
3262 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 7, JULY 2021

Competitive Normalized Least-Squares Regression
Waqas Jamil and Abdelhamid Bouchachia , Senior Member, IEEE

Abstract— Online learning has witnessed an increasing interest over the
recent past due to its low computational requirements and its relevance to
a broad range of streaming applications. In this brief, we focus on online
regularized regression. We propose a novel efficient online regression
algorithm, called online normalized least-squares (ONLS). We perform
theoretical analysis by comparing the total loss of ONLS against the
normalized gradient descent (NGD) algorithm and the best off-line
LS predictor. We show, in particular, that ONLS allows for a better
bias-variance tradeoff than those state-of-the-art gradient descent-based
LS algorithms as well as a better control on the level of shrinkage of
the features toward the null. Finally, we conduct an empirical study to
illustrate the great performance of ONLS against some state-of-the-art
algorithms using real-world data.

Index Terms— Competitive analysis, least-squares, prediction.

I. INTRODUCTION

Sequential learning1 is about qualitatively predicting an output
upon the presentation, at each trial, of an input from a sequence
(stream). We consider the following model:

yt = �wt−1, xt � + �t (1)

where wt−1 ∈ R
n is some weight vector, xt ∈ R

n is the input, yt ∈ R

is the output, and �t ∈ R denotes the noise. The goal is to obtain an
estimate ŷt ∈ R for yt upon maintaining a weight vector wt−1 ∈ R

n

for each trial t = 1, 2, . . .
The application of model (1) includes a priori filtering, posterior

filtering, and online regression. A priori filtering is used to recover
uncorrupted output �u, xt �, before receiving the output yt . The overall
discrepancy (error) after T steps is given in the form of a cumulative
sum:

�T
t=1(�u, xt � − �wt−1, xt �)2. In a posteriori filtering, we filter

out the noise using the output yt . The error is formulated as a
cumulative sum:

�T
t=1(�u, xt �−�wt , xt �)2. Notice that in a posteriori

filtering, we are able to use the most recent weight vector wt to
measure the quality of the filter (error). In contrast, for a priori
filtering, we use wt−1 because we do not have access to the output
yt , which resembles the online learning setting. However, in filtering,
the goal is not to estimate the output; instead, we want to recover
the output by assuming that it is corrupted by some noise. In the
following, �u, xt � will refer to the prediction of the off-line algorithm.

Interested in online regression, we suggest a novel update rule
which is inspired by the well-known NLS method from the filtering
literature (see [7]). The proposed technique directly affects how
neural networks learn. In this work, it is shown that the proposed tech-
nique has an advantage over the state of the art due to the inclusion of
a well-known ridge penalty term. For details on the advantages of the
ridge penalty, see [9]. The analysis of the least-squares algorithm was

Manuscript received October 19, 2018; revised May 29, 2019,
September 26, 2019, January 22, 2020, and May 23, 2020; accepted
July 11, 2020. Date of publication August 5, 2020; date of current version
July 7, 2021. This work was supported by the European Commission
through the Horizon 2020 for the Project PROTEUS under Grant 687691.
(Corresponding author: Waqas Jamil.)

The authors are with the Department of Computing and Infor-
matics, Bournemouth University, Poole BH12 5BB, U.K. (e-mail:
wjamil@bournemouth.ac.uk; abouchachia@bournemouth.ac.uk).

Digital Object Identifier 10.1109/TNNLS.2020.3009777
1We use sequential learning and online learning interchangeably.

understood without normalization and given in the late 1990s. The
main drawback of the least-squares algorithm is that it is sensitive to
the scaling, which makes it very hard to choose a learning rate that
guarantees the stability of the algorithm [13]. This work fills the gap
in the literature by giving an analysis of a normalized algorithm.

To answer the question of how well an online learning algorithm
predicts, often, competitive analyses [22] are performed. An algo-
rithm is said to be competitive if it satisfies the following:

LT ≤ cL∗
T + RT (2)

where LT is the cumulative loss up-till time t , and L∗
T = infw

�Y − Xw�2, where w ∈ R
n , X ∈ R

t×n , and Y ∈ R
t . RT

denotes the regret, and c denotes a constant. An interesting feature of
such a definition of competitiveness is that it requires an algorithm
to perform well for both “NP-hard” and “NP-easy” inputs. This
is a stronger notion than the worst case analysis [11], where the
performance of the algorithm is only measured for “NP-hard” inputs.

In the literature of learning theory, regression algorithms learn
by updating their weight (parameter) vectors at each trial. Such an
update requires adjusting the inverse of the covariance matrix at each
trial t . One can use gradient descent to approximate the inverse of the
covariance matrix, which is computationally more efficient. In both
approaches, the constant c in the performance guarantee (2) is greater
than or equal to unity. For example, covariance-based aggregating
algorithm for regression (AAR) and ridge regression (RR) [25],
recursive least-squares (RLS) [17], and adaptive regularization of
weights (AROW) [6] for model (1) [18] has c = 1, and the
gradient-based algorithms [5] have c = 2.25. In the completely online
setup, the regret of the gradient-based algorithms is O(1); whereas,
for covariance-based algorithms (for example, AAR), it is possible
to have a logarithmic regret. Also, the bound of the gradient-based
algorithms is better for noise-free data. However, such bound is weak
when the true regression function includes the noise term �t since the
regret is only bounded by O(1).

In this brief, we make no assumptions on the incoming data. Our
work is comparable to the work done in [5], where the performance
guarantee on cumulative normalized square loss is obtained by using
the generalized gradient descent. In order to obtain the performance
guarantee, first, a lower bound on the progress (see [5, Lemma IV.4])
is computed assuming that η = (α/�xt �2) (see [5, Th. IV.2]), where
0 < α < 2. The chosen α ensures that the performance guarantee
on the normalized cumulative loss is held. We dwell further on
the discussion done by Cesa-Bianchi et al. [5] and do not impose
a similar restriction on η when bounding the progress of online
normalized least-squares (ONLS). We bound 1/�xt � and provide a
performance guarantee on square loss and relax this condition for the
guarantee on normalized squared loss. Consequently, the proposed
algorithm’s guarantees have the tuning parameter next to the ridge
penalty—indicating superior bias-variance tradeoff properties than the
generalized GD update rule. In summary, the major contributions of
this brief are as follows.:

1) derivation of the ONLS algorithm for regression;
2) development of a competitive analysis of ONLS;
3) empirical and comparative study using real-world data.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7220-537X
https://orcid.org/0000-0002-1980-5517

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 7, JULY 2021 3263

The structure of this brief reflects on these contributions in the
subsequent sections after presenting the related work in Section II.

II. MOTIVATION AND RELATED WORK

RLS is a popular algorithm in the area of linear regression and
consists of computing the weights as follows:

wt = argmin
w

� t�
s=1

r t−s(ys − �w, xs �)2

�
.

In each iteration, t , the prediction ŷt = w�
t−1xt , is made, and after

receiving the true output yt , the weights are updated

wt = wt−1 + A−1
t−1

�
yt − x �

t wt−1
�
xt

r + x �
t At−1xt

(3)

where A−1
t = r A−1

t−1 + xt x �
t , with r > 0 and A0 = I ∈ R

n×n . There
exist many similar algorithms, such as AAR, RR, and AROWR.
In particular, the weight update rule of AROWR is the same as
RLS. The only difference is how the covariance matrix is updated:
A−1

t = A−1
t−1 + (1/r)xt x �

t . AAR’s and RR’s update rules can be

obtained by setting r = 1 in (3) with A−1
t = A−1

t−1 + xt x �
t and

A0 = a−1 I , where a > 0. Another difference between AAR and
the other algorithms is that AAR divides its prediction w�

t−1xt by
1 + x �

t At−1xt , whereas RR, AROWR, and RLS do not do that.
Moreover, AAR is the only algorithm among the four that has the
ability to perform shrinkage. It is worth noting that all of these
algorithms perform regression when the target is assumed to be
stationary. Sometimes, they are used as building blocks to develop
second-order nonstationary algorithms [18] by adding a penalty term
to handle drift of the target (nonstationarity).

The implementation of (3) has the time complexity O(n2) that is
significant for high-dimensional data. Often, LS [26] is considered
as a less demanding solution since its time complexity is O(n).
LS replaces the term (A−1

t−1/(r + x �
t A−1

t−1xt)) by the learning rate
η > 0, yielding the following update rule:

wt = wt−1 + η(yt − �xt , wt−1�)xt . (4)

The LS algorithm not only has a better time complexity but it is also
H∞ optimal for η ≤ (1/�xt �2). That is

max
u

�T
t=1(�u, xt � − �wt−1, xt �)2�T
t=1(�u, xt � − yt)2 + �xt�2

η

≤ 1. (5)

In contrast, in the case of RLS, the right-hand side of (5) is replaced
by 4. For further details on the matter, see [12].

In practice, often, normalized LS performs better than LS because
NLS is not sensitive to the scale of the input [2], [3]. The existing
work on NLS applies a normalized square loss to derive the update
of the weights [5], [15]

wt = wt−1 + η

�xt�2 (yt − ŷt)xt (6)

wt = wt−1 + η

1 + η�xt �2 (yt − ŷ)xt (7)

for η > 0. When xt = 0 or η = 0 with the convention that (0/0) = 0,
the rules (6) and (7) output wt = wt−1.

Up until now, we have briefly revised some of the popular existing
approaches for regression using the squared loss and normalized
square loss. The squared loss is a renowned loss function despite
not being robust. In particular, in the presence of substantial outliers,
the square loss function is not the preferred choice since it penalizes
the mistakes with more severity (the difference between actual and
predicted is squared) compared with some other loss functions, such

as absolute loss and normalized square loss. For this reason, in the
next section, we will study a tunable loss function that (loosely
speaking) incorporates the features of both absolute and squared loss
functions.

III. DERIVATION AND ANALYSIS OF ONLS

ONLS is an online regression algorithm, and so, it observes the
following protocol:

Protocol 1. Online regression.

In Protocol 1, it is assumed that the prediction is given by w�
t xt .

Thus, the problem at hand is to design the update rule, which leads
us to the following lemma.

Lemma 1: The following minimization problem with respect
to wt :

min

⎛
⎝ T�

t=1

(wt − wt−1)
2

⎞
⎠

with the constraint y = w�
t xt has the following solution:

wt = wt−1 + (yt − ŷt)xt

�xt �2 .

Proof: The proof is given in Appendix A. �
Remark 1: We perform the analysis of the following update rule:

wt = wt−1 + (yt − ŷt)xt

η + �xt �2 (8)

for η > −�xt �2. The obvious advantage of using (8) is that we
do not require any convention for the case when �xt � → 0. Later,
we show that the addition of η in the denominator results in a better
performance guarantee.

ONLS is presented in Algorithm 1, where the weight vector is
initially set to 0 ∈ R

n . The update rule can be written in the form:
wt = wt−1 + λxt , where λ = ((yt − ŷt)/(η + �xt �2)) ∈ R.

Algorithm 1 ONLS
FOR t=1,2,. . .
(1) receive xt ∈ R

n

(2) predict ŷt = �wt , xt �
(3) receive yt ∈ R

(4) update wt using eq.(8)
END FOR

We now analyze ONLS using the technique (difference of sum of
squares) suggested by Duda et al. [8] for convergence analysis, and
we start by the following theorem that shows the bound on ONLS’
performance.

Theorem 1: For any sequence x1, y1, x2, y2, . . . with predictions
ŷ1, ŷ2, . . . , given by Algorithm 1, the following holds:

LT ≤ 1

β(1 − β)
inf
u

((η + X2)�u�2 + LT (u)) + O(1)

3264 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 7, JULY 2021

for (1/�xt �) ≤ (1/X). For η = bX2 and β = (1/2), the following
holds:

LT ≤ 4 inf
u

((b + 1)X2�u�2 + LT (u)) + O(1)

where b > −1, LT is the cumulative square loss, and LT (u) is the
cumulative square loss of the off-line LS algorithm.

Proof: The proof is given in Appendix B. �
The result obtained in Theorem 1 fulfills (2) with c =

(1/(β(1 − β))), L∗
T R

t = infu((η + X2)�u�2 + LT (u)), and RT =
O(1). Theorem 12 asserts for η = 0 and β = (1/2)

LT ≤ 4 inf
u

(X2�u�2 + LT (u)). (9)

It is clear that the addition of η in the update rule of Lemma 1
is advantageous. In Theorem 1, the addition of η decreases the
dependence on the size of the data. It is worth noticing that (9)
is the performance guarantee for the algorithm derived in Lemma 1,
where we bound the input by the Euclidean norm. Also, notice when
β = (1/2) and as b → −1 �⇒ infu((b + 1)X2�u�2 + LT (u)) →
LT ≤ 4 infu LT (u), that is, ONLS is at most four times worse than
the true regression function.

The following theorem presents the performance guarantee on the
normalized squared loss.

Theorem 2: For any sequence x1, y1, x2, y2, . . . with η = b�xt �2

and predictions ŷ1, ŷ2, . . . , given by Algorithm 1, the following
holds:

L̄T ≤ 1

β(1 − β)
inf

u∈Rn
((b + 1)(1 − β)�u�2 + L̄T (u)) + O(1)

such that b > −1, 0 < β < 1, L̄T is the algorithms’ loss, and L̄T (u)
is loss of the off-line algorithm.

Proof: Notice that

β

T�
t=1

(ŷt − yt)
2

�xt �2
�xt �2

η + �xt �2 = β

(b + 1)

T�
t=1

(ŷt − yt)
2

�xt �2

and
T�

t=1

(yt − �u, xt �)2

�xt �2
�xt �2

(1 − β)(η + �xt �2)

= 1

(1 − β)(b + 1)

T�
t=1

(yt − �u, xt �)2

�xt �2

for η = b�xt �2. Thus, from (14) (see Appendix B)

β

(b + 1)

T�
t=1

(ŷt −yt)
2

�xt �2 − 1

(1 − β)(b + 1)

T�
t=1

(yt −�u, xt �)2

�xt �2 ≤ �u�2

and the result follows. �
In Theorem IV.2, the guarantee does not depend on the size of

the input, and we do not bound the input. Also, the performance
guarantee has no assumptions on the input, the output, and the
weights.

The result of Theorem 2 fulfills (2) with c = 4 (when β =
(1/2)) instead of c = 2.25, as mentioned in [5], for normalized
gradient descent (NGD) (Theorem IV.2). However, for NGD, L∗

T =
infu∈Rn �u�2 + L̄T instead of infu∈Rn a�u�2 + L̄T with a > 0.

Corollary 1: As �u�2 → ∞, Algorithm 1 has a better guarantee
than NGD for L̄T at any given trial T = 1, 2, . . . if 0 < a ≤ 0.5625.

Proof: By solving 4a�u�2 + 4L̄T ≤ 2.25�u�2 + 2.25L̄T ,
we obtain 0 < a ≤ 0.5625−0.4375(L̄T /�u�2). Thus, as �u�2 → ∞,
(L̄T /�u�2) → 0 �⇒ 0 < a ≤ 0.5625. �

2The guarantee is expressed as a function of infu
�

t (yt − �u, xt �)2. The
infimum is taken over all u.

Remark 2: Similarly, for the case of LT , NGD is outperformed as
�u�2 → ∞ and (1/�xt �) ≤ (1/X) if −1 < b ≤ 0.5625X2.

We now present a guarantee that includes the learning rate η
in the cumulative loss, which we will refer to as tunable loss
function.

Theorem 3: For any sequence x1, y1, x2, y2, . . . with predictions
ŷ1, ŷ2, . . . , given by Algorithm 1, the following holds:

L̂T ≤ inf
u∈Rn

(2�u�2 + 4L̂T (u)) + O(1)

such that

L̂T =
T�

t=1

(yt − ŷt)
2

η + �xt �2 and L̂T (u) =
T�

t=1

(yt − (ut , xt))
2

η + �xt�2

with η > −�xt �2 and 0 < β < 1.
Proof: We write (14) (see Appendix B) as

L̂T ≤ inf
u∈Rn

1

β
�u�2 + 1

β(1 − β)
L̂T (u).

By setting β = (1/2), we obtain the desired result. �
To conclude this theoretical analysis, we state the following: the

addition of the learning rate is advantageous in the ONLS algorithm.
The ridge penalty �u�2 → ∞, and ONLS algorithm has a better
guarantee than NGD’s guarantee when −1 < b ≤ 0.5625X2 and 0 <

a ≤ 0.5625 for the squared and normalized squared loss, respectively.
The presence of a > 0 and b > −1 next to the ridge penalty in the
guarantees and update rule of ONLS implies a better control over the
bias-variance tradeoff than NGD case where a = b = 1.

IV. EMPIRICAL STUDY

Fig. 1 compares some of the renowned loss functions and the
behavior of the loss function studied in Theorem 3. Notice that when
the learning rate η = 0, the tunable loss is the same as the normalized
squared loss. When η = −0.9�x�2, the tunable loss penalty is in a
similar range as the absolute loss but with the shape of the squared
loss. Also, the tunable square loss is differentiable for all values of
η > −�x�2, at every value of x . The same statement does not hold
for the absolute loss. Thus, the suggested tunable loss function has
the robustness of the absolute loss but in the shape of the squared
loss.

The primary goal of this study is to compare3 ONLS against
NGD, but, for the sake of completeness, we also compare it against
the most theoretically studied variant of gradient method known as
Adam [14], [21] as well as against the [5], ORR [17], and ONS [19].
The objective is to be as close as possible off-line solution (please
see 2) P∗

T = Xw∗, where w∗ = argminw �Y − Xw�2. The P∗
T

solution considers the entire data X ∈ R
t×n and Y ∈ R

t . Table I
contains the minimum (min), maximum (max), and median (med)
cook distances for outliers and mean and variance (var) for the level of
noise.

Data sets used in this study are Gaze [20], NO2 [24], ISE [1](Istan-
bul Stock Exchange) F-16 [23], Friedman [10], and Weather [4].
Gaze data consist of 450 observations of 12 features, estimating the
positions of the eyes of the subject when the subject is looking at
the monitor. NO2 data consist of 500 observations from a road air
pollution study collected by the Norwegian Public Roads Admin-
istration. The ISE data have 536 observations with eight attributes.
Ailerons (F-16) data consist of 13 750 observations with a total of
40 attributes that describe the status of the F-16. Friedman data are
a synthetic data set with ten features and 40 768 rows. Weather data

3For all algorithms in all experiments, η = (1/T), where T denotes the
length of the data.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 7, JULY 2021 3265

Fig. 1. Tunable loss function (see Theorem 3).

TABLE I

DATA CHARACTERIZATION: COOK DISTANCE, MEAN, AND VARIANCE

have historical weather around Szeged, Hungary, from 2006 to 2016
with nine features and 96 453 observations. Please see Table I for
characteristics of these data sets.

Table II compares root-mean-squared error (RMSE), coefficient
of determination (R2), and mean absolute error (MAE) of the
algorithms. Overall, ONLS performs best, and Adam performs worst
on these data sets in terms of RMSE, R2, and MAE. ONLS is a good
choice when the true regression function is not corrupted by noise
(see Table II). Importantly, ONLS provides a significant improvement
over NGD in all the studied scenarios.

V. CONCLUSION

We presented an exact formulation of the proposed algorithm,
ONLS, along with its performance guarantee. We compared it against
to the state-of-the-art LS-regression algorithms, showing that it allows
for a better bias-variance tradeoff while providing feature shrinkage.
In the future, we will study the tightness of the bounds of ONLS and
potentially those of the state-of-the-art algorithms used in this study.

APPENDIX A
PROOF OF LEMMA 1

Minimizing
�T

t=1(wt − wt−1)
2 under the constraint yt − w�

t xt =
0. Introducing the Lagrangian multipliers αt , t = 1, 2, . . . , T and
instead of solving the primal optimization problem mentioned earlier,
we find the saddle point of the following:

T�
t=1

(wt − wt−1)
2 +

T�
t=1

αt
�
yt − w�

t xt
�
. (10)

In accordance with the Kuhn–Tucker theorem [16], there exists values
of Lagrangian multipliers α = αK T for which solving the primal
problem is equivalent to finding the saddle point. Thus

∂

∂wt

⎛
⎝ T�

t=1

(wt − wt−1)
2 +

T�
t=1

αt
�
yt − w�

t xt
�⎞⎠ = 0

wt = wt−1 − 1

2
αt xt . (11)

TABLE II

RESULTS: ONLS VERSUS NGD, P∗
T , AND OTHERS

Substituting the obtained value of wt from (11) in the constraint,
we get

αt = 2

�xt �2 (ŷt − yt). (12)

3266 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 7, JULY 2021

Substitution of αt from (12) in (11) gives

wt = wt−1 + (yt − ŷt)xt

�xt �2 . (13)

In order to avoid the scenario wt → ∞ as �xt �2 → 0, we use the
convention (0/0) = 0.

APPENDIX B
PROOF OF THEOREM 1

Lemma 2: Let ŷt = �wt−1, xt �, wt = wt−1 + λxt , where
xt , wt−1, u ∈ R

n, yt ∈ R and λ = ((yt − ŷt)/(η + �xt �2)), and
the following holds:
�wt−1 − u�2 − �wt − u�2

= (yt − ŷt)
2

�
2

η + �xt �2 − �xt �2

η + �xt �2

�
− 2(yt − ŷt)(yt −�u, xt �)

�xt �2 + η
.

Proof:

�wt − u�2 − �wt−1 − u�2

= 2λ�xt , (wt−1 − u)� + λ2�xt �2

= 2λ(ŷt − yt) + 2λ(yt − �u, xt �) + λ2�xt �2.

Substitution of λ = ((yt − ŷt)/(η + �xt �2)) leads to the desired
result. �

Lemma 3: For all a, b, r, β ∈ R such that 0 < β < 1

a2 − ab ≥ β(ab)2 − b2

4(1 − β)
.

Proof: The inequality is equivalent to the following:

a2 − ab − β(ab)2 + b2

4(1 − β)
≥ 0

4a2 − 8a2β + 4a2β2 + b2 − 4ab(1 − β)

4(1 − β)
≥ 0.

It is clear that the left-hand side can be written as
(((2a − 2aβ) − b)2/4(1 − β)) for 0 < β < 1; thus, the inequality
holds. �

We now prove a lower bound on Lemma 2 using inequality proven
in Lemma 3. This can be interpreted as the lower bound on the
progress per trial of Algorithm 1.

Lemma 4: Let ŷt = (wt−1, x), wt = wt−1 +
((yt − ŷt)/(η + �xt �2))xt , where xt , wt , u ∈ R

n, yt ∈ R, and
the following holds:

�wt−1 − u�2 − �wt − u�2 ≥ β(yt − ŷt)
2

(η + �xt �)2 − (yt − �u, x�)2

(1 − β)(η + �xt �2)

for 0 < β < 1.
Proof: From Lemma 2

�wt−1 − u�2 − �wt − u�2

= (yt − ŷt)
2

�
2

η + �xt �2
− �xt �2

η + �xt �2

�
− 2(yt − ŷt)(yt −�u, xt �)

�xt �2 + η

≥
�

2

η + �xt �2 − 1

(η + �xt �2)2

(yt − ŷt)

2

− 2(yt − ŷt)(yt − �u, x�)
η + �xt �2

≥ 1

η + �xt �2

�
β(yt − ŷt)

2 − (yt − �u, x�)2

1 − β

�
.

The last inequality holds due to Lemma 4. �

Proof: The proof of Theorem 1 is given as follows. From
left-hand side of Lemma 4

T�
t=1

(�wt −u�2−�wt+1−u�2) = �w1−u�2 − �wT +1 − u�2 ≤ �u�2.

Initialization of the weights is 0, and �·� is nonnegative;
thus

β

T�
t=1

(ŷt − yt)
2

�xt �2
�xt �2

η + �xt �2

−
T�

t=1

(yt − �u, xt �)2

�xt �2
�xt �2

(1 − β)(η + �xt �2)
≤ �u�2. (14)

Setting (1/�xt �) ≤ (1/X) to get LT

β

(η + X2)
LT − LT (u)

(1 − β)(η + X2)
≤ �u�2

β

(η + X2)
LT ≤ �u�2 + LT (u)

(1 − β)(η + X2)

LT ≤ (η + X2)

β
�u�2 + LT (u)

(1 − β)(η + X2)
.

Thus

LT ≤ 1

β(1 − β)
((η + X2)�u�2 + LT (u)).

�

REFERENCES

[1] O. Akbilgic, H. Bozdogan, and M. E. Balaban, “A novel hybrid RBF
neural networks model as a forecaster,” Statist. Comput., vol. 24, no. 3,
pp. 365–375, May 2014.

[2] N. Bershad, “Analysis of the normalized LMS algorithm with Gaussian
inputs,” IEEE Trans. Acoust., Speech, Signal Process., vol. 34, no. 4,
pp. 793–806, Aug. 1986.

[3] R. Bitmead and B. Anderson, “Performance of adaptive estimation
algorithms in dependent random environments,” IEEE Trans. Autom.
Control, vol. 25, no. 4, pp. 788–794, Aug. 1980.

[4] N. Budincsevity. (2016). Weather in Szeged 2006-2016. [Online]. Avail-
able: https://www.kaggle.com/budincsevity/szeged-weather#

[5] N. Cesa-Bianchi, P. M. Long, and M. K. Warmuth, “Worst-case
quadratic loss bounds for prediction using linear functions and gradi-
ent descent,” IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 604–619,
May 1996.

[6] K. Crammer, M. Dredze, and F. Pereira, “Exact convex confidence-
weighted learning,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 345–352.

[7] R. C. de Lamare and R. Sampaio-Neto, “Reduced-rank adaptive filtering
based on joint iterative optimization of adaptive filters,” IEEE Signal
Process. Lett., vol. 14, no. 12, pp. 980–983, Dec. 2007.

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification and Scene
Analysis, 2nd ed. Hoboken, NJ, USA: Wiley, 1995.

[9] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical
Learning, vol. 1. New York, NY, USA: Springer, 2001.

[10] J. H. Friedman, “Multivariate adaptive regression splines,” Annu. Statist.,
vol. 19, no. 1, pp. 1–67, Mar. 1991.

[11] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of
Algorithms. Basel, Switzerland: Birkhäuser, 1981.

[12] B. Hassibi, A. H. Sayed, and T. Kailath, “H∞ optimality of the LMS
algorithm,” IEEE Trans. Signal Process., vol. 44, no. 2, pp. 267–280,
Feb. 1996.

[13] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ, USA:
Prentice-Hall, 1996.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available: http://
arxiv.org/abs/1412.6980

[15] J. Kivinen and M. K. Warmuth, “Exponentiated gradient versus gradient
descent for linear predictors,” Inf. Comput., vol. 132, no. 1, pp. 1–63,
Jan. 1997.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 7, JULY 2021 3267

[16] H. Kuhn and A. Tucker, “Proceedings of the second Berkeley symposium
on mathematical statistics and probability,” in Proc. 2nd Berkeley Symp.
Math. Statist. Probab. 1951, p. 666.

[17] J. McWhirter, “Recursive least-squares minimization using a systolic
array,” Proc. SPIE, vol. 431, pp. 105–114, Nov. 1983.

[18] E. Moroshko, N. Vaits, and K. Crammer, “Second-order non-stationary
online learning for regression,” J. Mach. Learn. Res., vol. 16,
pp. 1481–1517, Jan. 2015.

[19] F. Orabona, N. Cesa-Bianchi, and C. Gentile, “Beyond logarithmic
bounds in online learning,” in Proc. 15th Int. Conf. Artif. Intell. Statist.,
2012, pp. 823–831.

[20] J. Quinonero-Candela, I. Dagan, B. Magnini, and F. d’Alché Buc,
Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual
Object Classification, and Recognizing Textual Entailment, First Pascal
Machine Learning Challenges Workshop, MLCW 2005, Southampton,
UK, April 11–13, 2005, Revised Selected Papers, vol. 3944. Berlin,
Germany: Springer, 2006.

[21] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of
Adam and beyond,” 2019, arXiv:1904.09237. [Online]. Available:
http://arxiv.org/abs/1904.09237

[22] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update
and paging rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208,
Feb. 1985.

[23] J. N. Van Rijn et al., “OpenML: A collaborative science platform,” in
Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases, 2013,
pp. 645–649.

[24] P. Vlachos and M. Meyer. (2005). Statlib Datasets Archive. [Online].
Available: http://lib.stat.cmu.edu/datasets

[25] V. Vovk, “Competitive on-line statistics,” Int. Stat. Rev., vol. 69, no. 2,
pp. 213–248, Aug. 2001.

[26] B. Widrow and E. Walach, “On the statistical effi-
ciency of the LMS algorithm with nonstationary inputs,”
IEEE Trans. Inf. Theory, vol. IT-30, no. 2, pp. 211–221,
Mar. 1984.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

