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ABSTRACT 

As commercial archaeogeophysical survey progressively shifts towards large landscape-scale 

surveys, small features like graves become more difficult to identify and interpret.  In order to increase 

the rate and confidence of grave identification before excavation using geophysical methods, the 

accuracy and speed of survey outputs and reporting must be improved.  The approach taken in this 

research was first to consider the survey parameters that govern the effectiveness of the four 

conventional techniques used in commercial archaeogeophysical evaluations (magnetometry, earth 

resistance, electromagnetic induction and ground-penetrating radar).  Subsequently, in respect of 

ground-penetrating radar (GPR), this research developed machine learning applications to improve 

the speed and confidence of detecting inhumation graves.  The survey parameters research 

combined established survey guidelines for the UK, Ireland, and Europe to account for local geology, 

soils and land cover to provide survey guidance for individual sites via a decision-based application 

linked to GIS database. To develop two machine learning tools for localising and probability scoring 

grave-like responses in GPR data, convolutional neural networks and transfer learning were used to 

analyse radargrams of medieval graves and timeslices of modern proxy clandestine graves.  Models 

were c. 93% accurate at labelling images as containing a grave or no grave and c. 96% accurate in 

labelling and locating potential graves in radargram images.  For timeslices, machine learning models 

achieved 94% classification accuracy.  The >90% accuracy of the machine learning models 

demonstrates the viability of machine-assisted detection of inhumation graves within GPR data.  

While the expansion of the training dataset would further improve the accuracy of the proposed 

methods, the current machine-led interpretation methods provide valuable assistance for human-led 

interpretation until more data becomes available.  The survey guidance tool and the two machine 

learning applications have been packaged into the Reilig web application toolset, which is freely 

available. 
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“Archaeological anomalies are part of a wide range of causative bodies that are often difficult to 

differentiate…a geophysicist is not a magician; the interpretation should be logical and based on the 

theory of the techniques.”  

-Gaffney and Gater, 2010
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1. INTRODUCTION 

1.1. Project Rationale 

Each year several thousand human skeletons are disturbed during development projects in England 

alone, with approximately 75% of the skeletons excavated from archaeological contexts post-date 

the 6th century AD (Advisory Panel on the Archaeology of Burials in England 2017, p. 3). One method 

for determining the potential for human remains on a site, aside from desk-based assessments, is 

geophysical survey.  Since their development in the 1950s geophysical surveys, have been part of 

archaeological investigations, but have only regularly integrated into criminal investigative strategies 

in the last decade (Cheetham 2005, Conyers 2013). Conventional archaeogeophysical applications 

include delineating structural remains, ditches and enclosures, cultivation practices, former field 

boundaries, and subsurface graves, as well as differentiating modern services from archaeological 

remains (Davenport 2001). One aspect where geophysical survey has struggled since its inception 

is in detecting graves.  The difficulty in detecting graves is often a result of the preservation state of 

graves as in most soil conditions the human remains and burial container, especially wooden coffins, 

decompose over time.  Once the remains have fully decomposed the differences in the geochemical 

and physical properties of the remains, backfill, and surrounding matrix become challenging to detect, 

or even indiscernible.   The minimal disturbance of the soil once returned to its original position, and 

lack of additives with enhanced geophysical characteristics such as charcoal or other material with 

enhanced magnetic properties result in marginal differences between the grave fill and surrounding 

material.  A grave is comprised of the grave cut, grave fill, grave shaft, remains, and sometimes a 

burial container.  Figure 1 depicts an illustrative example of interred skeletonised remains to 

demonstrate the relationship between the remains, grave fill, surrounding material, and ground 

surface..    
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Figure 1: Illustrative example of interred skeletonised human remains that demonstrates the relationship between the 
grave fill, surrounding material and ground surface. 

A compounding problem is introduced when the geophysical methods are successful in detecting a 

grave, but the surveyor or interpreter is inexperienced in interpreting the data.  These situations can 

often lead to instances where graves are present in the dataset but are not delineated during the 

data interpretation stage, or the graves are not detected through geophysics and remain 

undiscovered until they are disturbed during excavation.  An example of this phenomenon is the 793 

individuals and associated interments not detected in a hillfort near Ranelagh, County Roscommon, 

Ireland (Delaney 2017, Murray 2017).  The misinterpretation or lack of detection of graves has a 

significant monetary impact on clients in commercial archaeology as well as ethical implications when 

it comes to recovering the human remains. 

Geophysical survey has been widely used in attempts to locate modern and archaeological unmarked 

graves and mass graves in a range of environments (Kenyon and Bevan 1977, Bevan 1991, Mellett 

1992, Unterberger 1992, Miller 1996, Eaton 1999, Davis et al. 2000, Koppenjan et al. 2004, 

Cheetham 2005).  Exploratory and controlled research surveys have proven geophysical methods 

can detect both modern and archaeological interments, dependent on environmental and 

anthropogenic factors, such as target morphology, physical and chemical properties of the fill and 

the surrounding matrix, and orientation (Gaffney and Gater 2003, Conyers 2013, Richardson and 

Cheetham 2013).  Further discussion on the detection of modern graves is provided in Chapter 

11.2.2. 

Most geophysical techniques are used in the search for modern and archaeological unmarked 

graves.  While magnetic techniques may aid in locating forensic evidence, GPR and resistivity 

techniques are suitable for detecting the moisture and soil compaction variations that result from a 

grave.  It is important to note that because detecting the skeletal remains themselves is unlikely in a 
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modern clandestine grave, and nearly impossible in an archaeological example, it is the grave cut 

and grave fill that are detected (Bevan 1991; Bladon et al. 2011).  Grave cuts are easily identifiable 

in highly stratified soil matrices (Bevan 1991; Conyers 2013).  The grave cut is often detected 

because as the grave is dug, the cut truncates the stratigraphy and the redeposited material (grave 

fill) is mixed.  The redeposited material disturbs the stratigraphy and can change the dielectric 

properties of the soil (Vaughan 1986; Bevan 1991; Bladon et al. 2011).  Doolittle and Bellantoni 

(2010), however, demonstrated that the disturbed soil redeposited in the grave shaft becomes more 

challenging to detect in homogeneous soils because the dielectric properties do not change 

significantly from the surrounding soil matrix.  Even in instances where an individual was interred in 

an untreated wooden coffin, the coffin is unlikely to cause a reflection as coffins are likely to 

deteriorate within ten years of interment in most environments (Doolittle and Bellantoni 2010).  The 

deterioration of the coffin leaves only the skeletal remains, coffin nails, and any grave goods within 

the grave cut.  There have been some instances where empty crania and thoracic cavities have 

produced individual hyperbolic reflections under optimal conditions (Damiata et al. 2013, p.273).  

However, responses from body cavities are rarely interpreted as a grave unless they form part of a 

targeted high-resolution survey following the identification of the burial ground's extent.  

Graves are not only difficult to detect due to the ephemeral physical and chemical changes that 

minimise over time, but this difficulty is often compounded by post-interment disturbance and the 

spacing between a group of graves.  Animals, plants, humans, and environmental factors can change 

or disturb the interface between the grave fill and the undisturbed soil matrix surrounding it, or 

produce a scattering effect (Conyers 2006, 2013; Nobes 2000; Vaughan 1986).  Nobes (1999) also 

identified that a tight clustering or overlapping of graves could create an overlapping diffraction 

pattern in which individual graves cannot be isolated.  However, Rial et al. (2009) later established 

that the overlapping diffractions could be minimised by using a high-frequency antenna.  As is 

customary with responses from modern services, the data can also be migrated to reduce the effects 

of tightly clustered features/anomalies. 

Ground-penetrating radar and earth resistance methods have proven to be the most successful in 

detecting graves (Gaffney and Gater 2003; Cheetham 2005; Conyers 2013; Ruffell and McAllister 

2015).  One of the earliest GPR surveys to attempt to locate graves was carried out by C.J. Vaughan 

(1986) from 1982 - 1983 in Red Bay, Labrador, Canada.  The survey was challenged by waterlogged 

soils, complicated stratigraphy, and an overburden of cobbles (Vaughan 1986; Conyers 2013).  

Despite this, the survey still proved successful in identifying disturbed soil related to the grave fills.  
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However, the grave goods and skeletal remains were still undetectable due to their low contrast with 

the surrounding matrices (Vaughan 1986). 

In their studies, NecroSearch (France et al. 1992, 1997) found that GPR was the most suitable 

technique for identifying clandestine graves in a forensic context.  The depth of their pig cadavers 

(0.51 – 0.79m) was comparable to the average depth of medieval graves below the original topsoil. 

Moffat (2015) has widely applied GPR to graves and potential cemetery sites in Australia with varying 

success due to environmental factors.  More recently, Gaffney et al. (2014) achieved promising 

results from a multi-channel GPR survey of the Cistercian Fountains Abbey, Ripon, North Yorkshire.  

The survey demonstrated a clear demarcation of the high amplitude responses from individual 

graves. 

As a result of technological developments and changing expectations much work has been carried 

out on data processing and visualisation, from the 3D visualisation of a dataset to animations that 

allow the interpreter to 'scan' through large datasets.  Following the implementation of software to 

view radargrams and timeslices, the interpretation of graves in GPR data became much more 

straightforward, making the technique more applicable to locating such targets (Conyers 2013).  

However, the ability to identify such features still lies with the interpreter.  Often this will bias the 

dataset as most geophysicists tend to focus on high amplitude responses; whereas, the responses 

of interest can often be the 'negative' areas or those with little to no reflection of the radar waves 

(Conyers 2013). 

Geological factors, an uncontrollable aspect of the survey environment, play a significant role in 

determining the potential detectability of graves and the appropriate survey parameters for 

maximising the potential to detect them through geophysical survey.  The principal disadvantage of 

using electromagnetic methods (including GPR) for archaeogeophysical survey is the variability of 

survey environments, as some subsurface materials cause high attenuation of the signal (Davenport 

2001).  It was initially thought that GPR surveys would not be suitable for clay soils, waterlogged 

soils, saltwater, or even brackish water (Conyers 2013).  However, surveys over the past 20 years 

have shown that, while there is high signal attenuation, GPR can be successfully used on clayey 

soils, waterlogged soils, and freshwater (Conyers 2013).  Conductive materials, such as volcanic 

bedrocks or saltwater, are still problematic for surveys.  Electromagnetic geophysical survey 

techniques offer high-quality data across subsurface materials like sand or gravel because they are 

low loss materials and easily penetrable by the electromagnetic waves (Simms 1995; Ludwig et al. 

2011).  
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Conversely, clays and loamy soils or highly conductive soils reduce the depth of penetration and the 

overall signal to noise ratio of data due to high attenuation (Simms 1995; Ludwig et al. 2011).  Figure 

2 shows the suitability of magnetic, electromagnetic (EMI and GPR), and resistance methods on a 

range of geologies present in Ireland, Northern Ireland, and Great Britain and shows that 

electromagnetic and resistance methods produce high-quality results on the broadest range of 

geologies.  As Ireland's bedrock geology is primarily comprised of limestone formations with clayey 

silt, clayey sand, clay, sandy clay, and silty clay soils, when not accounting for topography, GPR is 

one of the most suitable techniques for archaeogeophysical survey in the country.   

The Detection of Archaeological residues using Remote sensing Techniques (DART) project 

investigated the ability of a range of remote sensing techniques to detect archaeological features in 

challenging conditions.  The project aimed to develop "analytical methods for identifying and 

quantifying gradual changes and dynamics in sensor responses associated with surface and near-

surface archaeological features under different environmental and land management conditions" 

(Cohn 2019).  DART focused on the detection of archaeological features in geologies and soils, which 

are known to hinder the detection and interpretation of archaeological features, such as clays.  While 

several techniques were evaluated as part of the project, including quantum technology gravity 

sensors (Boddice et al. 2017) and LiDAR data (Stott et al. 2013, 2015), the evaluation most relevant 

to this research is the work undertaken by Fry (2014).  Fry (2014) investigated the effects of weather 

conditions and "difficult" geologies (clay soils) on the quality of resistivity and earth resistance data.  

The study expanded the problem of seasonality effects to specifically focus on how and why multiple 

variables (e.g. moisture content, soils) influence the detection and interpretation of electrical 

anomalies caused by anthropogenic interference.  Through a series of earth resistance, electrical 

resistivity imaging (ERI), and EMI surveys of four known archaeological features over 16 months, 

and subsequent statistical analysis of the survey data and cumulative moisture balance data, Fry 

determined that seasonality alone is not a suitable predictor for the detectability of archaeological 

features (Fry 2014, p. 189, 264). Instead, weather trends (as cumulative moisture balance) and the 

porosity of local soils are more reliable as predictors of the detectability of archaeological features 

even with the noted unpredictability in the effects of changes in weather conditions (Fry 2014, p. 264-

266). 

While the majority of southern and Northern Ireland is comprised of carboniferous limestone, 

sandstone, and shale, there are several regions of igneous bedrocks including basalts and granite 

which are less suitable for electromagnetic surveys.  The regions with volcanic bedrock or rough 

terrain provide the opportunity to determine if the model will still perform well in unfavourable 
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conditions.  The overall suitability of GPR for detecting a range of medieval monastic features in 

conjunction with the underuse of GPR in Ireland led to choosing Ireland as the first test region for the 

research project. 

 

Figure 2: Suitability of resistance, electromagnetic (GPR and EMI) and magnetic techniques for a range of local 
geologies.  N/A indicates there is no data available (adapted from Bonsall et al. 2014, p. 36) 
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Along with the geological factors, the survey parameters will have the most substantial impact on 

whether or not a surveyor can detect the expected target using a suitable technique.  National and 

international guidelines are available to provide guidance on choosing the appropriate geophysical 

method, survey resolution, and data processing methods.  However, while these guidelines provide 

accurate and suitable advice for surveyors and novices, the text format of the guidelines does not 

encourage their everyday use.  As more local, amateur archaeologists try to incorporate geophysical 

survey into their projects, it is crucial to provide them with clear, accessible guidance on how to survey 

appropriately in a given set of conditions to minimise the risk of obtaining poor quality data.  As 

previously established by Conyers (2013), GPR surveys are one of the most difficult to carry out, and 

the acquired datasets require more training and experience to interpret than most techniques.  

Therefore, it is necessary to improve the data collection process in order to improve the interpretation 

of the data.  No one, geophysicist or amateur archaeologist, is immune to making survey or 

interpretation errors, especially with a complicated technique such as GPR.  However, these errors 

can be minimised by implementing an interactive, input-output format for existing survey guidelines.  

An interactive approach to determining the appropriate survey parameters will hopefully encourage 

more practitioners to seek guidance before surveys and improve data quality.  

The critical survey parameters (the traverse and sampling intervals) also affect survey results; 

however, these are easily adaptable for most techniques.  Intrinsically, to increase the likelihood of 

detecting a target, the traverse interval should be no more than half the minimum dimension of the 

target(s), preferably without sample bias in any one direction, with minimal interpolation between data 

as well as an adequate characterisation of the background material to differentiate between the target 

and background responses (Green and Cheetham 2016; Green and Holmes 2017). From this, an 

interactive guidelines model for determining appropriate survey parameters while accounting for 

factors including local geology, presence of modern anthropogenic activity, weather conditions, land 

use, has the potential to enhance data collection methods which in turn will improve data 

interpretability (David et al. 2008a; Bonsall et al. 2014; Schmidt et al. 2015). 

Further to this, introducing a computational approach into the interpretation process has the potential 

to reduce human error and improve the rate of identifying true positive results.  In adapting existing 

computational geometry algorithms and machine learning libraries to classify responses in GPR data 

automatically, processing and interpretation speed are, in most cases, increased, and interpretation 

becomes more accurate as the intra- and inter-observer error is reduced. 

Aside from not being detectable, graves are often overlooked in a dataset for several reasons, e.g. 

magnitude of the response, size of the dataset, and experience of the archaeologist.  Overlooking or 



Chapter 1:  Introduction 

8 
 

misinterpreting grave-related responses can have severe impacts on commercial projects, 

particularly on the cost and timescale.  By identifying potential graves present on a site prior to the 

start of the excavation stage of an investigation, archaeologists and the client(s) can prepare a 

strategy for dealing with the remains or mitigating the impact on them.  While the magnitude and 

morphology of responses in a dataset may be indicative of inhumation(s), they may not be interpreted 

by many geophysicists as the responses of many archetypical interments are similar to those of other 

small-scale ground disturbances.  Incorporating geophysical, spatial, and remote sensing data allows 

for the creation of an information system that can be used by the commercial sector and forensic 

archaeologists to detect interments during the pre-excavation stage of an investigation, thus 

maximising the potential for the recovery of human remains.  By eliminating the subjective human 

factor in data analysis, the effectiveness of the program can be determined and present a more 

objective, thorough interpretation. 

1.2. Assessment of the ‘Expert’ – Rationale for a Machine Learning Approach 

Studies of machine learning and professionals in other fields, e.g. medicine, have shown that 

machine learning can assist and out-perform experts in data interpretation.  Tschandl et al. (2019) 

compared the accuracy of human experts and machine learning methods in classifying pigmented 

skin lesions in dermatoscopic images.  In comparing the responses from 511 medical professionals 

against those from the top three highest performing machine learning algorithms, Tschandl et al. 

(2019, p. 938) found that the machines out-performed the human interpreters.  When compared with 

all respondents, the machines predicted an average of 2.01 more correct diagnoses than the 

humans.  When compared with the responses from experts with more than 10 years of experience, 

the machines predicted an average of 6.65 more correct diagnoses than the experts (Tschandl et al. 

2019, p. 938).  Other studies, such as that carried out by Olczak et al. (2017, p. 584) on the 

classification of radiographs, which used outdated machine learning networks found that experts and 

the machine learning algorithm achieved similar accuracies on classifying fractures – 83% for the 

machine and 82% for the experts.  

The state of human-led interpretation of graves in GPR was briefly assessed in this research project 

through a questionnaire.   The questionnaire was distributed to individuals who were experienced in 

GPR survey in order to create a baseline evaluation of the agreement between multiple human 

interpreters without the potential for inexperienced surveyors and non-geophysicists to skew the 

results.  The questionnaire was limited by the rage of data available that could be widely shared and 

the limits of the survey hosting platform.  The questionnaire aimed to determine if human interpreters 
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would provide the same interpretations of the data, and subsequently if they were able to correctly 

identify responses from graves in GPR data as well assess their confidence in their interpretations.  

The interpretation and its confidence are also measured by the Reilig for Radargrams app during its 

interpretation of images, making the human- and machine-led interpretation comparable.  The results 

of the machine learning interpretation are in Chapter 8.2. 

1.2.1. Participant Characteristics 

The target population for the questionnaire was surveyors currently working primarily with GPR data 

and experts in GPR data collection and interpretation.  The restriction of the population reduced the 

possibility of extraneous responses which might have skewed the outcome of the questionnaire.  

Responses were anonymised and cannot be traced back to a specific participant, only the ‘years’ 

experience’ class.  These restrictions limited the sample size and the analysis that could be 

performed on the responses. 

10 responses were received from individuals with a range of experience levels.  The majority of 

participants (n=6, 60%) had more than 10 years’ experience in GPR survey.  All participants had at 

least one year of experience in GPR survey. 

 

 

Figure 3:  Distribution of participants’ years of experience in GPR survey with most participants having more than 10 
years of experience. 

Participant experience was almost evenly distributed between commercial and research geophysics.  

A majority of the participants (90%) had experience in both commercial and research geophysics. 
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Figure 4:  Distribution of participants' experience with GPR in commercial and research settings, showing that both 
feilds are represented. 

1.2.2. Data Visualisation Methods 

Participants were asked which methods they use to visualise GPR data for interpretation.  The 

majority of participants used both timeslices and radargrams when interpreting data, with 60% of 

participants using animations (either of radargrams or timeslices) as well.  No participants were using 

more sophisticated methods of data visualisation to interpret GPR data.  One participant uses an 

“envelope of timeslices, and usually no more sophisticated processing…” to visualise GPR data. 

 

Figure 5:  Distribution of participants' preferred visualisation methods for GPR data  
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1.2.3. Interpretation 

Participants were presented with two radargrams and two timeslices to interpret.  Each image was 

divided into four quadrants (labelled A – D).  Participants were asked to identify whether there was 

no grave, a grave, or multiple graves present in each quadrant.  The responses for each image are 

presented in Figure 6 - Figure 13.  Grave responses are present in Radargram 1 Quadrant B, and 

Radargram 2 Quadrants A and C. 

 

Figure 6:  Distribution of all participants' interpretation of graves in Radargram 1 

 

Figure 7:  Distribution of all participants' interpretation of graves in Radargram 2 
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Participants were in total agreement, defined here as all participants providing the same response, 

on the interpretation one radargram quadrant (Radargram 2, Quadrant D).  As demonstrated by the 

responses in Figure 6 and Figure 7, aside from Quadrant D in Radargram 2, while there were varying 

levels of agreement between participants, there was no total agreement between participants on the 

presence of graves in each radargram.  When the responses from those participants with more than 

10 years of experience in GPR survey are isolated, as shown in Figure 8 and Figure 9, total 

agreement amongst participants increases to two quadrants in Radargram 2 (25% of radargram 

quadrants).  

 

Figure 8:  Distribution of the interpretation of graves in Radargram 1 by participants with more than 10 years of 
experience in GPR survey 

 

Figure 9:  Distribution of the interpretation of graves in Radargram 2 by participants with more than 10 years of 
experience in GPR survey 
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Participants agreed more on the interpretation of the timeslice examples.  There were no quadrants 

in which all participants were in total agreement on the interpretation of the presence of graves; 

however, there was less variation for each quadrant, as demonstrated in Figure 10 and Figure 11. 

Participants gave the most correct responses for Radargram 2 Quadrant D. 

 

Figure 10:  Distribution of participants' interpretation of graves in Timeslice 1 

 

Figure 11:  Distribution of participants' interpretation of graves in Timeslice 2 
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As demonstrated in Figure 12 and Figure 13, when participants with less than 10 years of experience 

are removed the number of quadrants in which the participants are in total agreement on the 

interpretation increases to two.   

 

Figure 12:  Distribution of the interpretation of graves in Timeslice 1 by participants with more than 10 years’ experience 
in GPR survey 

 

Figure 13:  Distribution of the interpretation of graves in Timeslice 2 by participants with more than 10 years’ experience 
in GPR survey 
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The lack of consensus among participants in interpretation of the radargrams and marginal 

improvement in the interpretation of the timeslices is a further indication of the need for a method for 

cohesive and quantifiable interpretation of GPR data. 

1.2.4. Confidence in Interpretation 

Alongside their interpretations, participants were also asked to rank their confidence in their 

interpretation for each quadrant in an image.  Participants were able to indicate a low, medium, or 

high confidence in their interpretation.  As demonstrated by Figure 14 - Figure 17, participants 

indicated they had low confidence in the majority of the interpretations.  It should be noted, however, 

that this low confidence could be a result of the amount of data they were provided with and if it was 

processed or plotted different from their usual methods. 

 

Figure 14:  Distribution of participants’ confidence in their interpretation of quadrants in Radargram 1 
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Figure 15:  Distribution of participants’ confidence in their interpretation of quadrants in Radargram 2 

 

Figure 16:  Distribution of participants’ confidence in their interpretation of quadrants in Timeslice 1 
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Figure 17:  Distribution of participants’ confidence in their interpretation of quadrants in Timeslice 2 

When the responses from participants with less than 10 years’ experience are excluded from the 
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Figure 18:  Confidence of participants with more than 10 years of experience in interpreting Radargram 1 and 
Radargram 2 

 

Figure 19:  Confidence of participants with more than 10 years of experience in interpreting Timeslice 1 and Timeslice 2 
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1.3. Aims and Objectives 

1.3.1. Aims 

Responses from graves in GPR data are often misinterpreted or overlooked by human interpreters.  

While this can negatively impact commercial archaeology companies and their clients as skeletal 

remains exponentially increase the cost of a project, there is also an ethical issue surrounding the 

disturbance of human remains.  The overall aim of this project is to produce digital tools to improve 

data acquisition and interpretation of graves in archaeological GPR surveys to improve the rate of 

the pre-excavation detection of graves.  This work is framed with relevance to the use of digital tools 

in commercial archaeology and community groups in Ireland and the UK, 

1.3.2. Objectives 

• Assess the appropriateness of current practices for the identification and interpretation of 

graves in GPR data; 

• Develop an interactive decision-making tool for determining appropriate survey parameters 

for surveys in Ireland and the UK from existing guidelines; 

• Develop input-output user-friendly automatic classification software for detecting and 

probability-scoring grave-like responses in GPR data; 

• Apply machine learning to a range of sites in Ireland (five study areas); 

• Assess the potential impact of the developed tools on commercial archaeogeophysics; 

• Test the ability to develop a training dataset for standard modern clandestine burial practices; 

• Assess the potential impact of the computational tools on geophysics applied in a forensic 

context. 

1.4. Contribution to Knowledge 

It is the aim that the research project and its outputs will contribute towards the improvement of the 

standard of archaeogeophysical survey and data interpretation as well as towards understanding the 

potential and challenges of detecting burials.  As such, this research demonstrates that choosing the 

most appropriate survey parameters play a vital role in determining the detectability of burials, and 

therefore data should be collected systematically at the highest density possible within the means of 

each project.  By integrating computational tools in archaeogeophysical surveys where GPR is a 

significant component, there is the potential to reduce the modern impact on archaeological skeletal 

remains as well as the monetary impact on commercial clients.  Most importantly, and at the most 
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basic premise, the research aims to improve the confidence, consistency, and speed of interpreting 

GPR data. 

1.5. Thesis Format 

This thesis is comprised of an introductory chapter which details the research agenda, its 

components, the background to the research project, and the real-world implications of the research 

outputs. 

Following the introduction are three chapters detailing relevant literature and background to the 

geophysical survey component of the project.  Chapter 2 provides analysis and collation of the 

historic and excavation records for medieval burial practices in Ireland and the UK.  From this 

discussion, Chapter 3 includes a discussion on the current survey guidance for the UK and Ireland 

and how their use can be encouraged to improve data quality and the detection of graves.  Chapter 

4 provides a detailed overview on the principles of the techniques often used in archaeogeophysics 

(as discussed in Chapter 3), with a particular focus on GPR, as well as their applications, limitations, 

data formats, and how these affect the detectability graves and grave goods using each technique. 

From this, Chapter 5 outlines the methodology for the interactive survey parameters tools created 

and their preliminary use. 

Chapters 6 - 8 are dedicated to machine learning. 

Chapter 6 outlines current machine learning methods and their established applications to 

archaeological and geophysical data. 

Chapter 7 outlines the methods used to create the neural network and machine learning algorithms.  

This chapter also compares the suitability of the eight pre-trained models tested using the GPR 

dataset. 

Chapter 8 outlines the methods used to collect and interpret the data from case study surveys and 

compares the human-led interpretation methods with the machine-led interpretations.  This chapter 

also includes analysis of the results from the automatic classification software, Reilig, and the 

performance of the system compared to the performance of archaeogeophysics professionals, as 

well as the results from the case study surveys 

Chapter 9 includes additional preliminary tests on proxies for modern clandestine graves in GPR 

data. 
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Chapter 10 continues the discussion on the feasibility of applying the tools created in the project to 

commercial and research geophysics, as well as to forensic investigations, with particular focus on 

how real-world scenarios may affect the performance of the machine learning models. 

Chapter 11 presents the overall conclusions, including the outputs and outcomes from the research 

and proposed future work. 
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2. ARCHAEOLOGICAL BACKGROUND 

2.1. Introduction 

The focus of this project is on the improvement and interpretation of geophysical data, primarily how 

machine learning approaches can be applied in “real-world scenarios.”  To explore these 

applications, the targeted archaeological features must first be discussed in context.  Initial 

applications of machine learning in the project were limited to medieval graves as these are the most 

commonly encountered in commercial archaeology (Advisory Panel on the Archaeology of Burials in 

England 2017).  However, discussion on the later application of machine learning to modern graves 

is provided in Chapter 9 and Chapter 11.2.2. 

Burial traditions in Western Europe can often be explored together; however, the factors that 

influence burial styles, such as the arrival of new cultural groups or political mandates, vary across 

the region.  There is a vast record of archaeological knowledge in Ireland due to the excavation and 

recovery strategies used in commercial archaeology over the last 30 years, as well as the presence 

of in situ remains across the country.  While it could be argued that the surviving archaeology in 

Britain is less substantial than in Ireland due to development practices, the excavation records and 

presence of upstanding archaeology in Cornwall and South Wales demonstrate similarities in 

lifestyle, burial practice, and, at one point, language.  As geophysical survey methods have proven 

capable of detecting medieval archaeological features and there is a wealth of information on these 

features, this research project was limited to burial styles of the medieval period, primarily in Ireland 

but with several similar examples from Britain. 

2.1.1. Chronological Divisions 

This study, which only aims to determine the viability of machine learning, focuses on common 

medieval grave types in Ireland and the UK.  The timescales for the medieval period in Ireland and 

England are similar, with some minor transition differences due to variances in the political climate 

(see Figure 20).  The timescale for the medieval period in Ireland and the UK is similar, with some 

minor transition differences due to variances in the political climate.  While there is evidence for some 

overlap in burial traditions between phases, categorical burial styles can be associated with specific 

phases during the medieval period.  It is also important to note that the minor discrepancies in the 

structure of the general population and the transition phases between periods in Ireland and Northern 

Ireland, England, and Scotland also led to minor variations in the burial practices of the countries.   
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While there is evidence for some overlap in burial traditions between phases, categorical burial styles 

can be associated with specific phases during the medieval period.  It is also important to note that 

the minor discrepancies in the structure of the general population and the transitions between 

historical periods in Ireland and England also led to minor differences in the burial practices of the 

two countries.  The typological burial practices for each country are discussed hereafter.  The 

morphological and conductive properties for each typology used to create the training dataset and 

as classifiers are discussed in this chapter as well as Chapter 4. 
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Figure 20:  Timeline of events and periods relevant to changes and variation in burial style (adapted from Barry 2003, 
Duffy 2005a, 2005b, Horning et al. 2007, Waddell 2010, Historic England 2019) 

2.2. Archaeology of Ireland 

Activity in medieval Ireland cannot be analysed irrespective of earlier activity in the Iron Age and 

Early Christian period as the political climate, landscape changes, and external influences impact 

later societies, politics, and economies.  Even as a relatively remote island, the inhabitants of Ireland 



Chapter 2:  Archaeological Background 

25 
 

had contact with Central Europe (Hallstatt culture) and the Mediterranean (La Tené) before the early 

medieval period.  They yet remained politically divided amongst themselves (Stout 2018).  Early 

written records by the Irish stress that the island was divided into northern and southern halves along 

glacial ridges formed between the two Áth Cliath (modern Dublin and Galway).  The northern half, 

Leth Cuinn, was the territory of Conn, and the southern half, Leth Moga, was Mug/Mog’s territory 

(Stout 2018).  These dynasties are later recorded in 6th century records.  The northern and southern 

halves were further divided into five cóiceda (modern: cúigí), or provinces – Ulaid, Uí Néill, Connacht, 

Mide, Laigin, and Mumu (Stout 2018).  The approximate boundaries of these cóiceda are presented 

in Figure 21. 
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Figure 21:  Map depicting cóiceda boundaries from c. 250 BC to 1167 AD (adapted from Stout 2017) 

Around 300 AD landscapes throughout Ireland began to shift from woodlands to arable land and 

pasture, with a marked increase in agricultural activity.  This shift was likely a direct result of the 

Roman impact on Ireland, mainly through contact with Roman Britain, which introduced new farming 

technologies, and subsequently foods, to the island.  Irish raids on Britain, however, proved that some 

classes in Pre-Christian Ireland were literate.  Ogam (also ogham), a twenty-letter alphabet created 

using intersecting lines (depicted in Figure 22), was initially used in Irish settlements in Britain to 

inscribe Irish names on stones, similar to that of Romano-Britain Latin inscriptions (Stout 2018).  Later 

ogam spread into Ireland through Wales, where it was used to inscribe boundary-marking standing 
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stones and, eventually, ecclesiastical sites (Bhreathnach 2010).  A number of these ogam stones are 

associated with burial grounds, indicating burial areas into the early medieval period. 

 

Figure 22:  Ogam alphabet used to inscribe boundary-marking standing stones and stones to indicate ecclesiastical 
sites  

2.2.1. Early Medieval Ireland 

The beginning of the early medieval period in Ireland is marked by the pope’s appointment of the first 

bishop in Ireland, Palladius, in AD 431.  However, the spread of Christianity throughout Ireland is 

more often attributed to Patrick, a slave later becoming the patron saint of Ireland, as there is no 

evidence for Palladius in Irish records (Stout 2018).  The temporal spread of Christianity throughout 

Ireland is evidence by place names and the annals.  Before AD 500, the concentration of Christianity 

is demonstrated by the number of churches with the domnach place name; domnach being the Old 

Irish word for ‘the Lord’s Place’ (from the Latin dominicum) (Stout 2018).  Once the domnach place 

name went out of use, the annals demonstrate a rapid expansion of the Church, with the entire island 

becoming Christian by AD 700, as represented by the foundation dates of the churches shown in 

Figure 23 (Stout 2018).  Until the ninth century, churches were timber-built structures; however, the 

‘burning’ churches noted in the annals during the Viking raids contributed to the transition to stone 

churches (O’Sullivan et al. 2014, Stout 2018).  The earliest documented stone church is Duleek 

(Damliac – ‘house of stones’) in County Meath. 

Pre-Romanesque churches, such as Clonmacnoise in County Offaly, built around the tenth century 

were simple rectangular buildings with proportions between 1.3:1 and 2:1 and ‘antae’, a projection of 
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the side walls beyond the end walls (Stout 2018).  Later in the 12th century churches, such as St 

Peter’s Church in Waterford, were built with a rounded extension at their eastern end, similar to 

churches southern England at the time.  Churches again changed style in the 12th century to the 

Romanesque style, a reflection of the Church reform at the time, which was typified by rounded 

arches and decorated mouldings (Stout 2018).  This reform is reflected in the increased number of 

monasteries built in the 1140s.  There was a shift in monastery styles in the 12th century as well with 

the arrival of the Cistercians, where monasteries became more isolated and estate-like to reflect the 

lifestyle demanded by the Rule of St Benedict (Stout 2018).  The Rule of St Benedict required that in 

addition to the monks’ daily prayers, they should practice farming or other forms of manual labour.  

The early medieval period ended in 1169 with the Anglo-Norman Invasion; however, the 1188 Annals 

of Ulster demonstrate many early medieval practices continued (Stout 2018). 
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Figure 23:  Approximate location of churches founded by AD 700 (adapted from Stout 2018) 
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2.2.2. Medieval Ireland 

From the 12th century, churches and monastic building complexes followed a claustral plan – a layout 

which placed the cloister centrally, enclosed by the buildings.  This layout places the church on the 

north or south side of the cloister with the refectory on the opposite side to the church and the chapter 

house and dormitories within the east range of buildings (Duffy 2005b).  The first implementation of 

this plan in Ireland was at Mellifont Abbey in 1142 and continued until the Dissolution in 1536 (De 

Paor et al. 1969, Duffy 2005b).  Monastic houses were primarily friaries (communities of brothers), 

with many the remaining houses being priories (communities presided over by priors/prioresses), 

and an exceedingly small minority being abbeys (communities presided over by abbots/abbesses) 

(Duffy 2005b).  Abbeys and priories during the 12th – 13th centuries were primarily associated with 

Augustinian canons and Cistercian monks.  Augustinian priories frequented urban areas as they 

required minimal space, were in Ireland at the time of colonisation and undertook pastoralism (e.g. 

animal husbandry and gardening) (Duffy 2005b).  While the Augustinians and Cistercians comprised 

many abbeys and priories, there were other orders including one house of Cluniac monks founded 

by Tairrdelbach Ua Conchobair before his death in 1156, several houses of Premonstratensian 

canons, and one house of Carthusian monks (Bartlett and Jeffery 1997, Duffy 2005b).  There were 

fewer Benedictine houses in Ireland than there were in England at the time; however, two notable 

Benedictine houses are the 12th century de Lacy founded a house at Fore, County Westmeath, and 

the Priory of St Peter in Athlone (Duffy 2005b). 

Friaries were introduced to Ireland during the early part of the 13th century.  Like the abbeys and 

priories, friaries were laid out in a claustral plan, the slight difference being that the church was to the 

south of the cloister and the refectory to the north.  These clusters of buildings were then often 

surrounded by granges and precinct boundary (Duffy 2005b). 

The changes in architectural styles with the introduction of monastic orders in Ireland is reflected in 

the change in burial style.  Each order was responsible for burying their dead, commonly within their 

precinct boundaries.  Some orders, such as the Dominicans, would often settle outside the town 

boundaries near the town cemetery.  These settlement patterns help identify the potential for graves 

in a geophysical survey as the easily detected features related to the monastic settlement will indicate 

that a burial ground is likely to be in the vicinity of the site. 

2.2.3. Burial Practices 

Early medieval graves were often oblong or subrectangular simple earthen dug graves with the 

individual in an extended supine position orientated west-east (head to the west).  The trend seen 
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across Ireland is shallow inhumations approximately 0.1-0.2m below the original ground surface 

(Bhreathnach 2010, Corlett and Potterton 2010, Cahill and Sikora 2011, O’Sullivan et al. 2014).  In 

some instances, stones were added to the grave as a stone slab, stone lining, lintels, pillow stones, 

or foot stones (Corlett and Potterton 2010, Cahill and Sikora 2011, O’Sullivan et al. 2014) Ogham 

stones were used as grave markers on many occasions (Bhreathnach 2010).  Ancestral burial 

grounds such as those in use during the Iron Age remained in continuous use into the medieval 

period (see Cloghermore Cave, County Kerry, Knoxspark, County Sligo, and Millockston, County 

Louth) (Corlett and Potterton 2010, O’Sullivan et al. 2014).   

There is, however, a distinct transition from the geinti (non-Christian) burial practices to the Christian 

burial practices that continued into the later medieval period (Bhreathnach 2010).  As cemeteries 

became focussed around the church and Christianity took hold as the prevailing religion, the 

preference for west-east aligned burials became common across Ireland and the rest of Europe 

(Duffy 2005b, Bhreathnach 2010, O’Sullivan et al. 2014).  It is suggested that the transition from 

Paganism to Christianity was a slow, complicated process in which there was regional variation in 

the timescale of the adoption of Christianity (O’Sullivan et al. 2014).  Non-Christian Viking burials still 

occurred in Ireland during the early medieval period up until the 10th century.  These burials were 

distinguished by the grave goods that accompanied them.  In the later medieval period, following the 

Anglo-Norman Invasion, graves were often more ornate.  Organised cemeteries start to arise, and 

there is an increase in the use of stone as both grave markers and burial containers.  Stone-lined 

graves are widely represented; less often, stone cists or stone-lined graves with cover slabs were 

used.   

Based on archaeological evidence, multi-individual inhumations were rare, but when they did occur, 

they most often contained an adult and a juvenile (Corlett and Potterton 2010, Cahill and Sikora 

2011).  Individual juveniles were buried outside the consecrated ground in cillíní, which were often 

located in pre-existing monuments such as ringfort. 

Following the Anglo-Norman invasion, there was a trend to mark graves with effigies or coffin-shaped 

floor slabs for tombs.  An individual’s burial location within the cemetery, and the method of deposition 

often varied by status or sex (Bhreathnach 2010).  Those of a higher status received ornate burials, 

often in stone cists or tombs near or within the church, while poorer individuals were buried in wooden 

or stone coffins in the main cemetery.  These primary burial types can be characterised by their size, 

shape, and depth, making it easier to interpret them in geophysical data. 
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Morphological characteristics of medieval Irish graves have been derived from the National Museum 

of Ireland’s compilation of burial excavations and osteological reports (Cahill and Sikora 2011).  The 

author compiled the excavation records for relevant grave types and used them to determine the 

average grave size characteristics.  These characteristics are detailed in Table 1 as well as illustrated 

in Figure 24.  Some grave types were not discussed in Cahill and Sikora (2011), yet still may be 

encountered in geophysical survey data.  As such, stone-lined graves, truncated unlined graves, 

shroud burials, and kinship/multiple inhumations are illustrated in Figure 24.  The morphological 

characteristics of these grave types are based on the author’s excavation experience. 

Table 1:  Morphological characteristics of medieval Irish graves (adapted from Cahill and Sikora 2011) 

Type Sample 

Size 

Average 

Length 

Average 

Width 

Average 

Depth 

Lintel 23 1.895m 0.42m 0.295m 

Cist 5 1.69m 0.40m 0.27m 

Unlined (Simple) 42 1.8m 0.67m 0.27m 

Slab-lined 3 1.58m 0.88m 0.40m 

Pit 6 1.94m 0.87m 0.33m 

Later Medieval Simple 1 - - 0.3m 

Later Medieval Pit 1 0.7m 0.7m 0.3m 

Later Medieval Coffin 2 1.775m 0.525m 0.45m 
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Figure 24:  Illustrations of common Irish medieval grave types  



  

 

Further to this, there is an extensive record of burials on the National Monuments Service database 

and Historic Environment Record.  The prehistoric – post-medieval burial records for the National 

Monuments Service are shown with geographic distributions in Figure 25.  A number of these burial 

records have corresponding excavation reports; as such, these burial records were compared with 

the associated excavation report to achieve a full characterisation of the burial.  The full 

characterisation was used to inform subsequent simulations of GPR data during the creation of the 

machine learning training dataset.  A review of these monument and excavation records by the author 

identified that upstanding remains in the vicinity of the study area are reliable indicators of high 

potential for graves within the study area.  Figure 25 demonstrates the prevalence of burials 

throughout Ireland.  In particular, the higher prevalence of simple graves (‘Burial’) and burial grounds.  

Pit burials were excluded from the machine learning training dataset due to their low prevalence. 
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Figure 25:  Distribution of the burial records on the National Monuments Service Database classified by typology (these 
include prehistoric – post-medieval burial types) 
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Burials may sometimes be marked with headstones, ogam stones, or grave slabs.  In this case, the 

extent of the grave still requires delineation.  However, development projects often avoid areas of 

marked burials; instead, they are more likely to encounter unmarked burial grounds or deserted 

medieval villages.  The examples of churches included hereafter are representative of the ideal 

survey area and indicative of the structures or foundations that are likely to be detected through large-

scale geophysical survey and suggest the further need for targeted high-resolution survey necessary 

for identifying graves.  Examples of modern upstanding remains of churches and monastic buildings 

are provided in Figure 26 - Figure 29 to demonstrate the range of architectural styles and burial types.  

Figure 28 and Figure 29 also demonstrate the later use of medieval burial grounds into the post-

medieval and modern periods. 

 
Figure 26:  Remains of the bell tower of Augustinian St Mary's Abbey in Trim, Co Meath (locally referred to as the 

Yellow Steeple).  (Image copyright retained by author) 
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Figure 27:  Remains of the Augustinian monastery Clonmacnoise near Shannonbridge, Co Offaly.  Grave markers and 

grave slabs are still visible on the ground surface.  (Image copyright retained by author) 

 

 
Figure 28:  Medieval and Post-medieval remains of St Brendan's Church on the site of St Brendan's monastery on 

William's Street, Birr, Co Offaly.  Grave markers and lintels are still in situ.  (Image copyright retained by author) 
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Figure 29:  Romanesque-style church and nearby Holy Well dedicated to St Molua in Roscomroe, The Leap, Co Offaly.  

Possible medieval grave markers and modern headstones are still in situ.  (Image copyright retained by author) 
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3. GEOPHYSICAL SURVEY GUIDANCE FOR TERRESTRIAL SURVEYS 

3.1. Introduction 

GPR is one of the least common techniques used in commercial and research archaeogeophysical 

surveys, and the datasets produced amongst the most difficult to interpret.   As such, there is a 

pressing need to create software to assist geophysicists in interpreting this type of data.  Figure 30 

shows the effectiveness of conventionally used geophysical survey techniques in detecting a range 

of common archaeological features.  The chart documents GPR’s superior potential to detect graves 

successfully.  Bonsall et al. (2014a) identified that, on average, magnetometry, earth resistance, and 

EMI have a poor-fair detection rate for inhumations; while, GPR has a fair-good detection rate for 

inhumations.  For stone coffins or cists, GPR has a reasonable detection rate, followed by EMI and 

earth resistance which have a fair-good detection rate.  There were no data available on GPR’s ability 

to detect cremations; however, it is likely that even though magnetometry’s detection rate is only fair, 

it would be the most suitable detection method due to the burning of the remains. 
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Figure 30:   Detectability of modern objects and archaeological features with GPR, EMI, earth resistance, and 

magnetometry.  N/A indicates there is no data available (adapted from Bonsall et al. 2014) 
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3.2. Established Survey Guidance 

Guidelines for conducting archaeological geophysical surveys have been established at international 

and national levels.  Guidance documents provide information regarding the most suitable survey 

techniques, instrument settings, and survey resolution for common archaeological features, 

geologies, and soils.  The guidance provided is based on numerous studies on the detectability of 

archaeological features and effects of geologies and moisture content on survey data since the 

inception of archaeogeophysics.  While the three primary sources for survey guidance (David et al. 

2008a, Bonsall et al. 2014, Schmidt et al. 2015) recommend similar values, national guidelines offer 

methods and techniques guidance for mitigating for uncontrollable factors such as geology, nature 

of the potential archaeology, and modern activity on a site.  This guidance is particularly important 

as some impeding factors may be region specific and used by agencies at several scales. 

3.2.1. European Archaeological Council (Europae Archaeologiae Consilium) 

The European Archaeological Council established a set of guidelines for geophysical prospection in 

archaeology in 2015 (Schmidt et al.).  These guidelines outline the most suitable techniques for the 

most common targets, controllable factors, and uncontrollable factors encountered during surveys in 

Europe, with a slight focus on the UK as they are adapted from Historic England’s guidance (David 

et al. 2008a).  The recommended survey parameters for common techniques used in 

archaeogeophysical survey are in Table 2.  As these recommendations by Schmidt et al. (2015) are 

reasonably text-based and inaccessible for some non-professional geophysicists, the text has been 

summarised in Table 2.  These guidelines are quickly becoming the most commonly used.  They are 

a suitable standard for all large-scale European surveys.  However, where high loss geologies are 

present or ephemeral targets are the focus of the survey, local or regional guidance should also be 

consulted.       
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Table 2:  A summary of the recommended survey parameters for European surveys (adapted from David et al. 2008a; 
Schmidt et al. 2015) 

TECHNIQUE EVALUATION 

(Reading x Traverse) 

CHARACTERISATION  

(Reading x Traverse) 

Earth Resistance 1m x 1m 0.5m x 1m  

**Graves:  0.5m x 0.5m 

Electromagnetic (EMI) Slingram:  1/3 of the coil 

separation 

Time-domain:  1/3 of the coil size 

Slingram:  1/3 of the coil 

separation 

Time-domain:  1/3 of the coil size 

EMI for Geomorphology 5m x 5m - 

GPR 0.05m x 0.5m 0.05m x 0.25m 

**Graves:  0.05m x 0.25m 

Magnetometry 0.25m x 1m 0.25m x 0.5m 

Topsoil Magnetic Susceptibility 10m x 10m - 

3.2.2. Historic England 

Historic England (formerly English Heritage) established guidelines for the minimum resolution and 

guidance for choosing suitable techniques for archaeogeophysical surveys for England (David et al. 

2008a). Table 2 also summarises the recommended survey strategies for a range of geophysical 

survey techniques as detailed in the decision table provided by David et al. (2008a).  The suggested 

survey parameters are suitable for detecting a wide range of anomalies and even suggest suitable 

techniques based on soil types and the intended target.  The parameters for evaluation surveys are 

often used in commercial geophysical surveys where timescales are short and have proven 

successful in detecting large- and small-scale features.  However, as of June 2018, these guidelines 

have been superseded by the European Archaeological Council guidelines (Schmidt et al. 2015). 

3.2.3. Ireland 

In 2014, Transport Infrastructure Ireland (TII, formerly the National Roads Authority) produced 

guidelines for geophysical surveys of road corridors in Ireland (Bonsall et al. 2014).  Bonsall et al. 

(2014a) make a case for the adoption of regional guidelines, rather than following the UK guidelines 

(David et al. 2008a).  Due to the difference in bedrock geology, for example, the lack of chalk geology 

and presence of large areas of Carboniferous limestone in Ireland, Bonsall et al. (2014a, p. 34) stress 

that “the strategic response of surveys on these challenging Irish soils should not necessarily follow 

the English (or UK) model.”  It was also necessary to create guidance separate from those provided 

in the UK due to the nature of land cover Ireland.  As in the UK, the most widely applied technique 

for large-scale survey is magnetometry.  However, supplemental EMI or earth resistance surveys are 

also recommended. 
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The island (including Ireland and Northern Ireland) is comprised primarily of pasture, bog, and 

cultivated land.  Uneven terrain in the west of Ireland can also impede survey quality and completion 

time as walking speed is hindered across the terrain.  Also unlike the UK, the bedrock geology is 

largely Carboniferous limestones with some regions of concentrated igneous geologies as 

demonstrated by Figure 31, overlain by tills and, in some regions, peat.  Soils, local geology, and 

land cover can all impact the effectiveness of magnetic techniques and, to an extent, electromagnetic 

techniques and therefore should be examined on a case by case basis.   

Fluxgate gradiometers respond poorly to alluvium, colluvium, silts, sands, and gravels.  The drift 

geologies overshadow archaeological features, and it becomes difficult to discern the archaeological 

features from the surrounding geology.  In these instances, using a narrower traverse interval has 

the potential to improve the clarity of any archaeological features against the surrounding geology.  

Bonsall et al. (2014, p.39) identified that igneous geologies (e.g. basalt, diorite, granite, dolerite) 

create strong magnetically enhanced thermoremanent anomalies.  Where the geology is near the 

ground surface without sufficient overburden, it creates widespread strong dipolar responses that 

obliterate any underlying features.  In other instances, anomalies caused by the igneous geology 

may be misinterpreted as anomalies caused by anthropogenic interference.  For example, Bonsall et 

al. (2014, p.39) provide an example of glacial erratics derived from igneous materials which could 

easily be misinterpreted as positive or dipolar anomalies associated with archaeological features 

such as hearths or in-filled pits. 

Conversely, gradiometers respond very well in till (boulder clays) where other techniques such as 

GPR do not.  The largest impact on electromagnetic techniques, including both GPR and EMI, are 

“noisy” volcanic geologies.  GPR, especially, responds poorly on basalt and other igneous geologies 

where there is not suitably thick topsoil or overburden.  Where the bedrock is near the ground surface, 

archaeological features cannot be discerned from the noise produced by the bedrock.  However, 

because these geologies comprise only a small portion of Ireland (as demonstrated in Figure 31) and 

are constrained to small regions, electromagnetic techniques are widely applicable across Ireland.  

The ability to employ these techniques, which are most suited for detecting graves, can improve the 

detection and interpretation of graves before excavations if implemented correctly. 

Bonsall et al. (2014a) clearly outline the effects of bedrock and superficial geologies on survey data 

and the suitable survey methodologies for reducing the impact of geologies and soils on the 

interpretability and quality of the survey data.  As geology is one of the most limiting factors in 

geophysical survey, Bonsall et al. (2014a) provide guidance for the appropriate survey techniques 

based on the thickness of soils overlying the natural geology.  This detail on the effects of geologies 
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on geophysical data is especially important due to the negative impacts some geologies can have 

on the detectability and interpretability of archaeological features as noted by both Bonsall (2014) 

and Fry (2014). Table 3 details the effects of igneous, metamorphic, and sedimentary bedrock 

geologies on geophysical techniques and how to overcome or counterbalance these effects.  

Additionally, Table 4 details the effects of the common superficial bedrocks in Ireland on geophysical 

data.   The advice presented in Table 3 and Table 4 further demonstrates that electromagnetic 

techniques are least likely to be negatively impacted by the local geologies.  When the target features 

for a survey are small and likely to create a low magnitude response, as graves are, any background 

noise must be minimised either through choice of survey technique or processing in order to improve 

the potential for isolating small archaeological features.  Thus, indicating that GPR and other 

electromagnetic techniques should be more widely applied across Ireland.
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Table 3:  Advice for surveying on typical bedrock geologies in Ireland (adapted from Bonsall et al. 2014a) 

Geology Formation Process Advice for Areas with 
Significant Overburden or 
Surface Geology 

Advice for areas with Near-
surface Geology 

Advice for Areas with a 
Variable Thickness of 
Overburden 

Techniques Geology 
Does Not Negatively 
Impact 

Igneous 

 

• Basalt 
• Diorite 
• Dolerite 
• Felsite 
• Gabbro 
• Granite 
• Volcanic 

Derived from molten rock and 
volcanic activity, creating 
magnetically strong 
thermoremanent anomalies  

Magnetometer survey is often 
suitable as the strong magnetic 
response of igneous bedrock can 
be reduced by an overburden or 
surface geology 

Magnetometer survey is not 
suitable as areas of insufficiently 
thick overburden will respond 
poorly 

The area should be scanned 
using a magnetometer to identify 
areas unaffected by geology 
before commencing survey 

Earth resistance 

EMI quadrature  

GPR 

Metamorphic • Graphite 
• Marble 
• Phyllite 
• Quartzite 
• Schist 
• Slate 

Formed by a significant alteration 
of existing rocks through high 
temperature and pressure; there 
is potential for strong 
thermoremanent anomalies 
resulting from the geology 

Use 0.5m traverse spacing to 
increase the resolution of 
archaeological features and to 
help discriminate against 
geological trends 

Use 0.5m traverse spacing to 
increase the resolution of 
archaeological features and to 
help discriminate against 
geological trends 

Use 0.5m traverse spacing to 
increase the resolution of 
archaeological features and to 
help discriminate against 
geological trends 

Earth resistance 

EMI quadrature  

GPR 

Sedimentary 

 

• Carboniferous 
Limestone 

• Greywacke 
• Grit 
• Mudstone 
• Sandstone 
• Shale 
• Siltstone 
• Slate 

Derived from fragments of pre-
existing rocks and formed 
through the accumulation and 
lithification of sediment or by the 
precipitation from solution at 
normal surface temperatures 
(Crook et al. 2018) 

In Counties Dublin, Meath, 
Kildare, Laois, Carlow, and 
Louth:  Conduct detailed 
magnetometer surveys at a 
spatial resolution of 1m x 0.25m  

In the West and Southwest: Pilot 
studies should be carried out to 
determine suitable technique(s) 
and spatial resolution.  A traverse 
spacing of 0.5m is recommended 
for magnetometer surveys. 

Cut-earth and thermoremanent 
features may be weakened or 
suppressed by waterlogging and 
organic matter and may not be 
suitable for magnetometer survey 

In Counties Dublin, Meath, 
Kildare, Laois, Carlow, and 
Louth:  Conduct detailed 
magnetometer surveys at a 
spatial resolution of 1m x 0.25m  

In the West and Southwest: Pilot 
studies should be carried out to 
determine suitable technique(s) 
and spatial resolution.  A traverse 
spacing of 0.5m is recommended 
for magnetometer surveys. 

Cut-earth and thermoremanent 
features may be weakened or 
suppressed by waterlogging and 
organic matter and may not be 
suitable for magnetometer survey 

In Counties Dublin, Meath, 
Kildare, Laois, Carlow, and 
Louth:  Conduct detailed 
magnetometer surveys at a 
spatial resolution of 1m x 0.25m  

In the West and Southwest: Pilot 
studies should be carried out to 
determine suitable technique(s) 
and spatial resolution.  A traverse 
spacing of 0.5m is recommended 
for magnetometer surveys. 

Cut-earth and thermoremanent 
features may be weakened or 
suppressed by waterlogging and 
organic matter and may not be 
suitable for magnetometer survey 

Earth resistance 

EMI quadrature  

GPR 
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Table 4:  Advice for surveying on common superficial geologies in Ireland (adapted from Bonsall et al. 2014a) 

Geology Advice for areas where the thickness of the geological layer is known Advice for areas where the thickness of the geological layer is not 
known 

Techniques Geology Does Not 
Negatively Impact 

Alluvium 

 

Gradiometers can respond very poorly to alluviated soils; instead, a total 
field magnetometer should be used.  If carrying out a magnetometer survey, 
a 0.5m traverse spacing is recommended.  Magnetometers should only be 
included in a multi-method survey approach. 

Increase the probe spacing in earth resistance surveys to assess layers 
below the surface geology. 

Auger surveys should be carried out to determine the thickness of the 
alluvium. 

 

A multi-method survey approach which accounts for the penetration of 
the geological layer should be taken. 

 

Total field caesium magnetometer 

GPR 

Earth resistance 

Colluvium If the survey area is small, the plough soil should be mechanically removed, 
if possible, to reduce the masking effects of the geology. 

Auger surveys should be carried out to determine the thickness of the 
colluvium, and if possible, the plough soil should be mechanically 
removed. 

Total field caesium magnetometer 

GPR 

Earth resistance 

Fluvio-glacial Sand 
and Gravel 

 

Magnetometer survey should not be relied upon as the primary survey 
technique; instead, it should only form part of a multi-technique survey 
methodology.   

However, if included as part of the methodology, magnetometer surveys 
should employ a 0.5m traverse separation to increase the probability of 
successfully identifying archaeological features.   

Magnetometer survey should not be relied upon as the primary survey 
technique; instead, it should only form part of a multi-technique survey 
methodology.   

However, if included as part of the methodology, magnetometer surveys 
should employ a 0.5m traverse separation to increase the probability of 
successfully identifying archaeological features. 

EMI (in-phase values) 

GPR 

Peat Peat deposit is 0 – 0.5m in thickness:  Survey methodology should be 
determined by the target archaeological features and bedrock geology (see 
Table 3) 

Peat deposit is 0.5-1.0m in thickness: Survey methodology should be 
determined by the target archaeological features and bedrock geology (see 
Table 3).  Prioritise earth resistance, detailed EMI, and detailed GPR 
surveys. 

Peat deposit is >1m in thickness:  Low-resolution EMI survey combined with 
systematic augering or induced polarisation (IP) for wooden trackways 

Auger surveys should be carried out to determine the thickness of the 
peat. 

Survey methodology should be determined by the target archaeological 
feature(s) and bedrock geology (see Table 3).  Prioritise earth 
resistance, detailed EMI, and detailed GPR surveys. 

Earth resistance 

EMI (quadrature values) 

GPR 

Rock (Outcropping) Use aerial photography to map areas of outcropping before commencing 
geophysical survey. 

Exclude areas of near-surface Carboniferous limestone and igneous 
geologies from the survey 

Use aerial photography to map areas of outcropping before commencing 
geophysical survey. 

Exclude areas of near-surface Carboniferous limestone and igneous 
geologies from the survey 

Dependent on the type of geology, 
see Table 3 
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Sand and Gravel Magnetometer survey should not be relied upon as the primary survey 
technique; instead, it should only form part of a multi-technique survey 
methodology.   

However, if included as part of the methodology, magnetometer surveys 
should employ a 0.5m traverse separation to increase the probability of 
successfully identifying archaeological features.   

Magnetometer survey should not be relied upon as the primary survey 
technique; instead, it should only form part of a multi-technique survey 
methodology.   

However, if included as part of the methodology, magnetometer surveys 
should employ a 0.5m traverse separation to increase the probability of 
successfully identifying archaeological features. 

EMI (in-phase values) 

GPR 

Silts and Sands Magnetometer survey should not be relied upon as the primary survey 
technique; instead, it should only form part of a multi-technique survey 
methodology.   

However, if included as part of the methodology, magnetometer surveys 
should employ a 0.5m traverse separation to increase the probability of 
successfully identifying archaeological features.   

Magnetometer survey should not be relied upon as the primary survey 
technique; instead, it should only form part of a multi-technique survey 
methodology.   

However, if included as part of the methodology, magnetometer surveys 
should employ a 0.5m traverse separation to increase the probability of 
successfully identifying archaeological features. 

Earth resistance 

GPR 

Till (Boulder Clays) Detailed magnetometer surveys should always be a preferable option.  The 
use of 0.5m traverse separations will increase the chances of successfully 
identifying archaeological features for detailed magnetometer surveys.  
Unrecorded magnetometer scanning surveys should not occur on tills 

Detailed magnetometer surveys should always be a preferable option.  
The use of 0.5m traverse separations will increase the chances of 
successfully identifying archaeological features for detailed 
magnetometer surveys.  Unrecorded magnetometer scanning surveys 
should not occur on tills 

Magnetometer 

Earth resistance 

EMI (quadrature and in-phase 
values) 
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This guidance can also be widely applied where surveys are likely to encounter rough terrain or 

human interments.  To reduce the impact of uncontrollable factors (e.g. land cover, geology, soils), 

the spatial resolution of magnetometry surveys should be increased, or electromagnetic techniques 

should be used where the local geology is not volcanic.  While Bonsall (2014) provides detailed 

guidance for surveys in Ireland, a push for the use of electromagnetic techniques over magnetometry 

is necessary.  Now that mechanised systems for GPR and EMI systems have become more 

accessible and are often a more manageable size compared to mechanised magnetometry systems, 

higher resolution electromagnetic surveys should be a requirement.  It is understandable, in the west 

of Ireland especially, that some sites may not be accessible with mechanised arrays due to the land 

cover or layout of the field boundaries.  In these instances, it should be recommended that high-

resolution manual GPS-tracked surveys are carried out.  In current practice, some commercial 

companies are heavily reliant on mechanised or cart-based surveys, but their use is still well below 

that in the UK. 

Bonsall (2014) provides both tabular and flow chart guidance for determining the appropriate 

parameters for archaeogeophysical surveys in Ireland.  This guidance, reproduced in flow chart 

format in Figure 33, accounts for potential controllable and uncontrollable factors which may be 

encountered in the planning and fieldwork stages of a project.  The uncontrollable and controllable 

factors with the most significant impact on survey data quality and interpretability, as determined by 

Bonsall (2014), are provided in Table 5.  Figure 33 is included here as an example of the most 

accessible form of survey guidance currently available.  The flowchart format, while at some points 

can be confusing for the user, is more accessible than block text guidance and does not dilute the 

information necessary to make an informed decision on the appropriate survey parameters.  

However, presenting the data in an interactive map format where the user is not required to input the 

necessary geological and archaeological factor, as it is provided for them, would further increase the 

accessibility of the survey guidance. 

Table 5:  List of primary controllable and uncontrollable factors affects survey success (adapted from Bonsall et al. 
2014a) 

Controllable Factors Uncontrollable Factors 

Technique selection Soil type 

Data acquisition methods Monument type 

Spatial resolution Land use 

Competence of surveyors Weather conditions 

Seasonality Bedrock geology 

Data visualisation Surface geology 

 Sources of interference 
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Figure 31: Large-scale map of the bedrock geology of Ireland, demonstrating a high proportion of sedimentary 
geologies in comparison to igneous geologies (adapted from Geological Survey Ireland 2018) 
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Figure 32: Large-scale soil texture map of Ireland depicting the broad coverage of loamy soils and peat (adapted from 
Creamer et al. 2016) 
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Figure 33:  Bonsall et al.'s (2014, p. 119) flowchart for determining appropriate survey parameters for archaeogeophysical surveys in Ireland which is an improvement on user accessibility from 

the block text and decision tables provided in other guidelines.  
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Guidance on Grave Detection 

Bonsall et al. (2014) provide specific guidance for surveying small scale funerary monuments such 

as individual adult burials, cremations, and Cillíní (children’s burial grounds).  However, it is noted 

that even using the high-resolution survey methods suggested, it will still be difficult to detect small 

scale funerary monuments.  Table 6 presents the suggested methods in which small-scale funerary 

monuments are likely, which required summarisation by the author.  These methodologies are based 

on real-world geophysical surveys on road schemes as well as the grey literature (Bonsall et al. 

2014).   

Table 6: A summary of the suggested methods for the survey of potential small scale funerary monuments (adapted 
from Bonsall et al. 2014) 

MONUMENT TYPE TECHNIQUE SPATIAL RESOLUTION 

Inhumation Combined earth resistance and 

magnetometry 

0.25m x 0.25m 

GPR 0.05m x 0.5m 

Select antenna frequency based on 

suspected depth of the grave 

EMI High sampling density 

Cremation Magnetometry 0.25m x 0.5m 

EMI (in-phase and conductivity) 0.25m x 0.5m 

Cillín Combined earth resistance and 

magnetometry 

0.125m x 0.125m 

GPR 0.05m x 0.2m 

Select antenna frequency based on 

suspected depth of the grave 

 

Recommended Improvements to the Guidance Format 

Presenting a combination of Bonsall’s guidance as well as English (David et al. 2008a) and European 

(Schmidt et al. 2015) guidelines in an interactive format will likely encourage the use of such 

guidelines, particularly by novices and new professionals.  Overall, the primary guidance documents 

provide suitable methodologies for maximising the potential detection rate of expected targets.  In 

accounting for controllable as well as uncontrollable impacting factors, Bonsall et al. (2014) can 

perceive and predict the majority of potential scenarios a surveyor could experience in Irish road 

corridor archaeology.  However, the format of these guidelines is often inaccessible.  Increasing the 

implementation of such guidance in survey planning will improve the data collected in the field, and 

therefore, the surveyor’s ability to interpret the data appropriately. 
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Following from the discussion of grave morphology and composition in Chapter 2, the detectability 

and geophysical characteristics of each type included as a classifier in the automation tool are 

discussed in Chapter 6.  To further understand the suitability of geophysical techniques for individual 

sites and the detection of graves, a discussion of the principles of widely applied geophysical 

techniques, data visualisation, and data processing is required. 

3.3. Notes on the Format of Survey Guidance 

Two main approaches to survey guidance have been used in archaeogeophysics – prescriptive and 

discursive (Schmidt 2019).  Prescriptive guidance can be viewed as ‘black and white’ scenario; for 

example, if the local geology is volcanic only resistivity techniques should be used.  Whereas, 

discursive guidance allows for more analysis of all contributing factors to the survey and the expert’s 

knowledge.  Both approaches have their merits depending on the intended audience. 

From a North American perspective, Somers et al. (2003) developed Automated Tool for Archaeo-

Geophysical Survey (ATAGS).  ATAGS is a form of prescriptive guidance which uses an input-output 

method to determine appropriate parameters for a survey.  The software outputs a ‘survey design’, 

which the authors define as “a set of decisions about the appropriate instrument, instrument 

configuration, data density, and data processing” (Somers et al. 2003, p. 3), as well as guidance for 

project management.  This survey design is determined by the information provided by the user (e.g. 

rationale for the survey, soil characteristics, and the nature of the archaeological record).  While the 

functionality and output of ATAGS are useful for both expert and non-expert surveyors, the tool is 

limited geographically and by technique.  Somers et al. (2003, p. 3) note that ATAGS is only designed 

for use on sites in the Midwest and Plains regions, and some sites in the Mid-south and interior South 

regions, of the United States.  The recommendations are also provided based on Geoscan Research 

instrument settings (Somers et al. 2003, p. 3). 

Conversely, Schmidt (2019, p. 26) and Schmidt et al. (2015) advocate for a discursive approach to 

guidance over a prescriptive approach with the expectation that experts are best equipped to 

determine the appropriate survey strategies for sites with unknown or challenging characteristics.  

This discursive approach is suitable for surveyors with a wealth of knowledge and experience on a 

range of sites.  However, it can be argued that less experienced surveyors, local/community groups, 

and companies commissioning surveyors would benefit from a more prescriptive approach.  A 

prescriptive approach provides these groups with more detailed guidance they often require to 

achieve the same results as an expert.  Combining discursive and prescriptive guidance into one tool 

allows all groups sufficient guidance for any survey. 
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The survey parameters tool created as part of the Reilig toolset, discussed in detail in Chapter 5, 

offers a middle ground between prescriptive and discursive approaches.  It limits the amount of prior 

knowledge required by the user by providing the necessary background information (e.g. local 

geology, land cover, soils).  The user is only required to input the site coordinates.  The output for 

each coordinate displays: 

• the most appropriate technique and survey density that should be used in surveys for site 

evaluation or characterisation, and potential graves; 

• any additional techniques suitable for the site; 

• reference to the relevant detailed guidance document where the user can find additional 

information on instrument configurations and detectability of archaeological features. 

The most crucial aspect of any guidance, however, is that it provides a method for the user to 

determine the most suitable technique(s) for a site as the interpretability of a site is firstly determined 

by the technique(s) used and secondarily by the survey density. 
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4. PRINCIPLES OF GEOPHYSICAL SURVEY TECHNIQUES AFFECTING GRAVE 

DETECTION 

4.1. Introduction 

The measurements taken by geophysical instruments and the data visualisation methods are 

significant factors in the successful detection and interpretation of graves.  The degree of processing 

on datasets can affect a human interpreter’s ability to identify small features (as discussed in Chapter 

6 and Chapter 1.2).  In contrast, learning machines are reliant on the training data they are provided 

with.  While GPR is often the most suitable technique for the detection of graves, it is important to 

note under which circumstances each technique is suitable to detect graves.  In some instances, 

regardless of the processing on a dataset, graves are just not detectable by the instrument.     

4.2. Ground-Penetrating Radar 

Ground-penetrating radar (GPR) is an active electromagnetic technique which identifies subtle 

changes in the electromagnetic properties of subsurface materials including dielectric permittivity and 

conductivity.  GPR systems are comprised of a transmitting antenna and a receiving antenna or, in 

multichannel systems, multiple sets of transmitting and receiving antennas.  The transmitting antenna 

emits electromagnetic energy at a frequency determined by the length of the antenna element.  Upon 

encountering variations in the physical and electromagnetic properties of the subsurface material, 

the signal is reflected to the receiving antenna(s), as shown in Figure 34.  The amplitudes of the 

wavelets, corresponding to the dielectric properties of the reflective materials, are translated to 

numerical and colour-coded for almost immediate viewing on the computer system during survey.  

When material velocities are calculated, the two-way travel time is converted from time to depth.  
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Figure 34: Electromagnetic principle of GPR  

The first GPR system, albeit a crude one, was used in Austria in 1929 to measure ice thickness on 

glaciers (Conyers 2013).  Following this, the applications of GPR expanded to geology and utility 

surveys in the 1970s, including work by the National Aeronautics and Space Administration (NASA) 

who built a GPR system to be sent to the moon (Conyers 2013).  From the mid-1970s through to the 

1990s the use of GPR systems, and geophysical survey in general, in archaeological science grew 

immensely (Bevan and Kenyon 1975, Vickers et al. 1976, Imai et al. 1987, Stove and Addyman 1989, 

Conyers and Goodman 1997, Conyers 2013).   In the 1990s, significant improvements to survey 

and data processing came about with technological advances in computer hardware and processing 

software.  After 1993 the field also saw the first use of amplitude slice maps, computer-simulated 

two-dimensional (2D) models (Goodman et al. 1994, 1995), and 3D reconstructions (Conyers 2013). 

GPR is shown to be effective in locating buried objects depending on their size and orientation 

(Conyers 2012, 2016, Dupras 2012, Richardson and Cheetham 2013, Ruffell and McAllister 2015).  

While it is often used in engineering, utilities, infrastructure investigations, France et al. (1992, 1997) 

and Ruffell and McKinley (2005) have established GPR as an effective method for locating forensic 

inhumations.  Experimental surveys have shown GPR to work in peat (Armstrong and Cheetham 
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2008), concrete (Toms et al. 2008, Harrison and Donnelly 2009, Ruffell et al. 2014), freshwater, chalk, 

and rock (Dupras 2012, Ruffell and McAllister 2015).  Detectable subsurface features include 

geomorphological changes, large voids, structural remains, modern services, and burials (dependent 

upon the skeletal condition and soil matrix).  Recent surveys have investigated the viability of GPR 

in detecting geomorphological features (Calder and Kennedy 2013, Lanzarone et al. 2016, Zaremba 

et al. 2016a), buried landforms (Gosar and Čeru 2016), and environmental features (Moore and 

Ryder 2015).  Recent advances in the detection of landmines and improvised explosive devices 

(IEDs) have approached designing models to improve the rate and accuracy of detecting explosives 

which employ neural network and curve-fitting approaches (Singh and Nene 2013a). 

During the post-processing stage, depth profiles are merged, and the space between traverses 

interpolated to present a three-dimensional (3D) rendering of the subsurface material.  The 3D 

rendering can be ‘sliced’ to specific depths which are estimated by calculating the relative velocity of 

the subsurface material and the time it takes for the signal to return to the antenna(s).  Once the data 

are processed, they can be exported as two-dimensional (2D) raster data or 3D animations.   

A detailed discussion of the machine learning methods and composition of the training dataset is 

provided in Chapter 7.2; however, it is important to discuss the effect of data processing and 

visualisation on the accuracy of machine learning models.  GPR data must be processed in order to 

correct for signal travel time, interference, and to view reflections of varying strengths.  This 

processing, or filtering, of the data can impact on the learning machine’s ability to detect reflections.  

Different degrees of processed data introduced in the training dataset will allow the machine to learn 

features in as many variations of processed data as possible.  As surveyors do not process their data 

in a systematic manner across the discipline and there are numerous software packages available 

for data processing, no recommendations have been made to web app users on how to process their 

data; instead, users are notified that the level to which they survey and process their data will affect 

the output of the object detection model.  It is expected that experienced surveyors will process their 

data cleanly and effectively.  In contrast, less experienced surveyors (the primary target of the object 

detection tools) may not process the data as thoroughly.  Therefore, the training dataset included in 

this pilot study has representative examples (see Chapter 7.2) of raw, improved, minimally 

processed, and over-processed data, as defined in Table 7, created in multiple mainstream software 

packages.  It is understood that by not providing the machine with data processed under the same 

conditions the intersection over union (IoU) and classification accuracy may be impacted, while the 

accessibility of the tools by less experienced surveyors and surveyors without access to GPR-Slice 

software is improved.  Sections 4.2.1. – 4.2.4. provide a discussion of the data processing and 
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visualisation factors which may impact on the interpretability of data and are established by the 

surveyors. 

Table 7:  Description of the data processing types used in this pilot study 

Data Processing Type Description 

Raw No corrections, first stage of data taken from the instrument 

Improved Gain corrected, gridded to correct offsets 

Minimally Processed Background removal, migration, regained 

Over Processed Filters have removed responses from archaeological features 

 

4.2.1. Signal Processing 

B-scans, or radargrams, are comprised of the specific ‘signature’ of pulses transmitted by the GPR 

antenna and the response from the ground/subsurface material.  The data (signals) must be 

processed to analyse only the responses from below the surface.  Most GPR systems record and 

present raw data in the field, meaning there are no filters added.  Even with systems that display 

gained data, it may be necessary to filter the data in order to view later arriving reflections, determine 

and correct for the relative soil velocity, and remove any unwanted responses.  Processed signals 

(radargrams) are then merged to be rendered as 2D images, 3D images, or animations.  Radargrams 

are comprised of the impulse responses from the ground and the signal from the system itself (see 

Equation 4.1) whereby processing aims to isolate the impulse responses from the ground (Goodman 

and Piro 2013).  The frequency, amplitude, velocity, and phasing of reflection waves are crucial in 

processing and interpreting GPR data.  It is imperative not to over-process or arbitrarily apply filters 

to datasets as this could produce distorted, uninterpretable data (Conyers 2012, 2013). 

 

 

4.1:  Composition of radargram pulses 

𝑟 = 𝑔 × 𝑖   

𝑟 = radargram pulses 

𝑔 = reflection response of the ground 

𝑖 = impulse response function of the antenna 
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Table 8:  Description and effects of signal processes on GPR data (adapted from Green 2018)  

Process Purpose Effect 

Resampling Correct the number of scans per the user-set 
navigation marker to create accurate spatial 
density information 

Sets the number of scans per user-set 
distance unit to a constant value set by the 
user 

Gain Visualize later arriving, weakly visible 
reflections 

Intensity, or amplitude, of radar reflections 
increases 

Migration Correct for signal spread and subsurface 
velocity distortion 
Estimate the relative soil velocity based on 
the principle that broad hyperbolic reflections 
indicate a fast velocity and narrow hyperbolic 
reflections indicate a slow velocity 

Removes extraneous hyperbolae by 
determining the “point source” of the 
reflections by averaging the reflection energy 
of each hyperbola in the dataset.   
 

Hilbert 
Transform 

Visualize weak reflections by considering the 
absolute value of the data and connecting the 
peak responses 

A Fourier Transform (FT) is run on the radar 
pulses, the negative frequencies are shifted 
90°, and then an inverse FT is run, to create 
a signal in the positive domain  

Background 
Removal 

Filter out horizontal banding caused by signal 
noise  

Algorithms determine the average waveform 
across a radargram and subtract this value 
from all in the dataset 

Bandpass 
Filter 

Remove noise resulting from post-processing 
gain and signal noise  

1D FFTs convert the radar pulses/signals into 
their spectral components (amplitude and 
phase at each detected frequency) 

Spectral 
Whitening 

Remove noise resulting from post-processing 
gain and “ringing” or signal noise from the 
antenna 

Normalizes the real and imaginary spectral 
amplitudes by converting the data utilizing 
FFTs and setting the magnitude of the 
spectral frequencies to 1 

Deconvolution Minimize the negative effects of previous 
processes 

Spectral division deconvolution: FFTs convert 
data to the frequency domain, remove the 
antenna’s impulse frequency by dividing the 
frequency response of the radargram by the 
frequency response of the impulse, and revert 
the data to the time domain 
Cepstrum deconvolution:   Normalizes the 
data using a logarithmic scale.   
Predictive deconvolution:   The preceding 
signal predicts the succeeding value in the 
radar scan 

 

Resampling 

Resampling is applied to correct for the variation in the number of scans per marker; where the scans 

per marker are the constant number of scans set by the GPR in a given unit of time per the user-

determined navigation markers (which can vary between surveys due to ground conditions).  This 

process must be completed before any others are applied to the dataset.  In resampling, the number 

of scans per user set distance unit is set to a constant by either reducing the number of scans per 
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marker or interpolating the data between scans to create a new, resampled scan.  By resampling the 

scans, accurate spatial density information can be used in subsequent processes. 

Time Gain Adjustments 

Time Gain adjustments are necessary in a majority of cases.  Most GPR systems record non-gained 

data in the field; although, due to the severity of signal attenuation and antenna frequencies, it is also 

recommended that gained data collected in the field are regained during the processing and, 

sometimes, the post-processing stages depending on other processes performed on the data.  

Radargrams, especially those acquired using low-frequency antennas, will require post-processing 

gain to visualise the later arriving, weakly visible reflections.  Automatic gain curves, either 

exponential or linear, or an alternative suitable custom gain curve can be applied.  The post-

processing gain will often amplify any signal noise in the dataset. 

Bandpass Filtering 

Bandpass Filters are applied after the data are gain corrected to remove noise.  Noise is caused by 

post-processing gain and “ringing” or signal noise from the antenna.  Processing applications utilise 

one-dimensional (1D) Fast Fourier Transforms (FFTs) to remove noise from radargrams rather than 

the 2D FFT used to remove noise from timeslices (see Equation 4.4).  Equation 4.2 defines the FFT 

in a uniform dimension of the continuous domain, where 𝜔 = 2𝜋𝑓and 𝑓 represents the temporal 

frequency given in hertz (Rao et al. 2011).  Equation 4.3 defines the inverse FFT in a uniform 

dimension of the continuous domain, where 𝜔 = 2𝜋𝑓 and 𝑓 represents the temporal frequency 

given in hertz (Rao et al. 2011).  The 1D FFT converts the radar pulses/signals into their spectral 

components (amplitude and phase at each detected frequency).  By altering the amplitude of differing 

frequency, any superfluous noise can be removed from the dataset or corrected.  To return the 

corrected data to radargram form, an inverse FFT is performed.  

 

4.2:  FFT in a uniform dimension of the continuous domain 

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

-∞
 

 

𝜔 = 2𝜋𝑓 

𝑓 = temporal frequency in hertz 

t = time 
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Background Removal 

Background Removal serves to remove linear, horizontal banding caused by “ringing” from the 

antenna (Neal 2004, Goodman and Piro 2013).  This process uses algorithms to determine the 

average pulse frequency across the given radargram and subtracts this value from all values in the 

dataset (Leckebusch 2003).  Alternatively, where subsurface features are orientated parallel to the 

horizontal banding, it is recommended the average pulse is determined using data from the entire 

site, rather than a single radargram (Goodman and Piro 2013).  As background removal processes 

are likely to remove any linear features of potential interest to the survey and create phantom 

responses and deriving values from the entire site is more likely to mitigate for this.  It is still 

recommended for background removal processes to be applied to a dataset as it allows the 

interpreter to identify slight reflections near the surface. 

Migration 

Migration serves to correct the signal spread converging with electromagnetic changes multiple times 

at various angles, especially in surveys experiencing signal diffraction resulting from severe 

topographical variations (Jol and Bristow 2003, Neal 2004, Orlando and Slob 2009).  This 

phenomenon will skew the two-way travel time, causing sections of an object to appear distorted and 

possibly larger than it is in reality.  The manual migration process removes extraneous hyperbolae 

by determining the “point source” of the reflections, averaging the reflection energy of each hyperbola 

and placing the result at the apex.  However, it is important to note that this averaging must be done 

4.3:  Inverse FFT in a uniform dimension of the continuous domain 

x(t) =
1

2π
∫ X(ω)ejωtdω

∞

-∞

 

 

𝜔 = 2𝜋𝑓 

𝑓 = temporal frequency in hertz 

t = time 

4.4:  2D FFT used to remove noise from time slices 

X(z1k, z2k) = ∑ ∑ x(n1, n2)z1k
−n1N2−1

n2=0
N1−1
n1=0 z2k

−n2,   k = 0, 1, … , N1N2 − 1    
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for each hyperbola in the dataset to collapse the migrated reflections into their source hyperbola 

(Conyers 2013, Goodman and Piro 2013).  Kirchoff migration is a more sophisticated method used 

for archaeological survey data in which the angle of incidence and the depth of the reflective 

feature(s) are calculated.  These undergo a correction based on an assumed velocity profile resulting 

in corrected positional errors, and hyperbolae collapsed back to their source (Neal 2004, Conyers 

2013).  Less common migration algorithms include FK, Stolt, phase shift, and finite difference, though 

they typically produce similar results (Leckebusch 2003, Goodman and Piro 2013).   

Migration can also be used to estimate the relative velocity and dielectric constant of the subsurface 

material across the entire dataset based on the relative velocity of the soil and the two-way travel 

time (see Equation 4.5).  Manual migrations fit computer-generated hyperbola of known velocity to 

hyperbolas in the dataset to calculate an overall or area-specific velocity.  Collecting velocity data in 

the field is the most accurate.  However, computer-generating values during processing is a quick 

and easy method, which is accurate depending on the number of reference hyperbolae available in 

the dataset (Conyers 2013).  Velocity calculation is based on the principle that broad hyperbolic 

reflections indicate a fast velocity and narrow hyperbolic reflections indicate a slow velocity.  Migrating 

data or using incorrect parameters for migration will cause phantom reflections, though these will 

appear markedly different from true reflections (Goodman and Piro 2013). 

 

Spectral Whitening 

Spectral whitening is similar to bandpass filtering in that it removes noise, but the real and imaginary 

spectral amplitudes are normalized by converting the data utilizing FFTs and setting the magnitude 

of the spectral frequencies to 1 (Goodman and Piro 2013).  Spectral whitening is particularly useful 

when processing data collected from multichannel systems as it serves as a secondary method of 

signal balancing. 

4.5:  Two-way travel time 

𝑇 =
2√𝑥2 + 𝑧2

𝑣
 

T = two-way travel time 

𝑥 = horizontal distance to the subsurface object 

𝑧 = depth to the subsurface object 

𝑣 = microwave velocity in the ground 
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Hilbert Transform 

The Hilbert Transform is expressed mathematically as a function of the frequency of the radar pulses, 

where a Fourier Transform (FT) is run on the radar pulses (see Equation 4.6), the negative 

frequencies are shifted 90°, and then an inverse FT is run (see Equation 4.7) (Johansson 1999).  

This serves to create a signal in the positive domain and represents the envelope of the recorded 

pulse (Goodman and Piro 2013).  Simply, the Hilbert Transform (see Equation 4.8) serves to rectify 

the signal such that only the absolute value of the data is considered and the peak responses are 

connected, where it is necessary to visualize strong or weak reflections. 

 

 

 

Deconvolution 

Deconvolution serves to minimize multiple reflections or echoes, and the effects of the transmitted 

pulses from the antenna.  Spectral division deconvolution utilizes an FFT to convert the data to the 

frequency domain and removes the impulse frequency of the antenna by dividing the frequency 

response of the radargram by the frequency response of the impulse (see Equation 4.9) and reverting 

the data to the time domain using an inverse FFT (Goodman and Piro 2013).  The downfall of using 

this method is the uncertainty of the antenna impulse signal.  Alternate deconvolution methods 

include cepstrum deconvolution and predictive deconvolution.  The cepstrum deconvolution method 

is similar to spectral whitening in that it normalizes the data but uses a logarithmic scale rather than 

setting all values to unity to smooth the spectral amplitudes and balance the spectral frequencies 

(Goodman and Piro 2013).  It does, however, require gain renormalization as the spectral amplitudes 

4.6:  Fourier Transform 

Ĝ(f) = −j sgn(f)G(f) 

4.7:  Inverse Fourier Transform 

f(x) = ∫ ∫ e2πi(x−y)∙ξf(y)dydξ
ℝℝ

 

 

ξ = frequency 

4.8:  Hilbert Transform 

ĝ(t) =
1

π
∫

g(τ)

t − τ
dτ

∞

−∞

 

 

τ = time-lag 
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will have shifted.  Predictive deconvolution, as the term suggests, utilizes the preceding signal to 

predict the succeeding value in the radar scan (Goodman and Piro 2013).  

 

4.2.2. Rendering  

Processed data can be presented as 2D or 3D plots, animations, and overlain on other geophysical 

and remote sensing data to construct a full characterisation of a site.  In 3D rendering the space 

between radargrams is interpolated; as such the first step to producing high-quality raster outputs is 

to collect high-resolution data in the field (Leckebusch 2003, Verdonck et al. 2015, Green and Holmes 

2017).   

Kriging Interpolation 

The primary methods of interpolating between data are kriging and inverse distance.  Kriging solves 

an inverse covariance matrix to abate the error between data and interpolated points based on 

weighting, often producing superior results (Goodman and Piro 2013).   Weighting is determined by 

the inverse covariance matrix of all searched point in the estimate and the vector containing points 

in the search radius (see Equation 4.10).  

4.9:  Spectral division deconvolution 

g = G(w) =
R(w)

I(w)
   

𝑔 = value  in the frequency domain 

𝐺(𝑤) = ground response 

𝑅(𝑤) = frequency response of radargram 

𝐼(𝑤) = frequency response of transmitted impulse 
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Inverse Distance Interpolation 

Inverse distance interpolation is faster and more mathematically simplistic (see Equation 4.11), where 

nearby points are averaged to estimate an interpolated point, based on the distance to the 

interpolated point.  Weighting is proportional to the inverse square of the distance between a known 

point and the estimated point (Goodman and Piro 2013).   

 

As demonstrated hereafter, particularly in Figure 35 and Figure 36, the processing applied to data 

affects the data quality and visualization, thereby potentially changing the interpretation of features 

in the data.  The processing of GPR data is especially important in this project.  The machine initially 

4.10:  Kriging 

w = cij
−1d   

 
𝑐𝑖𝑗 = 𝑐0 + 𝑐𝑖 if ℎ = 0 

𝑐𝑖𝑗 = 𝑐1
(−3ℎ/𝑎) if ℎ > 0 

 

w = weighting 

𝑎 = range at which covariance value remains constant 

𝑐0 = nugget effect which provides a discontinuity at the origin 

ℎ = distance between points 

𝑐0 + 𝑐𝑖 = sill which describes the value of the estimate at large distances 

𝑐𝑖𝑗
−1 = inverse covariance matrix of all searched point in the estimate 

𝑑 = vector containing points in the search radius 

4.11:  Inverse distance interpolation 

𝑑 = ∑
𝑤𝑖𝑑𝑖

∑ 𝑤𝑗
𝑁
𝑗=1

𝑁

𝑖=1

 

 

d = distance 

𝑤𝑗 =
1

ℎ𝑠
 

ℎ = distance between nearby point and the point on the grid to be estimated 

𝑠 = smoothing factor (usually set to 2) 
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learned on raw B-scans (radargrams) as a control to minimise the effects of data processing.  

Minimally processed (migrated and regained) data were then introduced to the training dataset with 

negligible change in the model accuracy.  As the machine is learning to detect hyperbolae of within 

a size and shape range, the accuracy of the model is unlikely to be affected by processes that will 

not affect the overall shape of hyperbolae in the data.  Any changes in accuracy were likely a result 

of the random split of the dataset into training and test datasets rather than the introduction of 

processed data.  However, any processing that affects the size and shape of hyperbolae will reduce 

the accuracy of the feature detection and classification.  Data processing and presentation is more 

likely to affect the interpretation of C-scans (timeslices).  Over interpolated or smoothed data will 

obscure small features, like graves, decreasing the accuracy and confidence of both human- and 

machine-led interpretation. 

Additional Corrections 

Once girds are interpolated, grids may require further destaggering if data was collected in zig-zag 

or Global Positioning System-tracked (GPS-tracked) mode, and data collected over multiple days 

may require mosaic correction to reduce the effects of variable moisture content, weather conditions, 

equipment settings, and geological contrasts across a site (Conyers 2013). 

4.2.3. Visualization  

B-scans 

B-scans (also called radargrams or depth profiles) are 2D representations of an individual traverse; 

thus, all additional renderings are based on the radargrams.  The radargrams provide valuable 

information about the amplitude and depth of responses.  Profiles are particularly useful for viewing 

hyperbolic reflections during the interpretation stage of a survey.  The profiles should still be viewed 

in conjunction with slice maps as X-Y trace plots are viewed alongside greyscale plots when 

interpreting other geophysical data to obtain a view of the entire site. 

C-scans 

Timeslices (also called C-scans or amplitude maps) are blocks of data at a specified depth below the 

ground surface created from small sections of horizontal data, called timeslices.  These demonstrate 

the scale and spatial distribution of responses in a given area or across an entire site.  Rendering 

data this manner allows for a plane view of any responses of interest and provides the end-user with 
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3D data.  Maps can be presented as a single slice or a series of stacked slices that demonstrate the 

change in an anomaly with a change in depth (Conyers 2016).  Slice maps are the most common 

method of visualizing GPR data as they provide a 3D representation (top, side, and front views) of a 

site at depths set by the user.  The slice thickness and overlap are set by the user, which can be 

altered to target specific depths.  Once timeslices have been created, they can be interpolated and 

transformed into an animation and isosurface matrix.  Animations allow the end-user to visualize the 

changes in the subsurface matrix in real-time, which aids in identifying subtle changes and patterns 

that change with depth (e.g. sloping features, stratigraphic layers). 

Examples of stationary presentations of GPR data are shown in Figure 35; animations of the 

transition between slices from the ground surface to the end of the dataset can also be created.  It is 

important to consider the range of methods used to display GPR data as an individual response can 

present differently in 2D and 3D forms.   

 

Figure 35:  Examples of GPR data formats (A: Greyscale timeslice; B: Colour timeslice in a 3D matrix; C: 3D 
isosurface; D: Greyscale unfiltered radargram)  

Modelling and Simulation 

Modelling and simulation have developed since the 1990s when Dean Goodman (Goodman et al. 

1994, Goodman et al. 1995, Goodman and Piro 2013) created software to simulate the GPR 

signatures of archaeological features based on their known or expected electromagnetic and 
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morphological properties (Conyers 2016).  By establishing parameters such as relative dielectric 

permittivity, conductivity, and morphology, 2D reflection profiles are produced from artificially 

simulated wave paths (Conyers 2016, Warren et al. 2016).  Simulated models are useful in 

demonstrating how a buried object may present differently within a range of geological background 

materials and weather conditions (Conyers 2012).  Of importance to this research project are 3D 

models as they can be used to calculate the volume and represent the morphology of anomalies of 

interest.  It is important to note that the accuracy of simulated models is entirely dependent on the 

quality of the known values used to create the model and present an idealised representation of a 

feature. 

Isosurfaces 

Isosurface rendering generates 3D vector data which represent points in space of a measured 

constant value.  In GPR data, this is often the amplitude of reflected waves.  Visualizing data in this 

orientation is particularly useful for isolating responses of interest.  As isosurfaces can be rotated and 

viewed from any angle to show all aspects of an anomaly, they are a crucial tool in representing and 

understanding the full extent of buried objects.  Isosurfaces can be imported into computer-aided 

design (CAD) programs to be georeferenced and combined with Geographic Information System 

(GIS) data and other forms of geophysical data. 

“Data Fusion” 

Data Fusion and multi-component integration allow the end-user to merge data from a range of 

geophysical techniques, remotes sensing, and spatial datasets into one GIS.  As most geophysical 

techniques measure only one property, combining data to create a multi-component dataset can 

increase accuracy and confidence in interpretations.  This is key when visualizing and interpreting 

GPR data which often contain an overprovision of anomalous responses by highlighting anomalies 

of archaeological potential hidden amongst the non-target responses.  Kvamme (2007) has 

discussed the merits various integration approaches, such as mathematical and statistical operatives 

(e.g., Boolean union, Boolean intersection, thresholded binary sum, principal components analysis, 

k-means cluster analysis, binary logistic regression), computer graphics solutions (e.g., 2D overlays, 

RGB colour composites), and vectorised interpretative integration.  The integrative approach taken 

is dependent on the types of data to be used.  A simple 2D overlay or 3D composite is suitable for 

viewing most geophysical and spatial data.  Statistical and mathematical approaches may be 

necessary when integrating data which measured non-comparable properties. 
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Data Presentation 

GPR data is presented in red, green, blue (RGB) value colour scales or greyscale.  The colour scale 

is particularly important in presenting GPR data, in part because of the range of responses and slight 

variations in measured amplitudes often encountered in datasets (Conyers 2012).  Applying a colour 

scale based on the standard deviation from the mean is a more effective presentation style than 

assigning the colour scale based on the range of values in the dataset (Goodman and Piro 2013).  

Plotting in colour helps to visualize weaker responses as there are more colour assignments 

available.  However, colour scales tend to produce contrasts in the dataset that might not exist.  In 

greyscale, data is plotted with equal weighting on all reflections but often causes weaker reflections 

to become obscured in datasets with a broad range (Goodman and Piro 2013). 

The colour scales relate to the amplitude of a reflected pulse.  Sliced data can be plotted in ‘relative 

normalization’ or ‘absolute’ forms, as shown in Figure 36.  In relative normalization, colours are 

assigned relative to the highest value in each time slice.  Weak responses are easier to view in 

relative normalization, but responses are plotted differently across timeslices.  Plotting in absolute is 

similar to display clipping magnetic or resistance data, whereby responses are colourised with 

respect to the maximum and minimum values of the dataset.  This method produces a more 

consistent scale, but it becomes difficult to visualise weak reflections.  The best practice is always to 

view the data in both aspects to interpret the origin of anomalous responses accurately. 

 

Figure 36:  A comparison of absolute plotting parameters (left) and relative normalization plotting parameters (right) for 
GPR data.  In this data, the lowest amplitude responses present noticeably different between the two timeslices, while 

the highest amplitude responses remain the same visually.  
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4.2.4. Interpretation 

Interpreting GPR data is often considered more complex than other techniques (Conyers 2012, 

Goodman and Piro 2013), partially due to the nuances of processing the data but also the sheer 

number of objects GPR can detect.  It is important in interpreting the data to not only look for 

anomalies but to view the entire “picture” as areas of no or low reflection can be as telling as stark 

high amplitude responses.  The interpretation of GPR data is entirely reliant on characterising the 

amplitude, depth, and morphology of a response as there is no linear representation of entire 

datasets as there is in other geophysical techniques.  While many advances in GPR data collection 

and processing have been made in the last 20 years, further enquiry is necessary to grasp its 

applications to archaeological investigations fully.  Notably, the effects of traverse and sampling 

interval size on data quality and the ease and confidence of data interpretation require exhaustive 

analysis.  Analysing these factors (Bonsall, Gaffney, et al. 2013, Bonsall et al. 2014, Verdonck et al. 

2015) will aid in creating standard workflows necessary to improve data interpretability and overall 

survey quality.  Standard guidelines (David et al. 2008a, Bonsall et al. 2014, Schmidt et al. 2015) 

require caveats for GPR survey as there are nuances which can reduce the quality of survey data. 

Processing of the data is likely to affect humans’ ability to identify ephemeral responses as 

background and general noise in the data can detract from the interpretability.  In machine learning, 

however, the machine will learn from all data it is provided with.  This allows the machine to learn on 

a range of clean to noisy data, encompassing the varying data it may later be asked to infer on.  In 

this project, the training dataset includes a larger proportion of data that were only bandpass filtered, 

less data with bandpass filtering and background removal, and even fewer data with bandpass 

filtering, background removal, and migration.  It is expected that there will be a trade-off between the 

accessibility of the tool for a range of data types/surveyor skill levels, and the accuracy of the trained 

model.  To account for any potential adverse effects on the accuracy of the trained model, any noise 

and horizontal striations in the data were included as examples in the ‘non-grave’ class to inform the 

machine that these image features should be discarded and not learned as graves.  Overall, this will 

allow for broader accessibility and applicability of the machine learning tool, both in the 

archaeogeophysics profession and among amateurs.  Further discussion of the training data and 

processing steps are provided in Chapter 7.2. 

4.2.5. Detecting Graves 

GPR has proven one of the most successful techniques for detecting both modern and archaeological 

graves.  Most recently, the survey of Fountains Abbey, Ripon, North Yorkshire, achieved clear, 
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successful results (Gaffney et al. 2014, p. 10).  Individual graves were delineated as well as the in 

situ soil matrix between burials in the GPR survey (Gaffney et al. 2014, p. 10).  Additional successful 

applications of GPR for detecting graves are discussed in Chapter 1 and Chapter 11. 

4.3. Supplemental and Secondary Techniques 

In the scope of this research project, secondary techniques are those whose data are not the primary 

focus of the analysis software.  This, however, is not to state that in commercial and research survey, 

these techniques are used as supplementary survey methods.  Instead, these techniques, particularly 

magnetometry, are most often those implemented first in ‘real-world’ geophysical survey.   

Supplementary survey techniques are those techniques which can be effectively implemented 

alongside GPR to improve the detection of archaeological features.  These techniques are introduced 

in Sections 4.4 - 4.6.  Employing these techniques in a multi-method survey approach often improve 

the confidence in data interpretation and are especially useful in identifying areas to target with high-

resolution GPR survey. 

4.4. Electromagnetic Induction Methods 

Electromagnetic induction (EMI) methods, also called low frequency electromagnetic (LFEM) 

methods, measure the apparent magnetic susceptibility (in-phase electromagnetic signals) and 

apparent electrical conductivity (quadrature electromagnetic signals) of the soil (Davenport 2001, 

Schmidt et al. 2015).     Conductivity, being the real component, is the measure of the amplitude of 

the received waves in quadrature phase.  Conversely, magnetic susceptibility, the imaginary 

component, is the measure of the amplitude of the received waves in the in-phase.  EMI systems 

operate with separate transmitter and receiver coil(s).  The transmitter coil acts to propagate an 

alternating magnetic field (the primary magnetic field) which interacts with the soil to create electrical 

currents which create a secondary magnetic field.  The primary magnetic field is nulled electronically 

or by the orientation of the receiver coil(s), such that any changes in the primary field or the ground 

(eddy currents) are measured by the receiving coil(s). 

4.4.1. Arrays 

EMI systems come in Slingram and time-domain arrays, both of which are active techniques.  In 

Slingram systems, the coil separation and orientation determine the maximum depth of investigation 

(Saey et al. 2013).  Conversely, in time-domain systems, the depth of investigation, or measurement 

envelope, is dependent on coil size.  Recently produced systems can simultaneously record data 
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from different coil separations and orientations (De Smedt et al. 2013).  EMI systems are similar to 

other electromagnetic techniques but operate in the kHz range.  Self-nulling multi-receiver systems 

offer a minimum of two coil pairings – one in horizontal coplanar dipole (HCP) mode and one in 

perpendicular dipole (PRP) mode (Saey et al. 2013).  Rotating the instrument 90° will convert the 

instrument from HCP mode to vertical coplanar (VCP) mode.  It is important to note how the how a 

change in the orientation of the coils will affect an EMI system’s potential to detect archaeological 

features. 

 

Figure 37:  Relative response from a material at different depths for a multi-coil EMI system in vertical or horizontal 
dipole mode (McNeill 1985, p. 3) 

Only quadrature values are discussed herein as in-phase measurements are not reliable or sensitive 

enough to be suitable for detecting graves.  When operated in the vertical magnetic dipole mode 

quadrature sensitivity initially increases relative to depth, or signal penetration, thus overlooking 

materials near the ground surface.  In the horizontal magnetic dipole mode, relative sensitivity is 

highest at the ground surface and decreases as depth increases (McNeill 1980, Geonics Ltd. 2003).   
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4.4.2. Archaeological and Forensic Applications 

EMI surveys can delineate large earth features, e.g., remnants of mounds and backfilled ditches 

(Bevan 1983).  In a forensic respect, EMI surveys can locate metallic objects relating to weapons 

and the disturbed ground of recent burials (Davenport 2001, Richardson and Cheetham 2013).  EMI 

system performance is affected by coil orientation, coil separation, coil size, and soil properties.  For 

archaeological targets, quadrature phase data is most useful as in-phase (magnetic susceptibility) 

data is often unreliable and unable to detect the slight variations in susceptibility necessary for 

interpreting archaeological features. 

4.4.3. Detecting Graves 

Bonsall et al. (2013a, p. 225) and Bigman (2012, p. 35) have both successfully used EMI to detect 

modern and earlier graves.  Bonsall et al. (2013a, p. 224) conducted an EMI survey using the CMD 

Mini Explorer multireciever EM at the Asylum Cemetery at High Royds, West Yorkshire.  The EM 

survey delineated modern graves (interred between 1890-1969) in the quadrature and in-phase data, 

with the grave more clearly defined in the quadrature data (Bonsall et al. 2013a, p. 224-225).  In 

comparison with the earth resistance and magnetic surveys previously undertaken by Gaffney and 

Gaffney (2011), the EMI survey was able to define the extent of the graves clearly (Bonsall, Fry, et 

al. 2013, p. 225). However, it did not delineate the related structural features which are identifiable in 

the earth resistance data (Bonsall, Fry, et al. 2013, p. 225). 

From a North American perspective, Bigman (2012, p. 31) carried out an EMI survey to locate graves 

within a Native American funeral mound in Georgia, USA.  Burials at the site are known to date to 

AD 900 – AD 1100 (Mississippian occupation) and AD 1680 – AD 1720 (Creek occupation) (Bigman 

2012, p. 33).  The survey identified several low conductivity responses that are likely representative 

of graves within the funeral mound (Bigman 2012, p. 35). 

4.5. Earth Resistance 

Earth resistance techniques measure the electrical resistance (the inverse of conductance) of a 

subsurface matrix (soil).  As such, a grave or other target object must create a significantly lower or 

higher resistance value compared to the surrounding survey environment (Hunter and Martin 2002, 

Cheetham 2005).  Resistance and resistivity (the inverse of conductivity) are useful in detecting large 

stony structures, and graves backfilled with stones or containing remains wrapped in polythene 

(Hunter and Martin 2002, Gaffney and Gater 2003, Schmidt 2013).   
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Figure 38:  Principle of the twin probe earth resistance array  

Resistance techniques measure the ability for soil or other material to allow an electric current to 

pass through it, as shown in Figure 38.  In practice, resistance meters are detecting the presence or 

absence of interstitial water and salts present in the soil.  The current flowing through the material is 

in proportion to the potential difference, or voltage, that is used (see Equation 4.12) (Gaffney and 

Gater 2003, Schmidt 2013).  This flow of current is described by Ohm’s law, which states that 

resistance (R) is equal to the change in voltage across a material (V) divided by the current flowing 

through said material (I, measured in amperes). 

 

It is important to note that these resistance values are bulk measurements, and therefore rely on the 

type and volume of material the current is propagated through (Schmidt 2013).  Resistivity, on the 

other hand, will measure changes in material itself irrespective of its volume. 

4.5.1. Detecting Graves 

Schmidt (2013, pp. 62–63, 88) discusses the application of earth resistance in the survey of a 

suspected cemetery in North Yorkshire.  While the discussion is more specifically about the effect of 

electrode separation on the size and distribution of resistance anomalies, Schmidt (2013, pp. 62) 

present an example of a grave cut which was successfully delineated.  In a twin-probe array, the 

4.12:  Measure of current flowing through a matrix 

∆𝑽 = 𝑽𝟐 − 𝑽𝟏    

 V = voltage across a material 
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response from a grave is commonly a peak-and-trough, or triplet, response with two negative and 

one positive components (Schmidt 2013, p. 88). 

4.6. Magnetic Techniques 

Gradiometry systems detect changes in the Earth’s magnetic field within a localized area by creating 

a gradient between two sensors situated 0.5m – 1m apart vertically and operating in the range of 

2kHz (Hunter and Martin 2002, Aspinall et al. 2008, Schmidt et al. 2015).   Breiner (1981) 

demonstrates the proficiency of gradiometer surveys within small- and medium-scale forensic 

investigations.  While gradiometry is one of the most widely used techniques in commercial 

geophysics, the implementation of this method to detect burials is heavily dependent on the survey 

environment.  It is adversely affected by ferrous objects in the surrounding area and has a maximum 

potential depth of investigation of only c. 1m. 

Magnetometry systems operate on the principle that objects and materials can become magnetised 

through natural or anthropogenic processes.  In archaeology materials primarily become magnetised 

through remnant magnetisation or induced magnetisation (Aspinall et al. 2008).  Remanent 

magnetisation, often thermoremanence, occurs when randomly oriented neighbouring magnetic 

domains become heated above their Curie temperature, causing them to become paramagnetic.  

After the materials cool, the domains reform around the newly aligned magnetic moments; this 

causes a significant difference between the heated, thermoremanent materials and the background 

material (Aspinall et al. 2008).  Stronger induced magnetisation occurs because of increased 

magnetic susceptibility as iron oxides in the soil undergo reduction and re-oxidation.  In an 

archaeological context, these processes often occur through heating and burning or the deposition 

of heated debris (Aspinall et al. 2008). 

David et al. (2008a) and (Bonsall 2014) identified the effects of geological responses on 

magnetometry surveys and how these may affect the quality of the data.  A review of the responses 

is presented in Table 9 to demonstrate the usability of magnetic techniques in the UK and Ireland. 
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Table 9: Response of geology in magnetometry survey (adapted from David et al. 2008a, Bonsall 2014) 

Geology Response in Magnetometry Survey 

Igneous Thermoremanent effects can preclude survey over some igneous 
rock types; however, others are relatively unaffected. 

Metamorphic Experience so far suggests that thermoremanence is not usually a 
significant problem and magnetometer survey can be effective but 
beware of adjacent intrusions. 

Sedimentary: Magnetometer survey can be recommended over any sedimentary 
geology.  There are few significant distorting factors although a wide 
range of magnetic susceptibility in the parent rock results in a very 
variable background response to survey. 

Conglomerates/Grits/Pebble beds Response is average to poor, but good in places. 

Sandstones Average response is poor. 

Limestones Response is good. 

Mudstones/Clays Average response is poor. 

Drift: Quaternary deposits overlying the solid geology are a primary 
consideration.  They often show a high degree of local variation, and 
the magnetic response usually depends on the magnetic mineralogy 
of the parent solid geology. 

Sands/Gravels Response is very variable – good on materials derived from Jurassic 
limestones, moderate – good in south-central England and the West 
Midlands. 

Coversands Response is uncertain - ?poor.   

Boulder clay Response is generally poor. 

Clay-with-flints Response is good. 

Brickearth Response is ?poor – average. 

Alluvium/Colluvium Response is poor-average, depending on the depth of features below 
this material. 

 

4.6.1. Detecting Graves 

While magnetic surveys have proven successful in detecting cremation burials due to their increased 

magnetic contrast post-burning, few surveys have been successful in delineating inhumations.  

Notably, however, (Linford 2004, p. 178) identified that, while potentially difficult to interpret, there 

was localised magnetic enhancement related to individual inhumations likely as a result of microbial 

colonisation within the grave in archaeological contexts.   
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Gaffney and Gaffney (2011) were also successful in delineating graves in magnetic survey (Bonsall, 

Fry, et al. 2013, p. 225).  A fluxgate gradiometer survey detected individual graves within a modern 

cemetery (interment between 1890-1969) with more success than the twin-probe earth resistance 

survey, but with less clarity than the EMI survey (Bonsall, Fry, et al. 2013, p. 225). 

4.7. Data Processing 

Survey can be traditional gridded surveys or GPS tracked surveys, which either continuously or 

intermittently record data.  In traditional gridded survey, once grids have been assembled into a 

composite, they can be processed. 

Depending on the survey methods, data will require improvement or processing.  Improvement is 

limited to correcting defects resulting from the effects of the chosen surveys methods during data 

acquisition, such as destaggering, drift correction, edge matching, Zero Mean Traverse correction, 

and despiking (Schmidt et al. 2015).  Improved data can then be processed, or filtered, to enhance 

anomalies of archaeological or possible archaeological origin without introducing additional noise to 

the dataset.  It is often appropriate for magnetic and electromagnetic data to be interpolated and low 

pass filtered, and for resistance data to be interpolated and high pass filtered (Schmidt 2001).  

However, it is important to note that processing can change the size and shape of responses.  

Processed data can be exported and plotted as 2D and 3D georeferenced composites to aid in 

rendering and visualisation of interpretation diagrams at a preferred maximum scale of 1:1000 

(Schmidt 2001, David et al. 2008a). 
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Table 10:  Uses and effects of conventional data processes (adapted from Aspinall et al. 2008, Schmidt et al. 2015) 

Process Use Effect 

Interpolation Smooth the appearance of greyscale plots 
where coarse data collection parameters 
were applied in the field. 

Increases spatial density but not the number of 
real data points.   

High-pass 
Filtering 

Remove the effects of large-scale 
geological trends and substantial variations 
in the topsoil magnetic susceptibility 
allowing archaeological anomalies to 
become clearer. 

A weighted local average is calculated around a 
data point (background value) and is deducted 
from the central reading to allow narrow, short-
wavelength anomalies to become more 
prominent. 

Low-pass 
Filtering 

Remove spikes, smooth the image, and 
improve the visualisation of weak 
anomalies. 

Changes value of a data point by calculating the 
average value within a block of data.  Smooths the 
image, weak anomalies become more visible. 

Despiking Remove random spikes within the dataset 
caused by ferrous contamination within the 
topsoil and instrument instability. 

Value of selected data points are replaced with a 
‘normalised’ value, sometimes the average of 
surrounding data points (background value). 

Destriping 
(Zero Mean 
Traverse) 

Correct the banding in zig-zag surveys 
resulting from the directional sensitivity of 
magnetometers. 

A constant value is subtracted from the affected 
traverses, so their mean is set to zero – this can 
obscure linear anomalies or remove those parallel 
to the affected traverses. 

Destaggering Correct offset readings caused by 
differences in the operator’s speed and 
topographic variations. 

Traverses are shifted.   

Edge 
Matching 

Correct variations in the background value 
between grids caused by the effects of 
changes in temperature, soil moisture 
content over long survey periods. 

Mean or median of each grid is set to zero (or 
another common value). 

 

4.8. Rendering, Visualization, and Interpretation 

Data plots can be rendered in 2D or 3D greyscale and RGB colour plots.  Greyscale 2D plots are the 

most common presentation for archaeogeophysical survey data.  The 2D plots are especially useful 

for interpretation when accompanied by X-Y trace plots.  3D relief diagrams incorporate the 2D data 

and a 3D relief of the trace plots into a singular diagram.  If data were collected using a multi-receiver 

EMI system or multiplexed resistance system additional 3D plots, similar to 3D GPR data plots, can 

be created to render isosurfaces and for use in multi-component integration rendering methods (Saey 

et al. 2013).  In multi-receiver EMI data, particularly, data can be ‘sliced’ to specific depth boundaries 

(determined by the coil separations) to present ‘non-apparent’ electrical conductivity and magnetic 

susceptibility values, given Equations 4.13-4.16 which are solved using Levenberg-Marquardt non-

linear least-squares algorithm (Marquardt 1963, Saey et al. 2013).  This allows the interpreter to 

isolate features at approximate depths. 
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As with GPR data, multi-receiver EMI and multiplexed resistance datasets can be formatted as 

animations.  Magnetic, EMI, and resistance data are commonly integrated in data fusion or multi-

component data integration plots.  Overlaying these data with spatial and topographic data or aerial 

imagery can improve the interpretability of data. 

4.9. Applications of Archaeogeophysics for General Site Evaluation 

Since its inception geophysical prospection has been applied to a range of archaeological sites, from 

prehistoric to modern, all of which have limitations on data interpretation.  It is important to note that 

a geophysical survey is only as good as the survey parameters employed, the local geology, and, 

most importantly, the surviving archaeology.  Prehistoric archaeology often proves difficult to 

geophysically detect, even though, as stated by Gaffney and Gater (2003), prehistoric anthropogenic 

activity is relatively simple compared to that in later history.  As the majority of prehistoric archaeology 

is considered ‘negative archaeology,’ where features are cut into the subsoil, bedrock, or earlier 

deposits, geophysical prospection is useful for strata definition and identifying palaeochannels, field 

systems, settlements, settlement enclosures, and burial sites.  It is agreed that the most suitable 

approach for locating these features is a magnetic survey (e.g., fluxgate or caesium gradiometry) due 

to the silting up of cut features and the increased potential for areas of repeated burning (Gaffney 

and Gater 2003).  Although, additional techniques should not be discounted where features are likely 

to be more than 1m below the ground surface or require increased sampling in one or both directions. 

Detecting early historic archaeology (Roman archaeology in British contexts, and pre-Christian 

archaeology in Irish contexts) is markedly easier and more likely to be detectable compared to 

4.13:  Apparent conductivity (ECa) in horizontal coplanar mode 

ECaHCP =  [RHCPS
(z1) − RHCPS

(zs)]EC1
* + [RHCPS

(z2) − RHCPS
(z1)]EC2

* + [1 − RHCPS
(z2)]EC3

*     

4.14:  Apparent conductivity (ECa) in perpendicular dipole mode 

ECaPRP =  [RPRPS
(z1) − RPRPS

(zs)]EC1
* + [RPRPS

(z2) − RPRPS
(z1)]EC2

* + [1 − RPRPS
(z2)]EC3

*     

4.15:  Apparent magnetic susceptibility (MSa) in horizontal coplanar mode 

MSaHCP =  [RHCPS
(z1) − RHCPS

(zs)]MS1
* + [RHCPS

(z2) − RHCPS
(z1)]MS2

* + [1 − RHCPS
(z2)]MS3

*  

4.16:  Apparent magnetic susceptibility (MSa) in perpendicular dipole mode 

MSaVCP =  [RVCPS
(z1) − RVCPS

(zs)]MS1
* + [RVCPS

(z2) − RVCPS
(z1)]MS2

* + [1 − RVCPS
(z2)]MS3

*  
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prehistoric and later historic archaeology (Gaffney and Gater 2003).  The considerable magnetic 

enhancement of features allows for probable detections using magnetic systems, while the increased 

use of stone in buildings in this historic period is better detected with GPR and resistivity systems.  

The archaeology of this period often follows an established pattern which allows the surveyor to 

interpret archaeological features and their significance in geophysical datasets more quickly and 

confidently.  It is posited by Gaffney and Gater (2003) that the majority of geophysical surveys, 

especially those in the UK, have been carried out on sites of this period, proving the great success 

of the majority of geophysical techniques in detecting features from this period as well as improving 

the confidence in interpreting such features in future surveys. 

Geophysical prospection has had mixed success in detecting medieval and post-Roman to early 

modern archaeology.  As is often the nature of ecclesiastical sites, they leave behind little to no 

enhanced magnetism, stone foundations are not guaranteed to survive, and they require an intensive 

sampling strategy during survey to maximise their detection potential (Gaffney and Gater 2003).  

Other archaeological features, such as ridge and furrow ploughing, land drains, and some military 

sites, are much easier to detect due to more magnetic enhancement.  Surveying archaeology of 

these periods relies much more heavily on documentary evidence and a high resolution, multi-

technique approach to surveying (Gaffney and Gater 2003). 

4.10. Overall Detectability of Graves 

While improvements in equipment sensitivity, data logging capabilities, and survey methods have led 

to a slight improvement in the potential to detect unmarked graves, the methodologies employed 

today still fall short where remains are fully skeletonised and the burial container has deteriorated 

(Killam 1990, Moffat 2015a). Inhumations are unlikely to be detected using large-scale 

reconnaissance methods often used in commercial archaeogeophysical surveys, and therefore 

require precise high-resolution, high-density data acquisition. 

Where the orientation of the grave is known or assumed, it is essential traverses are aligned 

perpendicular to the grave’s longest axis, with dense traverse and sampling intervals.  The maximum 

traverse spacing as suggested by Moffat (2015), Bonsall et al. (2014), and Green (2015) is 0.5m, 

with a maximum sampling interval of 0.25m for magnetic and resistivity techniques and 0.05m for 

electromagnetic techniques. 

The grave cut for an adult grave is typically c. 2m x 0.5m with some variation depending on if a coffin 

or other burial container was used.  Pre-modern graves are often simple earthen dug graves or wood 

coffin burials.  As graves are often dug and backfilled within hours, there is no measurable magnetic 
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enhancement in the grave fill.  However, a grave cut may be identified by a contrast in the electrical 

conductivity of the grave fill and surrounding material caused by increased moisture retention.  In 

more elaborate graves, there is potential for grave goods, coffin nails, and other remains to produce 

a magnetic response.  However, these responses are unlikely to be interpreted to associated with a 

grave without evidence of grave markers or a grave cut.  Juvenile graves are much smaller and 

nearly impossible to detect where there are only cuts for individual graves. 

Cillíní are children’s burial grounds, which often reuse prehistoric and medieval enclosures, for 

unbaptised children.  It is unlikely any geophysical technique will detect individual graves; rather, if 

present, the enclosure ditch or wall is likely to be detected.  As with adult inhumations, there is no 

measurable magnetic enhancement of the grave fill, but grave goods may produce a magnetic 

response. 

4.10.1. Associated Archaeological Features 

Stonework associated with graves will often contrast with surrounding materials when using 

electromagnetic and resistivity techniques.  This is due to the compaction of the material and 

difference or variation in the conductive properties between the local geology, soil matrix, and stone.  

Stone can also cause moisture variations which would be easily detected by resistivity and some 

electromagnetic techniques depending upon the salt content of the retained water. 

4.10.2. Effects of Soil Characteristics on Detectability 

The primary factors in determining whether graves can be detected or easily identified are the 

physical and chemical properties of the surrounding soil matrix.  Low conductivity and highly 

permeable soils are often the most suitable for GPR survey because they optimise the maximum 

penetration depth of the radar signal and reduce signal loss and strong reflections from standing 

water and waterlogged soils.  While most archaeological graves are shallow (less than 1m below the 

original ground surface), there are instances where rubble or modern made ground can create a thick 

overburden over the original topsoil.  In both scenarios, the soils and moisture content have a 

significant impact on the success of GPR detecting graves. 

Soils are comprised of sand, silt, and clay particles.  Sands are particles of quartz, feldspar, and mica 

that range in size from 2 – 0.02mm.  Silts are particles of quartz, feldspar, and mica that range in size 

from 0.02 – 0.002mm (Osman 2013).  Clays are particles of minerals such as kaolinite, smectite, 

vermiculite, illite, chlorite, and hydrated aluminium and iron oxides which are less than 0.002mm in 

size (Osman 2013).  Soils are further defined by their texture and composition.  For example, loams 
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are soils which have an equal representation of the properties of sand, silt, and clay (approximately 

40% silt, 40% sand, and 20% clay) (Osman 2013). 

Table 11: Size and properties of soil particles (adapted from Osman 2013) 

Soil Particles* Diameter (in mm) Soil Particles** Diameter (in mm) Properties 

Coarse sand 2.00-0.20 Very coarse sand 2.00-1.00 Little or no capacity to hold 

water and nutrients 

Bind to other particles 

Loose when wet 

Very loose when dry 

Coarse sand 1.00-0.50 

Medium sand 0.50-0.25 

Fine sand 0.20-0.02 Fine sand 0.25-0.10 

Very fine sand 0.10-0.05 

Silt 0.02-0.002 Silt 0.05-0.002 Low to medium capacity to 

hold water, nutrients, and 

other particles 

Clay <0.002 Clay <0.002 High capacity to hold water, 

nutrients, and other 

particles 

*ISSS System     **USDA System 

 

12 soil classes are used to define soils as clayey, sandy, silty, or loamy by their texture.  The 12 

classes are based on the soil’s mechanical composition – the proportion of sand, silt, and clay 

particles in the soil, as demonstrated in Table 12.  The texture affects the soil’s ability to retain water 

and nutrients, as well as its infiltration rate and leaching (see Table 13).  As indicated by the particle 

size, sandy soils rapidly absorb and drain water due to their high proportion of medium-large coarse 

particles.  Whereas, the smooth, compact nature of clay particles allow clayey soils to retain water 

and nutrients. 
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Table 12: Particle composition of the soil texture classes (adapted from Osman 2013) 

Texture Textural Class 

Percentage Composition 

Sand Silt Clay 

Coarse Sand 80-100 0-20 0-20 

Loamy Sand 70-80 0-30 10-15 

Sandy Loam 50-80 0-50 0-20 

Medium Loam 30-50 30-50 0-20 

Silt Loam 0-50 50-100 0-20 

Silt 0-20 90-100 0-10 

Fine Sandy Clay Loam 50-80 0-30 20-30 

Clay Loam 20-50 20-50 20-30 

Silty Clay Loam 0-30 50-80 20-30 

Sandy Clay 50-70 0-20 30-50 

Silty Clay 0-20 50-70 30-50 

Clay 0-50 0-50 30-100 

 

Table 13: Physical characteristics of the soil texture classes (adapted from Osman 2013) 

Soil Texture 

Class 

Infiltration Water-holding 

Capacity 

Nutrient-holding 

Capacity 

Aeration Leaching 

Sand Good Poor Poor Good High 

Silt Medium Medium Medium Medium Medium 

Clay Poor Good Good Poor Low 

Loam Medium Medium Medium Medium Medium 

 

4.10.3. Effects of Land Cover on Detectability 

Survey data is also affected by the present and historic land coverage of the study area.  As is 

demonstrated in Table 14, ground cover can have an impact on the data quality and subsequently, 

the interpretability of the data.   
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Table 14:  Effects of land use/land cover on geophysical survey data (adapted from Bonsall et al. 2014a) 

Land Use Description Effect on Geophysical Survey Data 

Grassland Pasture Open area of grasses where livestock 

graze 

The groundcover is suitable for all 

geophysical survey methods, but livestock 

can interfere with magnetic and 

electromagnetic techniques. 

Arable Land that has been (or can be) ploughed 

for crops 

Positional accuracy and data quality are 

reduced as crop height increases and crop 

brushes against the instruments. 

Ground contact often cannot be achieved for 

earth resistance and topsoil magnetic 

susceptibility surveys. 

Data quality can be reduced if the surveyor is 

walking on cut silage as it is slippery and 

produces an uneven surface.  

Surveyor may have to dummy around silage 

bales and other small obstacles. 

Undifferentiated or 

Unmanaged 

Grassland 

Open area of grasses that are not 

managed/grazed by livestock where 

scrub and coarse grasses grow 

Hummocks and depressions formed by the 

unmanaged grasses can reduce positional 

accuracy and introduced surveyor walking 

effects. 

Bog/Reclaimed 

Bog/Wetland/Marsh 

Area of poorly drained ground that is 

often waterlogged or ‘spongy’ and 

surrounded by a body of water 

The soft ground can reduce positional 

accuracy and introduced surveyor walking 

effects.  In reclaimed bogs and unprotected 

wetlands, imported metals and other 

materials may reduce the quality of magnetic 

and electromagnetic surveys. 

Woodland Area of land covered with trees Tree cover does not allow for a 

comprehensive, high-resolution survey and 

reduces the interpretability of the site. 

Ploughed Land where the soil is loosened or 

turned and seeds will be planted 

Positional accuracy and ground contact are 

impeded by the uneven soil (except in 

recently seeded soils).  Recently ploughed 

soils can also create “noise,” sometimes 

making any geophysical survey ineffective. 

 

If a grave is in woodland or unmanaged grasslands, its detectability will be reduced due to the 

availability of surveyable areas and noise introduced by the surveyor as they walk over the slight 

topographical variations caused by unmaintained grasses and roots.  Moisture differences around 
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large trees will be detected by GPR, EMI, and resistance techniques.  Large, widespread moisture 

differences can obscure graves or be misinterpreted as graves. 

These factors impact the detectability of graves with any geophysical techniques.  In some conditions, 

certain techniques are not suitable for detecting any archaeological features, let alone small features 

like graves.  The first step in improving the detection and interpretation of graves is improving the 

quality of data collected.  There are several guidance documents available for archaeogeophysical 

survey; however, this project primarily focused on those with European applications in order to create 

an interactive tool for determining the most appropriate survey parameters for a site in Western 

Europe. 
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5. SURVEY PARAMETERS TOOL METHODS 

5.1. Introduction 

As an initial step in improving the interpretability of data, the data acquired during a survey should be 

improved through the use of appropriate survey parameters.  Currently, the guidance for surveys in 

Ireland is provided in flowchart and decision table format; while, the guidance for surveys in the rest 

of Europe (primarily England) is provided in text and decision table format.  To make this guidance 

more accessible, this project aimed to translate the existing guidance to an interactive format which 

accounts for regional controllable and uncontrollable factors that may impact on the survey and data 

quality but encourages commercial clients and surveyors to consult the appropriate guidance 

documents before a survey.  Further discussion on the structure of survey guidance is provided in 

Chapter 3.3.  The appropriate survey parameters were assigned to polygons in shapefiles using 

openly available data and decision trees and tables implemented through SQL queries in ArcGIS.  

Additional details on the approach taken to create the interactive, user-friendly output for survey 

guidance is discussed hereafter. 

5.2. Format 

The survey parameters tool is implemented in shapefiles for desktop GIS software and ArcGIS web 

apps, and the outputs provided are based on results from a decision tree which was converted to a 

decision table.  The rank table (divided into polygons with attributes) is available in the desktop 

version of the tool and can be viewed in Table 16.  The compiled vector maps are provided in both 

web app and desktop versions.  Due to file size limits, the dataset was split to create two web apps, 

one for the UK and one for Ireland.  The online versions are limited to displaying only the suggested 

survey parameters due to file size limits and licencing concerns.  However, the desktop version 

provides the user with all data available for a point (including the bedrock geology, superficial 

geology, soils, and land cover) and will be made available on a case-by-case basis according to 

licencing agreements. 

5.3. Data 

The primary decision-making variables were derived from controllable and uncontrollable factors 

which determine the quality of acquired data.  These factors are provided by Historic England (David 

et al. 2008), Bonsall et al. (2014a), and Schmidt et al. (2015).  The output (appropriate survey 

parameters) is heavily dependent on environmental factors such as bedrock and superficial geology, 
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and land cover.  Table 15 details the factors accounted for in the decision table and their associated 

variables.  In the output, users are referred to the relevant guidance document for further information 

on those factors, such as weather conditions and surveyor competency, which are not accounted for 

in the initial decision.  The following data were ranked on a scale of 0 (do not attempt) to 5 (highly 

suitable) for the four most commonly used geophysical techniques in archaeological prospection, 

according to the available survey guidance document discussed in Chapter 3. 

Table 15:  Factors accounted for in deciding the best output data in the survey parameters tool 

Controllable Factors Uncontrollable Factors 

Technique selection Soil type 

Data acquisition methods Land cover 

Spatial resolution Bedrock geology 

 Surface geology 

 Sources of interference 

 

Input data were derived from:  

• British Geological Survey (2019) geology maps based on BGS data under an Open 

Government Licence,  

• Esri UK satellite imagery and in-built automatic classification of land cover using the national 

land cover database in ArcGIS Pro v2.2, 

• Corine land cover data for Ireland (Environmental Protection Agency Ireland 2019) licenced 

under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence,  

• Irish soils data derived from Creamer et al. (2016),  

• Geological Survey Ireland (2019) data licenced under a Creative Commons Attribution 4.0 

International (CC BY 4.0) licence.   

Output data were derived from guidance supplied by Schmidt et al. (2015) and Bonsall et al. (2014a) 

which was initially translated to a decision table. 

Land cover, bedrock geology, superficial geology, and, for the Republic of Ireland, soils data were 

imported into ArcGIS as shapefiles.  Land cover data for Great Britain were acquired by classifying 

aerial imagery using the built-in unsupervised image segmentation and classification toolboxes 

based on the NLCD land cover classes in ArcGIS Pro.  The shapefiles were simplified and data 

reclassified into classes conventionally used in the archaeogeophysics literature to reduce the file 

size and improve usability, as demonstrated in the classes shown in Table 16.  The simplified 
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shapefiles were joined, and new polygons created from overlapping fields.  The new polygons 

contained the land cover, geological, and soil characteristics available.  These characteristics were 

used to derive the appropriate survey parameters for each polygon.  Due to the assembly of multiple 

datasets from multiple countries and coordinate systems, the merged polygons were converted to 

the WGS 1984 coordinate system to allow the end-user to use their site coordinates in the search 

function. 

There was limited data available for Northern Ireland.  Freely available data were restricted to the 

bedrock geology classifications and raster datasets which were classified for land cover types.  Due 

to this lack of data, guidance for Northern Ireland included in the first release of the tool should be 

used with caution.  As more data becomes available, full guidance for Northern Ireland and additional 

European countries will be included in subsequent releases.
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Table 16:  List of simplified categories and classes used in the decision table for determining the most appropriate technique for each unique polygon in the survey parameters tool 

Land Cover 

Arable 

Bog 

Burnt Areas 

Coastal 

Cultivated 

Grassland 

Heather 

Marsh 

Mineral Extraction Site 

Moors & Heathland 

Outcrop 

Pasture 

Rock 

Sediment 

Transportation 

Urban 

Wetland 

Woodland 

Bedrock Geology 

Anorthosite 

Appinite 

Basalt 

Breccia & Metabreccia 

Breccia, Conglomerate & Sandstone 

Chalk 

Clay, Silt & Sand 

Clay, Silt, Sand & Gravel 

Conglomerate 

Conglomerate, Sandstone, Siltstone, & 
Mudstone 

Diamictite 

Diorite 

Dolerite 

Dolomitised Limestone 

Dolostone 

Felsic 

Gabbro 

Gneiss 

Gneissose Psammite & Gneissose 
Semipelite 

Gneissose Semipelite & Gneissose 
Psammite 

Gneiss & Granite 

Granite 

Gravel, Silt, Sand & Clay 

Greywacke 

Lava 

Limestone 

Limestone & Calcareous Sandstone 

Limestone & Mudstone 

Limestone, Sandstone, Siltstone & 
Mudstone 

Mafic 

Mafite 

Metalimestone 

Metasedimentary Rock 

Migmatitic Rock 

Mudstone 

Mudstone, Chert, & Smectite-Claystone 

Mudstone, Sandstone & Conglomerate 

Mudstone, Sandstone & Limestone 

Mudstone, Siltstone & Sandstone 

Mudstone, Siltstone, Sandstone & 
Limestone 

Mudstone, Siltstone, Sandstone, Coal, 
Ironstone & Ferricrete 

Mylonitic Rock 

Pelite 

Psammite 

Psammite & Pelite 

Psammite & Semipelite 

Psammite, Pelite, Semipelite & 
Calcsilicate Rock 

Psammite, Semipelite & Pelite 

Pyroclastic Rock 

Quartz Arenite 

Quartzite 

Rhyolite 

Sand, Silt & Clay 

Sandstone 

Sandstone & Conglomerate 

Sandstone & Mudstone 

Sandstone & Siltstone 

Sandstone, Breccia & Conglomerate 

Sandstone, Limestone & Argillaceous 
Rocks 

Sandstone, Mudstone, Siltstone & 
Conglomerate 

Sandstone, Siltstone & Mudstone 

Schist 

Sedimentary Rock 

Semipelite 

Semipelite & Pelite 

Serpentinite 

Shale 

Siltstone 

Siltstone & Sandstone 

Slate 

Syenitic Rock 

Ultramafitite 

Volcanic 

Wacke  

Drift/Superficial Geology 
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Airfield/Airport 

Alluvium 

Alluvium (Clayey) 

Alluvium (Gravelly) 

Alluvium (Sandy) 

Bedrock Outcrop or Subcrop 

Blanket Peat 

Brickearth 

Clay with Flints 

Crag Group 

Cut Over Raised Peat 

Embankment 

Eskers Comprised of Gravels of Basic 
Reaction 

Estuarine Silts & Clays 

Glaciomarine Sediments 

Gravels Derived from Cambrian 
Sandstones & Shales 

Gravels Derived from Devonian 
Sandstones 

Gravels Derived from Limestones 

Gravels Derived from Lower Palaeozoic & 
Devonian Sandstones 

Gravels Derived from Lower Palaeozoic 
Sandstones 

Gravels Derived from Lower Palaeozoic 
Sandstones & Shales 

Gravels Derived from Lower Palaeozoic 
Shales 

Gravels Derived from Namurian 
Sandstones & Shales 

Gravels Derived from Granite 

Gravels Derived from Quartzite 

Industrial 

Irish Sea Till Derived from Cambrian 
Sandstones & Shales 

Irish Sea Till Derived from Limestones 

Irish Sea Till Derived from Lower 
Palaeozoic Sandstones & Shales 

Kartsified Bedrock Outcrop or Subcrop 

Lacustrine Deposits 

Lacustrine Clays 

None 

Peat 

Pier 

Lacustrine Sediments 

Lake Marl 

Landslip 

Marine Beach Sands 

Marine Gravel & Sands (often Raised) 

Raised Marine Deposits 

River Terrace Deposits 

Sand 

Sand & Gravel 

Tidal Marsh 

Till 

Till Derived from Cambrian Sandstones & 
Shales 

Till Derived from Carboniferous 
Sandstones & Cherts 

Till Derived from Devonian & 
Carboniferous Sandstones  

Till Derived from Devonian & 
Carboniferous Sandstones & Shales  

Till Derived from Acidic Volcanic Rocks 

Till Derived from Granites 

Till Derived from Devonian Sandstones 

Till Derived from Lower Palaeozoic & 
Devonian Sandstones 

Till Derived from Lower Palaeozoic 
Sandstones & Shales 

Till Derived from Lower Palaeozoic Shales 

Till Derived from Metamorphic Rocks 

Till Derived from Namurian Sandstones & 
Shales 

Till Derived from Silicified Limestone & 
Cherts 

Till Derived from Limestones 

Till Derived from Quartzites 

Urban 

Windblown Sands 

Soils 

Alluvium 

Clay 

Island 

Loamy 

Peat 

Rock 

Sandy 

Tidal Marsh 

Urban 
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5.4. Suitability Mapping Methods 

Input data for the bedrock geology, superficial geology, soils and land cover were manually assigned 

a value on a scale of 0 (do not attempt) to 5 (highly suitable) for EMI, GPR, magnetometry and 

resistance techniques according to the advice given in by Bonsall et al. (2014), Schmidt et al. (2015) 

and David et al. (2008).  Table 19 shows an excerpt of these raw suitability data.  The complete data 

are shown in Appendix H.  These initial rank data were used with analytic hierarchy process (AHP) 

as a tool for multi-criteria decision analysis (MCDA) in GIS. 

AHP is a commonly used MCDA technique in GIS applications for suitability analysis, particularly for 

land use and resource management (Mendoza 2000, Duc 2006, Vaidya and Kumar 2006, Chandio 

et al. 2013, Malczewski and Rinner 2015, Al-shabeeb 2016, Chaudhary et al. 2016), that was initially 

developed by Saaty (1980).  AHP uses multiple pairwise comparison matrices to determine the 

highest-ranking value by comparing all possible pairs of criteria, or input factors, against each other 

(Marinoni 2004, Duc 2006).  As described in Figure 39, AHP can be used to create a suitability map 

based on the criteria weight (Cw), criterion score for each input (Cs), and consistency ratio.   

 

 

Figure 39:  Flowchart demonstrating the AHP process for creating a suitability map for this project Adapted from Duc 
(2006) 

The weighted linear combination using QR decomposition on the eigenvalues in the comparison 

matrix to calculate the suitability value from the Cw, Cs, and Boolean value of criterion on a scale set 

by the user (Cb), as shown in Equation 5.1:  AHP Suitability Analysis Equation (Marinoni 2004, 2017, 

Duc 2006).  In the model for this project, Cb was measured on a scale of 0-5. 
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The consistency ratio (CR) is used to measure the variation allowed for the pairwise comparisons.  

Saaty (1980) recommends the CR is less than or equal to 0.1, to indicate suitable weights have been 

used in the comparison matrix and the pairwise comparisons are consistent. 

For this project, the AHP was carried out using the AHP tool in the GIS Decisions add-in for ArcGIS 

Desktop (Marinoni 2017).  The workflow for generating suitability maps is shown in Figure 40.  The 

rank values stored in the attribute tables are used when converting the polygons to rasters to be used 

as inputs for the AHP tool.  The outputs from the AHP tool runs are then converted into vectors and 

merged, so the suitability scores for all techniques are stored in the same attribute table.  The values 

used in the Preference Matrix for the Ireland and Northern Ireland dataset are shown in Table 17, 

and the values for the GB data are shown in Table 18.  A Preference Matrix uses a scale of 1 (equal 

preference for input criteria) to 9 (strong preference of one or more criteria over others) to compare 

and weight the input criteria, in this case, the soil, superficial geology, land cover and bedrock geology 

suitability (Marinoni 2017). 

Table 17:  AHP Preference Matrix for the Ireland and Northern Ireland dataset 

 Soil Superficial Geology Land Cover Bedrock Geology 

Soil 1 1 1 1 

Superficial Geology 1 1 1 0.5 

Land Cover 1 1 1 0.5 

Bedrock Geology 1 1 2 1 
     

Superficial Geology: 20.36 Land Cover: 20.36 CR: 0.022 

Soil: 24.627 Bedrock Geology: 34.654  

 

Table 18:  AHP Preference Matrix for the Great Britain dataset 

 Land Cover Superficial Geology Bedrock Geology  

Superficial Geology 1 1 1  

Land Cover 1 1 0.5  

Bedrock Geology 2 1 1  
     

Superficial Geology: 32.748 Land Cover: 25.992 CR: 0.062 

  Bedrock Geology: 41.26  

5.1:  AHP Suitability Analysis Equation 

S = ∑ (𝐶𝑤
𝑛
𝑖=1 𝐶𝑠) ∏ 𝐶𝑏  

S = suitability 

𝐶𝑤 = criteria weight 

𝐶𝑠 = criteria score for each input 

𝐶𝑏 = Boolean value of criterion 
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Figure 40:  Workflow for creating the final combined suitability map for this project 
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Table 19:  Excerpt of rank values used for suitability analysis 

Bedrock Geology 

Class Magnetometry Suitability EMI Suitability Earth Resistance Suitability GPR Suitability 

Anorthosite 1 2 5 2 

Appinite 4 3 4 3 

Basalt 1 2 5 2 

Breccia and Metabreccia 3 4 3 4 

Breccia, Conglomerate and Sandstone 3 4 3 4 
 

Superficial Geology 

Class Magnetometry Suitability EMI Suitability Earth Resistance Suitability GPR Suitability 

Airfield/Airport 1 4 3 4 

Alluvium 3 2 4 3 

Alluvium (Clayey) 3 2 4 3 

Alluvium (Gravelly) 3 2 4 3 

Alluvium (Sandy) 3 2 4 3 
 

Soils 

Class Magnetometry Suitability EMI Suitability Earth Resistance Suitability GPR Suitability 

Tidal Marsh 0 2 0 1 

Rock 1 3 1 1 

Island 0 1 0 0 

Loamy 3 3 3 3 

Alluvium 2 3 4 2 
 

Land Cover 

Class Magnetometry Suitability EMI Suitability Earth Resistance Suitability GPR Suitability 

Arable 5 5 5 4 

Bog 1 4 1 3 

Burnt Areas 1 2 3 3 

Coastal 1 3 1 2 

Cultivated 5 5 3 3 
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5.5. User Interface 

The GUI was developed using the Esri web app builder with one app for the UK and one for Ireland 

due to file size limits.  The design was heavily modified to support the extensive database as the 

primary aim of the map is to allow users to search for their site location easily.  A limited dataset, 

consisting of only the relevant survey parameter fields, can be viewed in the web browser.  The full 

dataset, including supplementary data fields, is available for use in desktop ArcGIS Pro or ArcMap.  

In both versions the user can search for a central coordinate of their survey area; once directed to 

their location they can select the polygon by clicking on it.  Once a polygon is selected, a popup 

window containing the relevant data is displayed.  The pop-up windows were designed using Arcade 

to show the techniques ranked from most suitable to least suitable for the selected coordinates, as 

well as placename information, the suggested minimum survey resolution for each technique and 

survey aim discussed and links to additional guidance documents should the user need more 

advanced information.  The example output in the web browser is shown in Figure 41, and an 

example output of the full dataset provided in the desktop version is shown in Figure 42. 

 
Figure 41:  Example of an output in the web browser version of the survey parameters tool.  The image shows the 

information the end-user is given once they have selected a polygon and the location search capabilities of the app.  

The survey resolution guidance provided in this tool is derived from the relevant guidance 

document(s) for the region.  The ArcGIS Online web app can be accessed through the browser using 

the default link provided by Esri.  The parameters layers are also available in kmz file format for 

import into Google Earth for individuals who do not have access to ArcGIS. 

https://bmthuni.maps.arcgis.com/apps/webappviewer/index.html?id=a2cda65879624d87ab8ce3249c1f74ee
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Figure 42:  Example of an output in the desktop version of the survey parameters tool.  This image demonstrates the 

end-users view of the shapefile and the information they are provided with in the configured pop-up window.  

5.6. Guidance App Implementation 

Using the survey data from Buckland Rings, Lymington, UK, in Figure 44 as an example, the survey 

parameters tool provides viable feedback to both commercial clients and surveyors.  Three series of 

geophysical surveys have been carried out on the site since 2017 – gradiometry (Hagan et al. 2017), 

GPR (Howard 2018), and EMI (Monteith and Green 2019).  The guidance app indicates that earth 

resistance would be the most suitable technique, with magnetometry and EMI as suitable 

supplementary techniques, for the geology and land cover at Buckland Rings (National Grid 

Reference:  SZ315968).  Results from the three surveys indicate that gradiometry was the most 

successful in delineating responses of archaeological potential.  EMI was able to delineate larger 

features but was not able to clearly delineate any small features; however, this was likely due to 

variations in survey conditions and directional bias in the survey parameters.  GPR was able to survey 

to a greater depth below ground level than the other techniques, but the survey area was limited by 

the topography and vegetation.  The multiple surveys conducted at Buckland Rings demonstrate the 

validity of the survey guidance app and can be used to encourage the widespread use the guidance 

within commercial, volunteer, and research geophysics where necessary. 
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6. MACHINE LEARNING 

6.1. Introduction 

In recent years with the growth of mechanised, GPS-tracked survey equipment, the average size of 

surveys has also increased due to the ease and speed of surveying, as demonstrated in Table 20.  

However, with these large datasets comes the difficulty of identifying small features visually.  It is well 

known that all humans see and focus on different aspects of an image, which can lead to a subjective, 

biased interpretation of a dataset (Verdonck et al. 2019).  For example, a medium-sized survey 

dataset like those in Figure 43 and Figure 44 would have many different interpretations depending 

on the interpreter.   

Table 20: Examples of large-scale surveys conducted 1996 - 2018 (adapted from Bonsall 2014) 

Location Hectares Survey Year(s) 

Land off Bury Road, Woolpit, Suffolk 19 2018 

Marden Barrows and Wilsford Henge, Wiltshire 20 2012-2013 

Stonehenge Southern WHS, Diamonds Field, Wiltshire 26.9 2015 

Six Hills Road Solar Development, Leicestershire 27 2014 

Land at Stonemead Farm, Worminster Down, Somerset 43 2014 

Land at Moreton Hall, Bury St. Edmunds, Suffolk 46 2016 

Land at Monks Cross, York 50 2014 

Westacott, Barnstaple, Devon 55 2017 

Selinus, Sicily c. 65 1999-2003 

Wroughton Airfield Solar Park, Swindon, Wiltshire 65 2013 

Wroxeter, Shropshire, UK 70 Pre-1999 

M3 Clonee to North of Kells Motorway, Ireland 105 2000 

Carnuntum, Austria >110 Pre-2003 

Luton Hoo, Luton, Bedfordshire, UK 120 2003 

Moorside Project, Sellafield, Cumbria 142 2015 

N6 Galway to East Ballinasloe Motorway, Ireland 160 2004 

M20 Cork to Limerick Motorway, Ireland 182 2010 

BREBEMI Motorway, Italy 217 2009 

Portus, Italy c. 220 1998-2005 

Commercial Project, UK 250 2008 

Commercial Project, UK 400 2010 

Stonehenge Hidden Landscapes Project, UK 820 2011-2013 

Heslerton Parish Project, North Yorkshire, UK >1200 1996-2006 
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Figure 43:  Example of a large magnetometer survey dataset (Bournemouth University 2019) 

Contains Crown Copyright Data 
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Figure 44: Example of a large EMI apparent conductivity dataset (Monteith and Green 2019)

Contains Crown Copyright Data 
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Furthermore, it would not be unexpected for the human eye to miss small details like pits or postholes 

when there are much larger features to focus on.  This natural bias can lead to misinterpretation or 

missed features, even in smaller datasets.  In other fields which have complex small datasets, such 

as medical imaging, this bias also occurs as well as the discrepancy between human-led 

interpretations (Nattkemper et al. 2003, p. 35).  In their study on the detection of lymphocytes in 

fluorescence micrographs, Nattkemper et al. (2003, p. 40-41) identified a correlation between the 

experience level of human interpreters and the accuracy of their detections, demonstrating that the 

most experienced interpreters achieved the highest accuracy.  Overall, Nattkemper et al. (2003, p. 

40) achieved a similar accuracy to a medium-trained human expert with artificial neural network 

classifiers and decreased the time required to analyse each micrograph.  Similar trends are expected 

to occur in the comparison of human- and machine-led interpretation of geophysical data, especially 

where small features are present.  Chapter 1.2 discusses the accuracy of human-led detection of 

potential graves in GPR data. 

Overlooking other small features, such as a potential pit or kiln, in geophysical data has little 

consequence to archaeological evaluations because they are often associated with wider spread 

settlement activity and their presence is assumed.  Whereas, not all cemeteries and burial grounds 

are associated with detectable settlement activity, making them more challenging to detect using 

surrounding features to localise areas of interest for high-resolution surveys.  Not detecting graves 

also has a much more significant impact on evaluations as they require ethical considerations and 

additional expert staff and can cause delays while the appropriate licences are acquired if not already 

held for a site.  Of utmost importance are the ethical implications for disturbing and recovering human 

remains.  Where possible human remains should not be disturbed (Advisory Panel on the 

Archaeology of Burials in England 2017, p.1); however, if unavoidable, human remains should only 

be excavated by qualified excavators once the appropriate licenses are obtained (BABAO Working-

group for ethics and practice 2010, p. 9; Institute of Archaeologists of Ireland 2016, p. 3-4).  Skeletal 

remains can be costly for a client and require more time for the archaeologists to recover and record 

them to a suitable standard, which adds further timescale pressures for the archaeologists and client 

(OSSAFreelance 2012, p. 6-8).  This impact could be mitigated by adapting existing machine learning 

methods to interpret complex geophysical datasets and an archaeologically complex feature.  The 

knowledgebase of the viability of machine learning in fields like archaeology already exists, which 

begs the question, why has it not been widely applied to commercial geophysics?  Is it because the 

data available is not a real-world representation of grave responses?  Or is it merely because some 
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archaeological features are too difficult for the learning machine to identify them accurately and 

confidently? 

Because these machine learning methods have been widely applied to many other complex problems 

in the last seven years since the development of AlexNet (Krizhevsky et al. 2012), this project aims 

to build on the existing knowledgebase to determine if machine learning is a viable approach for 

widespread automatic interpretation of features in commercial and research geophysics. 

Automatic feature detection software exists for infrastructure monitoring, IED detection, and simplistic 

materials identification in geophysical datasets (Pasolli et al. 2008, 2009, Singh and Nene 2013b, 

Qiao et al. 2015, Zaremba et al. 2016b).  The algorithms and learning processes can be readily 

applied to geophysical datasets to isolate grave-like responses through supervised and potentially 

semi-supervised machine learning.  By analysing the presence of typical medieval burial practices 

while accounting for a range of uncontrollable factors (i.e. geology, weather conditions), classifiers 

for the expected geophysical response of these inhumations, particularly the response in GPR data, 

can be estimated to create a dataset of “knowns.”  Through machine learning, acquired GPR data 

(“unknowns”) can be compared to the “known” or labelled dataset to probabilistically identify grave-

like responses which may not be identified during manual interpretation.  This research project aims 

to create computational tools that will improve survey data and subsequent interpretations in 

archaeological GPR surveys, mainly focusing on the implications of their implementation in 

commercial archaeology.  Through retraining existing convolutional neural networks on raster outputs 

of 2D and 3D GPR data, grave-like responses will be highlighted in any GPR B- and C-scan datasets 

and given an associated confidence score.   

6.2. Deep Learning 

There are three primary types of machine learning:  unsupervised, semi-supervised, and supervised 

as defined in Figure 46 (Singh et al. 2016, Maulik and Chakraborty 2017).  A brief overview of how 

labelled and unlabelled datasets are used in the different learning machines is provided in Figure 45 

and Figure 46. 
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Figure 45:  Brief overview of datasets and how they relate to the three main types of machine learning  

In supervised learning, the learning machine is provided with labelled data (input data with the 

associated target value(s), such as an image broken down into labelled contents) and is expected to 

learn the data for target mapping, in order to predict (or estimate) target values for previously 

unobserved input data.  The dataset (described as D={x,y}n=1
N ) includes input features (x) and labels 

(y), which are often images and class labels or bounding boxes with associated class labels for 

classification or object detection tasks (Litjens et al. 2017, p. 62). 

Contrary to supervised learning, in unsupervised learning, the learning machine is only provided with 

the unlabelled input data component, not its associated values.  This unsupervised approach is often 

used to identify natural patterns (structure within the data) that cannot be identified or linked by the 

human eye.  Unlabelled datasets are also frequently chosen over labelled datasets because they 

tend to be much larger, more easily obtainable, and require less annotation effort.   

Semi-supervised learning is a middle ground between the supervised and unsupervised learning 

approaches in which the learning machine is supplied with a limited amount of labelled data.  To 

improve the machine’s predictive capabilities and accuracy, unlabelled data are also imputed to 

increase the size of the limited training dataset and deal with incomplete labels. 

 

Figure 46:  Comparison of the three primary types of machine learning approaches  

Supervised Learning

Learns patterns from labelled 
data

Uses learned patterns to predict 
future outcomes

Semisupervised Learning

Trains on a small labelled dataset 
in order to label large training 

datasets

Uses learned patterns to predict 
future outcomes

Unsupervised Learning

Identifies hidden patterns in 
unlabelled data

Clusters data based on the 
degree of similarity or 

dissimilarity
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A simplified machine learning workflow, the Cross-Industry Standard Process for Data Mining 

(CRISP-DM) model, demonstrating the major steps in the machine learning process and the 

importance of the feedback between the data preparation and modelling stages in order to improve 

the accuracy of the model is provided in Figure 47; a similar approach was taken in producing a 

suitable model in this research. 

 

Figure 47:  The Cross-Industry Standard Process for Data Mining (CRISP-DM) model indicating the six phases of data 
mining projects (adapted from Chapman et al. 2000, p. 10).  The six phases are flexible, and their interactions will 

depend on the type of project and its objective. 

Deep learning utilises large, deep neural networks with multiple processing layers in order to learn 

representations of data and patterns (LeCun et al. 2015, p. 436).  Deep learning architectures are 

preferred over shallow architectures (e.g. decision trees and support vector machines) for computer 

vision tasks as they are more suitable when dealing with complex relationships in the input data 

(Najafabadi et al. 2015, p. 4).  In deep learning, there are multiple levels of representations (extracted 

features/feature vectors) which are obtained by transforming the representation in layers of simple, 

non-linear modules (LeCun et al. 2015, p. 436).   Supervised learning is more common than other 

machine learning methods in deep learning (LeCun et al. 2015, p. 436). 
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Several deep learning tools exist for training machine learning models.  Table 21 summarises the 

most commonly used tools/libraries and applications.  Fastai, PyTorch, Keras, and TensorFlow were 

primarily used in this project. 

Table 21: Summary of commonly used deep learning tools (adapted from Ball et al. 2017, p. 11) 

Tool Summary Website Reference 

AlexNet A large-scale convolutional neural network with 
nonsaturating, neurons and a very efficient GPU 
parallel implementation of the convolution 
operation to make training faster 

http://code.google.com/p/cuda-
convnet/ 

(Krizhevsky 
et al. 2012) 

fastai Deep learning library for PyTorch https://github.com/fastai - 

Keras A high-level Python neural network library 
capable of running on top of either TensorFlow 
or Theano, which  

• allows for easy and fast prototyping  
• supports both convolutional networks 

and recurrent networks 
• supports arbitrary connectivity 

schemes 

https://keras.io/  

 

https://github.com/fchollet/keras 

(Chollet 
2015) 

MatConvNet A MATLAB® toolbox implementing 
convolutional neural networks with many pre-
trained convolutional neural networks for image 
classification, segmentation 

http://www.vlfeat.org/matconvnet/ (Vedaldi and 
Lenc 2014) 

MXNet Deep learning library for declarative symbolic 
expression with imperative tensor computation 
and differentiation to derive gradients 

https://github.com/dmlc/mxnet/ (Chen et al. 
2015) 

TensorFlow An open-source software library with a flexible 
architecture for tensor data flow graph 
computation. 

https://www.tensorflow.org/ (Abadi et al. 
2016) 

PyTorch Machine learning library for tensor computing 
and deep neural networks based on the Torch 
library 

https://pytorch.org/ (Paszke et al. 
2017) 

 

A supervised machine learning approach is suitable for the grave detection problem because the 

variability in the morphological and geophysical characteristics between grave types will require 

labelling of datasets based on corresponding excavation data, whereby feature extraction algorithms, 

such as those using morphological parameters, are used to isolate and identify graves in images as 

the standard ‘target.’  An unsupervised approach will not be taken as it is predicted that the system 

may indiscriminately identify responses in the data that are not necessarily related to graves, thereby 

reducing the confidence of the interpretive classifications. 

http://code.google.com/p/cuda-convnet/
http://code.google.com/p/cuda-convnet/
https://github.com/fastai
https://keras.io/
https://github.com/fchollet/keras
http://www.vlfeat.org/matconvnet/
https://github.com/dmlc/mxnet/
https://www.tensorflow.org/
https://pytorch.org/
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6.3. Neural Network Architectures 

Artificial neural networks are comprised of “neurons” which are connected to each unit of the network 

receive input and formulate an output (Schmidhuber 2014, Maulik and Chakraborty 2017).  One of 

the simplest neural networks is a multilayer perceptron network (MPN) with a minimum of one input 

layer, one hidden layer, and one output layer, as shown in Figure 48.  The input layer receives the 

input data, where the number of nodes in the input layer is equal to the number of features in the 

input data, and after weights and bias are added the information is fed forward to the hidden layer(s).  

Weights, also called parameters, are the numeric array of a filter (e.g. edge detector).  Hidden layers 

are any layers between the input layer and output where weights are applied, and the data can be 

transformed.  When followed by an activation function in the output layer, the data from hidden 

layer(s) are fed as output and predictions are made based on the number of classes used (O’Shea 

and Nash 2015).   

 

Figure 48:  Architecture of the simplest version of a multilayer perceptron network, a basic feed-forward neural network  

These simplistic artificial neural networks can still prove useful for less complex inputs, such as the 

handwritten digits in the Modified National Institute of Standards and Technology (MNIST) database.  

However, MPNs are now outperformed by convolutional neural networks (CNNs) and other deep 

learning architectures when solving complex computer vision tasks.  MPNs are inefficient for complex 

tasks because each perceptron is connected to every perceptron, creating a large number of 

redundant parameters (as defined in Equation 6.1).  More recent architectures can reduce the 

number of parameters while still maintaining high training accuracy and less cumbersome computing. 

 

6.1:  Definition of parameters in a multilayer perceptron network 

parameters = 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛1 × 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛2 ×  𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛3  ⋯ ×  𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛𝑛  
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For image classification and object detection tasks, deeper networks are necessary, which requires 

using many hidden layers with different transformation functions.  Convolutional neural networks and 

residual neural networks are state-of-the-art for image classification. 

6.3.1. Convolutional Neural Networks 

Convolutional neural networks (CNNs) learn higher-level image features and objects by filtering the 

raw pixel data of images (TensorFlow 2019).  Unlike a simple artificial neural network, a CNN uses 

numerous self-optimising neurons (O’Shea and Nash 2015, p. 2).  CNNs are preferred over fully 

connected neural networks for image classification and detection tasks.  Fully connected neural 

networks would require too many parameters (or weights) to be useful for image data as the 

considerable number of parameters puts the model at risk for overfitting.  Overfitting often occurs 

when the model learns the features in the training data too well that it is then unable to generalise 

the features for prediction on new data.  The filtering in each layer creates an equivariant 

representation of the input for spatially aware edge, shape, and colour detection, from simple to 

complex shapes, usable anywhere in an image.   

There are three primary components to CNNs – convolutional layers, pooling layers (sometimes 

replaced by strided convolutional layers), and fully connected layers (sometimes replaced by global 

average pooling layers) (TensorFlow 2019).  In a convolutional neural network, the structure of a 

simple neural network is multiplied to form n+1 convolutional and pooling layers which operate on 

the assumption that the input is an image with learnable features.  A simplified representation of the 

layers in a convolutional neural network is provided in   

Figure 49; this demonstrates the filters on the original input in order to produce a feature map which 

will ultimately produce a classification output in the fully connected layer.  

  

Figure 49: Simplified representation of a convolutional neural network  
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The features learned by the network are used to make class predictions.  In deeper layers where 

high-level, class-wide features are learned, the learned features become more complex and 

activations are localised.  Higher-level features are objects and shapes in an image.  These are 

usually extracted following the detection of lower-level features in the first few convolutional layers.  

In contrast to higher-level features, lower-level features are minor parts of an image, such as edges, 

lines, and dots, that are detectable.  These minor features usually comprise the higher-level features 

later learned by the network.  The features learned by the network can be visualised using an 

activation, or feature, map. 

Activation maps are useful for visualising the activations of a filter – which features or objects in an 

image each layer learns as they are visual representations of the edges, patterns, and objects 

learned from each filter (or kernel).  Visualising the activation maps for a network can also help 

identify where some activations are zero for several inputs, indicating a dead filter and, potentially, a 

high learning rate (Karpathy 2019a).  An example of activation maps for a small (17-layer) CNN that 

includes convolutional, rectified linear unit (ReLU) activation functions, pooling layers, and a fully 

connected layer is provided in Figure 50.  In this example, the ReLU activation function facilitates the 

output of a node in the network, and the activation maps show higher-level features being learned in 

the deeper layers of the network to make class predictions.  For deeper networks, gradient maps are 

often used to represent feature learning through histograms of the weights and biases.  Examples of 

these gradient histograms from training for this project are shown in Figure 51. 

 

Figure 50:  Example of activations for each layer in a pre-trained ConvNetJS CNN with 17 layers and 7000 parameters 
(adapted from Karpathy 2019).  No activation is shown in black.  The activation maps prove the learned features 

become more localised in the deeper layers of the CNN.   
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Figure 51:  Gradient histograms of the weights and biases 

Convolutional Layers 

Convolutional layers use filters (or kernels) on images to extract subregions, where each layer 

creates a feature map comprised of individual values mathematically representative of each 

subregion.  The network’s architecture defines the size and number of filters.  In the context of CNNs, 

filters (also called kernels) are matrices of a defined size which slide across an input (e.g. an image) 

and extract features.  A 2D activation map of the response of each filter at any given spatial position 

is created by convolving each selected filter along the width and height of the input.  This convolving 

acts as a sliding window across the input at a specified interval, called stride, as shown in Figure 52.  

The 2D activation maps for each filter in a layer are stacked in the depth dimension that compiles the 

output volume and aids in feature extraction.   
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 Figure 52:  An example of the movement of the filter (shown in red) across the input using a sliding window path 
(highlighted by the curved line) in the depth, width and height aspects (Saha 2018) 

Filters in CNNs usually extract edges, curves, shapes, and colours from images, especially in 2D 

convolutional (conv2D) layers, as number matrices that represent a known or target pattern.  An 

example of an edge detection feature is shown in the Sobel edge detection filter in Figure 54 and 

Figure 55.  Commonly, a 3x3x3 (see Figure 73) or 7x7x3 (see Figure 60) size filter is used in the first 

convolutional layer – where the filter is either 3 pixels wide and high, or 7 pixels wide and high, and 

three deep for each of the colour channels in an RGB image.  Following this example, if using a 

converted greyscale image (an image with only one colour channel) as input on the first layer, the 

filter size would be 3x3x1 or 7x7x1.  For subsequent layers, the third dimension in the filter size is 

equal to the number of slices along the depth dimension inherited from the output of the previous 

convolutional layer.  If an image is comprised of greys, blacks, and whites but is not normalised to 

greyscale, it is an RGB image with pixel values on a scale of 0 to 255 but of the same intensity in the 

three channels.  The training data included in this project were plotted using a white-black colour 

scale but were not converted into a single channel, greyscale image.  Therefore, it is reasonable for 

the data to be treated as RGB images with three channels of equal colour intensity, particularly in 

transfer learning, where the original network was trained on RGB images.  For clarity, a selection of 

pixel values from a sample training image are provided in Figure 53. 
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Figure 53:  RGB values for select pixels in a sample training image 

 

 

Figure 54:  An example of the numerical representation of an edge detection filter and output in a convolutional neural 
network 

These filters are applied to input images to identify a series of reoccurring shapes and patterns within 

a target or class.  The network learns the patterns that comprise a class and apply them to new data 

to determine the likelihood that the new data contains patterns similar to that of known classes.  

Figure 55 shows a typical edge detection filter, the Sobel filter, and the pattern it produces from a 

randomly generated example of pixel values in an image. 



Chapter 6:  Machine Learning 

111 
 

 

Figure 55:  An example of the creation of the output from an edge detection filter.  The 3x3 size filter, shown in grey, 
slides across the image.  At each point, the value of the filter is multiplied by the value of the image.  For each 

application of the 3x3 filter, the values are summed to produce a cell of the output.  In this example, the colours of each 
stage (indicated above the matrix) correspond to the colour values in the output matrix. 

An example of the activation maps for the first convolutional layer (with 16 5x5x3 filters) of a small 

CNN is shown in Figure 56, in which the general features (e.g. edges) of the focus object (deer) in 

the input image are outlined and discernible in the activation maps.  In contrast, on the final 

convolutional layer (8x8x20 filter size and 20 filters) shown in Figure 57, the activation maps show 

higher-level localised features.  The size and number of filters in each layer is defined in the network 

architecture.  These can be altered if a network is built from scratch or an off-the-shelf network is not 
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suitable for a specific detection problem.  The filters are often able to detect slight changes within an 

image that humans are not able to see.  The output of the first convolutional layer (feature map) 

becomes the input in the second convolutional layer, and so on.  Carrying the feature data through 

to the final, fully connected layer allows the network to learn more complex features in each 

subsequent convolutional layer as it builds upon what is already learned (Zeiler and Fergus 2014). 

 

 

Figure 56:  Activation maps for the input and first convolutional layer in a 17-layer ConvNetJS CNN.  The general shape 
of the object (deer) in the input image is outlined in the activation maps.  (Image is output from ConvNetJS CIFAR-10 

demo) 

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Figure 57:  Activation maps for the input and final convolutional layer in a 17-layer ConvNetJS CNN.  The general 
shape of the object (deer) in the input image is no longer discernible in the activation maps; instead, higher-level 

localised features are visible.  (Image is output from ConvNetJS CIFAR-10 demo) 

Pooling Layers 

Pooling layers are often run between convolutional layers to reduce the spatial dimensions of the 

representation and computation in the network by downsampling.  The depth slices generated during 

the preceding convolutional layer(s) are downsampled using filters with a stride of 2 (Karpathy 

2019b).  For example, a 2x2 filter with a stride of 2 will reduce a 32x32x16 input to 16x16x16, as 

shown in Figure 58.  

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Figure 58:  Example of the downsampling effect of a 2x2, stride = two pooling filter on 32x32x16 inputs.  (Image is 
output from ConvNetJS CIFAR-10 demo) 

Max pooling has recently been the favourable pooling function, but historically average pooling was 

favoured and is still used in some networks.  With the input image as a numpy array, max pooling 

downsamples features by determining the maximum value for each subregion, determined by the 

size of the filter, of a depth slice.  Whereas, average pooling downsamples features by determining 

the average value for each subregion of an input.  In complex inputs, there is a noticeable difference 

in the outputs of max and average pooling filters, as shown in Figure 59.  In some more recent 

architectures, pooling layers have been replaced with strided convolutional layers to produce the 

same downsampling effect. 

 

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Figure 59:  (A) Theoretical example of pooling filters with size 2x2 and stride 2; (B) Real example of pooling filters with 
size 2x2 and stride 2 (adapted from Fergus 2015, p. 39) 

Fully Connected Layers 

Once the feature maps have been produced, the final fully connected layer has an output of a vector 

with dimensions equal to the number of training classes, followed by a softmax layer which feeds to 

the prediction output to map the correlation of features in the image to features common to each 

class (O’Shea and Nash 2015).  Lin et al. (2013, p. 4) note that using fully connected layers in this 

way uses the convolutional layers as feature extractors.  However, as fully connected layers are at 

risk for overfitting, in recent convolutional neural networks fully connected layers are replaced with 

Global Average Pooling (GAP) layers (Lin et al. 2013, p. 4).  GAP layers reduce the spatial dimension 

of feature maps as with other pooling layers discussed previously; however, rather than 

downsampling a map by 75%, GAP reduces a feature map of size ℎ × 𝑤 × 𝑑  to 1 × 1 × 𝑑.  In the 

ResNet models used here, a GAP layer is followed by a densely connected layer with a softmax 

activation function for predictions to make them better suitable for localisation tasks. 

6.3.2. Residual Neural Networks 

He et al. (2016, p. 1) identified that deeper CNNs (56-layer) had higher training and test errors than 

shallower CNNs (20-layer).  This phenomenon is counterintuitive as deeper networks should 

inherently be more accurate but are more likely to overfit.   Residual neural networks address the 

problem of training accuracy degradation in deep neural networks.  He et al. (2016, p. 3) define the 

building block for residual networks as a function of the feed-forward connections and input vectors, 

as shown in Equation 6.2.  Nonlinear ‘identity shortcut connections’ which skip layer(s) perform 

identity mapping and add outputs to the outputs of stacked layers, shown in Figure 60 (He et al. 2016, 

p. 2).  He et al. (2016, p. 2) defined stacked nonlinear layers and original mapping, realised with the 

nonlinear shortcut connections, as part of the desired mapping, as shown in Equation 6.3. The 

connections do not add parameters or computational complexity, maintaining suitability for 

classification and localisation tasks.  

 

6.2:  Building block of residual neural network (He et al. 2016, p. 3) 

y = ℱ(x, {𝑊𝑖}) + x  

y = output vectors 

ℱ(x, {𝑊𝑖}) = residual mapping to be learned 

x = input vectors 
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ResNet (He et al. 2016) allowed deeper networks to achieve as high accuracy, if not better, as smaller 

networks.  The ResNet networks were ground-breaking, increasing the size of useable CNNs to 152 

layers and reducing susceptibility to overfitting; whereas, before ResNet, it was assumed that larger 

architectures would be too susceptible to overfitting. 

6.3:  ResNet definition of a deep residual learning framework (He et al. 2016, p. 2) 

ℱ(x) ≔  ℋ(x) − x  

ℋ(x) = desired underlying mapping 

ℱ(x) + x = recast original mapping 
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Figure 60:  Example of residual CNN architecture where dashed lines indicate shortcut connections between blocks 
(He et al. 2016, p. 4) 



Chapter 6:  Machine Learning 

118 
 

6.4. Deep Transfer Learning 

Deep transfer learning approaches were necessary for this project due to the size of the training 

dataset, difficulty in obtaining additional training data, and complexity of features.  Deep learning 

algorithms can use supervised or unsupervised machine learning for multiple layers of successive 

output to input processing, such as a convolutional neural network (Schmidhuber 2014).  Pan and 

Yang (2010, p. 1347) define transfer learning as: 

“Given a source domain 𝒟S and learning task ƬS, a target domain 𝒟Ƭ and learning task ƬƬ, 

transfer learning aims to help improve the learning of the target predictive function ƒƬ(•) in 𝒟Ƭ 
using the knowledge in 𝒟S and ƬS, where 𝒟S ≠ 𝒟Ƭ, or ƬS ≠ ƬƬ.” 

Simply, transfer learning is similar to inductive reasoning, in that it uses knowledge learned from 

processing one problem to solve another (Raina et al. 2006).  Generally, the more training data 

available, the more re-training can be performed, from the final layer to fine-tuning the network.  In 

most instances, where the dataset is limited, transfer learning is limited to retraining the last layers of 

an existing model on new data from classes that were not included in the original model.  However, 

the whole network can be fine-tuned to improve the model’s accuracy if a large enough dataset is 

available.  Transfer learning reduces training, learning, and development time, leading it to be a 

widely applied method (Rawat and Wang 2017).  Yosinski et al. (2014) have investigated how 

transferable features are for similar and different transfer learning tasks in deep neural networks.  In 

this work, Yosinski et al. (2014, pp. 1–2) note that the first layers in a network are not specific to a 

dataset, but the last layers are highly specific to the dataset it was trained on.  While transfer learning 

is still a widely accepted approach, Yosinski et al. (2014, p. 1) defined three issues impacting on the 

transferability of features: 

“1.  the specialization of higher layer neurons to their original task at the expense of performance 
on the target task 

 2.  optimization difficulties related to splitting networks between co-adapted neurons 

 3.  the distance between the base task and target task.” 

As the final layers of a pre-trained network were retrained in this project, the model has learned those 

high-level features specific to the new task (detection of graves). 

Many models are pre-trained on extensive collections (upwards of 60,000) of images.  The standard 

image datasets are ImageNet, CIFAR-10, and CIFAR-100.  ImageNet contains 14,197,122 images 

(as of April 2010) labelled according to the WordNet database of cognitive synonyms.  The CIFAR-

10 dataset contains 60,000 images divided evenly into ten classes (airplane, automobile, bird, cat, 

deer, dog, frog, horse, ship, truck).  The CIFAR-100 dataset contains 60,000 images divided evenly 

into 100 classes of aquatic mammals, fish, flowers, food containers, fruit and vegetables, household 

http://www.image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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electrical devices, household furniture, insects, large carnivores, large man-made outdoor things, 

large natural outdoor scenes, large omnivores and herbivores, medium-sized mammals, non-insect 

invertebrates, people, reptiles, small mammals, trees, and vehicles. 

If using a pre-trained network., this model is called in the training script as the base network 

architecture, as shown in Figure 61.  Information, such as weights, is stored in a model file defined 

in the training script.  These files will differ between the deep learning libraries used to define the 

training script.  For example, in this project which primarily uses the Fastai library, the model 

parameters but not the architecture are saved to .pth files when learn.save is called.  The model 

saved from learn.save is loaded using learn.load and layers are unfrozen for training using 

learn.unfreeze to retrain layers before the final layer in a pre-trained model.  This process can be 

repeated or unfreeze redefined to unfreeze the entire model to retrain all the layers in the network if 

the training dataset allows for this.  Once optimum training is achieved, the model (or learner) is 

exported using learn.export and loaded back using learn.load for inferences.  Figure 61 and Figure 

62 show excerpts of the working object detection script for this project which demonstrates the 

training process and how model information is saved and loaded.  The complete training script is 

hosted on GitHub. 

 

Figure 61:  Excerpt of training script demonstrating how a pre-trained network is loaded for retraining and retrained 
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Figure 62:  Excerpt of training script demonstrating how models are saved and layers are unfrozen for retraining 

6.5. Training Datasets 

As is common practice within machine learning, training data comprise an 80% subset of the entire 

dataset; the remaining 20% comprises the testing dataset.  Training datasets are labelled data.  In 

this instance, a collection of images containing known features used to train classification algorithms 

to identify objects or features, improve the accuracy of the model, and create classifiers.  Accuracy 

of the model refers to the number of correct predictions made divided by the total number of 

predictions made.  Images containing any object imaginable can be used to train a model to detect 

specified objects or features within an image.  Caches of labelled images are available in repositories 

online, or there is the option for the user to create and label their dataset.  The accuracy of a model 

is mostly dependent on the size and quality of the training dataset.  Generally, the larger a training 

dataset is the higher potential accuracy the model can achieve.  The required number of instances 

(e.g. images) in a training dataset is dependent on the training algorithm and learning method used, 

it is most important, however, to ensure the model size and representation of features in the dataset 

are suitable to decrease the risk of overfitting the model (He et al. 2016).  In this project, the training 

dataset was labelled according to two classes – grave and non-grave/background.  The total dataset 

contained 537 “positive” examples of graves and 680 “negative” examples of responses that are 

similar to graves (false positives), noise, and general background responses.  These images were 

fed into an artificial neural network to train it to identify similar patterns within the labelled data. 

6.6. Use of Machine Learning on Non-Archaeological GPR Data 

Aside from their applications to archaeogeophysical datasets, machine learning and neural networks 

have been widely investigated for rebar and IED detection in GPR data, and less frequently for 

hyperbola detection and fitting in GPR data and deposit detection in seismic and GPR data.   
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Asadi et al. (2019), Kaur et al. (2016), and Dinh et al. (2018) present examples of the automatic 

detection of rebar reflections in GPR data.  Asadi et al. (2019, pp. 2619–2620) used histogram of 

oriented gradients (HOG) feature descriptors and AdaBoost, a supervised binary classifier, to detect 

hyperbolic reflections from rebar in bridge decks using radargram data.  Kaur et al. (2016) also 

identified an automated method for the detection of rebar in bridge decks using radargram data.  This 

work, however, used Support Vector Machines and RANSAC Hyperbola Fitting for pattern 

recognition (Kaur et al. 2016, p. 2269).  Dinh et al. (2018) achieved a classification accuracy of 

99.6%±0.85% using a 14-layer convolutional neural network for the detection of hyperbolic 

reflections from rebar in radargrams. Ishitsuka et al. (2018, p. 1) used deep convolutional neural 

networks for the detection of shallow geological features and other embedded objects with a 

maximum classification accuracy of 97.9%. 

Lameri et al. (2017) and Núñez-Nieto et al. (2014) are recent examples of work carried out on the 

automatic detection of IEDs and unexploded ordnance in GPR data.  Both papers present an 

evaluation of small (less than ten layers) neural networks, where Núñez-Nieto et al. (2014, p. 9737) 

have designed their 3-layer network and Lameri et al. (2017, p. 510) based their network on the 5-

layer LeNet (LeCun et al. 1998).  Lameri et al. (2017, p. 512) achieved a maximum classification 

accuracy of 95%; whereas, Núñez-Nieto et al. (2014, p. 9745) achieved a classification accuracy of 

89% for a 1GHz GPR antenna and 92% for a 2.3GHz antenna.   

Similar work has also been carried out on seismic data, which is comparable to GPR radargrams.  

Milosavljevic (2020) has used a more sophisticated approach with a self-designed CNN based on U-

Net, ResNet, and DenseNet for semantic segmentation.  Using this network through a Kaggle 

competition, classification on the seismic dataset achieved a maximum accuracy of 85% 

(Milosavljevic 2020, p. 10).  Other supervised methods, such as Extremely Random Trees Ensemble, 

have been applied to the detection of deposits in seismic data (Guillen et al. 2015). 

The above work carried out on the automatic detection of reflections in radargrams influenced the 

use of radargrams for grave detection in this project. 

6.7. Use of Computational Approaches and Machine Learning on Archaeological Data 

Within the last ten years, the integration of automatic classification algorithms has become 

increasingly popular for archaeological applications, particularly for analysing and interpreting remote 

sensing data (De Boer 2007, De Laet et al. 2007, Trier et al. 2009, Freeland et al. 2016, Traviglia et 

al. 2016, Cerrillo-Cuenca 2017).  There have been several focus groups on the issues surrounding 

applying such machine learning techniques to complex datasets and problems seen in archaeology 

https://www.kaggle.com/c/tgs-salt-identification-challenge
https://www.kaggle.com/c/tgs-salt-identification-challenge
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(Traviglia et al. 2016).  These focus groups culminated in a workshop on integrating citizen science 

in the automation workflow for archaeological targets in order to improve the validation of 

classifications and accuracy of learning machines (Lambers et al. 2019). 

While still relatively unexplored, since 2006 (van der Maaten et al.) the implementation of machine 

learning in archaeology has expanded.  There has been a marked increase in the number and variety 

of projects in the last five years.  Machine learning-based approaches have been used in both 

practical field applications (e.g. remote sensing and geophysics data interpretation) and post-

excavation analyses (e.g. finds identification and typology development). 

In remote sensing, there have been several machine learning approaches to detecting archaeological 

objects.  Most recently, Verschoof-van der Vaart and Lambers (2019) used regions-based 

convolutional neural networks (R-CNNs) to detect prehistoric barrows and Celtic fields in LiDAR data 

from the Netherlands.  To detect these archaeological features, the workflow (WODAN) implements 

pre-processing, object detection, and post-processing steps to input and output data (Verschoof-van 

der Vaart and Lambers 2019).  The Faster R-CNN, using ResNet50 (He et al. 2016), had an average 

precision value, (True Positives/(True Positives + False Positives)), of 0.64 for barrows and 0.46 for 

Celtic fields.  The precision values and F1-scores demonstrate that the Faster R-CNN model is better 

at detecting barrows than Celtic fields (Verschoof-van der Vaart and Lambers 2019).  Verschoof-van 

der Vaart and Lambers’ research demonstrates that an R-CNN is amongst the top-performing 

approaches to multi-class object detection.  However, they do note that there is still a need to improve 

the accessibility of such tools to implement them in broader archaeological uses. 

Similar to the R-CNN approach used by Verschoof-van der Vaart and Lambers, Kramer is using deep 

learning to detect round barrows in LiDAR data from the UK (Kramer 2015, Kramer et al. 2017).  

However, further complexity is added to this work because there are many levelled barrows in the 

dataset that could not be detected by LiDAR and exponentially increase the number of false 

negatives in the dataset.  Other approaches, like that taken by Trier et al. (2016, 2018) and Schneider 

et al. (2015) have experienced performance issues in their models due to the complexity of their 

targets (charcoal kilns) and the surrounding terrain, as well as the small training datasets which are 

limited by the number of available examples. 

Post-excavation applications of machine learning have ranged from text mining in archaeological 

reports (Richards et al. 2015) to developing typologies and identifying finds (Boon et al. 2009, Gansell 

et al. 2014, Hörr et al. 2014).   
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While the majority of machine learning applications in archaeology have been on remote sensing 

data, there have also been a few examples of machine learning on geophysical datasets (Moysey et 

al. 2006, Leckebusch et al. 2008, Zhao et al. 2015, Verdonck 2016, Verdonck et al. 2017).  These 

examples of feature extraction and machine learning on geophysical datasets are fairly 

undemanding.  There have been few other attempts to automatically classify GPR data, none of 

which have taken a deep learning approach until recently with the work of Küçükdemirci and Sarris 

(2020). 

Ernenwein (2009) implemented a pixel-based segmentation approach to multidimensional data using 

GPR, magnetometry, and magnetic susceptibility data.  Supervised and unsupervised classification 

were both tested.  The unsupervised classification using K-means cluster analysis was able to define 

positive anomalies which were already easily identified in human-led interpretation (Ernenwein 2009, 

p. 147).  However, the supervised approach using Mahalanobis classification for four classes 

(Burned, Enhanced, Non-magnetic, Background) achieved the best results with 95% accuracy 

(Ernenwein 2009, p. 153).  In Mahalanobis classification, each pixel of an image is assigned to the 

class based on its typicality.  Often, typicalities are “derived from Mahalanobis distance 

measurements with reference to an F distribution or a chi-squared approximation” (Ernenwein 2009, 

p. 153).  Based on Ernenwein's (2009, p. 157) promising results using supervised classification, they 

advocate for further use of the method when interpreting multi-dimensional, multi-technique datasets, 

with a final human-led interpretation for confirmation of the automatic classification.  

Linford et al. (2018) approach the problem of interpreting large, high-density GPR datasets using 

semi-automated vector identification.  Specifically, they assessed the viability of the vector 

identification approach to locate pit-like anomalies by creating polygons from binary objects in images 

with size and orientation attributes that form a template for the target features.  Linford et al. (2018) 

note that the interpretation and location of pit-like anomalies can be improved by characterising the 

morphology of the anomaly. 

Verdonck (2016) uses a template matching approach for the extraction and detection of Roman villa 

walls in 2D and 3D GPR data.  Verdonck has based his methodology on that which is established for 

remote sensing datasets.  A 2D normalised cross-correlation (NCC) was used as a measure of the 

similarity between the template and original image (Verdonck 2016, p. 263).  The original image was 

rotated around the template, rather than the template sliding across the original image, to identify the 

highest NCC (Verdonck 2016, p. 263).  For the 3D data, the 2D rectangles from the template 

matching stage were extruded to the depth of the data cube to create a 3D volume.  The shapes 

were filled with an isosurface created from the associated GPR data and plotted using the 
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coordinates of each subvolume with the complete 3D volume to plot the 3D features (Verdonck 2016, 

p. 265).  While this approach was successful (c. 77% detection and correctness rate for 2D data and 

c. 71% detection and correctness rate for 3D data), the linearity and uniformity of the target features 

are likely the reason for the high success rate (Verdonck 2016, p. 257,269).  With other 

archaeological features it is unlikely a template matching approach would achieve a similar success 

rate, due to their variability in morphology and preservation state.  Although Verdonck’s examples of 

feature extraction on Roman villa walls uses a simple, well-defined target, it is important to note that 

it is also an example of successful application of machine learning methods on a GPR dataset and 

hints to promising applications in the future.  Verdonck, very importantly, notes that the interpretation 

of geophysical data is still heavily reliant on human verification and intervention due to the 

complexities of the data and target features, and further assessment of the success of automatic 

detection on more complex GPR datasets is needed (Verdonck 2016, p. 269). 

While these applications of machine learning to the interpretation of archaeogeophysical data all 

achieved a degree of success, none of them achieved 100% accuracy.  Verdonck et al. (2019) warn 

that these tools are still not a stand-alone method of data interpretation; instead, they should be used 

as tools to aid human-led data interpretation.  Particularly, caution should be exercised when using 

the interpretation from only one data type or geophysical technique. 

Küçükdemirci and Sarris (2020) used U-Net convolutional neural networks trained from scratch for 

semantic segmentation of archaeological features in RGB images of GPR timeslices.  As in the 

examples from Verdonck (2016) and Verdonck et al. (2019), the dataset used by Küçükdemirci and 

Sarris (2020, p. 4) contains only clearly defined linear and circular features.  Küçükdemirci and Sarris 

(2020, p. 6) used the Sørensen–Dice coefficient as a measure of the segmentation accuracy, where 

1 indicates the prediction and label are perfectly matched and 0 indicates there is no match between 

the label and prediction.  The U-Net approach achieved a maximum Sørensen–Dice coefficient of 

0.92 (Küçükdemirci and Sarris 2020, p. 6).  While the segmentation accuracy achieved in this study 

is promising, the approach taken does not account for the depth of features or reoccurrence of 

features in multiple timeslices.  On 2D geophysical data, such as magnetometry, there would be no 

issue using segmentation approaches on plan-view images without a depth aspect; however, the 

interpretation of linear and circular features in single slices is problematic.  Without accounting to the 

depth of features while training a network, there is no distinction made between modern features 

(e.g. services, excavation trenches, septic systems) and similar archaeological features by the 

machine.  For this reason, radargrams were primarily used for the work discussed herein, except in 

the case of clearly delineated rectangular modern graves. 
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7. MACHINE LEARNING METHODOLOGY 

7.1. Introduction 

The primary tasks in creating a package which will have the ability to classify and detect grave-like 

objects within a GPR dataset are to adapt existing models to the data format, create a training dataset 

for the new model, and conduct geophysical surveys of sites to be used to test the model in “real-

world” scenarios when complete.  While models exist for classification, feature extraction, and object 

detection, they are not particularly suited to images of GPR data, and there are no labelled datasets 

of geophysical data available.  Therefore, a suitable training dataset was collated and labelled for 

retraining existing models.  Once the model achieved the maximum accuracy with the available data 

for the training dataset, it was tested on “known” and “unknown” datasets.  The trained classification 

and detection models were compiled, packaged, and made available for public use as a web app.   

To compare the accuracy and consistency of human-led interpretation and machine-led 

interpretation, a survey which aimed to assess archaeologists’ ability to interpret graves in GPR data 

was circulated to trained geophysicists.  The brief survey was hosted on SurveyMonkey and was 

therefore restricted in the number and format of questions that could be asked.  The survey asked 

the participant to identify whether a grave, multiple graves, or no graves were present in two 

radargram samples and two timeslice examples.  Participants were also asked to indicate their 

confidence in their response from low-high confidence.  The survey responses were anonymised, 

but information on the participants’ experience with GPR data was collected.  The survey questions 

are included in Appendix D and the results from responses to these questions are discussed in further 

detail in Chapter 1.2. 

7.2. Training Dataset 

As there was no pre-existing dataset of suitable GPR data, a training dataset was created and 

labelled.  An appropriately sized dataset was required to achieve high accuracy using a retrained 

model and reduce overfitting in the model.  To obtain enough images without augmenting the data, 

ground-truthed GPR data retrieved from Bournemouth University surveys and grey literature reports, 

as well as simulated data form the training dataset.  For the data retrieved from grey literature reports, 

the geophysical survey data were compared with excavation results to isolate true positive and true 

negative grave responses.  By definition, the model is not able to identify false positive or false 

negative results.  However, the outputs will feed into the geophysical investigations and any 
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subsequent excavations to identify true positive, false positive, true negative, and false negative 

responses.   

Approximately 1000 images were pre-processed to be the same size and colour scale.  Data 

produced directly by the author were bandpass filtered and gain adjusted using GPR-Slice.  Some 

data were also migrated and background filtered depending on the quality of the survey data.  The 

wide spectrum of processing techniques were included in the training dataset to mimic the processing 

methods of end-users of various skill levels.  The data produced from GPR-Slice and GPRSIM (see 

Section 7.2.1) were plotted to a custom paper size to improve image quality while maintaining the 

proportions of each data grid.  Future users of these models are provided with the plot size and 

scaling information in the user guide in Appendix F.  Where possible, data not produced in GPR-Slice 

or GPRSIM were corrected to match the pixel size of the GPR-Slice and GPRSIM data.  It is accepted 

that discrepancies in pixel size may account for a portion of the classification errors discussed in 

Sections 0 and 7.4.  Images fed to the trained model for inference are rescaled proportionally on 

input and export; therefore, the size of the input image is irrelevant if it is larger than 150x150 pixels 

(the size of the training images).  Further information on inferring with the trained model is provided 

in Section 7.5. 

Additional training data was derived from simulated GPR data using gprMax (Warren et al. 2016) and 

GPRSIM in order to reduce overfitting of the model by increasing the number of images in the training 

dataset.  These radargrams were simulated based on the morphology, known conductivities, and 

relative dielectric permittivity (RDP) of grave-related materials derived the software and a literature 

search.  The pre-processed images were then cropped into random 150x150 pixel tiles and labelled 

as having a response from a grave in the image or not.  Within the model, the input data were 

augmented by horizontally flipping the images to double the size of the dataset and simulate data 

collected in multiple traverse directions.  Examples of the images included in the training and testing 

datasets are presented in Figure 63.  The entire training dataset is included in Appendix G. 
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Figure 63:  Examples of the 150x150 pixel tiles included in the training and testing datasets, with four images 
containing true positives (labelled ‘Grave’) and the remaining images containing false positives or true  negatives 

(labelled ‘No Grave’)  

 

7.2.1. Simulated Data 

Complex simulations of true positive and true negative examples were created using GPRSIM.  The 

following series of figures (Figure 64 - Figure 66) highlight the simulation process and focus on the 

parameters which can be altered within the software and the format of the output.  

Models are drawn using polylines and polygons.  A background grid is provided within the user 

interface to ensure that models are drawn to scale.  Complex stratigraphic layers and archaeological 

features are drawn quickly; however, it should be noted that any model drawn will always be a simpler 

representation of the real-world scenario. 

Polygons are assigned a parent material, the characteristics of which are set by the user.  These 

materials can either be experimental or derived from real values.  The material characteristics used 

to create the simulated data in this project were derived from known values.  The relative dielectric 

permittivity, conductivity values, and attenuation constant for materials commonly associated with 

grave fills and local geologies are detailed in Table 22.  These values were used to create new 

materials in the GPRSIM library to be included in the simulation models. 

https://www.gpr-survey.com/gprsim.html
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Figure 64:  GPRSIM simulation visualisation menus which are used to set the parameters and model that will be shown in the final model visualisation 
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Table 22:  Known relative dielectric permittivity, conductivity values, and attenuation constant for common materials 
(adapted from Davis and Annan 1989; Daniels 1996; Olhoeft 1989; Keller 1989; Daniels 2004; Cassidy 2009; Martinez 

and Byrnes 2001) 

Material εr Conductivity 
(S/m) 

Attenuation Constant 
(dB/m) 

Air 1 0 0 

Distilled water 80   

Freshwater 80 10-6-10-2 0.01 

Saltwater 80   

Freshwater ice 3-4   

Saltwater ice 4-8   

Snow 8-12   

Permafrost 4-8   

Dry sand 3-6   

Wet sand 10-30   

Dry sandstone 2-3   

Wet sandstone 5-10   

Limestone 4-8   

Dry limestone 7   

Wet limestone 8   

Shale 5-15   

Wet shale 6-9   

Silts 5-30   

Clays 5-40   

Dry clay 2-6 10-3-10-1 10-50 

Wet clay 15-40 10-1-10-0 20-100 

Dry sandy soil 4-6 10-7-10-3 0.01-1 

Wet sandy soil 15-30 10-3-10-2 0.5-5 

Dry loamy soil 4-6   

Wet loamy soil 10-20   

Dry clayey soil 4-6   

Wet clayey soil 10-15   

Dry coal 3.5   

Wet coal 8   

Granite 4-6   

Dry granite 5   

Wet granite 7   

Dry salt 4-7   

Calcite 6.4-8.5   

Gypsum 6.5   

Halite 5.9   

Kaolinite 11.8   

Mica 6.4   

Olivine 7.2   

Quartz 4.5   
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Figure 65:  GPRSIM GPR settings menus to set the radar parameters 
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Figure 66:  GPRSIM final simulation running process and output which includes the model, material characteristics, radargram, and reflection characteristics 
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gprMax is useful for creating simpler models and operates through a command prompt or Python 

interface.  B-scans are compiled from multiple A-scans.  However, the models are limited to 

representing simple targets in simple or somewhat complex matrices due to the range of parameters 

used to create the models the simulated radar responses are derived from.  The parameters used to 

create materials within the model are described in Table 23. 

Table 23:  Parameters used to create materials in gprMax simulation models 

Parameter Description 

rs DC (static) relative permittivity 

r∞ Relative permittivity at theoretically infinite frequency 

Ƭ Relaxation time of the medium in seconds 

σ DC (static) conductivity, measured in Siemens/m 

µ Ƭ Relative permeability 

σ* Magnetic conductivity 

Identifier String identifier to define material 

 

7.2.2. Labelling Data 

Training data for the object detection task were labelled with rectangular bounding boxes around 

target objects.  Data were labelled using Dataturks, an in-browser image labelling app with text, 

rectangle, and polygon labelling capabilities (shown in Figure 67) so that bounding box classes and 

coordinates could be exported in JSON and XML formats for easy import into machine learning 

models.  Bounding boxes were assigned one of two classes – ‘Grave’ and ‘Not Grave.’  Where ‘Not 

Grave’ labels indicated responses similar to graves but proven not to result from graves through 

corroboration from the associated archaeological excavation report or an analysis of the timeslice 

data, as well as any examples of noise in data and other images features that should not be 

considered examples of graves.  

https://dataturks.com/
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Figure 67:  Example of labelling training data with bounding boxes in Dataturks 

The bounding box coordinates were exported in JSON files and integrated into the model for training.  

The original images and labels, both class and bounding box, are extracted from the JSON files in 

the first running of the training script, as shown in Figure 68. 

 

Figure 68:  Section of training script for extracting training images and labels from JSON files 
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7.3. Classification 

Initial tests were performed to assess classification accuracy, a simple approach to automated data 

interpretation, before initiating tests for object detection, a more sophisticated approach to automated 

data interpretation.  Several approaches to classifying images were explored as more training data 

became available.  All models used convolutional neural networks.  The most appropriate model was 

determined by its accuracy, F1 score, and loss (for assessing overfitting of the model), Maxwell 

Correlation Coefficient (MCC).  Accuracy is defined by the number of correct predictions divided by 

the number of total predictions a model makes and is used as an indicator of how well a model can 

make correctly predict class assignments.  The F1 score accounts for the precision and recall metrics; 

where, precision measures how well a model can predict positives (e.g. image contains a grave), and 

recall measures the effect of false negatives (e.g. model predicted no grave in an image, but there is 

a grave in the image) on positive predictions.  Loss is an indicator of a model’s prediction capability.  

The MCC measures the correlation between labels and predictions in a binary classification problem 

using true positive, true negative, false positive, and false negative predictions.  An MCC score of 1 

indicates a good correlation and -1 indicates a weak correlation.  Further discussion of these and 

other metrics is provided in the glossary in Appendix A 

7.3.1. TensorFlow 

Machine learning models are readily available open-source through TensorFlow and Python’s API.  

TensorFlow is an open-source machine learning framework from Google™ (Huang et al. 2017).  A 

convolutional neural network (CNN) using TensorFlow models (Inception V3 and Inception Resnet 

V2) with real-valued feature vectors derived from tiff image processing and feature extraction from 

known true positive and true negative grave responses were tested initially.  

The CNN uses a binary classifier to classify a response as either a grave or not a grave with varying 

degrees of confidence.  A second script for a multiclassifier was developed to determine the viability 

and capability of classifying grave responses using established typologies (e.g. stone-lined, simple 

earthen, pillow stone) based on the most suitable training data available.  The CNN uses Inception 

V3 and Inception Resnet V2 deep learning models available from TensorFlow.  Both models can 

retrain the last layer of the network, but the models differ in their number of convolutional and pooling 

layers as well as their ability to assign classifiers.  Inception V3 is used for the binary classification 

convolutional neural network.  Figure 69 provides a representation of the algorithm’s architecture to 

demonstrate the convolutional and pooling layers.  The description of the layers in the Inception 

Resnet V2 architecture is included in Table 24. 
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Figure 69:  Schematic of Inception V3 architecture (Shlens 2016) 

Inception Resnet V2 is used in conjunction with a single shot multibox detector (SSD) for object 

localisation and detection, and, unlike Inception V3, the model can handle multiple classifiers (Liu et 

al. 2016).   Figure 70 provides a representation of the model’s architecture to demonstrate the 

convolutional, pooling, and residual layers.  The networks recognise minimum 32x32 pixel images in 

RGB or greyscale as an input and use multiple convolutional and pooling layers to inform the fully 

connected output layers.  Inception Resnet V2 utilises residual connections between groups of 

convolutional and pooling layers to improve performance (Alemi 2016).  The description of the layers 

in the Inception Resnet V2 architecture is provided in Table 24. 

Attempts to create a classification model using the Inception ResNet V2 architecture pre-trained on 

ImageNet data (using ImageNet weights) and Keras library (see Table 21) proved to be unsuccessful 

as the overfitting of the model, demonstrated by the loss function and accuracy in Figure 71 and 

Figure 72, could not be adequately handled.  However, in the future, this architecture may prove 

successful in a multiclassifier problem when more training data for each class is available. 

 

Figure 70:  Schematic of Inception Resnet V2 architecture (Alemi 2016) 
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Table 24:  Description of layers in the Inception Resnet V2 and Inception V3 architectures 

Layer Description 

Convolutional  Filters images and extracts subregions – each layer creates a feature map 
comprised of individual values mathematically representative of each subregion 

Average Pooling  Determines the average value for each subregion of the feature map in order to 
downsample, or reduce, the size of the feature map 

Max Pooling  Determines the maximum value for each subregion of the feature map to 
downsample, or reduce, the size of the feature map 

Concat  Concatenates the list of tensors along one dimension 

Dropout  Prevents overfitting of the model by randomly setting a fraction of inputs to 0 during 
training 

Fully Connected Produces a tensor variable by creating a fully connected weight matrix and 
multiplying it by the input tensors 

Softmax Activation function which normalises the inputs into a probability distribution 

Residual Shortcut to building a deeper network which copies an activation layer and moves 
it deeper within the network 

 

To address the current binary classification problem (grave vs no grave), a classification model using 

the Inception V3 architecture pre-trained on ImageNet data was also retrained using the GPR 

dataset.  As is demonstrated by the accuracy and loss trends of the retrained Inception V3 presented 

in Figure 71 and Figure 72, this classification model also had a problem with overfitting.  Additional 

Dropout layers and regularisers were added to the existing architecture, which led to modest 

improvement.  The size of the training dataset was then increased, and higher quality examples were 

added.  The model still achieves high accuracy and low loss in training but the opposite in testing, 

which is likely a result of overfitting.  In the following images, epoch refers to the number of times the 

algorithm has gone through the entire training dataset. 

 

Figure 71:  Classification accuracy of retrained Inception V3 model over 50 epochs 
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Figure 72:  Loss of retrained Inception V3 model over 50 epochs.  Low loss indicates a model is good at making 
predictions. 

 

Because of these issues with the Inception models, classification models using ResNet and VGG 

models were also investigated to assess if either method of coping with overfitting would suit the data 

in this project (see Sections 7.3.2 and 7.3.3).   The metrics for each model are derived from the 

number of true positive (TP), true negative (TN), false positive (FP), false negative (FN) 

classifications made during validation.  Each metric is discussed in detail in Appendix A.  The metrics 

of the tested models provided in Table 25 demonstrate ResNet architectures are more appropriate 

for this classification problem and their accuracy increases as the size of the architecture increases 

as it should according to He et al. (2016). 

Table 25:  Metrics of ResNet and VGG models tested 

Model TP TN FP FN Precision Recall F1 Score MCC 

ResNet18 75 74 16 27 0.824176 0.735294 0.777202 0.557183 

ResNet34 75 75 15 27 0.833333 0.735294 0.78125 0.568627 

ResNet50 78 90 7 17 0.917647 0.821053 0.866667 0.753812 

ResNet101 91 78 15 8 0.858491 0.919192 0.887805 0.761675 

ResNet152 88 92 3 9 0.967033 0.907216 0.93617 0.87678 

VGG19_bn 73 89 10 20 0.879518 0.784946 0.829545 0.689957 
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7.3.2. VGG 

To achieve a more discriminative, accurate decision function than those configurations which use 

single, larger rectification (e.g. ReLU) layers, Simonyan & Zisserman (2015, p. 3) tested the use of 

stacked convolutional layers. Visual Geometry Group (VGG) configurations are convolutional neural 

networks which implement stacks of 3x3 convolutional layers rather than a single 7x7 convolutional 

layer, which “incorporate three non-linear rectification layers instead of a single one, which makes 

the decision function more discriminative” (Simonyan & Zisserman 2015, p. 3).  VGG19 is the largest 

of the configurations provided by Simonyan & Zisserman (2015, p. 3), with 19 weight layers and 144 

parameters, as shown in Figure 73.  The difference in accuracy between VGG16 and VGG19 is 

negligible, but VGG19 performed faster (Simonyan and Zisserman 2015, pp. 6–8); however, further 

improvements were made to the VGG19 model by Simon et al. (2016, p. 1). 
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Figure 73:  VGG19 architecture (adapted from Simonyan & Zisserman 2015, p. 3) 

In adding batch normalization layers after the convolutional layers in the VGG19 model (shown in 

Figure 73), the VGG19_bn model can use a higher learning rate than VGG19, which leads to a lower 

error rate (Simon et al. 2016, p. 1).   

Tests using the VGG19_bn model on GPR data were implemented using the PyTorch and fastai 

libraries as the model is available pre-trained in the library and ready to use for transfer learning.  The 

existing model was retrained in the last layer using the same training data as in the TensorFlow and 

ResNet models. 
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Figure 74:  Training and validation loss of VGG19_bn model across ten epochs, where batches are a portion of the 
training dataset and the batch size is defined in the training script.  Low loss indicates a model is good at making 

correct predictions, with a perfect model at a loss value of 0. 

 

Figure 75:  Accuracy of VGG19_bn model across ten epochs, where batches are a portion of the training dataset, and 
the batch size is defined in the training script 

Figure 74 shows the model’s training and validation loss decreased through the ten epochs and had 

a difference of c. 0.15 on the final epoch.  These trends indicate that the model fitted well; however, 

the final accuracy (84.3%), shown in Figure 75, and MCC (0.689957) were still much lower than the 

larger ResNet models. 

The confusion matrix in Figure 76 shows the number of true positive, false positive, true negative, 

and false negative predictions made.  Aside from poor accuracy, the VGG19_bn model also was not 

chosen as the final model because it had a higher rate of false negatives than false positives. 
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Figure 76:  Confusion matrix describing the accuracy of predictions made using the VGG19_bn model which shows the 
number of correct predictions and incorrect predictions 

The class activation maps, shown in Figure 77, demonstrate that the model learned to identify and 

localise the graves with high confidence without being provided with this information during training.  

In these heatmaps, or activation maps, the highlighted areas indicate images features the model is 

using to make predictions.  These results show that even simple models with little training can be 

readily applied to the complex task of classifying graves.  However, for data interpretation in 

archaeogeophysics, further localisation of the target is necessary. 
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Figure 77:  Heatmaps indicating the most accurate predictions made using the VGG19_bn model, where the 
highlighted area indicates a prediction 

7.3.3. ResNet 

Generally, larger architectures outperform smaller architectures, as demonstrated by He et al. (2016, 

p. 7-8), unless there is a risk for overfitting the model.  A brief discussion on overfitting is provided in 

Chapter 6.3.1.  Five sizes of ResNet architectures were tested to ensure that the largest architecture, 

ResNet152, would perform as well as expected.  While the training/test data was consistently split 

80/20, the random selection of the images for the training and test datasets will affect the accuracy 

of the model, ResNet models generally outperformed VGG and TensorFlow models.  ResNet50 and 

ResNet152 performed the best within the residual networks.   
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Figure 78:  Training and validation losses for ResNet18, ResNet34, ResNet50, and ResNet101 models across ten 
epochs, demonstrating that training and validation loss trends become more similar as architecture size increases.  
Low loss values indicate a model is good at making correct predictions, with a perfect model at a loss value of 0. 

The near convergence of the training and validation loss is indicative of a well-fitted model.  The 

closer to zero and the smallest difference between training and validation loss demonstrates a model 

is training well.  Accuracy of the model also improved with architecture size as expected.  Figure 78 

illustrates the improvement in loss, while Figure 79 illustrates the improvement in accuracy as the 

architecture size increases, with ResNet101 having a near-perfect loss. 
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Figure 79:  Accuracy of ResNet18, ResNet34, ResNet50, and ResNet101 models across 10 epochs 

 

Figure 80:  Confusion matrices describing the accuracy of predictions made using ResNet18, ResNet34, ResNet50, 
and ResNet101 models with the number of correct predictions and incorrect predictions, particularly highlighting the 

rate of false negative predictions 
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Interestingly, ResNet101 is the only model producing a higher false positive (Type I error) rate than 

false negative (Type II error) rate, as illustrated in Figure 80.  While a perfect model is preferable, 

this is unachievable.  Rather, to be cautious in the interpretation of archaeogeophysical data, false 

positives are preferred over false negatives.  Thus, a model with high accuracy and low rate of false 

negative predictions, as in ResNet101, is preferred. 

The accuracy achieved during tests with the ResNet50 and ResNet101 models were promising.  The 

continuing increase in accuracy and improvement in loss during both training and validation justified 

the testing of the ResNet152 model as well. 

 

Figure 81:  Training and validation loss of ResNet152 model across ten epochs, where the low loss values indicate the 
model is good at making correct predictions 

 

Figure 82:  Accuracy of ResNet152 model across ten epochs 
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Figure 83:  Confusion matrix describing the accuracy of predictions made using the ResNet152 model and shows the 
number of correct predictions and incorrect predictions 

 

Figure 84:  Heatmaps indicating the most accurate predictions made using the ResNet152 model, where the 
highlighted area indicates a prediction 



Chapter 7:  Machine Learning Methodology 

147 
 

 

Figure 85:  Heatmaps indicating the least accurate predictions made using the ResNet152 model, where the 
highlighted area indicates a prediction 

When isolating the models which achieved an accuracy above 0.8, the Matthew’s Correlation 

Coefficient (MCC) and F1 score are good indicators of a suitable model.  The metrics for the best 

performing ResNet models provided in Table 26 justify the use of the ResNet152 model even though 

the ResNet101 model had a preferable ratio of false positives and false negatives.  ResNet152 

achieved a near-perfect F1 score and high MCC, and while it favours false negatives over false 

positives, the accuracy and F1 score are close to perfect, making it less of a concern. 

Table 26:  Metrics for the ResNet models with accuracy above 0.8 

Model TP TN FP FN Accuracy Precision Recall F1 Score MCC 

ResNet50 78 90 7 17 0.875 0.917647 0.821053 0.866667 0.753812 

ResNet101 91 78 15 8 0.880208 0.858491 0.919192 0.887805 0.761675 

ResNet152 88 92 3 9 0.9375 0.967033 0.907216 0.93617 0.87678 
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Based on the results from initial tests of the CNNs, ResNet152 was chosen as the base model for 

the image classification and object detection tasks. 

7.4. Object Detection 

Following the results of the classification tests, a single object detection model was created to provide 

the end-user with a localised detection.  The same training data from the classification tasks were 

also used for object detection.  However, prior to training, the images were manually labelled with 

bounding boxes that indicate regions of interest.  Rectangular bounding boxes were drawn around 

responses from two classes – graves and ‘non-graves.’  ‘Non-graves’ refer to those responses that 

are not a result of graves, including responses that are visually similar to graves but are known not 

to the result of graves, background geology, and signal noise.  An example of the training data is 

presented in Figure 86.  A JSON file containing the training data and bounding box coordinates is 

provided with the digital content of this thesis. 

 

Figure 86:  Example of bounding box training data for object detection 

ResNet152 was used as a base model with a custom head (top of the network), batch normalisation 

and dropout, and loss function added to manage the input of and training with a single bounding box 

per image.  The additions to the pre-trained ResNet152 model are presented in Figure 87.  The 

custom head uses a dropout layer, three batch normalisation layers, and two 2D convolutional layers 
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instead of 2D convolutional layers, 2D batch normalisation layers, and ReLU layers in order to handle 

to the bounding box input.  The model was trained using the fast.ai library. 

 

Figure 87:  Modifications to the pre-trained ResNet152 model 

The model was trained for ten epochs in the initial stage to determine the learning rate.  The model 

was reset and then learned for ten epochs while recording the training loss, validation loss, L1 loss, 

cross-entropy, accuracy, and time per epoch.  Then the model training continued with all layers 

unfrozen/trainable, first determining the learning rate and learner object.  Unfreezing the model 

makes all parameters trainable, but for transfer learning, it is customary to retrain the last layer first 

and then unfreeze preceding parameters as making more layers trainable increases the amount of 

computation needed and increases training time.  The model was the retrained using all trainable 

layers for ten epochs.  

The metrics of the object detection model were recorded across 100 training sessions.  The 

classification accuracy of the ResNet152 object detection model is summarised in Figure 88 - Figure 

89.  The training, L1, and validation losses are also summarised in Figure 90 - Figure 93.  
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Figure 88:  Classification accuracy of the object detection model across 100 training sessions 
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Figure 89:  Mean classification accuracy and standard deviation of the object detection model across 100 training 
sessions 

 

 

 

Figure 90: Mean training loss and standard deviation of the object detection model across 100 training sessions.  Low 
loss values indicate a model is good at making correct predictions, with a perfect model at a loss value of 0. 
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Figure 91:  Mean validation loss and standard deviation of the object detection model for 100 training sessions.  This 
trend indicates the model is becoming better at making correct predictions throughout training. 

 

 

 

Figure 92:  Mean training, L1, and validation losses and standard deviations of the object detection model across 100 
training sessions. L1 loss, or mean absolute error, is the sum of all absolute differences.  A loss value of 0 indicates a 

perfect model. 
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Figure 93:  Mean training loss compared with classification accuracy and standard deviations of the object detection 
model across 100 training sessions 

 

The final model was packaged and exported using pickle for integration in the web app and future 

implementation in ArcGIS. 

7.5. System Properties and Training Time 

The training was carried out on a workstation with the following system properties: 

• Windows 7; 

• Intel Xeon CPU E5-1650 3.20 GHz processor; 

• Nvidia Tesla K40 12 GB GDDR5 GPU; 

• 32 GB RAM. 

Using this basic setup, a full training cycle of 10 epochs lasted a minimum of 1 hour 55 minutes 46 

seconds, and a maximum of 2 hours 32 minutes 46 seconds.  Over 100 complete training cycles 

were carried out using the ResNet152 architecture for assessing the capabilities of object detection 

on radargrams. 

7.6. Deployed Classification API 

Reilig for Radargrams, an input-output web app with a graphical user interface (GUI) is provided as 

a user-friendly medium for commercial geophysicists and volunteer groups to use the automatic 

object detection functionality of the model without prior knowledge of programming languages.  The 
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final trained model was put in evaluation mode and packaged and linked to Python and JavaScript 

scripts to create the app.   

Following training, the final trained model was packaged as a pickle (.pkl) file.  Packaging the model 

in evaluation mode allows it to be used outside of the training script and keeps the learned weights 

and features associated with the model.  A python script manages and routes the detection requests 

from end-users.  Interaction with the inference script is implemented through a POST request using 

the code shown in Figure 94 below.   

 

Figure 94:  Excerpt of code to interact with the trained model for inference in the web app 

End-users interact with the machine learning model via a web interface.  The web page was designed 

and created using HTML and CSS coding to maximise the functionality of the input and prediction 

requests and create a useable project output aimed at a target audience of users with no 

programming skills.  The final static web app, which is comprised of the packaged trained model, 

JavaScript and python scripts, and HTML and CSS files for web page formatting, was packaged and 

deployed using Docker and Render and can be accessed at reilig.onrender.com.  Render is a cloud 

provider that deploys and hosts Docker files as static websites and web apps, allowing for the 

constant update of backend and frontend code directly from GitHub.  As such, all code associated 

with the web app interfaces created during this project is hosted on GitHub.  The user interface is 

shown in Figure 95 and an example of detections being made in real-time is provided in the digital 

appendices. 

http://reilig.onrender.com/
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In the Reilig for Radargrams web app, the end-user is prompted to upload a JPEG image which is at 

least 150x150 pixels.  If the uploaded image is smaller than 150x150 pixels, the model has an 

increased error in identifying an accurate extent and location for the bounding box.  There is no 

noticeable error when an image larger than 150x150 pixels is uploaded.  When an appropriate image 

is uploaded, the end-user will initialise the object detection via the click of an ‘Analyse’ button.  Once 

analysed, the original uploaded image is returned with either a single detection indicated by a blue 

bounding box or no bounding box and text below the image indicating no graves were detected.  Both 

positive and negative detections are returned with a confidence score ranging from 0 to 1, 1 being 

the most confident.  If the end-user would like to save only the bounding box, they can right-click on 

the returned image and save the image in PNG format.  However, if the end-user would like to save 

the bounding box along with the image and corresponding text, the most appropriate methods for 

this are to screenshot the extent of the relevant section of the web page or to save the entire web 

page as a PDF.  Either format is suitable for integration into an existing CAD file for GIS.  The user 

guide containing instructions on how to format data and save the outputs from the object detector is 

provided in a link on the web app and is included in Appendix F.  This guide also provides users with 

a brief overview of machine learning and an introduction to this research project. 
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Figure 95:  The layout of the Reilig for Radargrams web app user interface.  The end-user is prompted with two buttons 
to upload and analyse their images, as well as a tutorial and multiple methods to contact the author for assistance with 

detecting on their images 
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8. INITIAL TESTS ON “REAL-WORLD” DATA 

8.1. Introduction 

The data provided to experts in the questionnaire discussed in Chapter 1.2 were also interpreted 

using the single object detector.  The results of this automatic interpretation, their confidence, and 

the implications on the future viability of machine learning interpretation aides are presented in 

Chapter 8.2 and Chapter 10. 

Data from the case study sites detailed in Chapter 8.6 - 8.12 were interpreted using the classification 

and object detection models.  A visual comparison of the technical reports (included in digital 

appendices) with human-led interpretations of the data and the machine-led interpreted data was 

carried out.  Focus was also paid to the time spent completing the human-led and machine-led 

interpretations and how this may impact on commercial surveys.  These surveys provided data to 

test the viability of machine-led interpretation in a commercial setting, but in some ways were limited 

by site accessibility and landowner permissions.  All data were compared to the manual 

interpretations and historic records accounted for when assessing the accuracy of the object 

detection results where there no was appropriate excavation data available.  Where excavations are 

ongoing or could not be completed within the timescales of this project, excavation data will be 

feedback to the training process and new, more accurate models created.  The models trained as 

part of this project will serve as a starting model for further transfer learning projects on radargram 

data. 

Case studies also form an important part of this research as they serve as the assessment of the 

viability of these approaches adopted in a “real-world” scenario.  Figure 100 illustrates the 

approximate location of the “real-world” test surveys included in the secondary validation dataset.  

The GPR data from these surveys were interpreted using the object detection model.  Results from 

both methods of interpretation, manual and automatic, were compared as a secondary validation 

method and to determine if using an automatic classification method with human confirmation 

improves the speed and ease of technical report production.  Testing the use of the web app and 

object detection model on data from these surveys will demonstrate whether the machine-led 

interpretation is more accurate (or quantifiable) and faster than human-led interpretation, and whether 

the output of the web app could be presented in a format appropriate for a technical report within a 

reasonable timescale. 
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8.2. Single Object Detector vs. Experts 

The radargrams presented to experts in the GPR data questionnaire (see Appendix D) were also 

interpreted using the web apps discussed in Chapter 7.5.  The outputs from the web app are 

presented in Figure 96 - Figure 99.  The only incorrect detections made by the machine are Quadrant 

B in Radargram 1 and Quadrants A and C in Radargram 2. 

 

Figure 96:  Interpretations made by the single object detector on Radargram 1 presented to experts in the 
questionnaire 

The machine did not detect a grave in Quadrant B in Radargram 1, where there should be one and 

had 100% confidence in the interpretation.  This may be a result of the model not being trained on 

enough examples of this grave type or the response from the grave being too similar to ‘non-grave’ 

responses included in the training dataset.   
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Figure 97:  Interpretations made by the single object detector on Radargram 2 presented to experts in the 
questionnaire 

The machine also incorrectly interpreted Quadrants A and C in Radargram 2.  Due to the similarity 

of the responses to that in Quadrant B (Radargram 1), the incorrect interpretation is also likely to be 

a result of the range of training data supplied to the model.  These incorrect interpretations show that 

machine learning on these types of data still has limitations and cannot be used as a sole method of 

data interpretation; instead, it should be considered as an initial step that can be carried out quickly.  

It is therefore essential to maintain a level of human verification of the machine learning results and 

continue to feedback and re-train the model as more information becomes available.   Further 

monitoring of the prevalence of false negative responses must be carried out by human interpreters, 

and the level of acceptable false negative responses must be weighed against the increased speed 

of interpretation as determined by the surveyors.  This is further discussed in Chapters 10 and 11 

with relation to the impact of these results on the viability of machine learning for commercial 

geophysics. 
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Figure 98:  Interpretations made by the single object detector on Timeslice 1 presented to experts in the questionnaire 

 

Figure 99:  Interpretations made by the single object detector on Timeslice 2 presented to experts in the questionnaire 
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The machine correctly interpreted all quadrants in Timeslice 1 (Figure 98) and Timeslice 2 (Figure 

99).  This is also reflected in the experts’ interpretation of the timeslices, which was more accurate 

than their interpretation of the radargrams.  However, the results may be solely a result of the grave 

being more clearly defined, in both colour and shape, in timeslices.   

Even though the human-led interpretation of the timeslices was more accurate than the radargrams, 

this should not be an indicator that only timeslices should be used during interpretation.  Instead, the 

timeslice and radargram data for a site should be viewed together for a well-informed interpretation.  

The results from the interpretation questionnaire (see Appendix D for the full questionnaire) also 

further demonstrates the need for additional machine learning support in the data interpretation stage 

of a project. 

8.3. Case Study Data 

The case study sites were selected based on their accessibility, time scale, suitability for GPR survey, 

and potential for excavation.  The survey of the study sites used a collaborative approach and was 

facilitated by the directors of the Irish Heritage School (trading as Irish Archaeology Field School) 

and the Blackfriary Archaeology Field School.  As a ‘real-world validation,’ only sites with presumed 

medieval activity and known, recorded burials were included. 

The five case study areas are located in the Republic of Ireland and constrained to three counties – 

Offaly, Meath, and Wexford.  While the superficial drift geologies of each site are a similar glacial till 

with silty clay to clay loam soils, the bedrock geologies differ slightly.  Each site also has recorded 

medieval activity, though this varies from excavation evidence to historical evidence between sites. 
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Figure 100:  Approximate location of surveyed sites included in the secondary validation dataset 
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8.4. Survey Details 

Full technical reports for each case studies are provided in digital appendices.   

GPR survey, accompanied by EMI, earth resistance, and magnetic surveys where necessary to 

identify areas to target with high-resolution GPR survey, were conducted on known and potential 

burial sites using the parameters detailed in Table 27.  Survey grids were established using an RTK 

GPS with minimum 0.05m accuracy or a self-tracking total station if necessary and marked with non-

permanent markers to allow for the accurate relocation of survey grids.   

Table 27:  Details of survey parameters to be used in test surveys 

Task Instrument Model Traverse Interval Sampling Interval 

GPR Survey MALÅ RAMAC X3M 
500MHz antenna 

0.25m, 0.5m 0.02m, 0.05m 

Resistance Survey Geoscan Research 
RM85 
Multiplexed 0.25m-1.5m 
Twin Aligned centres  

0.5m 0.5m 

Magnetic Survey Bartington Grad601-2 0.5m, 1m 0.125m 

EMI Survey Geonics EM38B 
CMD MiniExplorer 

0.5m Minimum 0.25m 

 

Geophysical data were processed in GPR-Slice™, TerraSurveyor™, and Geoplot4™ where 

appropriate, and georeferenced and plotted in AutoCAD software (following the guidelines outlined 

in David et al. 2008). 

Before interpreting the collected GPR data, all survey data from each site were interpreted manually.  

Results and interpretation of the GPR data are briefly discussed hereafter as an introduction to the 

comparison of human- and machine-led interpretations and their feasibility in commercial 

archaeology.  Detailed results from each geophysical survey are provided as technical reports in 

digital appendices. 

8.5. Automatic Data Interpretation 

A total of 687 radargrams from the case study sites detailed in Chapter 8 were interpreted using the 

Reilig for Radargrams web app.  Following the workflow detailed in Figure 101, it took approximately 

6 hours and 40 minutes to process the 687 radargrams, convert them to a suitable format for the web 

app, analyse the radargram images in the web app, and save the interpretations.  The time spent on 

the processing and interpretation of data from each site is detailed in Table 28. 
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Figure 101:  Workflow followed to achieve machine-led interpretation of the GPR data from the seven case study sites 
(indicated in white).  The red hatched steps indicate further steps that could be taken depending on the quality of the 

output required for a technical report. 

The time required to process and save the radargrams was dependent on the length of the traverse.  

Those sites with radargrams longer than 10m were analysed more slowly by the Reilig app than the 

shorter radargrams.  Some background noise was intentionally left in the radargrams from Lionsden, 

Newtown, and Roscomroe to assess how the model would handle inadequately processed data.  The 

detections made by the Reilig model for each site and their validity are discussed hereafter.  The full 

set of interpretation outputs from the Reilig web app are provided in the digital appendices. 

Table 28:  Time allocated to the processing and machine-led interpretation of GPR data from each case study site 
using the Reilig for Radargrams web app 

Site Number of Radargrams Time Spent to Achieve Output from Reilig 

Black Friary 47 33 minutes 

Fort Maigh Leana 12 12 minutes 

Irish National Heritage Park 215 106 minutes 

Lionsden 200 120 minutes 

Newtown, Ferrycarrig 90 49 minutes 

Roscomroe Church 26 27 minutes 

St Brendan’s Church 97 53 minutes 

TOTAL 687 400 minutes (6 hours 40 minutes) 

 

8.6. Fort Maigh Leana 

Dr Denis Shine (Director, Irish Heritage School) facilitated and supported a programme of 

geophysical survey at Fort Maigh Leana, County Offaly.  Fort Maigh Lena, also known as Fort 

Moyleana or Maigh Luaghne, is listed as a bivallate ringfort (O’Brien and Sweetman 1997).  However, 

its dimensions (77m diameter circular landscape enclosed by a double bank and fosse (ditch) 

approximately 4.5m wide x 3.4m deep) exceed that of typological Irish ringforts.  The site, shown in 
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Figure 102 at the time of survey, is situated in Ballindown, County Offaly, near Clonmacnoise and 

Birr town, within a rich landscape of medieval and later Georgian activity.  The site itself is potentially 

of regional and national significance as its name, Maigh Leana is derived from the ‘Battle of Maigh 

Leana’ that is believed to have taken place near Tullamore in the second century AD.  Eugene 

O’Curry's (1855) translation of the Cath Maige Leana manuscript provides understandings of the 

events of the battle.  The text details the battle between Eoin Mor (also Eugene the Great or Mug 

Nuadat) and the High King ‘Conn of the Hundred Battles’ as they fought over the two ‘halves’ of 

Ireland – Leith Cuinn (Conn’s half) and Leth Moga (Mug’s Half) because Eoin erected three mounds 

around which to gather his armies thereby breaking the peace treaty he had with Conn.  Locally, Fort 

Maigh Leana is thought to be one of the three mounds. 

 

Figure 102:  NW facing panoramic view of the survey area at Fort Maigh Leana 

There is no excavation evidence from this site as landowners were not able to facilitate test 

excavations within the timeframe of this project.  However, based on the historic evidence for the 

site, it is unlikely that there are any graves present within the area surveyed.  As excavation data 

becomes available, this will be fed back into the training process to improve the accuracy of 

detections. 

8.6.1. Manual Interpretation Results 

GPR, EMI, and gradiometer surveys were conducted on the interior of Fort Maigh Leana.  The 

surveys delineated areas of archaeological potential, geological variation, and modern activity.  For 

a detailed interpretation, see the technical report included in the digital appendices. 
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Figure 103:  Manual interpretation of all GPR timeslices from Fort Maigh Leana, Ballindown.  The survey delineates areas of archaeological potential. 
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8.6.2. Object Detection Results 

Of the 12 radargrams which comprise Area C of the Fort Maigh Leana dataset, there were no graves 

detected.  This was the expected result as the data from other geophysical techniques indicated that 

a souterrain or similar feature was present in Area C and it is unlikely that individuals would have 

been buried between the top of the souterrain and the original topsoil layer. 

8.7. St Brendan’s Church 

The Birr 2020 group commissioned a programme of geophysical survey at St Brendan’s Church and 

the surrounding area in Birr, County Offaly, Ireland.  A GPR survey was conducted within the 

churchyard at St Brendan’s, along the paved pedestrian access route north of the churchyard, and 

across the ‘old pig market’ south of the churchyard. 

Caimin O’Brien (An Roinn Cultúir Oidhreachta agus Gaeltachta 2018) describes St Brendan’s Church 

as an: 

“Ancient monastic site founded by St. Brendan in the seventh century associated with the 
illuminated manuscript known as the 'Gospels of Mac Regol' ... Present remains consist of 
poorly preserved remains of a multiperiod square shaped church (ext. dims.  16.65m N-S; 
16.95m E-W; wall T 0.7m) built with roughly coursed limestone with large sandstone quoin 
stones with 17th-century tower (ext. dims.  6.6m E-W; 6.5m N-S; wall T 1.7m) three storeys 
high added to the S end of W wall.  All floors were wooden carried in the thickness of the wall 
with evidence of internal wooden stairs.” 

Test trench evaluations and monitoring were undertaken along Main Street by Michael Tierney (2008) 

and Daniel Noonan (2003).  Both excavations noted human remains which may indicate the original 

church precinct boundary extended outside the current boundary.  The aim of the survey, within the 

scope of this research project, was to identify geophysical responses from potential unmarked graves 

and sections of the original precinct boundary that had not already been noted during excavations.  

Known sections of the precinct boundary are currently located underneath the carpark for local shops. 

No excavations were planned for St Brendan’s Church as the graveyard is no longer in use but still 

holds importance within the local community.  There are, however, several marked graves visible 

throughout the graveyard. 

8.7.1. Manual Interpretation Results 

A manual interpretation of the GPR data delineated areas of archaeological potential, geological 

variation, and modern activity.  The interpretation of a selected timeslice is provided in Figure 104.  

For a detailed interpretation, see the technical report included in the digital appendices. 
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Figure 104:  Manual interpretation of selected GPR timeslices from c. 0.5m below ground level at St Brendan’s Church, Birr.  The survey delineates areas of archaeological potential as well as 
modern anthropogenic activity. 
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8.7.2. Object Detection Results 

From the 97 radargrams in the St Brendan’s Church dataset, seven radargrams were returned with 

positive detections for graves as shown in Figure 105. 

 

Figure 105:  Approximate outline of the survey area and outline of the radargrams included in the St Brendan’s Church 
dataset indicating whether a grave was detected in the radargram (shown in blue) or no grave was detected in the 

radargram (shown in grey) 

The detections in adjacent traverses align, indicating multiple ‘hits’ on an east-west aligned grave.    

An example of this type of detection is provided in Figure 106. 
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Figure 106:  Example of detections aligned in adjacent traverses, increasing the likelihood that these responses relate 
to an east-west aligned grave 

8.8. Roscomroe Church 

Amanda Pedlow (Heritage Officer, Offaly County Council) commissioned a programme of 

geophysical survey at Roscomroe Church, Roscrea, The Leap, County Offaly.  This survey aimed to 

inform on the slippage and potential damage to the exterior church walls. 

Roscomroe Church itself is noted in the Archaeological Inventory of County Offaly (O’Brien and 

Sweetman 1997, p. 109) as a church and graveyard: 

“Situated on a slight rise W of a tributary of the Camcor River.  Traditionally cited as an Early 
Christian foundation attributed to St Molua and to whom a nearby holy well is dedicated.  
Present remains comprise a late medieval rectangular church (ext. dims.  18.6 E-Q x 7.8m N-
S; wall T 0.8m) constructed of roughly coursed shale, standing within an irregularly shaped 
graveyard enclosed by a stone wall the West gable with partial remains of a bellcote and a 
breach indicating that former presence of a window, together with the W ends of both the N and 
S walls survive to full height.  Elsewhere no more than wall-footings remain.  The splay of a 
doorway is visible at the W end of the S wall.” 

No excavations were planned for Roscomroe Church outside of the church exterior, as the graveyard 

contains modern graves, as well as the possible ?medieval graves, and still holds importance within 

the local community.  There are, however, several marked graves visible throughout the graveyard, 

particularly to the southeast of the church.  In Figure 107, there are several recent modern grave 

markers visible next to an area of historic and presumed ?medieval stone grave markers. 
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Figure 107:  NNE facing shot of Roscomroe Church which demonstrates to the phasing of grave markers and ?grave 
markers south of the church 

 

8.8.1. Manual Interpretation Results 

The surveys delineated areas of archaeological potential indicated by a possible enclosure, 

geological variation, and modern activity, as demonstrated by Figure 108.  For a detailed 

interpretation, see the technical report included in the digital appendices. 
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Figure 108:  Manual interpretation of all GPR timeslices from Roscomroe Church, Roscomroe.  The survey delineates areas of archaeological potential as well as modern anthropogenic 
activity. 
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8.8.2. Object Detection Results 

Of the 26 radargrams included in the Roscomroe Church dataset, six were returned with positive 

detections for graves, as shown in Figure 109.  The detections were of mixed accuracy, where the 

size and location of several bounding boxes (shown in Figure 110) were highly accurate, and others 

expressed a similar issue to the INHP example shown in Figure 118. 

 

Figure 109:  Outline of the radargrams included in the Roscomroe Church dataset indicating where a grave was 
detected in the radargram and the confidence of the detection (indicated by the colour scale) 
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Figure 110:  Example of an accurate and high confidence detection in the Roscomroe Church dataset 

 

8.9. The Black Friary 

The Irish Archaeology Field School facilitated and supported a programme of geophysical survey at 

the Dominican Friary in Trim, County Meath.  The Black Friary, a Dominican Friary founded in 1263, 

is situated in the Boyne Valley landscape in Trim, County Meath, Ireland.  After the dissolution of 

religious orders by Henry VIII in 1536, the Friary was demolished and quarried for limestone.  The 

historic quarrying has produced a thick (c. 40-60 cm) rubble layer across most of the site which is 

overlain by modern dumping.  Despite the destruction of the Friary, it continued to hold significance 

within the community, as evidenced by its continued use as a burial ground throughout the post-

medieval period.  The Friary is situated in a semi-urban setting outside the northern medieval 

boundary of Trim town.   

Burials are expected in the survey area, shown in Figure 112, as it lies between the nave of the 

church and the cloister garth.  Ongoing excavations on the site have recovered many burials to the 

south and east of the survey area.  These burials are often simple extended inhumations with a loose 

grave fill surrounded by a compact clay/silty clay layer, sometimes with stone lining, disturbed 

building materials (ashlar limestone blocks), intercutting other burials, or evidence for coffin burials 

(O’Carroll, Scott, et al. 2017, O’Carroll, Shine, et al. 2017).  In more disturbed areas of the site, 

disarticulated human remains are more common.  It is postulated that the presence of disarticulated 

remains is a result of burials being disturbed during the robbing out of the friary following the 
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dissolution of religious orders in the 16th century.  Excavations have also identified a ditch, likely 

relating to the southern edge of the friary, indicating the extent of burials within the friary boundaries 

(O’Carroll, Scott, et al. 2017, O’Carroll, Shine, et al. 2017).  To date, excavations have recovered 

burials Cuttings 1, 2, 3, 5, 6, 7, 8, 9, 10, and 12 as outlined in Figure 111.  This excavation evidence 

can be used to verify the likelihood of automatic detections being of interest and any future analysis 

of data from the site.  Excavation is still ongoing on the site, and as more data becomes available 

this will be used to inform and retrain a new model. 

 

Figure 111:  Plan of the excavation areas and proposed extent of the friary buildings as of 2018 (adapted from O’Carroll 
et al. 2017a, b) 

8.9.1. Manual Interpretation Results 

A series of multi-method geophysical surveys were conducted over three years at the Black Friary.  

The survey data included in this project are from those surveys of the cloister and within the possible 

extent of the cemetery.  The survey identified potential archaeological features likely relating to the 
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original monastery structure as well as post-medieval and modern anthropogenic activity.  For a 

detailed interpretation, see the technical report included in the digital appendices. 

8.9.2. Object Detection Results 

From the 47 radargrams in the Black Friary 2017 dataset, 26 radargrams were returned with positive 

detections for graves, as shown in Figure 112.   

 

Figure 112:  Outline of the radargrams included in the Black Friary 2017 dataset indicating where a grave was detected 
in the radargram and the confidence of the detection (indicated by the colour scale) 

While the grave detections were all reasonably group and spatially aligned (indicative of multiple ‘hits’ 

on an east-west aligned grave), the model struggled with detecting an appropriately sized extent of 

the anomaly.  For example, the detection shown in Figure 113 which had a high confidence rate 

(0.9004), has a bounding box equivalent to less than 0.5m wide.  Whereas, an example of a less 
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confident detection (0.6028), shown in Figure 113, is more similar to the size that is expected for a 

north-south transect across an east-west aligned grave. 

 

Figure 113:  An example of a highly confident grave detection (left) and a less confident grave detection (right) from the 
Black Friary 2017 dataset 

 

8.10. Lionsden 

The Blackfriary Archaeology Field School facilitated and supported a programme of geophysical 

survey on an area of land c. 460m south of the point where the Rivers Boyne and Blackwater meet, 

in Lionsden, County Meath.  Lionsden, County Meath, is located approximately 11.5km southwest of 

Trim, County Meath, and 27.75km east of Mullingar, County Westmeath.   

Human remains were first discovered during digging on the site in 1986.  The remains consisted of 

human lower limbs with a minimum number of individuals (MNI) of three.  The burials appear to have 

been unaccompanied inhumations in unprotected pits.  The burials had been extended, aligned 

west/east, and lay underneath the wall of a historic mill (M. Gunn, pers. comm.).  The burials were 

preserved in situ by a layer of concrete.   

In 2006, the discovery of additional burials was reported to the National Museum.  Heavily disturbed 

human bone was found throughout the topsoil surrounding the house built on the site.  Two perforated 

scallop shells were also found in the disturbed topsoil, potentially indicating that burials took place 

here in the medieval period. 
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There is no current excavation evidence from archaeological excavations for this site as landowners 

were not able to facilitate test excavations within the timeframe of this project.  However, based on 

the historic evidence for the site, there is potential for graves to be present within the area surveyed, 

but their extent is unknown.  As excavation data becomes available, this will be fed back into the 

training process to improve the accuracy of detections. 

8.10.1. Manual Interpretation Results 

The surveys delineated areas of archaeological potential and modern services, as demonstrated by 

Figure 114.  Features of archaeological potential that are morphologically similar to structural 

foundations are indicated in the survey data.  For a detailed interpretation, see the technical report 

included in the digital appendices. 
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Figure 114:  Manual interpretation of a selected GPR timeslice from c. 0.5-0.6m below ground level at Lionsden, Co Meath.  The survey delineates areas of archaeological potential as well as 
modern anthropogenic activity. 
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8.10.2. Object Detection Results 

The Lionsden dataset is an example of the faults of machine-led interpretation.  All 200 radargrams 

in the dataset returned positive detections for grave-like anomalies.  Based on the location of the 

bounding box within the images, as shown in Figure 115, additional tests were run with various 

upscaling and downscaling on the images.  The bounding boxes were continually in the same location 

within the image with minor variations in the confidence of the detection.  This suggests that the 

detector is being ‘fooled’ by the stoniness of the ground surface along the millrace as well as the 

modern noise along the fence line.  As with the INHP example, based on prior knowledge of training 

machine learning models (discussed in Chapters 6.4, 6.5, and 7), this error may be reduced with the 

addition of similar examples to the training dataset once they become available.  Processing the data 

with a background removal filter also had no impact on the bounding box detection.  The machine 

should be trained on images that include whitespace, padding, and scale bars as examples of non-

graves for the machine to learn not to detect them as graves.  This process was not carried out during 

the training for this project as the addition of these examples of non-graves would skew the balance 

of the positive and negative classes in the training dataset. 

 

Figure 115:  Example of the bounding box region detected on all of the Lionsden radargrams, shown in both the raw 
data (left) and processed data with background removal (right) 

8.11. Irish National Heritage Park 

Two programmes of geophysical survey were commissioned by the Irish Archaeology Field School 

(IAFS), one at the Irish National Heritage Park and one on private land in Newtown, Ferrycarrig.  For 

a detailed interpretation, see the technical report included in the digital appendices. 



Chapter 8:  Initial Tests on “Real-World” Data 

181 
 

The Irish National Heritage Park is located in Ferrycarrig, approximately 4km northwest of Wexford, 

County Wexford, and 17.4km south of Enniscorthy, County Wexford.  A programme of geophysical 

survey was carried out on an area of land surrounding the round tower where IAFS excavations are 

in progress.  The survey area encompasses two monuments – an imitation round tower and a castle 

ringwork.  The imitation round tower (SMR No. WX037-028001-) made from shale was erected in 

1857-8 to commemorate the Wexford residents who died during the Crimean War (Bennett 1989).  

The tower lies on a promontory overlooking the River Slaney (An Roinn Cultúir Oidhreachta agus 

Gaeltachta 2018).  The ringwork (SMR No. WX037-028002-) is an oval area (c. 40m E-W; c. 27m N-

S) defined by a cliff edge and an earthen bank (c. 15m wide) with an external fosse which has been 

recently cleared.  Activity surrounding the monument is noted throughout the medieval period: 

“When the Anglo-Normans captured Wexford town in 1169, Dermot Mac Murrough granted it 
and the surrounding area to Maurice FitzGerald and Robert FitzStephen, and the latter fortified 
the steep rock at ‘Karrech’.  On the death of Dermot in May 1171, the Irish rebelled, captured 
Wexford town and besieged FitzStephen behind the ‘earthen rampart’ at Carraig.  FitzStephen 
surrendered to trickery and was handed over to King Henry II at Waterford later in the year.  It, 
or perhaps an unlocated castle (WX037-049----) at Carrick became the centre of the manor of 
Carrick, and a settlement of over a hundred burgesses became associated with it by 1307.  
However, in 1323-4 the castle was described as vacant and consisting of an unroofed hall and 
chapel.  In 1420 the castle is described as burnt.  References to the manor and castle continue 
into the late 16th century, and in time it came to be known as Shanacourt (Old Castle)” (An 
Roinn Cultúir Oidhreachta agus Gaeltachta 2018).  

The monument (SMR No. WX037-028002-) and surrounding area were excavated in 1984-5 (Bennett 

1984).  The excavation identified the rock-cut fosse and internal stone revetment of the earthen bank.  

The interior had been disturbed by the construction of the round tower (WX037-028001-).  Further 

excavation in 1987 recorded evidence (13th century pottery and three silver pennies) for at least two 

structures (Cotter 1987).  

Previous and current excavations at the Irish National Heritage Park and environs are detailed in an 

edited volume on Carrick, County Wexford (Shine et al. 2019). 

8.11.1. Manual Interpretation Results 

The manual interpretation of the GPR survey data delineated areas of archaeological potential and 

modern activity, as shown in Figure 116.  Features of archaeological potential that are 

morphologically similar to structural foundations are visible in the survey data.  For a detailed 

interpretation, see the technical report included in the digital appendices. 
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Figure 116:  Manual interpretation of a selected GPR timeslice from c. 0.5m below ground level at the Irish National Heritage Park.  The survey delineates areas of archaeological potential as 
well as modern anthropogenic activity. 
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8.11.2. Object Detection Results 

Of the 215 radargrams included in the INHP dataset, 29 had detections positive for grave-like 

anomalies.  The location of these 29 radargrams in relation to the negative radargrams is shown in 

Figure 117.   

 

 

Figure 117:  Approximate location of the survey areas and outline of the radargrams included in the Irish National 
Heritage Park dataset indicating where a grave was detected in the radargram and the confidence of the detection 

(indicated by the colour scale) 

In the noisier radargrams, like that shown in Figure 118, the location accuracy of the bounding box 

is poor while the confidence of the detection is still high (0.9930).  The radargram was processed 

with a background removal filter and rerun through the object detector.  The bounding box detection 

was more accurate in the processed data (see Figure 118).  Due to this error in the bounding box 

locations, a guide was written for users of the web app to ensure they process their data where 
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possible.  While an experienced surveyor would be able to locate the true grave-like response, an 

inexperienced surveyor may have trouble correcting the location of the bounding box if using raw 

data.  It is possible, however, that this bounding box error can also be reduced by increasing the 

number of ‘noisy’ radargrams in the training dataset and retraining the model when these radargrams 

become available.  Increasing the number of examples similar to the radargram in Figure 118 will 

make the model more robust and improve the model’s ability to differentiate the ‘noise’ in the 

background from the target features. 

 

Figure 118:  Example of a 'noisy' radargram in the INHP dataset where the accuracy of the location of the bounding box 
is reduced but the confidence in the detection is still high (left) and the same radargram processed with a background 

removal filter which shows a more accurate bounding box detection (right) 

8.12. Newtown 

Two programmes of geophysical survey were commissioned by the Irish Archaeology Field School 

(IAFS), one at the Irish National Heritage Park and one on private land in Newtown, Ferrycarrig.  For 

a detailed interpretation, see the technical report included in the digital appendices. 

Newtown, County Wexford, is located approximately 3.75km northwest of Wexford, County Wexford, 

and 17.9km south of Enniscorthy, County Wexford.  A programme of geophysical survey was carried 

out on an area of land c. 125m south of the junction of the N11 and R730.  The survey area comprises 

the accessible farmland at Tower Hill. 
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The survey area encompasses the findspot of a pit burial (SMR No. WX037-029).  The pit burial is 

described as the “rim of a collared urn and a small sample of cremated bone, probably representing 

an older adolescent” (Sikora 2011, An Roinn Cultúir Oidhreachta agus Gaeltachta 2018). 

Archaeological testing was carried out on the site in 2006 by Stafford McLoughlin Archaeology 

(McLoughlin 2006).  Five trenches were machine excavated using a 1.8m wide toothless bucket.  

Four trenches contained definite archaeological features dating to the medieval period, and the fifth 

contained potential archaeological features (McLoughlin 2006).  Of these features, the most notable 

are a medieval ditch of unknown extent and several deposits containing medieval pottery.  It was, 

however, noted that no prehistoric features relating to the pit burial (SMR No. WX037-029) were 

identified (McLoughlin 2006). 

The site in Newtown was chosen to be part of the testing phase of this project because previous 

excavations of the site noted the presence of ditches and it was pertinent for this project to determine 

the extent to which an object detector would be able to differentiate between ditch fill and graves. 

8.12.1. Manual Interpretation Results 

The manual interpretation of the GPR survey data delineated areas of archaeological potential, 

previous trial trenches, and modern activity, as shown in Figure 119.  Features of archaeological 

potential that are morphologically similar to settlement activity are shown in the survey data.  For a 

detailed interpretation, see the technical report included in the digital appendices. 
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Figure 119:  Manual interpretation of a selected GPR timeslice from c. 0.5m below ground level at Newtown, Ferrycarrig.  The survey delineates areas of archaeological potential, backfilled 
archaeological trial trenches, and modern anthropogenic activity.
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8.12.2. Object Detection Results 

From the 90 radargrams in the Newtown dataset, 71 radargrams were returned with positive 

detections for graves, as shown in Figure 120. 

 

 

Figure 120:  Outline of the radargrams included in the Newtown dataset indicating where a grave was detected in the 
radargram and the confidence of the detection (indicated by the colour scale) 

While a large number of these detections are valid, there are again instances where the machine is 

‘fooled’ by background noise in the radargram or minor DC drift from the GPR.  With the training data 

that is available, it is unlikely that examples of all background variations and instrument fluctuations 

can be accounted for.  Instead, in the instances where it is more likely the background variations that 

are being detected, not potential graves, the detections will require further validation by the surveyor. 
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8.12.3. Summary of Interpretation and Plotting Timescales 

Overall, the speed at which these detections can be made is a marked improvement on the time 

required for manual interpretation, especially where the surveyor is inexperienced.  There are, 

however, some instances where the detector is unable to differentiate the target response from the 

general background ‘noise.’  As the background noise and instrument noise become more prominent, 

the accuracy and validity of the predictions made by the detector decrease.  However, it is likely, 

based on prior knowledge of machine learning model training, that the prevalence of false negative 

detections can be reduced with the addition of examples of ‘noisy’ data and more examples of positive 

responses to the training dataset once they become available.  Even with the need for human 

validation of all detections, the process of saving the interpretations from the web app reduces the 

time spent on drawing the dataset and manual interpretations in CAD or a GIS.  Taking these factors 

into account, a machine-led interpretation approach is suitable for commercial and research 

geophysics and can only become more accurate and reliable with the addition of varied, 

representative training data. 
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9. PRELIMINARY TESTS ON ADDITIONAL DATASETS AS AN INDICATOR OF 

COMMERCIAL VIABILITY 

A preliminary test to determine the viability of future applications of the methodology discussed herein 

to modern clandestine graves was carried out.   A pre-trained ResNet152 model was retrained on 

timeslices across modern clandestine burials proxies, using the same methods presented in Chapter 

7.  The training dataset consisted of 642 positive examples and 1442 negative examples of woodland 

burials from Marsh's (2013) survey data.  The training data were created from 500MHz GPR data 

across marked modern earthern dug woodland burials with wicker coffins (Marsh 2013).  Raw data 

files were provided by Marsh (2013) and these data were processed using GPR-Slice and compared 

with the cemetery layout to identify the known grave responses. The complete training dataset is 

provided in Appendix G. 

 

 

Figure 121:  Sample of 150x150 pixel images included in the modern clandestine grave training dataset 
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Figure 122:  Mean training and validation losses and standard deviation across 100 training sessions for the modern 
grave dataset.  A loss value of 0 indicates a perfect model. 

 

 

 

Figure 123:  Mean training loss compared with classification accuracy and standard deviation across 100 training 
sessions for the modern grave dataset 
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Figure 124:  Confusion matrix for the ResNet152 model trained on timeslice data which shows the number of correct 
predictions and incorrect predictions 

The maximum accuracy achieved during training was 94.95%.  This high accuracy is most likely a 

result of the robustness of the training dataset. 

 

Figure 125:  Heatmaps indicating the least accurate predictions made using the ResNet152 model for the modern 
clandestine grave dataset, where the highlighted area indicates a prediction 
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Figure 126:  Heatmaps indicating the most accurate predictions made using the ResNet152 model for the modern 
clandestine grave dataset, where the highlighted area indicates a prediction 

While the model was only trained on one type of grave from one site, the high accuracy of the model 

justifies further investigation of the applicability of machine-led interpretation to modern clandestine 

graves.  Initial results from the woodland burials dataset are promising and demonstrate that, with 

additional data made available, in addition to radargrams, timeslices can be used for machine-led 

interpretation and there is potential to train suitable models for the detection of multiple types of 

clandestine graves.  

Using this retrained ResNet152 model, a limited web app, Reilig for Timeslices, was developed to 

perform the same interpretations as Reilig for Radargrams on greyscale timeslice data.  The app is 

only able to accurately detect cut-earth post-medieval and modern graves until it is trained on 

additional grave types.  The Reilig for Timeslices web app can be accessed at reiligts.onrender.com.  

The functionality of the app is similar to Reilig for Radargrams, with one upload button and one 

‘Analyze’ button, and returns the interpretations to the end-user on the original image uploaded.  

Examples of the app making detections on images are provided in the digital appendices. 

https://reiligts.onrender.com/
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10. DISCUSSION 

The work undertaken in this project examined the feasibility of integrating machine learning and 

interactive assets into a GPR survey workflow in order to improve the pre-excavation localisation of 

graves which may impact commercial archaeology projects and the individual graves.  The initial step 

in improving the rate of detection of graves is improving the survey methodologies applied on site.  

In order to make survey guidance accessible to persons of all skill levels who are wishing to undertake 

geophysical survey (from volunteer groups to experienced professionals), an interactive format which 

provides both prescriptive and discursive approaches to guidance will increase the rate at which the 

correct methodologies are applied to a site.   

Following the implementation of appropriate methodologies for a survey, the interactive web apps for 

object detection demonstrate that the reporting process for GPR surveys can be made more efficient.  

A new workflow for the interpretation and reporting of GPR data is proposed hereafter, with the aim 

that the implementation of or integration of parts of this workflow will increase interpretation accuracy 

and decrease reporting time.  While the primary focus of this project was the detection of 

archaeological graves, given the appropriate training data, the same workflow can also be applied to 

modern clandestine and mass graves. 

10.1. Real-World Applications and Implications 

Based on the results of the GPR data interpretation questionnaire, there is a need for an accurate, 

quantifiable method for the interpretation of GPR data.  Part of this improvement in interpretation is 

the need for the improvement of the quality of data collected during survey so that humans and 

machines can both maximise their potential to interpret the data accurately. 

Currently, the accepted workflow for interpreting and reporting data involves manually drawing 

polygons around responses of interest to create 2D figures.  The research presented here suggests 

that implementing a new workflow which integrates machine-led interpretation of GPR data would be 

beneficial to surveyors and commercial clients.  Figure 127 compares the current and proposed 

workflows for interpreting and reporting GPR data, with four minor adjustments to the existing 

workflow that will improve the speed and accuracy of reporting interpretations of data. 
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Figure 127:  Comparison of the existing (top) and proposed (bottom) workflows for interpreting and reporting GPR.  The 
proposed changes are highlighted in blue. 

10.2. Fulfilment of the Research Aim 

Digital tools for survey guidance and data interpretation were produced and provided in a format that 

is accessible to all surveyors, from community groups to commercial archaeologists.  All tools are 

currently available as freely available web apps. 

10.3. Fulfilment of the Research Objectives 

1. Assess the appropriateness of current practices for the identification and interpretation of graves 

in GPR data 

A questionnaire was developed to identify the differences in surveyors' abilities to interpret grave-like 

responses in GPR data.  It aimed to determine if there are differences in the methods of interpretation 

between individuals and if interpreters focus on the same anomalies in a dataset.  It also examined 

whether they were differences in the interpreters’ ability to identify complex and ephemeral responses 

based on their experiences with GPR. 
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2. Develop an interactive decision-making tool for determining appropriate survey parameters for 

surveys in Ireland and the UK from existing guidelines 

A review of the current survey guidance available identified that they were suitable for collecting 

interpretable data but often lacked clarity.  The guidelines for Ireland and the UK were collated and 

plotted in decision trees.  This format allowed for the consideration of both controllable and 

uncontrollable factors that can impact on the quality of survey data, such as sampling resolution, 

geophysical technique, and land cover.  The outcomes of this basic decision tree were converted to 

a field in ArcGIS, plotted in the WGS84 coordinate system to make the results searchable, and 

provided online in an interactive, user-friendly format. 

3. Develop input-output user-friendly automatic classification software for detecting and 

probability-scoring grave-like responses in GPR data 

Machine learning models were developed for classification and object detection tasks.  The object 

detection model provided better results that the classification model so it was hosted online for easy 

access by the end-user, while the classification model is available as a series of scripts that can be 

executed through a command prompt. 

4. Apply machine learning to a range of sites in Ireland (five study areas) 

The final trained object detector was tested on data collected from five datasets from surveys on a 

range of sites in Ireland to assess the detector’s usability and effect on the timescales of a commercial 

project.  It was shown that for a commercial project on a short timescale, knowledge of Python is 

necessary to batch process and infer on all images at once.  For smaller-scale or non-commercial 

projects, a web app is suitable for inferring on single images. 

5. Assess the potential impact of the developed tools on commercial archaeogeophysics 

A questionnaire distributed to experienced GPR surveyors was used to assess the potential for inter-

observer error in human-led interpretation.  Results from the questionnaires demonstrated that there 

was a wide range of responses given and there was little agreement between participants.  

Participant’s confidence in their interpretations was primarily low.  Machine-led interpretation will be 

able to create a systematic, accurate interpretation workflow that can be implemented in all GPR 

surveys.  The time necessary for machine-led and human-led interpretations were also compared to 

determine the monetary impact on commercial companies.  The time difference between to two 

interpretation methods was negligible.  By implementing a machine-led interpretation workflow 

companies could be at less risk for recovering unexpected graves. 
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6. Test the ability to develop a training dataset for common modern clandestine burial practices 

A small sample of modern woodland burials surveyed by Marsh (2013) and simulated clandestine 

graves held by Bournemouth University was used as a training dataset for modern graves.  The 

ResNet152 model trained on the data achieved a maximum accuracy of 94.95%, indicating that 

suitable training datasets can be compiled for defined, simple graves with successful implementation 

in a machine learning model. 

7. Assess the potential impact of the computational tools on geophysics applied in a forensic 

context 

The tests of classification of responses from modern graves were limited but could be successful with 

additional data.  In forensic scenarios, there is an added element of the uncertainty of grave size and 

orientation that has to be addressed in the training dataset.  If a suitable training dataset can be 

collated the probability associated with inferences could be a vital element in forensic searches and 

presenting evidence in court cases. 

10.4. Project Limitations 

The project was primarily limited by the volume and quality of training data available.  Radargrams 

were used in this project because there were enough available so that the models did not require the 

data to be augmented to increase the size of the training dataset and counteract overfitting.  It was 

hoped that models could also be developed for object detection in timeslices and other visualisation 

formats of GPR data; however, there was not enough suitable data available to train a model on such 

complex objects as graves. 
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11. CONCLUSION 

11.1. Outcomes of the Research 

The tangible outputs of the project include: 

• A web app for determining the most appropriate survey parameters for archaeogeophysical 

surveys in the UK and Ireland 

• A web app for the detection of single graves in radargrams 

• A preliminary web app for the detection of single post-medieval – modern graves in 

timeslices 

• A labelled dataset of proxy modern clandestine graves in 150x150 pixel crops of timeslices 

The primary tasks of image classification and single object detection assessed within this project 

have proven to be a useful addition to the GPR data interpretation workflow.  The identification of 

potential graves in GPR data is improved and provided a measure of accuracy.  If implemented prior 

to human-led interpretation, automatic interpretations of data will reduce interpretation and reporting 

timescales for commercial geophysics. 

11.2.  Remarks on Future Work 

While the results achieved with the existing machine learning models and web apps are promising, 

there is still additional data that can be added to the training dataset in order to increase and 

encourage more extensive usage of the tools presented herein. 

11.2.1. Medieval Graves in Western Europe 

As in Ireland, the popularisation of Christianity encouraged the use of west-east extended supine 

inhumations.  Variations between the two countries become apparent when considering the 

traditional burial practices of population sub-groups (e.g. Jewish cemeteries, Leper cemeteries, Black 

Death cemeteries).  The most common burial practice from the 13th century onwards was a simple 

earthen extended supine inhumation within an enclosed monastic cemetery; however, burial within 

these cemeteries required permissions from ecclesiastical authorities (Gilchrist and Sloane 2005).  

These burials were on average 1.8m L x 0.4m W x 0.4-0.7m D.  There is evidence of some stone-

lined, wood-lined, cist graves, and chalk-lined burials (Gilchrist and Sloane 2005).   

Similar to monastic cemeteries in Ireland, there is a distinct separation of the laity from members of 

a religious community.  In monastic settlements where there was no cloister, the laity was most often 

buried alongside the church close to the precinct gate; while the religious personnel were buried 
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alongside the east range and church (Gilchrist and Sloane 2005).  Where there was a formal cloister 

plan, the laity were buried opposite the cloister, such that if the cloister were on the south side of the 

church, the laity would be buried on the north side of the church the religious community to the south 

and east, and vice versa for a mirrored cloister plan (Gilchrist and Sloane 2005).   

Ornate burials such as stone coffins have been noted within church interiors.  Such burials are often 

indicative of spatial hierarchies, whereby nobility, patrons, benefactors, high-status monks, and, less 

commonly, ordinary monks were interred with the church.  Contrary to Irish burial practices, where 

there were many inhumations within the cloister garth and ambulatory, burials within the cloister were 

rare in medieval England (Gilchrist and Sloane 2005). 

Geophysical survey is often used to help locate these burials and associated archaeological features 

before commercial archaeological excavations.  Due to their similarity to medieval Irish graves, a 

machine learning approach should be readily applicable to datasets from Western Europe with the 

addition of sample data to the existing training dataset. 

11.2.2. Modern Clandestine Graves 

The location and recovery of forensic evidence and clandestine graves is a problem that law 

enforcement is still facing.  Recently, Murray et al. (2018) applied deep learning to the detection of 

clandestine graves and surface remains in thermal imagery, hyperspectral imagery, and Structure 

from Motion 3D imagery.  An untrained YOLO detector produced promising preliminary results on 

greyscale thermal imagery (Murray et al. 2018, p. 56-57).  The YOLO detector was successful in 

detecting surface remains as features like the head and body were included in the pre-trained YOLO 

detector (Murray et al. 2018, p. 56).  The authors did not provide information on the accuracy of their 

model, so it is unclear how successful their preliminary application is.  However, they rightfully justify 

the need for methods to detect clandestine graves accurately and surface remains in surveys of 

geographically large search areas (Murray et al. 2018, p. 45).  The same justification can also be 

applied to the geophysical survey of such areas. 

With the integration of forensic archaeologists into investigations, geophysical methods have been 

used with increasing frequency to locate clandestine graves and related evidence (Schultz 2007, 

Ruffell et al. 2009, Dupras 2012).  Research case studies by Schultz and others (Schultz 2007, 2008, 

2012, Schultz and Martin 2012, Schultz et al. 2012), as well as Pringle et al. (2012, 2016), have 

demonstrated that clandestine and recent unmarked burials can be detected using geophysical 

methods.  However, it is important to note that law enforcement may not possess the necessary 



Chapter 11:  Conclusion 

199 
 

training to carry out geophysical surveys or interpret the data, and therefore still require forensic 

archaeologists and anthropologists to assist with investigations. 

With the wide variety of controlled research on the geophysical responses of clandestine graves 

containing human cadaver proxies (i.e., bear, goat, kangaroo, and pig carcasses) or human 

cadavers, forensic archaeologists can geophysically characterise some of the most common burial 

scenarios (France et al. 1992, 1997; Strongman 1992; Freeland et al. 2003; Schultz 2008; Schultz 

and Martin 2011; Pringle et al. 2012; Powell 2003; Molina et al. 2016).  Such knowledge and an 

extensive database of legacy data would make machine learning and automation suitable tools for 

overcoming issues around law enforcement’s inexperience with geophysical survey.  To continue 

with this research project’s assessment of the viability of machine learning for improving grave 

detection, a compilation of a clandestine burial training dataset and retraining of the neural network 

is necessary.  While this application of machine learning could prove crucial to forensic investigations, 

such examples of modern clandestine burials were excluded from this project in order to narrow the 

focus of the project and assess the viability of such tools on a simpler, yet still complex, dataset.  As 

clandestine and mass graves are often situational, their geophysical characteristics and signatures 

can be incredibly varied and will require a large training dataset containing simple and complex 

representations of clandestine and mass graves at various intervals of time-since-death and in a 

range of soil types. 

11.3.  Concluding Remarks 

Machine learning proved to be a viable solution to improving the accuracy of interpretations of GPR 

data, especially concerning ephemeral features like graves.  The models are reasonably accurate, 

but outputs still require human confirmation.  There are still improvements to be made in the usability 

of such machine learning approaches and reduction of human confirmation; however, these 

improvements cannot be made until a larger, more robust dataset becomes available.  Object 

detection should be implemented where data are difficult to interpret or the survey covers an area 

where graves are likely to be present (as determined by HER data).  However, the first step in 

improving the interpretability of data and identification of graves before excavation is implementing 

the most appropriate parameters during data collections.  The existing guidance for geophysical 

survey provides appropriate national and international guidance.  Implementing this guidance in an 

interactive digital format will increase engagement with these resources and improve the data that is 

collected.  As archaeogeophysics moves towards digital applications and novel approaches to data 

collection and interpretation with the growth of landscape and high-density surveys, tools like 
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machine learning will become the preferred data interpretation aid.  This work forms a strong base 

for justifying the use of object detectors in geophysics data interpretation as this work can only 

advance with the availability of larger suitable training datasets. 
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Appendix A. Glossary 

Abbey Monastery run by an abbot/abbess 

Accuracy 
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
 

A-scan Trace view of individual reflections in GPR data  

Áth Cliath Town 

Burial The practice of burying a dead body (see also Inhumation) 

B-scan Combined reflections in a GPR profile (see also Radargram) 

Cillíní Children's burial ground (plural) 

Cóiceda Province 

Conductivity The degree to which a material conducts electricity 

Confusion Matrix 

Table which describes the performance of a classification model by 

comparing the actual and predicted values in order to calculate a 

model’s recall, accuracy, precision, and F1 score. 

Cross-Entropy Loss 

Measure of the performance of a classification model where the output 

is a probability between 0 and 1.  A high loss is indicative of the 

predicted value diverging from the actual value.  Also called log loss. 

Where M=2: -(y log(p) +(1- y) log(1-p)) 

Where M>2: ∑ y
o,c

log(p
o,c

)
M

c=1
 

M = number of classes; y = binary indicator; p = predicted probability; 

o = observation; c = class 

C-scan 
Combined B-scans in a survey to create a 3D dataset (see also Time 

slice) 

Cúigí Province 

Damliac House of stones 
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Dielectric permittivity 
The degree of electrical polarisation a material experiences under the 

influence of an external electric field 

Domnach The Lord's Place 

Epoch 

A full pass of the training dataset through the algorithm during training.  

Sometimes equal to the batch size if the batch size is set to the entire 

training dataset in the training script. 

F1 score 2 ∙ 
precision ∙ recall

precision + recall
 

False negative 

1. All features recorded during archaeological evaluation that did not 

produce a correlative geophysical response 

2. Predicted value is negative, actual value is positive 

False positive 

1. Identified geophysical responses that do not correlate to an 

archaeological feature recorded during excavation 

2. Predicted value is positive, actual value is negative 

Feature map The output produced after a convolutional filter is applied to merge data 

Geinti Pagan, Non-Christian 

Grave 
A hole dug in the ground to receive a coffin or dead body, typically 

marked by a stone or mound 

Grave cut 
The boundary between the redeposited soil in the grave shaft and the 

surrounding undisturbed soil matrix 

Grave fill 
The material redeposited in the grave shaft once the body has been 

interred 

Inhumation The practice of burying a dead body (see also Burial) 

Land cover 
Natural and manufactured surface cover indicative of the physical land 

types (e.g. infrastructure, vegetation, woodland) 

Land use 
How people use the land and its purpose (e.g. farming, timber 

production) 
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Leth Cuinn Conn's Half 

Leth Moga Mug's Half 

Loss 

An integer indicative of a model’s ability to predict or classify an 

example.  A perfect model has a loss value of 0, unless the model has 

overfitted. 

Matthew’s Correlation 

Coefficient 

A correlation coefficient between targets and predictions in a binary 

classification problem, where 1 is correct, 0 is random, and -1 is 

incorrect classification. 

TP ∙TN-FP ∙FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 

Mean Absolute Error 

Metric often used to assess the quality of regression models 

1

n
∑ |y

j
-ŷ

j
|

n

j=1

 

Where the prediction error is the actual value – the predicted value and 

the mean absolute error is the average of all absolute prediction errors. 

Monastery 
Building occupied by monks or canons (people who dedicate their lives 

to God) 

Ogam, Ogham Pre-Christian Irish alphabet 

Precision value 

A measure of how precise a model is for positive predictions 

True Positives

(True Positives + False Positives)
 

Radargram 
A radar image of a profile of subsurface material(s) with X or Y, and Z 

values (see also B-scan) 

Recall 

A measure of the effect of false negatives on positive predictions 

True Positives

True Positives + False Negative
 

Reilig Churchyard 
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Sampling strategy Systematic sampling of a survey area 

Spatial resolution 

The intervals at which data are collected within a survey area, often 

given in the “sampling interval x traverse interval” format (e.g. 0.125m 

x 1m) 

Stride 
Distance (in pixels) the filter moves between applications, usually 1 or 

2 but can overlap when using a 3x3 filter size. 

Thermoremanence 

Phenomenon that occurs when materials are heated and subsequently 

cool, creating the permanent thermoremanent magnetism that is 

detected through geophysical survey 

Time slice 
A radar image of multiple combined profiles of subsurface material(s) 

with X, Y, and Z values (see also C-scan) 

True negative 

1. An area of no geophysical anomalies corroborated through 

archaeological evaluation 

2. Predicted value is negative, actual value is negative 

True positive 

1. Positive correlation between a geophysical response identified in 

a dataset and an excavated feature 

2. Predicted value is positive, actual value is positive 
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Appendix B. GPR Surveys in Ireland, 1997-2006 

Table 29: Details of the detection device consent licences from the National Monuments Service, Ireland (1997-2006).  Post-2006 licences were not available. 

Site Townland County Year License # Applicant Coordinates NGR 

Clonmacnoise Bridge Clonmacnoise Offaly 1997 97R0005 Aidan O'Sullivan/Donal Boland 2000962E, 230644N N 00962 30644 

Clonmacnoise Clonmacnoise Offaly 1997 97R0017 Harold Mytum 200810E, 230579N N 00810 30579 

Mullaghkeeran Banagher Offaly 1997 97R0018 Harold Mytum 200978E, 215491N N 00978 15491 

Clonmacnoise Clonmacnoise Offaly 1999 99R011 Kevin Barton/Deirdre O'Hara 200924E, 230618N N 00924 30618 

Rathcroghan and Carnfree Various Roscommon 1999 99R014 Joe Fenwick 183330E, 281049N M 83330 81049 

Rathcroghan and Carnfree Various Roscommon 2000 99R015 Joe Fenwick 182453E, 278459N M 82453 78459 

Newtown Deserted Settlement Newtown Cork 1999 99R015 Kevin Barton 173964E, 064353N W 73864 64353 

Caherquin Caherquin Kerry 1999 99R041 GeoArc Ltd 035847E, 105047N Q 35847 05047 

Churchyard of St Finbarre's Cathedral  Cork 1999 99R043 Kevin Barton 167006E, 071424N W 67006 71424 

Clonmacnoise Clonmacnoise Offaly 2000 00R021 Deirdre O'Hara 200924E, 230618N N 00924 30618 

Tankardstown Tankardstown Waterford 2000 00R022 Kevin Barton/Shane Rooney 245050E, 099184N X 45050 99184 

Ballykilcline Ballykilcline Roscommon 2000 00R032 Kevin Barton/Louise Geraghty 199911E, 286422N M 99911 86422 

Dookinelly (Calvy) Dookinelly Mayo 2000 00R033 Kevin Barton/Louise Geraghty 065767E, 304147N F 65767 04147 

Slievemore 'Famine Village' Slievemore Mayo 2000 00R034 Kevin Barton/Louise Geraghty 065040E, 307821N F 65040 07821 

Lough Corrib  Galway/Mayo 2000 00R060 Deirdre O'Hara 115354E, 250331N M 15354 50331 

Castletown Harbour Drishane/Castletownend Cork 2001 01R041 Connie Kelleher 067404E, 045639N V 67404 45639 

Caherquin Caherquin Kerry 2001 01R082 Louise Geraghty 035736E, 104949N Q 35736 04949 

Trim Trim Meath 2001 01R101 Hartmut Krahn 280752E, 256656N N 80752 56656 

Rathfarnham Church & Graveyard Rathfarnham Dublin 2002 02R044 Chris Gaffney 314369E, 228675N O 14369 28675 

Pollagh, Roscahill Pollagh Galway 2002 02R083 Colin Brown 124309E, 228856N M 24309 28856 
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Templemichael, Longford Abbeycarton Longford 2002 02R189 Shane Rooney 213334E, 276135N N 13334 76135 

Maynooth Castle Maynooth Kildare 2003 03R001 Paul Gibson/John Bradley 293576E, 237639N N 93576 37639 

Barnasrahy, Killaspugbrone Barnasrahy Sligo 2003 03R029 Joe Fenwick 165660E, 335136N G 65660 35136 

Newcastle West Newcastle West Limerick 2003 03R057 GeoArc Ltd 128280E, 133668N R 28280 33668 

Barnagore Barnagore Cork 2003 03R082 GeoArc Ltd 166241E, 099801N W 66241 99801 

Derragh, Abbeylara Derragh Longford 2003 03R101 GeoArc Ltd 239965E, 278772N N 39965 78772 

Earthwork at Tulsk Tulsk Roscommon 2003 03R103 Niall Brady 183413E, 281079N M 83413 81079 

Moated site at Cloonfree Cloonfree Roscommon 2003 03R104 Niall Brady 190381E, 279990N M 90381 79990 

Foreshore at Ard West Pier Carna Galway 2003 03R136 Kevin Barton 075744E, 230984N L 75744 30984 

Dowth Dowth Meath 2004 04R001 Paul Gibson/George Eogan 302364E, 273776N O 02364 73776 

Anneville Anneville Meath 2004 04R022 Paul Gibson 266090E, 246027N N 66090 46027 

Gardens County Kilkenny Kilkenny 2004 04R026 John Nicholls 250779E, 156105N S 50779 56105 

Lemanaghan Lemanaghan Offaly 2004 04R088 Paul Gibson 216289E, 226791N N 16289 26791 

Killeigh Killeigh Offaly 2005 05R015 Paul Gibson 236523E, 218197N N 36523 18197 

Ballyboggan Ballyboggan Meath 2005 05R019 Paul Gibson 263914E, 241933N N 63914 41933 

Donaghmore Donaghmore Kildare 2005 05R020 Paul Gibson 296260E, 237082N N 96260 37082 

Taghadue Taghadue Kildare 2005 05R021 Paul Gibson 292432E, 234619N N 92432 34619 

Kilmainham Dublin Dublin 2005 05R034 Heather Gimson 312610E, 233711N O 12610 33711 

Kilskeer Kilskeer Meath 2006 06R022 Paul Gibson 265834E, 271623N N 65834 71623 

Rahan Rahan Offaly 2006 06R023 Paul Gibson 225655E, 225437N N 25655 25437 

Not Available Magheraboy Sligo 2006 06R044 Hartmut Krahn 168039E, 335059N G 68039 35059 

Centre & Customs House Waterford City Waterford 2006 06R049 Heather Gimson 260955E, 112484N S 60955 12484 
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Appendix C. Reports for Archaeological Excavations where Early Medieval – Later Medieval Period Burials Were 

Recovered 

Table 30:  Records of the archaeological excavation licences granted for evaluations on Irish road schemes (2001-2013), where burials dating to the Early Medieval – Later Medieval periods 
were recovered 

Site Period(s) of 
Activity 

Consultancy Year Licence 
No. 

Reference 

Platin Fort Report on resolution of Site, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2001 01E0044 https://repository.dri.ie/catalog/5x226w173 

Claristown 2, County Meath Early Christian 

Medieval 

Archaeological Consultancy Services 
Ltd. 

2001 01E0039 https://repository.dri.ie/catalog/5425zr452 

Johnstown 1 Vol 7 Appendices 7-16, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2002 02E0462 https://repository.dri.ie/catalog/pg15qv68w 

Johnstown 1 Vol 6 Appendices 2-6, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2002 02E0462 https://repository.dri.ie/catalog/p841p300v 

Johnstown 1 Vol 5 Appendix 1 Part 2, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2002 02E0462 https://repository.dri.ie/catalog/p267m932n 

Johnstown 1 Vol 4 Appendix 1 Part 1, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2002 02E0462 https://repository.dri.ie/catalog/nv93jh644 

Johnstown 1 Vol 3 Plates & Illustrations, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2002 02E0462 https://repository.dri.ie/catalog/np19gq96z 

Johnstown 1 Vol 2 Figures, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2002 02E0462 https://repository.dri.ie/catalog/ng45dz288 

Johnstown 1 Vol 1 Final Report, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2002 02E0462 https://repository.dri.ie/catalog/n871c560f 

Site 120 Fort Hill, County Louth Early Medieval Irish Archaeological Consultancy Ltd 2002 02E1326 https://repository.dri.ie/catalog/v6936m97g 

https://repository.dri.ie/catalog/5x226w173
https://repository.dri.ie/catalog/5425zr452
https://repository.dri.ie/catalog/pg15qv68w
https://repository.dri.ie/catalog/p841p300v
https://repository.dri.ie/catalog/p267m932n
https://repository.dri.ie/catalog/nv93jh644
https://repository.dri.ie/catalog/np19gq96z
https://repository.dri.ie/catalog/ng45dz288
https://repository.dri.ie/catalog/n871c560f
https://repository.dri.ie/catalog/v6936m97g
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Site 121 Balriggan Volume 1, County Louth Early Medieval Irish Archaeological Consultancy Ltd 2002 02E1325 https://repository.dri.ie/catalog/v1194v293 

Site 121 Balriggan 1 Volume 2, County Louth Early Medieval Irish Archaeological Consultancy Ltd 2002 02E1325 https://repository.dri.ie/catalog/tt4532617 

Harlockstown Site 19, County Meath Early Medieval CRDS Ltd 2003 03E1526 https://repository.dri.ie/catalog/5425zr495 

Cookstown Site 25 Vol 3 Specialist Reports, County 
Meath 

Early Medieval 

High Medieval 

CRDS Ltd 2003 03E1252 https://repository.dri.ie/catalog/1r66xf93b 

Cookstown Site 25 Vol 2, County Meath Early Medieval 

High Medieval 

CRDS Ltd 2003 03E1252 https://repository.dri.ie/catalog/1j92vp25n 

Cookstown Site 25 Vol 1, County Meath Early Medieval 

High Medieval 

CRDS Ltd 2003 03E1252 https://repository.dri.ie/catalog/1c18sw57g 

Raystown Site 21, County Meath Early Medieval CRDS Ltd 2003 03E1229 https://repository.dri.ie/catalog/hh6469688 

Sites 2,5,6,12,13,14 Morett, County Laois Early Christian 

Early Medieval 

Archaeological Consultancy Services 
Ltd. 

2003 03E1367 https://repository.dri.ie/catalog/9g559z42b 

Site 109 Cloghvally Upper 1, County Monaghan Early Medieval Irish Archaeological Consultancy Ltd 2003 03E1255 https://repository.dri.ie/catalog/8p592t70d 

Site 110 Monanny 1, County Monaghan Early Medieval Irish Archaeological Consultancy Ltd 2003 03E0888 https://repository.dri.ie/catalog/6w92hs58z 

Site D Morett, County Laois Early Medieval 

Late Medieval 

Valerie J Keeley Ltd 2003 03E0461 https://repository.dri.ie/catalog/0z70pb18m 

Ballydavis Site 1, County Laois Early Medieval Valerie J Keeley Ltd 2003 03E0151 https://repository.dri.ie/catalog/zs269q217 

26 Sites, County Laois Medieval Archaeological Consultancy Services 
Ltd. 

2003 03E0623 https://repository.dri.ie/catalog/pk02rs957 

Kilshane Site 5 Vol 3 Figs and Plates, County Dublin Medieval CRDS Ltd 2003 03E1359 https://repository.dri.ie/catalog/4b29qm777 

03E1359 Kilshane Site 5 Vol 2 Appendices, County 
Dublin 

Medieval CRDS Ltd 2003 03E1359 https://repository.dri.ie/catalog/4455nv09j 

03E1359 Kilshane Site 5 Vol 1 Text, County Dublin Medieval CRDS Ltd 2003 03E1359 https://repository.dri.ie/catalog/3x81m241p 

Site 126 Carn More 4, County Louth Medieval Irish Archaeological Consultancy Ltd 2003 03E0872 https://repository.dri.ie/catalog/6970bf548 

https://repository.dri.ie/catalog/v1194v293
https://repository.dri.ie/catalog/tt4532617
https://repository.dri.ie/catalog/5425zr495
https://repository.dri.ie/catalog/1r66xf93b
https://repository.dri.ie/catalog/1j92vp25n
https://repository.dri.ie/catalog/1c18sw57g
https://repository.dri.ie/catalog/hh6469688
https://repository.dri.ie/catalog/9g559z42b
https://repository.dri.ie/catalog/8p592t70d
https://repository.dri.ie/catalog/6w92hs58z
https://repository.dri.ie/catalog/0z70pb18m
https://repository.dri.ie/catalog/zs269q217
https://repository.dri.ie/catalog/pk02rs957
https://repository.dri.ie/catalog/4b29qm777
https://repository.dri.ie/catalog/4455nv09j
https://repository.dri.ie/catalog/3x81m241p
https://repository.dri.ie/catalog/6970bf548


Appendix C:  Reports for Archaeological Excavations Where Early Medieval – Later Medieval Period Burials Were Recovered 

224 
 

Morett 15, County Laois Early Christian Archaeological Consultancy Services 
Ltd. 

2003 03E1624 https://repository.dri.ie/catalog/b851k314f 

Kilcloghans, County Galway Early Medieval Headland Archaeology Ltd. 2006 06E1139 https://repository.dri.ie/catalog/0c48h401z 

Marlhill, County Tipperary Early Medieval Margaret Gowan & Co. Ltd 2007 E2124 https://repository.dri.ie/catalog/g445rv013 

Ross 2, County Meath Early Medieval Archaeological Consultancy Services 
Ltd. 

2008 E3381 https://repository.dri.ie/catalog/6h44d7249 

Loughbown 1, County Galway Medieval Eachtra Archaeological Projects 2008 E2442 https://repository.dri.ie/catalog/0000cd82v 

Ballybar Lower 3, County Carlow. Early Medieval Headland Archaeology Ltd. 2009 E2620 https://repository.dri.ie/catalog/mp495z408 

Ballybar Upr 2, County Carlow. Early Medieval Headland Archaeology Ltd. 2009 E2588 https://repository.dri.ie/catalog/r2087792c 

Borris AR 33 Vol 2, County Tipperary Early Medieval Valerie J Keeley Ltd 2009 E2376 https://repository.dri.ie/catalog/8623xc627 

Borris AR 33 Vol 1, County Tipperary Early Medieval Valerie J Keeley Ltd 2009 E2376 https://repository.dri.ie/catalog/8336wg78w 

Ballykilmore 6 Volume 3, County Westmeath Early Medieval 

Medieval 

Valerie J Keeley Ltd 2009 E2798 https://repository.dri.ie/catalog/vd678d713 

Ballykilmore 6 Volume 2, County Westmeath Early Medieval 

Medieval 

Valerie J Keeley Ltd 2009 E2798 https://repository.dri.ie/catalog/v6936n03d 

Ballykilmore 6 Volume 1, County Westmeath Early Medieval 

Medieval 

Valerie J Keeley Ltd 2009 E2798 https://repository.dri.ie/catalog/v4065r193 

Clonfad 3 Volume 2, County Westmeath Early Medieval 

Late Medieval 

Valerie J Keeley Ltd 2009 E2723 https://repository.dri.ie/catalog/cj82zp112 

Clonfad 3 Vol 1, County Westmeath Early Medieval 

Late Medieval 

Valerie J Keeley Ltd 2009 E2723 https://repository.dri.ie/catalog/cc08ww43w 

Clonfad 3 Plates, County Westmeath Early Medieval 

Late Medieval 

Valerie J Keeley Ltd 2009 E2723 https://repository.dri.ie/catalog/c534v375k 

https://repository.dri.ie/catalog/b851k314f
https://repository.dri.ie/catalog/0c48h401z
https://repository.dri.ie/catalog/g445rv013
https://repository.dri.ie/catalog/6h44d7249
https://repository.dri.ie/catalog/0000cd82v
https://repository.dri.ie/catalog/mp495z408
https://repository.dri.ie/catalog/r2087792c
https://repository.dri.ie/catalog/8623xc627
https://repository.dri.ie/catalog/8336wg78w
https://repository.dri.ie/catalog/vd678d713
https://repository.dri.ie/catalog/v6936n03d
https://repository.dri.ie/catalog/v4065r193
https://repository.dri.ie/catalog/cj82zp112
https://repository.dri.ie/catalog/cc08ww43w
https://repository.dri.ie/catalog/c534v375k
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Clonfad 3 Figures, County Westmeath Early Medieval 

Late Medieval 

Valerie J Keeley Ltd 2009 E2723 https://repository.dri.ie/catalog/bz60sb07v 

E2220 Bushfield or Maghernaskeagh or Lismore 1, 
County Laois 

Early Medieval Archaeological Consultancy Services 
Ltd. 

2009 E2220 https://repository.dri.ie/catalog/7w62tq037 

Parknahown 2, County Laois Early Medieval Archaeological Consultancy Services 
Ltd. 

2009 E2196 https://repository.dri.ie/catalog/js95kw61s 

Parknahown 5 Vol I Text., County Laois Early Medieval Archaeological Consultancy Services 
Ltd. 

2009 E2170 https://repository.dri.ie/catalog/d21844297 

Parknahown 5 Vol IV Images, County Laois Early Medieval Archaeological Consultancy Services 
Ltd. 

2009 E2170 https://repository.dri.ie/catalog/cv442b616 

Parknahown 5 Vol III Osteo Rpt, County Laois Early Medieval Archaeological Consultancy Services 
Ltd. 

2009 E2170 https://repository.dri.ie/catalog/cn700j93q 

Parknahown 5 Vol II Append 1_17, County Laois Early Medieval Archaeological Consultancy Services 
Ltd. 

2009 E2170 https://repository.dri.ie/catalog/cf95xs255 

Treanbaun, County Galway Early Medieval CRDS Ltd 2009 E2123 https://repository.dri.ie/catalog/9p29cr13n 

Cross, County Galway Early Medieval CRDS Ltd 2009 E2069 https://repository.dri.ie/catalog/7w62tq01p 

Carrowkeel Vol 2, County Galway Early Medieval 

Late Medieval 

Headland Archaeology Ltd 2009 E2046 https://repository.dri.ie/catalog/6970bf573 

Tinryland 1, County Carlow Medieval Headland Archaeology Ltd 2009 E2589 https://repository.dri.ie/catalog/qf861w88z 

Busherstown 4, County Carlow Medieval Headland Archaeology Ltd 2009 E2581 https://repository.dri.ie/catalog/pn89ss16p 

Russellstown 1, County Carlow Medieval Headland Archaeology Ltd 2009 E2571 

E2572 

https://repository.dri.ie/catalog/n2979h72k 

Killeany 1, County Laois Medieval Archaeological Consultancy Services 
Ltd. 

2009 E2171 https://repository.dri.ie/catalog/d7925w97f 

Lismullin 1 Vol 3 Images, County Meath Medieval Archaeological Consultancy Services 
Ltd. 

2009 E3074 https://repository.dri.ie/catalog/5h743983m 

https://repository.dri.ie/catalog/bz60sb07v
https://repository.dri.ie/catalog/7w62tq037
https://repository.dri.ie/catalog/js95kw61s
https://repository.dri.ie/catalog/d21844297
https://repository.dri.ie/catalog/cv442b616
https://repository.dri.ie/catalog/cn700j93q
https://repository.dri.ie/catalog/cf95xs255
https://repository.dri.ie/catalog/9p29cr13n
https://repository.dri.ie/catalog/7w62tq01p
https://repository.dri.ie/catalog/6970bf573
https://repository.dri.ie/catalog/qf861w88z
https://repository.dri.ie/catalog/pn89ss16p
https://repository.dri.ie/catalog/n2979h72k
https://repository.dri.ie/catalog/d7925w97f
https://repository.dri.ie/catalog/5h743983m
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Lismullin 1 Vol 2 Spec Rpts, County Meath Medieval Archaeological Consultancy Services 
Ltd. 

2009 E3074 https://repository.dri.ie/catalog/5b001j15z 

Lismullin 1 Vol 1 Text, County Meath Medieval Archaeological Consultancy Services 
Ltd. 

2009 E3074 https://repository.dri.ie/catalog/5425zr47m 

Mullagh Site 2, County Longford Medieval 

Late Medieval 

CRDS Ltd 2009 09E0314 https://repository.dri.ie/catalog/k069np260 

Owenbristy, County Galway Early Medieval Eachtra Archaeological Projects 2010 E3770 https://repository.dri.ie/catalog/6970bf68m 

Rossbrien Site 1, County Limerick Early Medieval Irish Archaeological Consultancy Ltd 2010 E3933 https://repository.dri.ie/catalog/fq97n866t 

Borris AR 36, County Tipperary Early Medieval Valerie J Keeley Ltd 2010 E2491 https://repository.dri.ie/catalog/dr27bc267 

Gortmakellis AR 1, County Tipperary Early Medieval Valerie J Keeley Ltd 2010 E2356 https://repository.dri.ie/catalog/5x226w30n 

Richhill Site 2, County Limerick Early Medieval Headland Archaeology Ltd 2010 E2311 https://repository.dri.ie/catalog/0k22jr93z 

Lowpark, County Mayo Early Medieval Mayo County Council 2010 E3338 https://repository.dri.ie/catalog/gf06vh467 

Carrowkeel Vol 1, County Galway Early Medieval 

Late Medieval 

Headland Archaeology Ltd 2010 E2046 https://repository.dri.ie/catalog/63968n89w 

Cappydonnell Big 1, County Offaly Medieval Irish Archaeological Consultancy Ltd 2010 E2653 https://repository.dri.ie/catalog/2z119502c 

Ardagawna 1, County Roscommon Medieval Valerie J Keeley Ltd 2010 E3270 https://repository.dri.ie/catalog/0k22jr840 

Ballintotty Site 2, County Tipperary Early Medieval Aegis Archaeology Ltd 2011 E2935 https://repository.dri.ie/catalog/6t05gw85n 

Camlin 3, County Tipperary Early Medieval Valerie J Keeley Ltd 2011 E3580 https://repository.dri.ie/catalog/q237x674t 

Faughart Lower Vol 2 Area 15 site 116, County Louth Early Medieval Archaeological Development Services 
Ltd. 

2011 E3801 https://repository.dri.ie/catalog/bn99pn52z 

Faughart Lower Vol 1 Area 15 Site 116, County Louth Early Medieval Archaeological Development Services 
Ltd. 

2011 E3801 https://repository.dri.ie/catalog/bg25mv84h 

Kilmainham 1C Vol 1 Text, County Meath Early Medieval 

Medieval 

Irish Archaeological Consultancy Ltd 2011 E3140 https://repository.dri.ie/catalog/nv93jh63v 

https://repository.dri.ie/catalog/5b001j15z
https://repository.dri.ie/catalog/5425zr47m
https://repository.dri.ie/catalog/k069np260
https://repository.dri.ie/catalog/6970bf68m
https://repository.dri.ie/catalog/fq97n866t
https://repository.dri.ie/catalog/dr27bc267
https://repository.dri.ie/catalog/5x226w30n
https://repository.dri.ie/catalog/0k22jr93z
https://repository.dri.ie/catalog/gf06vh467
https://repository.dri.ie/catalog/63968n89w
https://repository.dri.ie/catalog/2z119502c
https://repository.dri.ie/catalog/0k22jr840
https://repository.dri.ie/catalog/6t05gw85n
https://repository.dri.ie/catalog/q237x674t
https://repository.dri.ie/catalog/bn99pn52z
https://repository.dri.ie/catalog/bg25mv84h
https://repository.dri.ie/catalog/nv93jh63v
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Kilmainham 1C Images, County Meath Early Medieval 

Medieval 

Irish Archaeological Consultancy Ltd 2011 E3140 https://repository.dri.ie/catalog/np19gq95p 

Kilmainham 1C Figure 61-83, County Meath Early Medieval 

Medieval 

Irish Archaeological Consultancy Ltd 2011 E3140 https://repository.dri.ie/catalog/ng45dz270 

Kilmainham 1C Figure 41-60, County Meath Early Medieval 

Medieval 

Irish Archaeological Consultancy Ltd 2011 E3140 https://repository.dri.ie/catalog/n871c559p 

Kilmainham 1C Figure 21-40, County Meath Early Medieval 

Medieval 

Irish Archaeological Consultancy Ltd 2011 E3140 https://repository.dri.ie/catalog/n2979c91z 

Kilmainham 1C Figure 1-20, County Meath Early Medieval 

Medieval 

Irish Archaeological Consultancy Ltd 2011 E3140 https://repository.dri.ie/catalog/mw237m238 

Kilmainham 1C Volume 2, County Meath Early Medieval 

Medieval 

Irish Archaeological Consultancy Ltd 2011 E3140 https://repository.dri.ie/catalog/mp495t552 

Gardenhill Site 1, County Limerick. Medieval Aegis Archaeology Ltd 2011 E2320 https://repository.dri.ie/catalog/1g05ts491 

Aghnaskeagh Area 12 Site 111, County Louth Early Christian Archaeological Development Services 
Ltd. 

2011 E3793 https://repository.dri.ie/catalog/8w334m405 

Rathmorrissy, County Galway Early Medieval Headland Archaeology Ltd 2012 E4024 https://repository.dri.ie/catalog/2z119503n 

Busherstown, County Offaly Medieval Eachtra Archaeological Projects 2012 E3661 https://repository.dri.ie/catalog/vt15d0061 

Kellymount 4, County Kilkenny Early Medieval Irish Archaeological Consultancy Ltd 2013 E3857 https://repository.dri.ie/catalog/dz01d826b 

https://repository.dri.ie/catalog/np19gq95p
https://repository.dri.ie/catalog/ng45dz270
https://repository.dri.ie/catalog/n871c559p
https://repository.dri.ie/catalog/n2979c91z
https://repository.dri.ie/catalog/mw237m238
https://repository.dri.ie/catalog/mp495t552
https://repository.dri.ie/catalog/1g05ts491
https://repository.dri.ie/catalog/8w334m405
https://repository.dri.ie/catalog/2z119503n
https://repository.dri.ie/catalog/vt15d0061
https://repository.dri.ie/catalog/dz01d826b
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Appendix E. Individual Questionnaire Responses 

Q1 
How many years’ experience do 
you have in GPR survey?  Has 
your experience with GPR survey 
primarily been in research or 
commercial settings? 
 

Respondent 1 3 - 5 years 
Research 

Respondent 2 More than 10 years 
Research 

Respondent 3 More than 10 years 
Research 
Commercial 

Respondent 4 More than 10 years 
Commercial 

Respondent 5 More than 10 years 
Research 
Commercial 

Respondent 6 7 - 10 years 
Research 
Commercial 

Respondent 7 More than 10 years 
Research 
Commercial 

Respondent 8 1 - 3 years 
Research 

Respondent 9 More than 10 years 
Commercial 

Respondent 10 1 - 3 years 

   

Q2 
When interpreting GPR data, you: 
 

Respondent 1 Use radargrams 
Use timeslices 
Use animations 

Respondent 2 Use timeslices 
Use animations 
Other (please specify): 
Envelope of timeslices, and usually no more sophisticated 
processing than that. 

Respondent 3 Use radargrams 
Use timeslices 

Respondent 4 Use radargrams 
Use timeslices 
Use animations 

Respondent 5 Use radargrams 
Use timeslices 

Respondent 6 Use radargrams 
Use timeslices 
Use animations 

Respondent 7 Use radargrams 
Use timeslices 
Use animations 

Respondent 8 Use radargrams 
Use timeslices 

Respondent 9 Use radargrams 
Use timeslices 

Respondent 10 Use radargrams 
Use timeslices 
Use animations 

   

Q3 Respondent 1 A Grave Present, Medium Confidence 
B Grave Present, Low Confidence 
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In the image below which 
quadrant(s), if any, contains 
grave-like response(s)? How 
confident are you in your 
interpretation? 
Notes:  Depth below ground level 
is provided in ns and cm.  The 
bedrock geology is White Chalk.  
Data were collected using a MALA 
RAMAC X3M with 500MHz centre 
frequency antenna. 

Respondent 2 A Grave Present, Low Confidence 
B Multiple Graves Present, Medium Confidence 
C Grave Present, Low Confidence 
D High Confidence 

Respondent 3 D Multiple Graves Present, Low Confidence 

Respondent 4 C Grave Present, Low Confidence 

Respondent 5 A Low Confidence 
B Low Confidence 
C Grave Present, High Confidence 
D Low Confidence 

Respondent 6 B Grave Present, Low Confidence 
C Grave Present, Low Confidence 

Respondent 7 A Grave Present, Low Confidence 
B Multiple Graves Present, Low Confidence 

Respondent 8 A Low Confidence 
B Low Confidence 
C Low Confidence 
D Low Confidence 

Respondent 9 A Grave Present, Medium Confidence 
B Multiple Graves Present, Medium Confidence 

Respondent 10 A Multiple Graves Present 
B Grave Present, High Confidence, Medium Confidence 
C High Confidence 
D High Confidence 

   

Q4 
In the image below which 
quadrant(s), if any, contains 
grave-like response(s)? How 
confident are you in your 
interpretation? 
Notes:  Depth below ground level 
is provided in ns and m.  The 
bedrock geology is limestone.  
Data were collected using a MALA 
RAMAC X3M with 500MHz centre 
frequency antenna. 

Respondent 1 A Multiple Graves Present, Medium Confidence 
B Medium Confidence, Grave Present 

Respondent 2 A Multiple Graves Present, Medium Confidence 
B Grave Present, High Confidence 
C High Confidence 
D High Confidence 

Respondent 3 A Grave Present, Medium Confidence 

Respondent 4 A Grave Present, Multiple Graves Present, Medium 
Confidence 
B Grave Present, Low Confidence 

Respondent 5 A Grave Present, Low Confidence 

Respondent 6 A Multiple Graves Present, Medium Confidence 
B Grave Present, Low Confidence 

Respondent 7 B Grave Present, Low Confidence 

Respondent 8 A Low Confidence 
B Low Confidence 
C Low Confidence 
D Low Confidence 

Respondent 9 A Medium Confidence, Multiple Graves Present 
B Grave Present, Medium Confidence 

Respondent 10 A Multiple Graves Present 
B High Confidence, Medium Confidence, Grave Present 
C Multiple Graves Present 
D High Confidence 

   

Q5 
In the image below which 
quadrant(s), if any, contains 
grave-like response(s)? How 
confident are you in your 
interpretation? 

Respondent 1 A Grave Present, Low Confidence 
D Multiple Graves Present, Medium Confidence 

Respondent 2 A Multiple Graves Present, Medium Confidence 
B Medium Confidence 
C Multiple Graves Present, Medium Confidence 
D High Confidence, Multiple Graves Present 

Respondent 3 A Grave Present, Medium Confidence 
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Notes:  Black indicates high 
amplitude reflections.  Depth 
below ground level is provided in 
ns and cm.  The bedrock geology 
is dark limestone and shale.  Data 
were collected using a MALA 
RAMAC X3M with 500MHz centre 
frequency antenna. 

D Medium Confidence, Multiple Graves Present 

Respondent 4 A Grave Present, Low Confidence 
D Multiple Graves Present, Low Confidence 

Respondent 5 A Grave Present, Low Confidence 
C Grave Present, Medium Confidence 
D Multiple Graves Present, Low Confidence 

Respondent 6 D Multiple Graves Present, Medium Confidence 

Respondent 7 D Multiple Graves Present, Low Confidence 

Respondent 8 A Low Confidence 
B Low Confidence 
C Medium Confidence 
D Low Confidence 

Respondent 9 Multiple Graves Present, Low Confidence 
C Multiple Graves Present, Low Confidence 
D Multiple Graves Present, Medium Confidence 

Respondent 10 A Grave Present 
B Multiple Graves Present 
C High Confidence 
D Medium Confidence 

   

Q6 
In the image below which 
quadrant(s), if any, contains 
grave-like response(s)? How 
confident are you in your 
interpretation? 
Notes:  Black indicates high 
amplitude reflections.  Depth 
below ground level is provided in 
ns and cm.  The bedrock geology 
is grey-green metagreywackes 
and slates.  Data were collected 
using a MALA RAMAC X3M with 
500MHz centre frequency 
antenna. 

Respondent 1 A Low Confidence 
B Low Confidence 
C Low Confidence 
D Low Confidence 

Respondent 2 A Medium Confidence 
B Medium Confidence 
C Grave Present, Low Confidence 
D Medium Confidence, Grave Present 

Respondent 3 Respondent skipped this question 

Respondent 4 A Grave Present, Low Confidence 

Respondent 5 A Multiple Graves Present, Low Confidence 

Respondent 6 Respondent skipped this question 

Respondent 7 A Multiple Graves Present, Low Confidence 
B Multiple Graves Present, Low Confidence 
C Multiple Graves Present, Low Confidence 
D Multiple Graves Present, Low Confidence 

Respondent 8 A Low Confidence 
B Low Confidence 
C Low Confidence 
D Low Confidence 

Respondent 9 Respondent skipped this question 

Respondent 10 A Multiple Graves Present 
B Grave Present 
C High Confidence, Medium Confidence 
D High Confidence 
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Using the Reilig Web App for Inference 

 

 
Requirements: 
 

• Data that has been processed with bandpass filtering, background removal, and migration, 
if possible 

• Data plotted on the custom template size derived from GPR-Slice: 

• Origin  X=100, Y=240 

• Length  X=544, Y=385 

• Shift  X=1000, Y=500 

• Image of data plotted in greyscale (with white being low amplitude responses and black being 
high amplitude responses) 

• Image at least 150 pixels wide without padding, scale, or border around the data 

 
 
Instructions: 
 

1. Save jpeg images from processing software (GPR-Slice was used in this project) with all 
whitespace and scales surrounding the data removed. 

2. Navigate to reilig.onrender.com. 

3. Upload a single image using the ‘Select Image’ button. 

4. Run image through the machine learning model by clicking the ‘Analyze’ button. 

5. The result will return a single bounding box if a possible grave is detected in the image.  No 
bounding box will be returned if there is no possible grave detected in the image.  The 
confidence score of the detection is displayed below the returned image and uses a scale of 
0-1. 

6. If you would like to save the returned image and bounding box, you should screenshot the 
webpage or save it as a pdf. 

7. If you would like to save only the bounding box interpretation, you can right-click on the image 
to save it. 

8. Refresh the webpage to clear any previous detections, and repeat Steps 3-8 on any 
additional images. 

 
 
**If your image is less than 150 pixels wide, you may wish to try mirroring the data rather than 
including whitespace or excluding the image.   
 
The following is a brief introduction to the doctoral research carried out in order to create the web 
app and a general introduction to machine learning and its application to archaeological data.     
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Appendix G. Training Data 

The following images are the training data for the object detection and classification models.  The 

section headers indicate whether a grave is present in the image and bounding box data can be 

downloaded separately from the json file included in the digital appendices. 

Radargram Training Data:  Non-grave Images 
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Radargram Training Data:  Grave Images 
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Timeslice Training Data:  Non-grave Images 
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Timeslice Training Data:  Grave Images 
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Appendix H. Rank Values Used in Suitability Analysis 

 

As the salinity of waterlogged areas could not be determined from opensource data, the suitability of techniques for these sites are largely ranked with a 0 score 

below.  It should, however, be noted that GPR and additional techniques not thoroughly discussed herein (e.g. electrical resistivity tomography) may still be 

suitability in these areas and the suitability maps instruct users to seek further specialist advice for non-terrestrial surveys. 

Table 31:  Rank values for bedrock geologies used in the suitability analysis 

Bedrock Geology Magnetometry 

Suitability 

EMI Suitability Earth Resistance 

Suitability 

GPR Suitability 

Anorthosite 1 2 5 2 

Appinite 4 3 4 3 

Basalt 1 2 5 2 

Breccia and Metabreccia 3 4 3 4 

Breccia, Conglomerate and Sandstone 3 4 3 4 

Chalk 5 4 5 5 

Chalk and Sandstone 3 4 5 5 

Clay 4 3 4 2 

Clay and Lignite 3 4 4 3 

Clay, Silt and Sand 3 3 4 2 

Clay, Silt, Sand and Gravel 3 3 3 2 

Conglomerate and [Subequal/Subordinate] Sandstone, Interbedded 2 4 4 4 

Conglomerate, Sandstone, Siltstone and Mudstone 4 3 2 3 

Diamictite 3 4 3 4 

Diorite 1 2 5 2 
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Dolerite 1 3 5 3 

Dolerite and Tholeiitic Basalt 1 3 5 2 

Dolomitised Limestone and Dolomite 3 4 4 4 

Dolostone 3 4 4 4 

Felsic Lava 1 2 5 2 

Felsic Lava and Felsic Tuff 1 3 5 2 

Felsic Tuff 2 3 5 2 

Felsic-Rock 1 2 5 2 

Gabbro 1 3 5 3 

Gneiss 2 4 5 4 

Gneiss and Granite 1 2 5 2 

Gneissose Psammite and Gneissose Semipelite 2 4 5 4 

Gneissose Semipelite and Gneissose Psammite 2 4 5 4 

Granite 1 2 5 2 

Graphitic Pelite, Calcareous Pelite, Calcsilicate-Rock and Psammite 2 4 5 4 

Gravel, Sand, Silt and Clay 2 3 3 3 

Greywacke 2 2 3 2 

Hornblende Schist 4 3 4 3 

Lava and Tuff 1 3 5 2 

Lava, Tuff, Volcaniclastic Rock and Sedimentary Rock 1 3 5 2 

Limestone 3 5 5 5 

Limestone and Calcareous Sandstone 3 5 5 5 

Limestone and Mudstone, Interbedded 3 5 5 5 

Limestone with Subordinate Sandstone and Argillaceous Rocks 3 5 5 5 

Limestone, Argillaceous Rocks and Subordinate Sandstone, Interbedded 3 5 5 5 

Limestone, Mudstone and Calcareous Mudstone 3 4 4 4 
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Limestone, Mudstone, Sandstone and Siltstone, with Subordinate Chert, Coal 

and Conglomerate 

3 5 5 5 

Limestone, Sandstone, Siltstone and Mudstone 3 5 5 5 

Mafic Gneiss 2 3 5 3 

Mafic Igneous-Rock 1 3 5 2 

Mafic Lava 1 3 5 2 

Mafic Lava and Mafic Tuff 1 3 5 2 

Mafic Tuff 1 3 5 2 

Mafite 1 3 5 2 

Metalimestone 3 5 5 5 

Metasedimentary Rock 3 4 4 4 

Metavolcaniclastic Igneous-Rock and Metavolcaniclastic Sedimentary-Rock 1 3 5 2 

Mica Schist 3 3 2 3 

Migmatitic Rock 2 4 5 4 

Mudstone 4 3 3 3 

Mudstone, Chert and Smectite-Claystone 4 3 2 3 

Mudstone, Sandstone and Conglomerate 3 3 2 3 

Mudstone, Sandstone and Limestone 4 3 2 3 

Mudstone, Siltstone and Sandstone 4 3 3 3 

Mudstone, Siltstone, Limestone and Sandstone 3 3 2 3 

Mudstone, Siltstone, Sandstone, Coal, Ironstone and Ferricrete 3 3 2 3 

Mylonitic-Rock and Fault-Breccia 3 4 3 4 

Pelite 3 2 3 2 

Psammite 2 4 5 4 

Psammite and Pelite 2 4 5 4 

Psammite and Semipelite 2 4 5 4 



Appendix H:  Rank Values Used in Suitability Analysis 

 

314 
 
 

Psammite, Pelite, Semipelite and Calcsilicate-Rock 2 4 5 4 

Psammite, Semipelite and Pelite 2 4 5 4 

Pyroclastic-Rock 1 3 5 2 

Quartz-Arenite 2 4 5 4 

Quartzite 3 4 5 4 

Rhyolite 3 3 5 3 

Sand, Silt and Clay 3 3 4 2 

Sandstone 1 5 3 4 

Sandstone and [Subequal/Subordinate] Argillaceous Rocks, Interbedded 3 4 4 4 

Sandstone and [Subequal/Subordinate] Limestone, Interbedded 2 5 4 5 

Sandstone and Conglomerate, Interbedded 2 5 3 5 

Sandstone and Mudstone 3 4 4 4 

Sandstone and Siltstone, Interbedded 2 4 4 4 

Sandstone and Subordinate Breccia 2 4 4 4 

Sandstone with Subordinate Argillaceous Rocks and Limestone 2 5 3 5 

Sandstone with Subordinate Conglomerate and Siltstone 3 4 4 4 

Sandstone with Subordinate Conglomerate, Siltstone and Mudstone 3 4 4 4 

Sandstone, Breccia and Conglomerate 2 4 4 4 

Sandstone, Conglomerate and [Subordinate] Argillaceous Rocks 2 4 4 4 

Sandstone, Limestone and Argillaceous Rocks 2 5 3 5 

Sandstone, Mudstone, Siltstone and Conglomerate 3 3 2 3 

Sandstone, Siltstone and Mudstone 2 4 4 4 

Schist 4 3 4 3 

Sedimentary Rock Cycles, Clackmannan Group Type 2 4 4 4 

Sedimentary Rock Cycles, Strathclyde Group Type 3 4 4 4 

Semipelite 2 4 5 4 
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Semipelite and Pelite 2 4 5 4 

Serpentinite 2 4 5 4 

Serpentinite, Metabasalt, Metalimestone and Psammite 1 3 5 2 

Shale 5 5 5 5 

Siltstone 3 4 4 4 

Siltstone and Sandstone with Subordinate Mudstone 3 4 4 3 

Slate 5 5 5 5 

Syenitic-Rock 1 2 5 2 

Ultramafitite 1 3 5 2 

Volcanic 1 2 5 2 

Wacke 2 2 3 2 

 

 

Table 32:  Rank values for superficial/drift geologies used in the suitability analysis 

Superficial/Drift Geology Magnetometry 

Suitability 

EMI Suitability Earth Resistance 

Suitability 

GPR Suitability 

Airfield/Airport 1 4 3 4 

Alluvium 3 2 4 3 

Alluvium (Clayey) 3 2 4 3 

Alluvium (Gravelly) 3 2 4 3 

Alluvium (Sandy) 3 2 4 3 

Alluvium (Silty) 3 2 4 3 

Bedrock Outcrop or Subcrop 0 0 0 0 

Blanket Peat 2 4 3 4 

Blown Sand 2 4 3 2 
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Brickearth 3 4 3 4 

Causeway 0 0 0 0 

Clay with Flints 5 3 3 2 

Crag Group 2 4 3 4 

Crannog 0 0 0 0 

Cut Over Raised Peat 2 4 3 4 

Dam 0 0 0 0 

Drift Geology Not Mapped 0 0 0 0 

Embankment 2 4 3 4 

Eskers Comprised of Gravels of Acidic Reaction 2 3 3 3 

Eskers Comprised of Gravels of Basic Reaction 2 4 3 4 

Estuarine Silts and Clays 2 4 3 3 

Fen Peat 2 4 3 4 

Glacial Sand and Gravel 2 4 3 4 

Glaciomarine Sediments 2 4 3 4 

Gravels Derived from Basic Igneous Rocks 2 4 3 4 

Gravels Derived from Cambrian Sandstones and Shales 2 4 3 4 

Gravels Derived from Carboniferous Sandstones and Shales 2 4 3 4 

Gravels Derived from Chert 2 4 3 4 

Gravels Derived from Devonian and Carboniferous Sandstones 2 4 3 4 

Gravels Derived from Devonian Sandstones 2 4 3 4 

Gravels Derived from Granite 2 4 3 4 

Gravels Derived from Limestones 2 4 3 4 

Gravels Derived from Lower Palaeozoic and Devonian Sandstones 2 4 3 4 

Gravels Derived from Lower Palaeozoic Sandstones 2 4 3 4 

Gravels Derived from Lower Palaeozoic Sandstones and Shales 2 4 3 4 
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Gravels Derived from Lower Palaeozoic Sandstones and Shales 2 4 3 4 

Gravels Derived from Lower Palaeozoic Shales 2 4 3 4 

Gravels Derived from Metamorphic Rocks 2 4 3 4 

Gravels Derived from Namurian Sandstones and Shales 2 4 3 4 

Gravels Derived from Quartzite 2 4 3 4 

Gravels Derived from Silicified Limestones and Chert 2 4 3 4 

Hardstand 0 1 0 3 

Industrial 2 4 3 4 

Irish Sea Till Derived from Acidic Volcanic Rocks 1 2 5 2 

Irish Sea Till Derived from Basic Igneous Rocks 5 3 3 2 

Irish Sea Till Derived from Cambrian Sandstones and Shales 5 3 3 2 

Irish Sea Till Derived from Devonian Sandstones 5 3 3 2 

Irish Sea Till Derived from Limestones 5 3 3 2 

Irish Sea Till Derived from Lower Palaeozoic Sandstones and Shales 5 3 3 2 

Kartsified Bedrock Outcrop or Subcrop 0 0 0 0 

Lacustrine Clays 2 4 3 3 

Lacustrine Deposits (Undifferentiated) 2 4 3 4 

Lacustrine Gravel 2 4 3 4 

Lacustrine Sands 2 4 3 3 

Lacustrine Sediments 2 4 3 4 

Lacustrine Silts 2 4 3 3 

Lake Marl 2 4 3 4 

Landfill 1 4 2 4 

Landslip 2 4 3 4 

Made Ground 2 4 3 4 

Marine Beach Sands 2 4 3 1 



Appendix H:  Rank Values Used in Suitability Analysis 

 

318 
 
 

Marine Gravel and Sands (Often Raised) 2 4 3 4 

Peat 2 4 3 4 

Pier 0 0 0 0 

Raised Marine Deposits (Undifferentiated) 2 4 3 4 

Raised Peat (Intact) 2 4 3 4 

River Terrace Deposits (Undifferentiated) 2 4 3 4 

Sand and Gravel of Uncertain origin 2 3 3 3 

Scree 2 4 3 4 

Spoil Heap 2 4 3 4 

Tailings Pond 0 0 0 0 

Tidal Marsh 0 2 0 1 

Till 5 3 3 2 

Till Derived from Acidic Volcanic Rocks 1 2 5 2 

Till Derived from Basic Igneous Rocks 5 3 3 2 

Till Derived from Cambrian Sandstones and Shales 5 3 3 2 

Till Derived from Carboniferous Sandstones 5 3 3 2 

Till Derived from Carboniferous Sandstones and Cherts 5 3 3 2 

Till Derived from Carboniferous Sandstones and Shales 5 3 3 2 

Till Derived from Cherts 5 3 3 2 

Till Derived from Devonian and Carboniferous Sandstones 5 3 3 2 

Till Derived from Devonian and Carboniferous Sandstones and Shales 5 3 3 2 

Till Derived from Devonian Sandstones 5 3 3 2 

Till Derived from Granites 5 3 3 2 

Till Derived from Limestones 5 4 4 3 

Till Derived from Lower Carboniferous Sandstones and Shales 5 3 3 2 
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Till Derived from Lower Palaeozoic and Carboniferous Sandstones and 

Shales 

5 3 3 2 

Till Derived from Lower Palaeozoic and Devonian Sandstones 5 3 3 2 

Till Derived from Lower Palaeozoic Sandstones 5 3 3 2 

Till Derived from Lower Palaeozoic Sandstones and Shales 5 3 3 2 

Till Derived from Lower Palaeozoic Shales 5 3 3 2 

Till Derived from Metamorphic Rocks 5 3 3 2 

Till Derived from Namurian and Carboniferous Sandstones and Shales 5 3 3 2 

Till Derived from Namurian Sandstones and Shales 5 3 3 2 

Till Derived from Quartzites 5 3 3 2 

Till Derived from Silicified Limestone and Cherts 5 3 3 2 

Urban 2 3 3 4 

Water 0 0 0 0 

Windblown Sands 2 4 3 2 

Windblown Sands and Dunes 2 4 3 2 

 

 

Table 33:  Rank values for soils used in the suitability analysis 

Soil Magnetometry 

Suitability 

EMI Suitability Earth Resistance 

Suitability 

GPR Suitability 

Tidal Marsh 0 2 0 1 

Rock 1 3 1 1 

Island 0 1 0 0 

Loamy 3 3 3 3 

Alluvium 2 3 4 2 
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Peat 1 4 3 4 

Water Body 0 0 0 0 

Clay 3 3 3 3 

Urban 1 2 1 3 

Salt Marsh 0 2 0 1 

Sandy 2 3 2 2 

 

Table 34:  Rank values for landcovers used in the suitability analysis 

Landcover Magnetometry 

Suitability 

EMI Suitability Earth Resistance 

Suitability 

GPR Suitability 

Arable 5 5 5 4 

Bog 1 4 1 3 

Burnt Areas 1 2 3 3 

Coastal 1 3 1 2 

Cultivated 5 5 3 3 

Grassland 5 5 5 4 

Heather 5 5 4 3 

Marsh 0 3 0 2 

Mineral Extraction 1 2 3 4 

Moors and Heathland 5 5 3 4 

Outcrop 2 2 0 1 

Pasture 5 5 5 5 

Rock 2 2 0 0 

Sediment 5 5 5 5 

Transportation 1 3 2 4 
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Urban 1 2 3 4 

Water 0 1 0 1 

Wetland 0 3 0 2 

Woodland 3 3 3 2 

 


