR) =⇒ R∗T(OSLOG) ≤ R∗T(ORR).

Remark 8. The regret of OSLOG is smaller than that of the regret of AAR
when C > 1.

Following results support Theorem 5 and Theorem 6 further in a
more detailed, precise and insightful manner:
Lemma 6. For prior (43) at time t = 1, 2, ... the cumulative loss of OSLOG
is:

Lt(OSLOG) = logβ

∫
Rn

βL∗T p(w)dw

where β = e−η .

Proof. Noticing that Bayesian Strategy Q such that {Qw|w ∈ Rn} with
prior p(w) is defined by:

Q =
∫

Rn
Qw p(w)dw

So, the main statement of the Lemma is the definition of logβ Q.
Hence, it holds by the definition of the Bayesian decision rule. This is
a popular approach for Online Bayesian algorithms, see for example
[52].

Theorem 7. For any trial t = 1, 2, ..., T, any a > 0 the following holds:

LT(OSLOG) ≤ infw

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
2n ln

(
16Y2

a
√

π

)
+ ln det AT

8Y2

)
(57)

where yt ∈ [−Y, Y] such that Y > 0 and absolute value of each element of
the weight vector at T− 1 is not zero.

From [56] the equality “ = ” in the last lemma is replaced by the
inequality “ ≤ ” for η = 1

8Y2 such that and the outcomes are bounded
in [−Y, Y]. In other words for any value of η > 1

8Y2 , β(yt−w′xt)2
will

not be concave for w′xt.
The problem is reduced to evaluating the integral of Lemma 6. For

direct evaluation of the integral see Theorem 3 of Chapter 2 in [10].

logβ

∫
Rn

dw
( aη

2

)n

× exp

(
−ηw′

(
t

∑
s=1

xsx′s + aD−1
wt−1

)
w + 2η

(
t

∑
s=1

ysxs

)
w− η

t

∑
s=1

y2
s

)
(58)

59



Remark 9. The integral to be calculated is of the form:∫
Rn

e− f (w)dw = e− f0
πn/2
√

det A

where f0 = infw f (w). Notice,

f (w) = −
(

t

∑
s=1

2ys(w′xs)

)
+ w′

(
aD−1

wt−1
+

t

∑
s=1

xsx′s

)
w +

t

∑
s=1

y2
s

Proceeding by differentiating with respect to w:

O f (w) = 0−
(

t

∑
s=1

2ysxs

)
+ 2w′

(
aD−1

wt−1
+

t

∑
s=1

xsx′s

)
and clearly the second differential is negative implying the infimum is at-
tained and by substitution the result is obtained.

From (58) and as per the above Remark:

LT(OSLOG) = logβ

∫
Rn

dw
( aη

2

)n

× exp

(
−ηw′

(
T

∑
t=1

xtx′t + aD−1
wt−1

)
w + 2η

(
T

∑
t=1

ytxt

)
w− η

T

∑
t=1

y2
t

)

= logβ e
−η inf

(
LT+a‖D

− 1
2

wt−1 w‖2
2

)
πn/2

det η
(

∑T
t=1 xtx′t + aD−1

wt−1

)
= inf

w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ logβ

(( aη

2

)n πn/2√
det ηAT

)

= inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ logβ

(( aη

2

) 2n
2 πn/2√

det ηAT

)

= inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
− 1

2
logβ

((
2

aη

)2n det ηAT

πn

)

= inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
− 1

2
logβ

((
4

a2η2π

)n

det ηAT

)

= inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
− 1

2

ln
((

4
a2η2π

)n
det ηAT

)
ln β

≤ inf
w

(
L∗T + a‖D−

1
2

wt−1 w‖2
2

)
− 1

2

ln
((

16Y4

a2π

)n
det AT

8Y2

)
− 1

8Y2

= inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2ln

((
256Y4

a2π

)n

det
AT

8Y2

)

= inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2n ln

(
256Y4

a2π

)
+ Y2 ln det

AT

8Y2

= inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
2n ln

(
16Y2

a
√

π

)
+ ln det

AT

8Y2

)
(59)

60



AAR mentioned in [113] has the following guarantee:

LT(AAR) ≤ L∗T + aP2 + nY2 ln
(

1 +
TR2

a

)
(60)

and the guarantee of OSLOG is as follows:
Corollary 1. For any trial t = 1, 2, ..., T and any a > 0 such that ‖xt‖∞ ≤
R and C ≤ ‖w‖1 ≤ P, the following holds:

LT(OSLOG) ≤ L∗T + aP2C−1 + nY2 ln
(

32Y2(a + CTR2)

a2Cπ

)
for yt ∈ [−Y, Y], such that Y > 0 and C 6= 0.

Proof. Bounding ‖xt‖∞ ≤ R and C ≤ ‖w‖1 ≤ P for t = 1, 2, ..., T. De-
noting elements of diagonal matrix Dwt−1 by dij. Now, upper bound-
ing the following expression:

ln det AT = ln det

(
aD−1

wt−1
+

T

∑
t=1

xtx′t

)
Using Beckenbach and Bellman [10] Theorem 7 (in Chapter 2) to

bound the determinant i.e.:

ln det AT ≤ ln
n

∏
i=1

(
a

dii
+

T

∑
t=1

(xt,i)
2

)
≤

n

∑
i=1

ln
(

aC−1 + TR2
)

ln det AT ≤ n ln
(

aC−1 + TR2
)
= n ln

a + CTR2

C
(61)

Since:

LT(OSLOG) ≤ inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+Y2

(
2n ln

16Y2

a
√

π
+ n ln

a + CTR2

8Y2C

)
= inf

w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
n ln

256Y4

a2π
+ n ln

a + CTR2

8Y2C

)
= inf

w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
n ln

(
256Y4(a + CTR2)

8a2πY2C

))
= inf

w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
n ln

(
32Y2(a + CTR2)

a2Cπ

))
The rest follows from (55).

Theorem 8. If ‖xt‖∞ ≤ R and C ≤ ‖w‖1 ≤ P such that C ≥ 1, a ≥ 32Y2

π ,
and n is some positive integer, then ∀t, the following holds:

LU
T (OSLOG) ≤ LU

T (AAR)

where LU
T (.) denotes the upper bound on the cumulative square loss.

61



Proof. Showing that LU
T (OSLOG) − LU

T (AAR) ≤ 0. From (60) and
Corollary 1:

aP2
(

1
C
− 1
)
+ nY2 ln

(
32Y2(a + CTR2)

a2Cπ

)
− nY2 ln

(
a + TR2

a

)
≤ 0

aP2
(

1
C
− 1
)
+ nY2 ln

32Y2(a + CTR2)

aCπ(a + TR2)
≤ 0

For C ≥ 1, aP2 ( 1
C − 1

)
≤ 0. It is clear that ‖w‖ ≥ ‖D−

1
2

w w‖ for C ≥ 1.
The condition a ≥ 32Y2

π ensures that πaC(a+ TR2) ≥ 32Y2(a+CTR2).
This concludes the proof.

62



I can observe the game theory is applied
very much in economics. Generally, it
would be wise to get into the mathemat-
ics as much as seems reasonable because
the economists who use more mathemat-
ics are somehow more respected than
those who use less. That’s the trend.

—John Forbes Nash, Jr.

iv

CIRR:
Competitive

iterative ridge

regression





1- Derivation

For OSLOG a prior is assigned on weights and then a posterior pre-
dictive distribution is obtained, which is inline with the Bayesian The-
ory mentioned earlier. Herein, same problem as OSLOG is studied
from game-theoretic point of view. Inspired by AAR algorithm CIRR
algorithm with its performance guarantee is given. Also, an explicit
relationship between CIRR and OSLOG is studied.

As mentioned earlier, at the beginning of each trial t the learner
receives a signal xt ∈ Rn, which is processed by the decision pool
w ∈ Θ, and the prediction is denoted by ŷt = w′xt. AAR relies
on the aggregating pseudo algorithm (APA) prediction − slices the
weights of the decision pool by fixing the learning rate η = 1

2Y2 and by
assigning prior probability distribution P0 ∈ Θ to the weights of the
decision pool or the experts. AA uses APA prediction g : Ω → R for
mapping a given value of incurred loss at each trial t. The main role
of APA is to reduce the weights of the strategies who suffer greater
loss at previous trial i.e.:

PT(M) =
∫

M
β(yT−ŷw

t )
2
PT−1(dw) (62)

for all measurable M ⊆ Θ, where β = e−
1

2Y2 . At each trial, APA
chooses a prediction by the following rule:

gT(y) = logβ

∫
Θ β(yT−ŷw

t )
2
PT−1(dw)

PT−1(Θ)
(63)

and Lemma 1 in [113] shows that the loss of APA is as follows:

LT(APA) = logβ

∫
Θ

β∑T
t=1(yt−ŷw

t )
2
P0(dw) (64)

The loss of AAR is less than or equal to the loss of APA. So to ob-
tain the loss of AAR, “=” in (64) is replaced by “≤”. The previous
statement holds because the substitution function Σ 1

2Y2
satisfies:

∀η∀y : (y− Σ 1
2Y2

(g))2 ≤ c(η)g(y) (65)

for any pseudo-prediction g, here c(η) with η = 1
2Y2 is the mixability

curve defined as follows:

c(η) = inf{c |∀g ∃δ ∈ ŷt ∀y : (y− δ)2 ≤ cg(y)}

65



A computationally efficient approach to satisfy (65) (under mild con-
ditions on the game mentioned in [112, 108]) require:

Σ 1
2Y2

(g) ∈ arg inf
ŷt∈ŷt

sup
y∈Ω

(
(y− ŷt)

2 − c
(

1
2Y2

)
g(y)

)
(66)

Since g1(y)− g2(y) does not depend on y, thus:

Σ 1
2Y2

g1(y) = Σ 1
2Y2

g2(y) = ... (67)

The advantage of using (67) is that when running AAR one does not
need to normalise weights i.e. using (64) instead of (63). In [113] the
following substitution function for the square loss game is obtained:

ŷt =
1

4Y
logβ

βg(−Y)

βg(Y)
(68)

where Σ 1
2Y2

maps every prediction g : Ω→ [0, ∞]. In [28], it is shown

that AAR chooses ŷt such that the following:

sup
y∈[−Y,Y]

(
LT(AAR)− inf

w∈Rn

(
a‖w‖2

2 +
T

∑
t=1

(yt − ŷt)
2

))
(69)

is minimal. Next, by inspiring from the literature on AAR, protocol
of CIRR is presented.
Remark 10. The concept of probability space (Ω,F , P) in the game-theoretic
framework is not needed, instead, a game of triple (Ω, Γ, λ) that indicate
respectively a set of possible outcomes, a set of allowed predictions, and a
function measuring the loss is considered. In discrete-time game-theoretic
framework, Ω is constructed from the actual outcomes arriving from the
data stream, thus, it is not necessary to consider a probability measure on
Ω, as done in the classical probability theory.

Protocol 8 shows the framework under which CIRR work. In this
protocol, notice that the learner does not know the label at the time of
prediction, but it knows the moves made by the decision pool w ∈ Rn

at each trial t and prediction, w′txt, is computed. It is worth noting
that CIRR strategy interacts with the decision pool twice. In contrast
to AAR, the learner does not need to interact with the decision pool
explicitly.

Protocol 8: CIRR strategy

FOR t = 1, 2, ...,
(1) Read xt ∈ Rn

(2) Learner chooses w ∈ Θ
(3) Learner predicts ŷt ∈ R

(4) Read yt ∈ R

(7) Update w ∈ Θ
END FOR

66



Lemma 7. For all t ≥ 0, f (w) := a‖D−
1
2

wt−1 w‖2
2 + LT is minimal at a

unique point w and the function f (w) is as follows:

w = A−1
t bt and f (w) =

t

∑
s=1

y2
s − b′t A−1

t bt

such that none of the elements of the weight vector has its absolute value at
any step equal to zero.

Proof. By definition

f (w) = a‖D−
1
2

wt−1 w‖2
2 +

t

∑
s=1

(ys − w′xs)
2

= aw′D−1
wt−1

w +
t

∑
s=1

(y2
s − 2ysw′xs + w′(xs ⊗ xs)w)

=
t

∑
s=1

y2
s − 2w′

t

∑
s=1

ysxs + w′
(

aD−1
wt−1

+
t

∑
s=1

xs ⊗ xs

)
w

=
t

∑
s=1

y2
s − 2w′bt + w′At

f (w) =
t

∑
s=1

y2
s −

(
t

∑
s=1

2ysw′xs

)
+ w′

(
aD−1

wt−1
+

t

∑
s=1

xs ⊗ xs

)
w

Proceeding by differentiating with respect to w (treating wt−1 as a
constant):

O f (w) = 2
t

∑
s=1

ysxs + 2w′
(

aD−1
wt−1

+
t

∑
s=1

xs ⊗ xs

)
=⇒

HO f (w) = 2aD−1
wt−1

+ 2
t

∑
s=1

xs ⊗ xs

and Since O f (w) = 0− 2bt + 2Atw and HO f (w) = 2At ⇒ f is con-
vex, so to attain the minimal point, setting O f (w) = 0 which gives
w = b′t A−1

t . Thus,

f (w) = f (b′t A−1
t ) =

t

∑
s=1

y2
s − 2b′t A−1

t bt + b′t A−1
t At A−1

t bt

=
t

∑
s=1

y2
s − b′t A−1

t bt

Theorem 9. CIRR predicts ŷt = b′t−1A−1
t xt.

67



Proof. Considering following min-max problem:

arg inf
ŷt∈R

sup
yt∈[−Y,Y]

(
t

∑
s=1

(ys − ŷs)
2 −

t

∑
s=1

y2
s + b′t A−1

t bt

)

= arg inf
ŷt∈R

sup
yt∈[−Y,Y]

(
t

∑
s=1

(ys − ŷs)
2

−
t

∑
s=1

y2
s + (bt−1 + ytxt)

′A−1
t (bt−1 + ytxt)

)

= arg inf
ŷt∈R

sup
yt∈[−Y,Y]

(
t

∑
s=1

(ys − ŷs)
2 −

t

∑
s=1

y2
s

+bt−1A−1
t bt−1 + 2ytb′t−1A−1

t xt + y2
t x′t A−1

t xt

) (70)

=⇒ arg inf
ŷt∈R

sup
yt∈[−Y,Y]

(
−2ytŷt + ŷ2

t + 2ytb′t−1A−1
t xt + y2

t x′t A−1
t xt

)

= arg inf
ŷt∈R

sup
yt∈[−Y,Y]

(
2yt(b′t−1A−1

t xt − ŷt) + y2
t (x′t A−1

t xt) + ŷ2
t

)
(71)

Given yt ∈ [−Y, Y] and that At is positive definite, asserts ŷt should
be chosen such that:

2Y
(

bt−1A−1
t xt − ŷt

)
+ ŷ2

t (72)

(72) is minimised. Since:

• Case 1: bt−1A−1
t xt ∈ [−Y, Y]. If bt−1A−1

t xt ≥ Y than (72) is
decreasing when ŷt ≤ Y and increasing when ŷt ≥ Y, similar
arguments holds for the case when bt−1A−1

t xt ≥ −Y, thus for
(72) minimum is attained at Y.

• Case 2: ŷt ≤ bt−1A−1
t xt attains minimum on the domain

min(Y, bt−1A−1
t xt).

• Case 3: ŷt ≥ bt−1A−1
t xt attains minimum on the domain

max(−Y, bt−1A−1
t xt).

Thus, for ŷt = bt−1A−1
t xt (70) attains minimum.

Protocol 9: CIRR

Initialise: a > 0, A = 0n×n, b = 0n×1 and w = 1 ∈ Rn×1

.

68



FOR t = 1, 2, ...,
(1) Read xt ∈ Rn

(2) Dwt−1 = diag(
√
abs(w))

(3) A = A + xt ⊗ xt

(4) A−1 = Dwt−1 (aI + Dwt−1 ADwt−1)
−1 Dwt−1

(5) ŷt = b′A−1xt

(6) Read yt ∈ R

(7) b = b + ytxt

(8) w = A−1b
END FOR

2- Analysis

The following corollary presents the limiting behaviour of the algo-
rithm. It shows that as ‖xt‖p → ∞, ŷt → 0, thus making the algo-
rithm less likely to overestimate in comparison to the usual convex
optimisation methods that predict by multiplying the optimal deci-
sion strategy from the decision pool by xt.
Corollary 2. For all s = 1, 2, ..., t, the following result holds:

ŷt =
st

1 + x′tD
1
2
wt−2

(
aI + D

1
2
wt−2

(
∑t−1

s=1 xs ⊗ xs

)
D

1
2
wt−2

)−1

D
1
2
wt−2 xt

where ŷt denotes the prediction of CIRR and:

st =

(
t−1

∑
s=1

ysxs

)′
D

1
2
wt−2

(
aI + D

1
2
wt−2

(
t−1

∑
s=1

xs ⊗ xs

)
D

1
2
wt−2

)−1

D
1
2
wt−2 xt

where Dwt−2 = diag(wt−2,1, ..., wt−2,n)

Proof.

ŷt =

(
t−1

∑
s=1

ysxs

)′
D

1
2
wt−1

(
aI + D

1
2
wt−1

(
t

∑
s=1

xs ⊗ xs

)
D

1
2
wt−1

)−1

D
1
2
wt−1 xt

=

(
t−1

∑
s=1

ysxs

)′
D

1
2
wt−2

(
aI + D

1
2
wt−2

(
t−1

∑
s=1

xs ⊗ xs

)
D

1
2
wt−2

)−1

D
1
2
wt−2 xt

−
(

t−1

∑
s=1

ysxs

)′
×(

D
1
2
wt−2

(
aI + D

1
2
wt−2

(
∑t−1

s=1 xs ⊗ xs

)
D

1
2
wt−2

)−1

D
1
2
wt−2 xt

)

1 + x′tD
1
2
wt−2

(
aI + D

1
2
wt−2

(
∑t−1

s=1 xs ⊗ xs

)
D

1
2
wt−2

)−1

D
1
2
wt−2 xt

69



×

(
D

1
2
wt−2

(
aI + D

1
2
wt−2

(
∑t−1

s=1 xs ⊗ xs

)
D

1
2
wt−2

)−1

D
1
2
wt−2 xt

)′

1 + x′tD
1
2
wt−2

(
aI + D

1
2
wt−2

(
∑t−1

s=1 xs ⊗ xs

)
D

1
2
wt−2

)−1

D
1
2
wt−2 xt

xt

By some simple algebraic manipulation:

ŷt =
st

1 + x′tD
1
2
wt−2

(
aI + D

1
2
wt−2

(
∑t−1

s=1 xs ⊗ xs

)
D

1
2
wt−2

)−1

D
1
2
wt−2 xt

(73)

Next the upper bounds on the cumulative square loss for CIRR
are discussed. The main objective is to deduce the circumstances
under which CIRR has a better regret than AAR (has the best upper
bound on the cumulative square loss in an online setting). To achieve
this goal first a performance guarantee of CIRR is obtained. Then,
the input and weights are bounded for the sake of simplicity of the
comparison. Finally, the regret of CIRR and AAR is compared. The
construction of the upper bound is presented in two ways, which lead
to distinct results.
Theorem 10. For any point in time t = 1, 2, ..., T, the following holds:

LT(CIRR) ≤ inf
w∈Rn

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2 ln det

(
1
a

AT

)
(74)

where a > 0, Y ≥ 0. if ‖xt‖∞ ≤ R and C ≤ ‖w‖1 ≤ P ∀t such that
C 6= 0, |wt,i| 6= 0 ∀i = 1, 2, ..., n and n is some finite positive integer then:

LT(CIRR) ≤ L∗T + aP2C−1 + Y2n ln
(

a + CTR2

aC

)
(75)

Proof. is analogous to Theorem 5.

The following theorem presents a scenario when the CIRR upper
bound on cumulative loss is better than AAR (and ORR).
Theorem 11. If, ‖xt‖∞ ≤ R and C ≤ ‖w‖1 ≤ P such that C ≥ 1, a > 0,
and n ∈N+, then ∀t the following holds

LU
T (CIRR) ≤ LU

T (AAR)

where LU
T denotes the upper cumulative square loss bound

Proof. is analogous to Theorem 6

70



Theorem 12. For any time step t = 1, 2, ..., T, any a > 0 and
|wt−1,1|, ..., |wt−1,n| 6= 0, the following holds for η = 1

2Y2 :

LT(CIRR) ≤ infw

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
2n ln

(
4Y2

a
√

π

)
+ ln det AT

2Y2

)
Proof. For any value of η > 1

2Y2 , β(yt−w′xt)2
will not be concave for

w′xt, for details please see [113] Remark 3. Thus, replacing η = 1
8Y2

by η = 1
2Y2 in the proof of Theorem 7 leads to the desired result.

Corollary 3. For any point in time t = 1, 2, ..., T and any a > 0 such that
‖xt‖∞ ≤ R and C ≤ ‖w‖1 ≤ P following holds:

LT(CIRR) ≤ L∗T + aP2C−1 + nY2 ln
(

8Y2(a + CTR2)

a2Cπ

)
such that C 6= 0.

Proof. From (61)

LT(CIRR) ≤ inf
w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)

+Y2
(

2n ln
4Y2

a
√

π
+ n ln

a + CTR2

2Y2C

)
= inf

w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
n ln

16Y4

a2π
+ n ln

a + CTR2

2Y2C

)
= inf

w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
n ln

(
16Y4(a + CTR2)

2a2πY2C

))
= inf

w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ Y2

(
n ln

(
8Y2(a + CTR2)

a2Cπ

))
= inf

w

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
+ nY2 ln

(
8Y2(a + CTR2)

a2Cπ

)
The rest follows from (55).

Notice the restriction C ≤ ‖w‖1 ≤ P with C 6= 0 in Corollary
3 can be reduced to ‖w‖1 ≤ P by using Lemma 1 and Lemma 7

and following the similar procedure as Corollary 3. So LT(IRR) =

infw

(
LT + a‖D−

1
2

wt−1 w‖2
2

)
can be written as ∑T

t=1 y2
t − b′A−1b (please

see Lemma 7), and (61) becomes n ln(aP + TP2R2). Notice that the
upper bound on the determinant of CIRR is ln 16Y4

a2π
(P(a + TPR2)) in

comparison to AAR’s ln a+TR2

a . When C ≤ 1, infw
(

L∗T + a‖w‖2
2
)
=

LT(RR) ≤ LT(IRR), setting a ≥ 16Y4

π ensures that ln 16Y4(P(a+TPR2))
aπ(a+TR2)

≤
0 =⇒ ln 16Y4

a2π
(P(a + TPR2)) ≤ ln a+TR2

a . Nevertheless, this way
of analysis does not provide a clean comparison of AAR and CIRR.

71



However, it indicates that CIRR has a better bound when ‖w‖1 ≤ 1
and the noise term has a greater influence on the prediction accuracy
than the true regression function.

The following theorem presents circumstances under which the re-
gret of CIRR is better than AAR’s.
Theorem 13. Let RT = LT(Learner)− L∗T, ‖xt‖∞ ≤ R, C ≤ ‖w‖1 ≤ P
and n be some positive integer, then ∀t, RT(AAIR) ≤ RT(AAR) when
C ≥ 1, a ≥ 8Y2

π .

Proof. To prove, it is sufficient to show RT(AAIR)−RT(AAR) ≤ 0.
From (60) and Corollary 3:

aP2
(

1
C
− 1
)
+ nY2 ln

(
8Y2(a + CTR2)

a2Cπ

)
− nY2 ln

(
a + TR2

a

)
≤ 0

aP2
(

1
C
− 1
)
+ nY2 ln

8Y2(a + CTR2)

aCπ(a + TR2)
≤ 0

C ≥ 1, aP2 ( 1
C − 1

)
≤ 0. Also, from Lemma 4 it is clear that ‖w‖2

2 ≥
‖D−

1
2

wt−1 w‖2
2 for C ≥ 1. The condition a ≥ 8Y2

π ensures that πaC(a +
TR2) ≥ 8Y2(a + CTR2). This concludes the proof.

Remark 11. CIRR guarantee is better than OSLOG under all circum-
stances.

72



The ordinary operations of algebra suf-
fice to resolve problems in the theory of
curves.

—Joseph-Louis Lagrange

v

CNLS:
Competitive

normalised

least squares





1- Derivation

CNLS is an online regression algorithm with time complexity O(n).
The algorithm considers (41) with Dwt−1 = I. First, bounds are given
without using Definition 6 at all, later bounds are given by only
bounding the signals (one could easily obtain bounds by bounding
weights and signals both - the given bounds are under milder condi-
tions). Herein, for compactness, representing the inner product space
for all u, v, x ∈ Rn and l ∈ R such that: (u, v) = (v, u),(lu, v) = l(u, v),
(u + v, x) = (u, x) + (v, x), (x, x) > 0 for x 6= 0, for further details see
[121]. CNLS obtains an estimate ŵ for the w to make predictions at
each trial, by observing the following protocol:

Protocol 10: CNLS strategy

FOR t=1,2,...,T
(1) receive xt ∈ Rn

(2) predict ŷt = (ŵt, xt)

(3) receive yt ∈ R

(4) update ŵt ∈ Rn

END FOR

In Protocol 10, it is assumed that the prediction is given by ŵ′txt.
So, the problem in hand is to design the update rule, which leads us
to the following lemma.
Lemma 8. The following minimisation problem with respect to ŵt:

min

(
T

∑
t=1

(ŵt − ŵt−1)
2

)

with the constraint yt = w′txt has the following solution for t = 1, 2, ..., T:

ŵt = ŵt−1 +
(yt − ŷt)xt

‖xt‖2
2

Proof. To minimise ∑T
t=1(ŵt− ŵt−1)

2 under the constraint yt− ŵ′txt =

0. Introducing Lagrangian multipliers αt, t = 1, 2, ..., T. Instead of
solving the primal optimisation problem mentioned earlier and find
the saddle point of the following:

T

∑
t=1

(ŵt − ŵt−1)
2 +

T

∑
t=1

αt(yt − ŵ′txt) (76)

75



In accordance with the Kuhn-Tucker theorem [62], there exists val-
ues of Lagrangian multipliers α = αKT for which solving the primal
problem is equivalent to finding the saddle point. Thus:

∂

∂ŵt

(
T

∑
t=1

(ŵt − ŵt−1)
2 +

T

∑
t=1

αt(yt − ŵ′txt)

)
= 0 (77)

For, t = 1, 2, ..., T

∂

∂ŵt

(
(ŵt − ŵt−1)

2 + αt(yt − ŵ′txt)
)
= 0

2(ŵt − ŵt−1)− αtxt = 0

ŵt = ŵt−1 +
1
2

αtxt (78)

Substituting the obtained value of ŵt from (78) in the constraint and
we get:

yt = (ŵt−1 +
1
2

αtxt)
′xt

(yt − ŷt) =
1
2

αt‖xt‖2
2

αt =
2
‖xt‖2

2
(yt − ŷt) (79)

Substitution of αt from (79) in (78) gives:

ŵt = ŵt−1 +
(yt − ŷt)xt

‖xt‖2
2

(80)

In order to avoid the scenario ŵt → ∞ as ‖xt‖2
2 → 0, using the con-

vention 0
0 = 0.

Remark 12. The analysis of the following update rule:

ŵt = ŵt−1 +
(yt − ŷt)xt

η + ‖xt‖2
2

(81)

for η > −‖xt‖2
2. The obvious advantage of using (81) is that one do not

require any convention for the case when ‖xt‖2
2 → 0. Later it is shown

that the addition of η in the denominator results in a better performance
guarantee.

CNLS protocol is presented in Protocol 11, where the weight vector
is initially set to 0 ∈ Rn. The update rule can be written in the form:
ŵt = ŵt−1 + λxt, where λ = yt−ŷt

η+‖xt‖2
2
∈ R.

Protocol 11: CNLS

FOR t=1,2,...
(1) receive xt ∈ Rn

76



(2) predict ŷt = (ŵt, xt)

(3) receive yt ∈ R

(4) update ŵt using eq.(71)
END FOR

2- Analysis

Now, analysing CNLS using the difference of sum of squares analysis
as suggested by Duda et al. [26]. First determining the amount of
learning Algorithm 11 does from the error at each trial. The following
Lemmas are a step in this direction.
Lemma 9. Let ŷt = (ŵt−1, xt), ŵt = ŵt−1 + λxt, where xt, ŵt−1, w ∈
Rn, yt ∈ R and λ = (yt−ŷt)

η+‖xt‖2 , the following holds:

‖ŵt−1 − w‖2 − ‖ŵt − w‖2 = (yt − ŷt)
2(

2
η + ‖xt‖2 −

‖xt‖2

η + ‖xt‖2

)
− 2(yt − ŷt)(yt − (w, xt))

‖xt‖2 + η
(82)

Proof.

‖ŵt − w‖2 − ‖ŵt−1 − w‖2 = 2λ(xt, (ŵt−1 − w)) + λ2‖xt‖2

= 2λ(ŷt − yt) + 2λ(yt − (w, xt)) + λ2‖xt‖2

Substitution of λ = (yt−ŷt)
η+‖xt‖2 leads to the desired result

Lemma 10. For all a, b, r, β ∈ R such that 0 < β < 1

a2 − ab ≥ β(ab)2 − b2

4(1− β)

Proof. The inequality is equivalent to the following

a2 − ab− β(ab)2 +
b2

4(1− β)
≥ 0

4a2 − 8a2β + 4a2β2 + b2 − 4ab(1− β)

4(1− β)
≥ 0

Clearly, left hand side can be written as ((2a−2aβ)−b)2

4(1−β)
for 0 < β < 1,

thus the inequality holds.

Next, proving a lower bound on Lemma 9 using inequality proven
in Lemma 10. This can be interpreted as the lower bound on the
progress per trial in Protocol 11.

77



Lemma 11. Let ŷt = (ŵt−1, x), ŵt = ŵt−1 +
yt−ŷt

η+‖xt‖2
2
xt, where xt, ŵt, w ∈

Rn, yt ∈ R, the following holds for 0 < β < 1:

‖ŵt−1 − w‖2
2 − ‖ŵt − w‖2

2 ≥
β(yt − ŷt)2

(η + ‖xt‖2)2 −
(yt − (w, x))2

(1− β)(η + ‖xt‖2
2)

Proof. Using Lemma 9 and 10 leads to:

‖ŵt−1 − w‖2 − ‖ŵt − w‖2 = (yt − ŷt)
2(

2
η + ‖xt‖2 −

‖xt‖2

η + ‖xt‖2

)
− 2(yt − ŷt)(yt − w′xt)

‖xt‖2 + η

≥
(

2
η + ‖xt‖2 −

1
(η + ‖xt‖2)2

)
(yt − ŷt)

2−

2(yt − ŷt)(yt − w′x)
η + ‖xt‖2 ≥ 1

η + ‖xt‖2(
β(yt − ŷt)

2 − (yt − w′x)2

1− β

)

Theorem 14. For any sequence x1, y1, x2, y2, ... with predictions ŷ1, ŷ2, ...,
given by Algorithm 11, the following holds:

LT ≤
1

β(1− β)
inf
w

(
(η + R2)‖w‖2

2 + LT
)
+O(1)

for ‖xt‖2 ≥ R. For η = bR2 and β = 1
2 the following holds:

LT ≤ 4 inf
w

(
(b + 1)R2‖w‖2 + LT

)
+O(1)

where b > −1, LT is the cumulative square loss and LT is the cumulative
square loss of the offline LS algorithm.

Proof. The left hand side of Lemma 4:

T

∑
t=1

(
‖ŵt − w‖2

2 − ‖ŵt+1 − w‖2
2
)

= ‖ŵ1 − w‖2
2 − ‖ŵT+1 − w‖2

2 ≤ ‖w‖2
2

since, initialisation of the weights is 0 and ‖ · ‖ is non-negative. So,
the inequality can be written as follows:

β
T

∑
t=1

(ŷt − yt)2

‖xt‖2
2

‖xt‖2
2

η + ‖xt‖2
2
−

T

∑
t=1

(yt − (w, xt))2

‖xt‖2
2

‖xt‖2
2

(1− β)(η + ‖xt‖2
2)
≤ ‖w‖2

2 (83)

78



Setting ‖xt‖2 ≥ R to get LT:

β

(η + R2)
LT −

LT

(1− β)(η + R2)
≤ ‖w‖2

2

Thus,

LT ≤
1

β(1− β)

(
(η + R2)‖w‖2

2 + LT
)

The result obtained in Theorem 14 fulfils Definition (3) with c =
1

β(1−β)
, L∗T = infw

(
(η + R2)‖w‖2

2 + LT
)

and RT = O(1). Theorem 14
1

asserts for η = 0 and β = 1
2 the following holds:

LT ≤ 4 inf
w

(
R2‖w‖2

2 + LT
)

(84)

Clearly, the addition of η in the update rule of Lemma 8 is ad-
vantageous. In Theorem 14, the addition of η decreases the de-
pendence on the size of the data. It is worth noticing that (84) is
the performance guarantee for the algorithm derived in Lemma 8.
Here, the only assumption is that the input is bounded by the Eu-
clidean norm. Also, notice when β = 1

2 and as b → −1 =⇒
infw

(
(b + 1)R2‖w‖2

2 + LT
)
→ LT ≤ 4L∗T. That is, CNLS is at most

4 times worse than the true regression function.
The following theorem presents the performance guarantee on the

normalised squared loss.
Theorem 15. For any sequence x1, y1, x2, y2, ... with η = b‖xt‖2

2 and pre-
dictions ŷ1, ŷ2, ..., given by Algorithm 11, the following holds:

L̄T ≤
1

β(1− β)
inf

w∈Rn

(
(b + 1)(1− β)‖w‖2

2 + L̄T
)
+O(1)

such that b > −1, 0 < β < 1, L̄T is the normalised squared loss and L̄∗T is
the normalised squared loss of the offline algorithm.

Proof. Notice that:

β
T

∑
t=1

(ŷt − yt)2

‖xt‖2
2

‖xt‖2
2

η + ‖xt‖2
2
=

β

(b + 1)

T

∑
t=1

(ŷt − yt)2

‖xt‖2
2

and

T

∑
t=1

(yt − (w, xt))2

‖xt‖2
2

‖xt‖2
2

(1− β)(η + ‖xt‖2
2)

=
1

(1− β)(b + 1)

T

∑
t=1

(yt − (w, xt))2

‖xt‖2
2

1 The guarantee is expressed as a function of infw ∑t(yt − (w, xt))
2. The infimum is

taken over all w.

79



−2 0 2

0

0.5

1

1.5

x

f(
x)

Tunable Loss Function

η = −0.9‖x‖2
2

η = 0
η = ‖x‖2

2

−2 0 2

0
0.5

1
1.5

2
2.5

3
3.5

x
f(

x)

Loss Functions

Squared Loss
Normalised Squared Loss

Absolute Loss

Figure 2: Tunable loss function (see Theorem 16)
.

for η = b‖xt‖2
2. Thus for (83) the following holds:

β

(b + 1)

T

∑
t=1

(ŷt − yt)2

‖xt‖2
2
− 1

(1− β)(b + 1)

T

∑
t=1

(yt − (w, xt))2

‖xt‖2
2

≤ ‖w‖2
2

and the result follows.

In Theorem 15, the guarantee does not depend on the the size of the
input and does not bound the input. Also, the performance guarantee
has no assumptions on the input, the output and the weights.

The result of Theorem 15 fulfils Definition (3) with c = 4 (when
β = 1

2 ) instead of c = 2.25 as mentioned in [20], for normalised
gradient descent (NGD) (Theorem IV.2). However, for NGD L∗T =

infw∈Rn ‖w‖2 + L̄T instead of infw∈Rn a‖w‖2
2 + L̄T with a > 0.

Corollary 4. As ‖w‖2
2 → ∞, Algorithm 11 has a better guarantee than

NGD for L̄T at any given trial T = 1, 2, ... if 0 < a ≤ 0.5625.

Proof. By solving 4a‖w‖2
2 + 4L̄T ≤ 2.25‖w‖2

2 + 2.25L̄T obtaining 0 <

a ≤ 0.5625− 0.4375 L̄T
‖w‖2

2
. So, as ‖w‖2

2 → ∞, L̄T
‖w‖2

2
→ 0 =⇒ 0 < a ≤

0.5625.

Remark 13. Similarly, for the case of LT, NGD is outperformed as ‖w‖2
2 →

∞ and ‖xt‖2 ≥ R if −1 < b ≤ 0.5625R2.
The guarantee that includes the learning rate η in the cumulative

loss function is referred to as tunable loss function, from here on-
wards.

80



Theorem 16. For any sequence x1, y1, x2, y2, ... with predictions ŷ1, ŷ2, ...,
given by Algorithm 11, the following holds:

L̂T ≤ inf
w∈Rn

(
2‖w‖2

2 + 4L̂T
)
+O(1)

such that

L̂T =
T

∑
t=1

(yt − ŷt)2

η + ‖xt‖2
2

and L̂=
T

T

∑
t=1

(yt − (wt, xt))2

η + ‖xt‖2
2

with η > −‖xt‖2 and 0 < β < 1.

Proof. Writing (83) as:

L̂T ≤ inf
w∈Rn

1
β
‖w‖2

2 +
1

β(1− β)
L̂T

By setting β = 1
2 , obtaining the desired result.

Figure 2 compares some of the renowned loss functions and the be-
haviour of the loss function studied in Theorem 16. Notice that when
the learning rate η = 0, the tunable loss is the same as the normalised
squared loss. When η = −0.9‖x‖2

2, the tunable loss penalty is in sim-
ilar range as the absolute loss, but with the shape of the squared
loss. Also, the tunable square loss is differentiable for all values of
η > −‖x‖2

2, at every value of x. The same statement does not hold
for the absolute loss. So, the suggested tunable loss function has the
robustness of the absolute loss, while in the shape of the squared loss.

81





It is exceptional that one should be able
to acquire the understanding of a pro-
cess without having previously acquired
a deep familiarity with running it, with
using it, before one has assimilated it in
an instinctive and empirical way. Thus
any discussion of the nature of intellec-
tual effort in any field is difficult, unless
it presupposes an easy, routine familiar-
ity with that field. In mathematics this
limitation becomes very severe.

—John von Neumann

vi

Empirical Study





1- data description

The data used in the experiments studies the effect of outlier(s) and
or noise (Gaze and NO2) and size (F − 16 and weather), please see
Table 1 and the following are the data descriptions:

• The Istanbul stock exchange (ISE) datum [2] - 536 observations
with 8 attributes that are: S&P 500 Index, Deutscher Aktien
Index, FTSE 100 Index, Nikkel Index, Bovespa Index, Bovespa
Index, MSCI Europe Index and MSCU Emerging Markets In-
dex. This datum is chosen due to its simplicity. There is no
noise or outlier(s).

• Gaze datum [84] consists of 450 observations of 12 features re-
lated to measurements obtained from head-mounted cameras
for eye tracking, estimating the positions of the eyes of the sub-
ject when the subject is looking at the monitor. This datum is
chosen due to the presence of outlier(s).

• The NO2 datum [107] consists of 500 observations from a road
air pollution study collected by the Norwegian Public Roads
Administration, measured at Alnabru in Oslo, Norway, between
October 2001 and August 2003. There are 7 predictor variables:
the logarithm of the number of cars per hour, temperature (×2),
wind speed and direction, hour of the day and the date when
the observations were taken.

• Ailerons (F − 16) datum [106] consists of 13750 observations
with a total of 40 attributes that describe the status of the F− 16.
This datum is chosen due to its size, has the highest number of
features and illustrates algorithms shrinkage ability.

Table 1: Cook distance, mean & variance
datum max.cook.dist min.cook.dist med.cooks.dist label mean label variance lr.model variance

Gaze 1.90× 10−1 1.35× 10−8 7.18× 10−4 5.44× 102 6.31× 104 3.29× 103

ISE 1.37× 10−1 7.28× 10−10 4.23× 10−4 1.55× 10−3 4.46× 10−4 3.23× 10−5

NO2 4.25× 10−2 3.11× 10−8 7.52× 10−4 2.18× 10−6 1.00× 100 4.98× 10−1

F− 16 5.10× 10−2 1.50× 10−6 2.30× 10−5 −8.68× 10−4 1.69× 10−7 3.01× 10−8

Weather 9.18× 10−6 1.61× 10−15 9.83× 10−4 1.09× 10 1.14× 102 1.15× 100

85



• Weather datum [16] has historical weather around Szeged, Hun-
gary, from 2006 to 2016 with 9 features namely: temperature,
apparent temperature, humidity, wind speed, wind bearing,
visibility, cloud cover, precipitation type and summary. In to-
tal there are 96453 observations. This datum is chosen due to
its length. This datum has the most number of observations
among all data.

.

2- Experimental setting

The experiments are performed to illustrate the usefulness of the pro-
posed algorithms by a comparative study against: RLS, AROWR,
AAR, ORR, ONS, NGD and the optimal offline solution. To elaborate
further:

• For all algorithms setting tuning parameter or the learning rate
as 1

T , where T denotes the length of the datum. So, it is assumed
the length of the datum is known in advance.

• The naive baseline (using last step label as next step prediction)
is also reported.

• The optimal solution using the entire datum is Xw∗, where X ∈
RT×n. This something all algorithms are trying achieve ideally.
Also, it has direct link with the theoretical results. The bounds
given are compared against L∗T = infw ‖Y− Xw‖2

2, which is the
optimal loss considered and w∗ = argminw‖Y−Xw‖2

2. Meaning
the baseline uses the optimal weights, where the optimal loss is
achieved. Notice, when predicting one does not have access to
entire datum.

3- Results

Table 2 reports the root mean square error (RMSE), coefficient of de-
termination (R2), mean absolute error (MAE) and error quantiles:
lower quantile error (LQE (25%)), mean quantile error (MQE (50%))
and upper quantile error (UQE (75%)). Following are the central out-
comes of the study:

• CIRR is overall the best algorithm in terms of RMSE, R2 and
MAE among all the algorithms in this experimental setting.

86



ONS, AROWR and RLS (AROWR and RLS fail to give a result
on the weather datum) do not perform well in this experimental
setting.

• CNLS is better on the small datum with no noise and outlier(s),
please see Table 2 ISE results.

• None of the algorithm is able to outperform Xw∗ on any of the
datum. However, on weather datum CIRR is very close to the
baseline in terms of RMSE and MAE. In terms R2 CIRR and the
optimal solution are the same. CIRR beats the naive baseline on
all data.

Remark 14. The tuning of the regularisation parameter is expected to have
an impact on the performance of the algorithms. Optimisation of each al-
gorithm on each datum is a different research direction and such out of the
scope of this work.

87



Table 2: Algorithms accuracy comparison on real-world datum
Algorithm RMSE R2 MAE LQE MQE UQE
datum: Gaze

NGD 4.39× 102 4.21× 10−3 3.66× 102 1.42× 102 3.46× 102 5.60× 102

CNLS 2.71× 102 1.04× 10−1 2.19× 102 −1.83× 102 1.47× 10 2.05× 102

AROWR 4.88× 1014 5.91× 10−5 3.21× 1013 −3.31× 1012 −1.20× 1012 −3.69× 1011

RLS 2.19× 1017 1.19× 10−4 1.35× 1016 −6.26× 1014 −6.23× 1012 −7.61× 1011

ORR 2.19× 1017 1.19× 10−4 1.35× 1016 −6.26× 1014 −1.55× 1010 −1.77× 109

AAR 1.48× 105 7.63× 10−3 1.26× 105 −1.84× 104 −1.26× 105 −6.23× 104

ONS 5.33× 103 9.91× 10−4 1.06× 103 −5.52× 102 −5.84× 10 6.69× 102

CIRR 1.61× 102 6.65× 10−1 1.03× 102 −2.04× 10 4.37× 10 1.13× 102

OSLOG 2.35× 103 1.37× 10−3 2.17× 102 −6.01× 10 −3.27× 100 5.40× 10
Naive 3.66× 102 3.44× 10−3 2.99× 102 −2.70× 102 1.95× 10 2.73× 102

Xw∗ 5.65× 10 9.49× 10−1 4.48× 10 −3.94× 10 −2.25× 100 3.51× 100

datum: F−16

NGD 9.41× 10−4 2.70× 10−3 8.45× 10−4 −1.04× 10−3 7.48× 10−4 −5.50× 10−4

CNLS 5.90× 10−4 2.02× 10−1 3.40× 10−4 −1.98× 10−4 7.28× 10−6 2.02× 10−4

AROWR 1.29× 1011 1.22× 10−4 1.15× 1010 −1.22× 108 1.21× 107 4.66× 108

RLS 1.25× 1011 2.70× 10−4 1.10× 1010 −1.37× 108 1.44× 107 5.09× 108

ORR 1.75× 107 2.83× 10−4 1.60× 106 −2.30× 104 3.17× 103 8.50× 104

AAR 4.62× 10−1 1.64× 10−4 1.41× 10−1 −4.70× 10−2 8.49× 10−4 4.84× 10−2

ONS 2.30× 104 1.11× 10−2 1.79× 104 −1.23× 104 1.29× 103 1.72× 104

CIRR 2.08× 10−4 7.82× 10−1 1.51× 10−4 −7.32× 10−5 4.21× 10−5 1.39× 10−4

OSLOG 6.03× 10−1 1.77× 10−6 7.28× 10−3 −6.37× 10−5 5.02× 10−5 1.43× 10−4

Naive 2.75× 10−4 6.05× 10−1 2.09× 10−3 −1.00× 10−4 −1.00× 10−4 −1.00× 10−4

Xw∗ 1.73× 10−4 8.24× 10−1 1.27× 10−4 −9.15× 10−5 3.36× 10−6 9.98× 10−5

datum: NO2

NGD 9.65× 10−1 3.06× 10−1 7.63× 10−1 −6.27× 10−1 1.87× 10−1 6.55× 10−1

CNLS 8.86× 10−1 3.90× 10−1 6.62× 10−1 −0.49× 10−1 −1.04× 10−2 4.97× 10−1

AROWR 3.11× 105 1.09× 10−1 1.40× 105 −5.02× 104 −4.29× 103 3.81× 104

RLS 3.15× 105 1.14× 10−1 1.46× 105 −5.90× 104 −5.63× 103 4.27× 104

ORR 8.90× 102 1.59× 10−1 4.78× 102 −2.38× 102 −2.51× 10 1.69× 102

AAR 4.35× 10 1.95× 10−1 3.24× 10 −3.16× 10 5.71× 100 1.37× 10
ONS 8.25× 10−1 4.04× 10−1 6.23× 10−1 −4.78× 10−1 2.07× 10−2 5.11× 10−1

CIRR 7.31× 10−1 4.69× 10−1 5.72× 10−1 −3.56× 10−1 1.48× 10−1 5.58× 10−1

OSLOG 7.98× 10−1 3.98× 10−1 5.90× 10−1 −3.50× 10−1 1.25× 10−1 5.58× 10−1

Naive 1.09× 100 1.58× 10−1 8.19× 10−1 −6.04× 10−1 −2.74× 10−2 5.99× 10−1

Xw∗ 7.01× 10−1 5.07× 10−1 5.47× 10−1 −4.13× 10−1 3.65× 10−2 4.62× 10−1

datum: ISE

NGD 1.89× 10−2 5.58× 10−1 1.40× 10−2 −8.84× 10−3 1.67× 10−3 1.11× 10−2

CNLS 7.12× 10−3 8.87× 10−1 4.87× 10−3 −4.06× 10−3 2.77× 10−4 3.52× 10−3

AROWR 1.80× 10−2 3.00× 10−1 1.30× 10−2 −8.62× 10−3 9.20× 10−4 1.01× 10−2

RLS 1.01× 10−1 5.94× 10−1 7.17× 10−2 −5.72× 10−2 −1.42× 10−2 1.28× 10−2

ORR 2.79× 10−2 4.85× 10−1 1.98× 10−2 −1.58× 10−2 −4.04× 10−4 1.23× 10−2

AAR 2.00× 10−2 3.77× 10−1 1.48× 10−2 −1.19× 10−3 2.04× 10−3 1.22× 10−2

ONS 2.08× 10−2 5.50× 10−1 1.56× 10−2 −9.54× 10−3 2.57× 10−3 1.34× 10−2

CIRR 7.61× 10−3 8.77× 10−1 5.07× 10−3 −4.25× 10−3 −1.47× 10−4 3.21× 10−3

OSLOG 7.82× 10−3 8.64× 10−1 5.02× 10−3 −4.18× 10−3 1.10× 10−4 3.13× 10−3

Naive 2.87× 10−2 5.22× 10−3 2.14× 10−2 −1.77× 10−2 −1.38× 10−3 1.61× 10−2

Xw∗ 5.64× 10−3 9.29× 10−1 4.30× 10−3 −3.351× 10−3 3.02× 10−4 3.24× 10−3

datum: Weather

NGD 1.29× 101 1.19× 10−3 1.06× 101 −1.68× 10−0 7.53× 100 1.51× 10−1

CNLS 1.96× 100 9.67× 10−1 7.23× 10−1 −3.83× 10−1 4.67× 10−3 3.68× 10−1

AROWR − − − − − −
RLS − − − − − −
ORR 5.38× 1015 1.55× 10−5 1.34× 1014 −9.16× 1010 −3.60× 108 4.46× 109

AAR 3.90× 107 3.16× 10−4 1.53× 106 −7.72× 105 5.06× 105 −2.56× 105

ONS 5.73× 105 5.17× 10−1 5.51× 105 −6.63× 105 −5.58× 105 4.50× 105

CIRR 1.09× 100 9.89× 10−1 8.49× 10−1 −7.33× 10−1 −1.13× 10−1 6.56× 10−1

OSLOG 4.38× 100 8.53× 10−1 8.58× 10−1 −7.39× 10−1 −1.24× 10−1 6.45× 10−1

Naive 1.81× 100 9.71× 10−1 1.21× 10−1 −9.00× 10−1 −2.22× 10−2 9.22× 10−1

Xw∗ 1.07× 100 9.89× 10−1 8.43× 10−1 −7.29× 10−1 −1.05× 10−1 6.61× 10−1

88



Begin thus from the first act, and proceed;
and, in conclusion, at the ill which thou
hast done, be troubled, and rejoice for the
good.

—Pythagoras

vii

Conclusion and

Future work





1- Conclusion

In this thesis, three novel online algorithms, called CIRR, CNLS and
OSLOG are discussed. The three algorithms are an improvement to
the AAR, RR and GD, It shown theoretically, why and under what
conditions on the proposed algorithms are better than the three state-
of-the-art. More specifically, derivations and the analysis of the pro-
posed algorithms unveil the following:

1. CIRR’s and OSLOG’s regret is bounded by a logarithmic func-
tion of time and are more competitive − has a better regret than
the state-of-the-art algorithms for the bounded weights. For de-
tails see Theorems 8, 6, 11 and 13. This implies (based on regret
analysis), CIRR is a better learner.

2. Theorem 4 shows a simpler formulation of SLOG, which does
not require a hierarchical structure as used in [85]. In other
words, this means that SLOG hierarchical structure is an ap-
proximation of the `1 − norm.

3. Theorem 7 highlights the difference in SLOG and OSLOG. SLOG
requires variance σ2 → 0, while OSLOG requires σ2 = 4Y2. In
this sense, OSLOG could be considered as an online variant of
the Bayesian Lasso with known fixed σ2. OSLOG considers a
fixed variance, while SLOG sets variance to null.

4. CIRR has a better guarantee and regret than OSLOG under all
circumstances. This implies from Theorems 11 and 13.

5. When ‖w‖2
2 → ∞ and −1 < b ≤ 0.5625R2, the CNLS algorithm

has a better guarantee than NGD’s guarantee for the cumulative
squared loss. Similarly, for the normalised squared loss when
‖w‖2

2 → ∞ and 0 < a ≤ 0.5625 CNLS algorithm has a better
guarantee than the NGD. Please see Corollary 4 and Remark
13.

6. Theorems 14 and 15 imply that the presence of a > 0 and
b > −1 next to the ridge penalty in the guarantees and in the
update rule of CNLS indicates better control over the bias vari-
ance trade-off in comparison to the NGD guarantee and the
update rule where a = b = 1.

7. CNLS is computationally more efficient than CIRR and OSLOG.
From Protocol 7 and 9, it is clear that the most expansive op-

91



eration is the inversion of the matrix, which with the applica-
tion of Sherman-Morrison implies CIRR and OSLOG have the
time complexity of O(n2). Time complexity of CNLS is easy to
see from Protocol 11, as there is no matrix inversion, only vec-
tor multiplications, thus the time complexity is O(n). NGD is
the most computationally efficient algorithm among the three,
while CIRR has the best regret.

Empirically, a set of data with different sizes, noise levels and out-
lier(s) are studied. It is shown that the proposed algorithms perform
well better than the state-of-the-art in the setting where the tuning
parameter is fixed and no data is given to learn to any algorithm.
Practically, this means that scenarios where there no data is available
to learn upon and the decision-making is in real time, the proposed
algorithms are likely to outperform the state-of-the-art discussed.

2- Future work

There are number of possible future directions, for example:

1. The investigation of algorithms empirical properties in various
experimental settings is an important possible direction for fu-
ture research. One could compare these algorithms’ perfor-
mance with other batch algorithms, as a baseline.

2. In this thesis, there was no mention of the tightness of the men-
tioned bounds. This question is addressed in a lose sense1 by
Vovk [113] and Orabona et al. [77]. An interesting future di-
rection will be to study the tightness of the bounds without
making the stochastic assumptions. One may extend these al-
gorithms to a setting where the best-performing function is not
fixed, please see [75].

3. The discussed bounds only consider squared loss. One may
study algorithms under different loss functions, such as loga-
rithmic loss, absolute loss, etc.

4. The adjustment of the tuning parameter in online manner for
these regression algorithms remains an important open ques-
tion.

5. The algorithms presented in this thesis, may as well be studied
in Hilbert and Banach spaces as done in [34, 123] to learn non-
linearity.

1 tightness of the bound studied by making stochastic assumptions

92



6. Also, it will be interesting to extend the proposed algorithms in
a continuous time step.

7. Another interesting direction to study non-linearity is to extend
the proposed algorithms under various activation functions. A
good starting point could be to make use of the same activation
function as in [124].

93





History never really says goodbye. His-
tory says, ‘See you later’.

—Eduardo Galeano

References





[1] Abbott, S. (2001). Understanding analysis. Springer.

[2] Akbilgic, O., Bozdogan, H., and Balaban, M. E. (2014). A novel
hybrid rbf neural networks model as a forecaster. Statistics and
Computing, 24(3):365–375.

[3] Akgün, B. and Öğüdücü, Ş. G. (2015). Streaming linear regres-
sion on spark mllib and moa. In Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining 2015, pages 1244–1247.

[4] Alpher, R. A., Bethe, H., and Gamow, G. (1948). The origin of
chemical elements. Physical Review, 73(7):803.

[5] Anava, O., Hazan, E., Mannor, S., and Shamir, O. (2013). Online
learning for time series prediction. In COLT, pages 172–184.

[6] Andrews, D. F. and Mallows, C. L. (1974). Scale mixtures of nor-
mal distributions. Journal of the Royal Statistical Society: Series B
(Methodological), 36(1):99–102.

[7] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time anal-
ysis of the multiarmed bandit problem. Machine learning, 47(2-
3):235–256.

[8] Azoury, K. S. and Warmuth, M. K. (2001). Relative loss bounds
for on-line density estimation with the exponential family of dis-
tributions. Machine Learning., 43(3).

[9] Bayes, M. and Price, M. (1763). An essay towards solving a prob-
lem in the doctrine of chances. by the late rev. mr. bayes, frs com-
municated by mr. price, in a letter to john canton, amfrs. Philosoph-
ical Transactions of the Royal Society of London Series I, 53:370–418.

[10] Beckenbach, E. F. and Bellman, R. (2012). Inequalities, volume 30.
Springer Science & Business Media.

[11] Bershad, B. (1986). Analysis of the normalized lms algorithm
with gaussian inputs. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 34(4):793–806.

[12] Bifet, A. and Gavalda, R. (2007). Learning from time-changing
data with adaptive windowing. In Proceedings of the 2007 SIAM
international conference on data mining, pages 443–448. SIAM.

[13] Bifet, A., Gavaldà, R., Holmes, G., and Pfahringer, B. (2018). Ma-
chine learning for data streams: with practical examples in MOA. MIT
Press.

97



[14] Bitmead, R. and Anderson, B. (1980). Performance of adaptive
estimation algorithms in dependent random environments. IEEE
Transactions on Automatic Control, 25(4):788–794.

[15] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984).
Classification and regression trees. CRC press.

[16] Budincsevity, N. (2016). Weather in szeged 2006-2016. https:
//www.kaggle.com/budincsevity/szeged-weather#.

[17] Busuttil, S. and Kalnishkan, Y. (2007). Online regression com-
petitive with changing predictors. In International Conference on
Algorithmic Learning Theory, pages 181–195. Springer.

[18] Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P.,
Schapire, R. E., and Warmuth, M. K. (1997). How to use expert
advice. Journal of the ACM (JACM), 44(3):427–485.

[19] Cesa-Bianchi, N., Freund, Y., Helmbold, D. P., and Warmuth,
M. K. (1996a). On-line prediction and conversion strategies. Ma-
chine Learning, 25(1):71–110.

[20] Cesa-Bianchi, N., Long, P., and Warmuth, M. (1996b). Worst-case
quadratic loss bounds for prediction using linear functions and
gradient descent. IEEE Transactions on Neural Networks, 7(3):604–
619.

[21] Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and
games. Cambridge university press.

[22] Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-
Hosseini, F., and Mosavi, A. (2019). An ensemble prediction of
flood susceptibility using multivariate discriminant analysis, clas-
sification and regression trees, and support vector machines. Sci-
ence of the Total Environment, 651:2087–2096.

[23] Crammer, K., Dredze, M., and Pereira, F. (2009). Exact convex
confidence-weighted learning. In Advances in Neural Information
Processing Systems, pages 345–352.

[24] DeSantis, A., Markowsky, G., and Wegman, M. N. (1988). Learn-
ing probabilistic prediction functions. In Foundations of Computer
Science, 1988., 29th Annual Symposium on, pages 110–119. IEEE.

[25] Diniz, P. S. et al. (1997). Adaptive filtering. Springer.

[26] Duda, R. O., Hart, P. E., and Stork, D. G. (1995). Pattern classifi-
cation and scene analysis 2nd ed. ed: Wiley Interscience.

98

https://www.kaggle.com/budincsevity/szeged-weather#
https://www.kaggle.com/budincsevity/szeged-weather#


[27] Fan, J. and Li, R. (2001). Variable selection via nonconcave pe-
nalized likelihood and its oracle properties. Journal of the American
statistical Association, 96(456):1348–1360.

[28] Forster, J. (1999). On relative loss bounds in generalized linear
regression. In International Symposium on Fundamentals of Computa-
tion Theory, pages 269–280. Springer.

[29] Foster, D. P. (1991). Prediction in the worst case. The Annals of
Statistics, pages 1084–1090.

[30] Foster, D. P. and Vohra, R. V. (1993). A randomization rule for
selecting forecasts. Operations Research, 41(4):704–709.

[31] Freund, Y. (1996). Predicting a binary sequence almost as well as
the optimal biased coin. In Proceedings of the ninth annual conference
on Computational learning theory, pages 89–98.

[32] Gama, J., Medas, P., Castillo, G., and Rodrigues, P. (2004). Learn-
ing with drift detection. In Brazilian symposium on artificial intelli-
gence, pages 286–295. Springer.

[33] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia,
A. (2014). A survey on concept drift adaptation. ACM computing
surveys (CSUR), 46(4):1–37.

[34] Gammerman, A., Kalnishkan, Y., and Vovk, V. (2004). On-line
prediction with kernels and the complexity approximation princi-
ple. In Proceedings of the 20th conference on Uncertainty in artificial
intelligence, pages 170–176. AUAI Press.

[35] Garrigues, P. and Ghaoui, L. E. (2009). An homotopy algorithm
for the lasso with online observations. In Advances in neural infor-
mation processing systems, pages 489–496.

[36] Gauss, C.-F. (1823). Theoria combinationis observationum erroribus
minimis obnoxiae, volume 1. Henricus Dieterich.

[37] Gelfand, I. and Ponomarev, V. (1970). Problems of linear al-
gebra and classification of quadruples of subspaces in a finite-
dimensional vector space. Coll. Math. Spc. Bolyai, 5:163–237.

[38] Gill, J. (1977). Computational complexity of probabilistic turing
machines. SIAM Journal on Computing, 6(4):675–695.

[39] Golovin, D., McMahan, B., and Sculley, D. (2016). Online learn-
ing with maximal no-regret l1 regularization. In NIPS workshop on
Optimization for Machine Learning.

99



[40] Gomes, H. M., Barddal, J. P., Ferreira, L. E. B., and Bifet, A.
(2018). Adaptive random forests for data stream regression. In
ESANN.

[41] Goodwin, G. C. and Sin, K. S. (2014). Adaptive filtering prediction
and control. Courier Corporation.

[42] Hassibi, B., Sayed, A. H., and Kailath, T. (1996). H/sup/spl
infin//optimality of the lms algorithm. IEEE Transactions on Signal
Processing, 44(2):267–280.

[43] Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. (2005).
The elements of statistical learning: data mining, inference and
prediction. The Mathematical Intelligencer, 27(2):83–85.

[44] Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical
learning with sparsity: the lasso and generalizations. CRC press.

[45] Haussler, D., Kivinen, J., and Warmuth, M. K. (1995). Tight
worst-case loss bounds for predicting with expert advice. In Eu-
ropean Conference on Computational Learning Theory, pages 69–83.
Springer.

[46] Hayes, M. (1996). 9.4: Recursive least squares. Statistical Digital
Signal Processing and Modeling, page 541.

[47] Hazan, E. et al. (2016). Introduction to online convex optimiza-
tion. Foundations and Trends R© in Optimization, 2(3-4):157–325.

[48] Hoens, T. R., Chawla, N. V., and Polikar, R. (2011). Heuristic
updatable weighted random subspaces for non-stationary environ-
ments. In 2011 IEEE 11th International Conference on Data Mining,
pages 241–250. IEEE.

[49] Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-
changing data streams. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
97–106.

[50] Ikonomovska, E., Gama, J., Sebastião, R., and Gjorgjevik, D.
(2009). Regression trees from data streams with drift detec-
tion. In International Conference on Discovery Science, pages 121–135.
Springer.

[51] Jamil, W. and Bouchachia, A. (2018). Model selection in online
learning for times series forecasting. In UK Workshop on Computa-
tional Intelligence, pages 83–95. Springer.

100



[52] Kakade, S. M. and Ng, A. Y. (2005). Online bounds for bayesian
algorithms. In Advances in neural information processing systems,
pages 641–648.

[53] Kalnishkan, Y. (2015). Predictive complexity for games with fi-
nite outcome spaces. In Measures of Complexity, pages 117–139.
Springer.

[54] Kalnishkan, Y. (2016). An upper bound for aggregating algo-
rithm for regression with changing dependencies. In International
Conference on Algorithmic Learning Theory, pages 238–252. Springer.

[55] Kelly, M. G., Hand, D. J., and Adams, N. M. (1999). The impact
of changing populations on classifier performance. In Proceedings of
the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 367–371.

[56] Kivinen, J. and Warmuth, M. (1999). Averaging expert predic-
tions. In Computational Learning Theory, pages 638–638. Springer.

[57] Kivinen, J. and Warmuth, M. K. (1997). Exponentiated gradi-
ent versus gradient descent for linear predictors. Information and
Computation, 132(1):1–63.

[58] Klinkenberg, R. (2004). Learning drifting concepts: Example se-
lection vs. example weighting. Intelligent data analysis, 8(3):281–300.

[59] Knotters, M., Brus, D., and Voshaar, J. O. (1995). A comparison
of kriging, co-kriging and kriging combined with regression for
spatial interpolation of horizon depth with censored observations.
Geoderma, 67(3-4):227–246.

[60] Kolmogorov, A. N. and Uspenskii, V. A. (1988). Algorithms and
randomness. Theory of Probability & Its Applications, 32(3):389–412.

[61] Kotowicz, J. (1990). Convergent real sequences. upper and lower
bound of sets of real numbers. Formalized Mathematics, 1(3):477–
481.

[62] Kuhn, H. and Tucker, A. (1951). Proceedings of 2nd berkeley
symposium.

[63] Kullback, S. and Leibler, R. A. (1951). On information and suffi-
ciency. The annals of mathematical statistics, 22(1):79–86.

[64] Kuncheva, L. I. and Žliobaitė, I. (2009). On the window size for
classification in changing environments. Intelligent Data Analysis,
13(6):861–872.

101



[65] Langford, J., Li, L., and Zhang, T. (2009). Sparse online learn-
ing via truncated gradient. Journal of Machine Learning Research,
10(Mar):777–801.

[66] Lazarescu, M. M., Venkatesh, S., and Bui, H. H. (2004). Using
multiple windows to track concept drift. Intelligent data analysis,
8(1):29–59.

[67] Littlestone, N. (1988). Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm. Machine learn-
ing, 2(4):285–318.

[68] Littlestone, N. and Warmuth, M. K. (1994). The weighted major-
ity algorithm. Information and computation, 108(2):212–261.

[69] Littlestone, N., Warmuth, M. K., et al. (1989). The weighted ma-
jority algorithm. University of California, Santa Cruz, Computer
Research Laboratory.

[70] Liu, C., Hoi, S. C., Zhao, P., and Sun, J. (2016). Online arima
algorithms for time series prediction. In Thirtieth AAAI Conference
on Artificial Intelligence.

[71] Maloof, M. A. and Michalski, R. S. (1995). A method for partial-
memory incremental learning and its application to computer in-
trusion detection. In Proceedings of 7th IEEE International Conference
on Tools with Artificial Intelligence, pages 392–397. IEEE.

[72] Minku, L. L., White, A. P., and Yao, X. (2009). The impact
of diversity on online ensemble learning in the presence of con-
cept drift. IEEE Transactions on knowledge and Data Engineering,
22(5):730–742.

[73] Mitchell, T. (1997). Machine Learning. McGraw-Hill, New York.

[74] Monti, R. P., Anagnostopoulos, C., and Montana, G. (2016). A
framework for adaptive regularization in streaming lasso models.
arXiv preprint arXiv:1610.09127.

[75] Moroshko, E., Vaits, N., and Crammer, K. (2015). Second-order
non-stationary online learning for regression. Journal of Machine
Learning Research, 16:1481–1517.

[76] Nash, J. F. et al. (1950). Equilibrium points in n-person games.
Proceedings of the national academy of sciences, 36(1):48–49.

[77] Orabona, F., Cesa-Bianchi, N., and Gentile, C. (2012). Beyond
logarithmic bounds in online learning. In Artificial Intelligence and
Statistics, pages 823–831.

102



[78] Ore, O. (1960). Pascal and the invention of probability theory.
The American Mathematical Monthly, 67(5):409–419.

[79] Osborne, M. J. et al. (2004). An introduction to game theory, vol-
ume 3. Oxford university press New York.

[80] Osborne, M. J. and Rubinstein, A. (1994). A course in game theory.
MIT press.

[81] Oza, N. C. and Russell, S. (2001). Online ensemble learning. Uni-
versity of California, Berkeley.

[82] Park, J. and Edington, D. W. (2001). A sequential neural network
model for diabetes prediction. Artificial intelligence in medicine,
23(3):277–293.

[83] Park, T. and Casella, G. (2008). The bayesian lasso. Journal of the
American Statistical Association, 103(482):681–686.

[84] Quinonero-Candela, J., Dagan, I., Magnini, B., and d’Alché Buc,
F. (2006). Machine Learning Challenges: Evaluating Predictive Un-
certainty, Visual Object Classification, and Recognizing Textual En-
tailment, First Pascal Machine Learning Challenges Workshop, MLCW
2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers,
volume 3944. Springer.

[85] Rajaratnam, B., Roberts, S., Sparks, D., and Dalal, O. (2016).
Lasso regression: estimation and shrinkage via the limit of gibbs
sampling. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 78(1):153–174.

[86] Robert, C. (2014). Machine learning, a probabilistic perspective. Tay-
lor & Francis.

[87] Rudin, W. et al. (1976). Principles of mathematical analysis, vol-
ume 3. McGraw-hill New York.

[88] Salganicoff, M. (1993). Density-adaptive learning and forgetting.
In Proceedings of the Tenth International Conference on Machine Learn-
ing, pages 276–283.

[89] Schmidt, M. (2005). Least squares optimization with l1-norm
regularization. CS542B Project Report, pages 14–18.

[90] Shafer, G. and Vovk, V. (2005). Probability and finance: it’s only a
game!, volume 491. John Wiley & Sons.

[91] Shafer, G. and Vovk, V. (2019). Game-Theoretic Foundations for
Probability and Finance, volume 455. John Wiley & Sons.

103



[92] Shaffer, J. P. (1991). The gaussâĂŤmarkov theorem and random
regressors. The American Statistician, 45(4):269–273.

[93] Shalev-Shwartz, S. et al. (2012). Online learning and online con-
vex optimization. Foundations and Trends R© in Machine Learning,
4(2):107–194.

[94] Shaman, P. (1969). On the inverse of the covariance matrix of a
first order moving average. Biometrika, 56(3):595–600.

[95] Shoeb, A. H. and Guttag, J. V. (2010). Application of machine
learning to epileptic seizure detection. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), pages 975–
982.

[96] Sion, M. (1958). On general minimax theorems. Pacific Journal of
mathematics, 8(1):171–176.

[97] Sleator, D. D. and Tarjan, R. E. (1985). Amortized efficiency of list
update and paging rules. Communications of the ACM, 28(2):202–
208.

[98] Solomonoff, R. J. (1964). A formal theory of inductive inference.
part i. Information and control, 7(1):1–22.

[99] Spark, A. (2018). Apache spark. Retrieved January, 17:2018.

[100] Su, H., Liu, H., and Wu, Q. (2015). Prediction of water depth
from multispectral satellite imageryâĂŤthe regression kriging al-
ternative. IEEE Geoscience and Remote Sensing Letters, 12(12):2511–
2515.

[101] Sun, Y., Tang, K., Minku, L. L., Wang, S., and Yao, X. (2016).
Online ensemble learning of data streams with gradually evolved
classes. IEEE Transactions on Knowledge and Data Engineering,
28(6):1532–1545.

[102] Syed, N. A., Liu, H., and Sung, K. K. (1999). Handling con-
cept drifts in incremental learning with support vector machines.
In Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 317–321.

[103] Tao, T. (2011). An introduction to measure theory. American Math-
ematical Society Providence, RI.

[104] Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B (Methodological),
pages 267–288.

104



[105] Vaits, N. and Crammer, K. (2011). Re-adapting the regular-
ization of weights for non-stationary regression. In International
Conference on Algorithmic Learning Theory, pages 114–128. Springer.

[106] Van Rijn, J. N., Bischl, B., Torgo, L., Gao, B., Umaashankar,
V., Fischer, S., Winter, P., Wiswedel, B., Berthold, M. R., and Van-
schoren, J. (2013). Openml: A collaborative science platform. In
Joint european conference on machine learning and knowledge discovery
in databases, pages 645–649. Springer.

[107] Vlachos, P. and Meyer, M. (2005). Statlib datasets archive. URL
http://lib. stat. cmu. edu/datasets.

[108] Vovk, V. (1990). Aggregating strategies. In Proc. Third Workshop
on Computational Learning Theory, pages 371–383. Morgan Kauf-
mann.

[109] Vovk, V. (1992). Universal forecasting algorithms. Information
and Computation, 96(2):245–277.

[110] Vovk, V. (1995). A game of prediction with expert advice. In
Proceedings of the eighth annual conference on Computational learning
theory, pages 51–60. ACM.

[111] Vovk, V. (1998). A game of prediction with expert advice. Jour-
nal of Computer and System Sciences, 56(2):153–173.

[112] Vovk, V. (1999). Derandomizing stochastic prediction strategies.
Machine Learning, 35(3):247–282.

[113] Vovk, V. (2001). Competitive on-line statistics. International Sta-
tistical Review/Revue Internationale de Statistique, pages 213–248.

[114] Vovk, V. and Zhdanov, F. (2009). Prediction with expert ad-
vice for the brier game. Journal of Machine Learning Research,
10(Nov):2445–2471.

[115] Vyugin, M. V. and V’yugin, V. V. (2002). Predictive complex-
ity and information. In International Conference on Computational
Learning Theory, pages 90–105. Springer.

[116] Vyugin, M. V. and V’yugin, V. V. (2005). Predictive complexity
and information. Journal of Computer and System Sciences, 70(4):539–
554.

[117] Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., and Petitjean,
F. (2016). Characterizing concept drift. Data Mining and Knowledge
Discovery, 30(4):964–994.

105



[118] Widrow, B. and Walach, E. (1984). On the statistical efficiency
of the lms algorithm with nonstationary inputs. IEEE Transactions
on Information Theory, 30(2):211–221.

[119] Xiao, L. (2010). Dual averaging methods for regularized
stochastic learning and online optimization. Journal of Machine
Learning Research, 11(Oct):2543–2596.

[120] Yamanishi, K. (1995). Randomized approximate aggregating
strategies and their applications to prediction and discrimination.
In Proceedings of the eighth annual conference on Computational learn-
ing theory, pages 83–90.

[121] Young, N. (1988). An introduction to Hilbert space. Cambridge
university press.

[122] Zhang, P., Zhu, X., and Shi, Y. (2008). Categorizing and min-
ing concept drifting data streams. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 812–820.

[123] Zhdanov, F., Chernov, A., and Kalnishkan, Y. (2010). Aggre-
gating algorithm competing with banach lattices. arXiv preprint
arXiv:1002.0709.

[124] Zhdanov, F. and Vovk, V. (2010). Competitive online general-
ized linear regression under square loss. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
pages 531–546. Springer.

106


	Introduction
	Online learning
	Online regression
	Research questions
	Publications
	Organisation

	Competitive Regression
	Background
	Related work
	Problem formulation

	OSLOG: Online shrinkage via limit of Gibbs
	Derivation
	Analysis

	CIRR: Competitive iterative ridge regression
	Derivation
	Analysis

	CNLS: Competitive normalised least squares
	Derivation
	Analysis

	Empirical Study
	data description
	Experimental setting
	Results

	Conclusion and Future work
	Conclusion
	Future work

	References

