
MRFS: A Multi-Resource Fair Scheduling
Algorithm in Heterogeneous Cloud Computing

Hamed Hamzeh1, Sofia Meacham1 Kashaf Khan2 Keith Phalp1 and Angelos Stefanidis1
1Faculty of Science and Technology, Bournemouth University, UK.

hamzehh@bournemouth.ac.uk, smeacham@bournemouth.ac.uk, kphalp@bournemouth.ac.uk, astefanidis@bournemouth.ac.uk
2British Telecom, Ipswich, UK, kashaf.khan@bt.com

Abstract—Task scheduling in cloud computing is considered
as a significant issue that has attracted much attention over
the last decade. In cloud environments, users expose consider-
able interest in submitting tasks on multiple Resource types.
Subsequently, finding an optimal and most efficient server to
host users’ tasks seems a fundamental concern. Several at-
tempts have suggested various algorithms, employing Swarm
optimization and heuristics methods to solve the scheduling issues
associated with cloud in a multi-resource perspective. However,
these approaches have not considered the equalization of the
number of dominant resources on each specific resource type.
This substantial gap leads to unfair allocation, SLA degradation
and resource contention. To deal with this problem, in this paper
we propose a novel task scheduling mechanism called MRFS.
MRFS employs Lagrangian multipliers to locate tasks in suitable
servers with respect to the number of dominant resources and
maximum resource availability. To evaluate MRFS, we conduct
time-series experiments in the cloudsim driven by randomly
generated workloads. The results show that MRFS maximizes
per-user utility function by %15-20 in FFMRA compared to
FFMRA in absence of MRFS. Furthermore, the mathematical
proofs confirm that the sharing-incentive, and Pareto-efficiency
properties are improved under MRFS.

Index Terms—Allocation, Cloud, Dominant, fairness, La-
grangian, resource, server, scheduling, task, utility.

I. INTRODUCTION

Cloud computing has emerged as a fundamental comput-
ing paradigm that facilitates IT operations by providing on-
demand and easy to scale resources through the internet.
With use of virtualisation technology, cloud delivers resources
to end-users in the form of Virtual Machines(VMs). Cloud
computing services are offered by data-centers that are widely
distributed in different places. These services are mainly
categorised in Infrastructure-as-a-Service(IaaS), Platform-as-
a-Service(PaaS), and Software-as-a-Service(SaaS). IaaS is the
most substantial layer, including a large quantity of virtual and
physical machines [1].

Due to the huge expansion of demands in the cloud data
centers, task management has become more challenging. In
fact, optimal management and scheduling of tasks has a major
importance in fulfilling Service Level Agreement(SLA). On
the one hand, users should be satisfied with services delivered
to them, and in another hand providers expect to utilize their
resources efficiently to minimize potential costs [2].

Despite traditional computing systems where a single type
of resource is considered, scheduling in the cloud is likely to

be more complicated as resources are concentrated in a shared
pool [3]. Accordingly, users may expose a high interest in
submitting tasks, containing multiple resource types such as
CPU, RAM, and storage disk. Apart from resource hetero-
geneity [4], data centers are composed of different servers with
distinct configurations in terms of resources. This diversity in
servers and computational resources represents a considerable
complexity in cluster management [5]. Given that some jobs
are intensive on a particular resource type, beyond the efficient
utilization of resources, the concept of fairness is recognised
as a major concern [6].

Scheduling in cloud computing with fairness was initially
investigated by introducing Dominant Resource Fairness(DRF)
[7]. DRF is a generalization of Max-Min fairness, aiming to
schedule users’ tasks by performing the progressive filling
algorithm. Dominant resource is the most heavily demanded
resource by a user in entire resource pool. Many extensions
have proposed various ways to overcome shortcomings asso-
ciated with DRF such as [8] [9] [10] [11] [12] [13] [14] [15]
[16]. These approaches investigate alternative ways to sched-
ule resources and tasks based on the main intuitive behind
DRF. For example, PS-DSF algorithm [15] tries to schedule
resources in most efficient servers in presence of placement
constraints. The missing point regarding these developments
is that they ignore how the number of dominant resources in
a particular server may impact on fairness and utility maxi-
mization. In other words, balancing the number of dominant
resources in each server leads to reducing the competition
among those tasks dominated on a specific resource type. To
address this issue, in this paper we propose a new policy-based
fair scheduling algorithm called MRFS to balance submitted
tasks with respect to dominant resources, aiming to maximize
user utilities. We advocate that minimizing the competitions
between users with dominant resources contributes in maxi-
mizing per-user utility function.

We apply Lagrangian multipliers on the main optimiza-
tion problem to reach the maximum optimal point. We then
conduct time-series experiments in the CloudSim driven by
the randomly generated workloads. The results from the
experiments confirm that the allocation under MRFS policy
gains an optimal utility maximization while the fairness is
also achieved. Furthermore, the resource allocation under
MRFS scheduling policy alongside FFMRA algorithm [17]

shows that the utility is maximized by %15-20 compared to
FFMRA without MRFS algorithm. FFMRA tries to equalize
dominant and non-dominant resources to ensure that resources
are distributed evenly among users. Actually, it introduces a
new notion of the fairness to satisfy intuition-fairness property
in the cloud.

This paper is organised as follows. Chapter II discusses the
background and related work. In chapter III we describe the
main motivation behind the work. Chapter IV presents the
basic resource scheduling principles in the cloud. MRFS is
introduced in Chapter V. In chapter VI the evaluation of MRFS
is represented. Finally, in chapter VII a conclusion is drawn
regarding MRFS.

II. BACKGROUND AND RELATED WORK

Resource allocation and scheduling in the cloud has at-
tracted much attention over the last two decades. It is an
NP-complete problem that aims to fulfil the Quality of
Service(QoS) objectives such as resource utilization, execu-
tion time, minimizing potential costs, and energy consump-
tion. Traditionally, the static scheduling algorithms known as
heuristic methods such as First In First Out(FIFO), Round
Robin(RR), Max-Min, Min-Max are still being used in cloud
computing [18]. However, due to the fluctuation in workloads
and dynamic behavior of the cloud, these approaches are likely
straightforward as they are not capable of handling dynamic
settings. Accordingly, a dozens of dynamic scheduling algo-
rithm were proposed to deal with such variations in terms
of workloads and system behavior. Ant Colony Optimiza-
tion(ACO), Particle Swarm Optimization(PSO), and Weighted
Least Connection(WLC) are the well-known examples of
dynamic scheduling approaches [19].
Due to the resource heterogeneity and diversity in server con-
figurations in the cloud, in addition to QoS parameters, fairness
seems to be a significant contribution in cloud environments.
The mentioned static and dynamic scheduling approach mainly
to seek an optimal solution to solve different QoS specifica-
tions such as completion time, energy efficiency, and resource
utilization. In distributed computing frameworks, the concept
of fairness is well-established in Hadoop fair scheduler [20].
The fair scheduler in Hadoop places users jobs in different
queues and allocate resources in the form of slots. Nonetheless,
the fair scheduler in Hadoop considers only one resource type
that leads a poor efficiency. Hadoop fair scheduler and similar
approaches like Dryad [21], and Quincy [22] suffer by poor
efficiency due to the resource fragmentation. To address this
drawback, Dominant Resource Fairness (DRF) was proposed
as the first promising fair resource allocation policy. DRF
applies the progressive filling algorithm to schedule jobs
depending on dominant resources. To perform scheduling,
DRF usually picks a job with the minimum dominant resource.
Since the progressive filling is handled in a single server, a sort
of problem may occur such as poor efficiency in a case where
DRF is implemented in Multiple servers. DRFH suggested
an alternative approach to schedule and allocate resources in
heterogeneous server profiles as it performs a best-fit heuristic

method to schedule tasks in multiple servers. Subsequently,
authors considered a global dominant share as the contribution
of a user in entire resource pool. The intuition behind DRFH
is to place all incoming tasks in a specific server. Under the
DRFH scheduling policy, the sharing incentive is not fully
satisfied. The major problem is that DRFH schedules all tasks
of any user exclusively in a particular server. However, this
may increase the quantity of dominated tasks on a specific
resource type in a particular server. So, DRFH falls short
in satisfying sharing-incentive property that may result in
degrading per-user utility function.

ACO was recently proposed to solve the fair scheduling
issue in heterogeneous cloud settings called ACO-TS [23].
The authors combine the identical features in Tabu search
beside ACO to cover the gap between heuristic algorithms
and optimal approximations. In addition to multiple servers,
authors in [24] proposed a new mechanism called TSF that
considers resource allocation and scheduling in the presence of
placement constraints. Based on TSF policy a user is eligible to
submit tasks solely over a certain subset of servers. However,
under TSF mechanism it is not obvious how to specify a
globally-wide dominant resource. PS-DSF [15] proposed a
new approach to schedule tasks in servers by locally determin-
ing a virtual dominant resource for each server. Also, authors
in [25] introduced a new approach to schedule tasks in a most
appropriate server to minimize operational costs.

III. MOTIVATION

Existing approaches have not considered an equal assigning
of tasks in the server with regards to the number of dom-
inant resources. In fact, equalizing the number of dominant
resources in each server, and maintaining the minimum ag-
gregate resource demands considering multiple resource types
lead to maximizing users’ utilities.

Let’s draw an example to clarify the problem. Assume
there are five users A, B, C, D, and E with demand vectors
< 3CPU, 1GB >,< 5CPU, 3GB >,< 1CPU, 5GB >,<
2CPU, 7GB >, and < 4CPU, 9GB > respectively. The
main purpose is to schedule users’ tasks in server S. This
server is eligible to host a maximum of four users. Fig. 2
presents a scheduling example of those tasks in a server from
two perspectives. As can be seen one of < 5CPU, 3GB >
,< 4CPU, 9GB > is eligible to be scheduled in the server
according to Fig. 2(a)(b). Otherwise, they could be scheduled
in other servers if existed. Fig. 2(a) refers to perfect scheduling
as the number of dominant resources on CPU, and RAM(GB)
is equal. However, the scenario in Fig. 2(b) does not reach
an optimal resource sharing as the number of tasks dominated
on GB is more than CPU. Applying FFMRA, users C, and
D receive a total of 26.6 ratios of the entire resource pool.
Consequently, dividing it equally among them gives 13.4 units
of GB. On the other hand, in a scenario represented in Fig.
2(b), by increasing the population of tasks dominated on GB,
the utilization is decreased as 30.66 ratio of resources is
allocated to users C, D, and E. Furthermore, the aggregate
demands dominated on GB is 21 in scenario (b) which is

Fig. 1: An example of scheduling scenarios

Fig. 2: Task scheduling in different servers

greater than the case in scenario (a) with 12 GB units.
Therefore, imbalanced scheduling could adversely affect users’
expectations in terms of utility maximization.

Unfortunately, the recently proposed approaches do not
consider the competition based on the number of intensive
tasks and also the minimum aggregate demands with dominant
resources. This motivates us to design and develop a new
policy-based scheduling algorithm to address these issues.

IV. BASIC RESOURCE SCHEDULING SETUP

Resource scheduling is a primary management process
in the IaaS delivery model. VMs in the cloud data-center
are recognized as scheduling units that are provisioned to
heterogeneous resources. The scheduler regularly checks for
the current status in the system to get available resources to
check which server is suitable to host users’ tasks.

After resource provisioning, incoming jobs are placed in
different queues. Generally, the main purpose of the re-
source scheduler is to find the most efficient node/server
to host a set of cloudlets/tasks. The main intuition behind
resource scheduling in the cloud is to map a set of tasks
W =< W1,W2, ...,Wm > to available k types of resources
K =< 1, 2, ..., k >. The resource scheduling problem is
illustrated in Figure 1.

According to the basic settings in the cloud, assume that
there is a system with heterogeneous servers and n number
of users U =< 1, 2, ..., n > with demand profiles R =<
r1, r2, ..., rn >. Also, assume that a user is eligible to submit
any task including multiple types of resources. It is said that
a resource is dominantly requested by a user if the following
condition is satisfied:

dki,s = max
rki,s
Cmaxk

, r > 0. (1)

In which dki,s denotes a dominant resource that a user may
request over any server s, and rki,s stands for the requested

resource form a user on a resource type k over server s.
Presumably, a submitted task by a user is determined locally
as a task dominated by a particular resource type in a corre-
sponding server. Respectively, the scheduler is responsible to
map a task considering di,k in a server to gain a maximum
utility for each user.

Umaxi (Π(dki,s)) =⇒ f : (f1,s, f2,s, ..., fn,s) (2)

The general utility maximization in (2) is subjected to find
an optimal solution based on mapping function f , each binds
cloudlets/tasks to the most efficient host. Typically, utility
functions are the best indicators in evaluating the efficiency
of any scheduling mechanism.

V. MRFS

In this section, a new policy-based fair task scheduling
mechanism is proposed in the heterogeneous cloud called
MRFS. MRFS considers dominant resources and performs
a two-factor validation process to map a task to the most
efficient server subjected to available resources. The first and
the main factor is the frequency of dominant resources in
each server, and the second one is the minimum aggregate
dominant resources. If the last condition is not satisfied, the
first factor is enough to schedule tasks. MRFS tries to maintain
an equal distribution of tasks based on dominant resources
on different resource types. As can be seen in Fig. 3, after
submitting tasks, each task dominated on a specific resource
type is placed in separate queues and then scheduled in
the most appropriate server according to the specified rules.
Technically, MRFS calculates dominant resources for each
incoming task in all servers. If a server meets requirements
and policies, then the task is scheduled in the corresponding
server. It is important to note that the dominant resource for
each task could be different from server to the server due to
the diversity in configurations. So, MRFS treats for each task
with respect to its dominant resource type in each server. On
the other hand, if the configuration of all servers is identical,
then MRFS considers a global dominant resource. In some
conditions, if MRFS cannot find a suitable server to locate
a task, the corresponding task is put into the non-dominant
queue. However, as MRFS employs the FFMRA allocation
policy, the corresponding dominant resource gets the fair share
of the server’s pool as it has the highest proportion of the
resource quota belongs to non-dominant resources. This is
to make sure that those tasks get at-least a fair share of
resources to satisfy the sharing-incentive property. However,
in large-scale scenarios with thousands of servers, the placing
of dominant resources in non-dominant queues happens very
rarely. This is important to note that MRFS could be applied
in all fair allocation policies such as DRFH, and TSF.

Definition 1. Nk
d,s refers to the number of dominant resources

in each specific resource type k in each server.

Nk
d,s(t) = Ψdki,s (3)

Based on (3) If t indicates the time in a series <
t0, t1, ..., ti− 1 >, the number of dominant resources on each
particular resource type is updated in each time iteration t.

Definition 2. The available resources after occupying a server
with tasks is presented by As,k.

As,k(t) = Cmaxk −
k∑
i=1

rki,s (4)

Where Cmaxk is the maximum capacity of a resource type
in each server, and rki,s is the requested resource by user i in
server s. Moreover, based on (4), and taking into account that
in each iteration t, only one task is scheduled in each server,
the available resources are updated relatively.

Definition 3. As two sorted arrays, A and N represent two
vectors each of which indicates available resources, and the
number of dominant resources respectively in each server at
time t. Correspondingly, the first, and the second items in the
arrays are the minimum values of vectors. After each iteration,
these vectors are sorted by increasing the number of tasks in
each server.

A server is indexed with a minimum aggregate dominant re-
source which is normalized to 1, so that (

∑
rki,S1

≤
∑
rki,S2

≤
... ≤

∑
rki,Sm

). If S = {rki,S1
}, and S∗ = {rki,S2

, ..., rki,Sm
},

then ζ(t) =
∑
S∗/n− s denotes the average utilization of

all servers except S1 that has the minimum summation of
requested resources at time t.

Definition 4. The parameter α is defined as an auxiliary
penalty variable which maintains a correlation between the
number of dominant resources with the current utilization at
time t in server s. This is basically a penalty to show how the
scheduler keeps the system in a desired state. To achieve α, it
is assumed that ∆ = {δ1 =

∑
d1i,s

Ψd1i,s
, ..., δk =

∑
dki,s

Ψdki,s
} indicates

aggregate dominant resources over the number of dominant
resource types k at time t. Then to capture α, the values of ∆
are normalised with the maximum capacity of each particular
resource type which is calculated as follows:

α = | δk1
Cmaxk1

− ...− δk1
Cmaxkr

|, 0 < α ≤ 1 (5)

Fig. 3: MRFS scheduler structure

Generally speaking, the value of α represents the maximum
penalty if the number of dominant resources on a specific
resource type is more than the other dominant resource types.
Even, if the number of dominant resources is the same, the
value of α would be significantly high. In a perfect condition,
where α = 0, there is no penalty at all. Therefore, the
following conditions are satisfied to maximize per-user utility
in a set of servers.{

Ψ(d1
i,s) = Ψ(d2

i,s) = ... = Ψ(dki,s)

min
∑k
i=1 d

k
i,s(t)

Where for all resource types in server S, min
∑k
i=1 d

k
i,s(t)

denotes the minimum aggregate requested tasks dominated
on k types of resources. This is worth mentioning that the
above conditions capture a perfect mapping of tasks to servers.
However, there are cases that at-least one of these conditions
is not fulfilled. For example, there is no server so that the
number of dominant resources of all types of resources is not
equal.

According to definitions 1,2,3 and 4, and given that Πk
i,s is

the allocated resources to user i in server S, we are ready to
formulate the optimization problem as follows:

max Ui(Π
k
i,s)

subject to
n∑
i=1

rki,s ≤ Cmaxk

S ≤ ζ

(6)

The maximization problem in (8) has two constraints. In or-
der to achieve a perfect optimal mapping, the second constraint
is required to be satisfied. To solve the maximization problem
in (8) and find the best server to map a task onto it, we use
Lagrangian multipliers. Lagrangian multiplier is an approach
to find the local maximum of a function f(x1, x2, ..., xn)
in an optimization problem, subject to a set of equality, or
unequally constraints let’s say g(x1, x2, ..., xn). The main
intuition behind this method is to transform constraints to a set
of partial derivatives. The derivatives of a function is applied
in order to determine critical points of a function. This is very
useful to find the local maximum point.

As an example, a simple utility maximization problem is
considered as follows:

max x = f(x)

subject to gi(x) ≤ 0,∀i = 1, ...,m
(7)

So, it is possible to put the function f along with its
constraints in a single maximization problem, using λ as a
multiplier. Therefore, the problem in (7) can be written as
follows:

x = maxL(x, λ) = maxf(x) +

m∑
i=1

λigi(x) (8)

Solving (8) gives a local maximum value for a maximization
problem in (7).

Fig. 4: The optimal utility over the original utility

Accordingly, the optimization problem in (6) could be
formulated with constraint in an integrated optimization prob-
lem using Lagrangian multipliers. As there are more than
one constraints, the optimization problem can be written as
follows:

L(U, λ, µ) = (Ui(Π
k
i,s) + λ[Cmaxk −

∑
rki,s] + µ[ζ − S])− α (9)

Based on (9),the parameter U denotes the utility of a user
i in any server s considering resource type k. Therefore, the
optimization problem aims to maximize the allocation Πk

i,s in
a most efficient host. The second constraint is accompanied
by α to keep the correlation between Ψ(dki,s), and

∑
dki,s.

To solve the Lagrangian function in (9), the First Order
Necessary Condition(FOC) [26] is applied. As can be seen in
Fig. 4 If Ui is the original user utility, U∗ indicates the optimal
utility by solving the Lagrangian function. Accordingly, it is
necessary to substitute U with U∗ in FOC.

L(U∗,λ∗,µ∗)
∂U =

(
∂f
∂U (U∗)− λ∗ ∂

∑
rki,s(U∗)

∂U − µ∗ ∂S∂U (U∗)

)
− α = 0

(10)
Consequently, the equality in (8) could be divided in the

following inequalities:

{
Cmaxk −

∑
rki,s ≥ 0, λ∗ ≥ 0, λ∗[Cmaxk −

∑
rki,s]

ζ − S(U∗) ≥ 0, µ∗ ≥ 0, µ∗[ζ − S(U∗)]

The maximization problem in (6) could be relaxed to one
constraint in a case, where the second constraint is not required
due to the requirements. In this occasion, the problem can be
written using a barrier function Φ as follows:

maxUi(Π
k
i,s) +

∑
Φ(dki,S1

) (11)

The value of Φ could be selected as a logarithmic barrier
function as follows:

Φ(Ui(Π
k
i,s)) = −

∑
log(dki,s(Ui(Π

k
i,s))) (12)

As MRFS performs FFMRA to calculate allocations, all fair
allocation principals in FFMRA are exactly applied in MRFS.
Among all fair allocation properties, we show that the sharing
incentive and Pareto-efficiency properties are improved under
MRFS scheduling mechanism.

Algorithm 1 MRFS scheduling algorithm

1: K ← (k1, k2, ..., kr) . Resource vector
2: S ← (s1, s2, ..., sm) . The vector contains all servers
3: U ← (1, 2, ..., n) . total users in the system
4: D ← (rk1,s, ..., r

k
i,s) . demand vector

5: Qkd,s . Queue for dominant resource k in server s
6: Qk

d̃,s
. Queue for non-dominant resource k in server s

7: dki,s = max
rki,s
Cmax

s,k
. Dominant resource type k in server s

8: t := 0 . time interval starts at 0
9: Ψ(dki,s)(t) . number of dominant resources in each

server at time t
10: A← Cmaxs,k −

∑
rki,s . Available resource in each

iteration at t
11: for each s in S do
12: if (Ψ(dk1i,s) = Ψ(dk2i,s) = ... = Ψ(dkri,s)) & sm =

min(
∑
dki,s) then

13: Qkd,s ← rki,s . Placing requested task onto
dominants queue

14: else if (Ψ(dk1i,s) = Ψ(dk2i,s) = ... = Ψ(dkri,s)) then
15: Qkd,s ← rki,s . Placing requested task onto

dominants queue
16: else if (Ψ(dk1i,s) = ... = Ψ(dkri,s)) + 1 then
17: Qk

d̃,s
← rki,s

18: else if (Ψ(dk1i,s) > Ψ(dkri,s)) + 1 then
19: Qk

d̃,s
← rki,s

20: UpdateA
21: t := t+ 1

Fig. 5: The curve represents Pareto-efficiency where Π
′

i rep-
resents the improved Pareto-efficiency

Theorem 1. There is Pareto-efficiency improvement under
MRFS mechanism

Proof. If there is a positive change in user i′s allocation
Πi,k denoted by Π

′

i,k so that Π
′

i,k > Πi,k. Accordingly,
user i cannot worse-off user j′allocation under a perfect
complementary utility function, e.g. Ui(Π

′

i) ≥ Uj(Πj).
As it is shown in Fig. 5, all allocations are in line

with Pareto-efficiency. So, Π
′

i is increased without affecting
Π′j allocation. The further improvement in terms of Pareto-
efficiency is not feasible if an allocation reaches to a de-
sired state. Therefore, we need to show that under MRFS,

decreasing the population of tasks dominated on a specific
resource type reduces the competition among users that leads
to improve Pareto-efficiency.

To show whether the Pareto-efficiency is improved under
MRFS, we assume that a user i is given by a weight ωi.
Accordingly, for each allocation Πi there is a social-welfare
indicator let’s say Sw based on weighted aggregate utility as
follows:

sω(Π) =

n∑
i=1

ωi · Ui(Πi) (13)

So, the allocation Πω maximizes the social-welfare over
other allocations, e.g:

Πω ∈ argmaxsω(Π) (14)

Considering (13) and (14), under MRFS scheduling policy,
minimizing the number of dominant resources leads to maxi-
mizing the utility of each user in a specific server S as follows:

minΨ(dki,s) =⇒ maxUi(Π) (15)

Therefore, the social welfare is improved according to (15)
as:

Sω(Π∗) > Sω(Π)

Theorem 2. MRFS improves sharing-incentive property

Proof. Primarily, to proof the sharing incentive property, it is
essential to show that

Ui(Π
k
i,s) ≥ Uj(Πk

j,s) (16)

So, the utility of user i is greater than or equal to user j’s
utility. This condition is assumed to be satisfied under FFMRA
mechanism, if Ui(Π) = Πk

i,s/
∑
j(Πj,s).

We consider Zo as a solution under FFMRA in absence
of MRFS, and also Z∗o in presence of MRFS. Typically, the
number of dominant resource of a specific resource type under
solution Zo is more than that in Z∗o ; (Ψdki,s)(Zo) ≥ Ψdki,s(Z

∗
o).

Therefore, considering λ, and µ, the utility of user i is
increased as follows:

(Ui(Π
k
i,s)+λ[Cmaxk −

∑
rki,s]+µ[ζ−dki,s1]Ui(Π

k
i,s))−α (17)

Consequently, any allocation Π under solution Z∗o captures
a strong sharing-incentive property. So, the inequality in (11)
is applied to the optimal solution Z∗o .

Fig. 6: The distribution of dominant resources in FFMRA and
MRFS

VI. EVALUATION

In order to evaluate the performance of MRFS, we use a sys-
tem with Intel core-i5, 8250U, 1.6GHz CPU, and 8GB RAM.
To conduct the experiments, we use the CloudSim simulation
framework driven by the randomly-generated workloads in
1000 time-series experiments. we take into account different
parameters that are: the distribution of dominant resources in
servers; the proportion of resource pool among dominant and
non-dominant resources; the proportion of dominant resources
for each specific resource type; and finally the total allocated
resource to users. Except for the last one which we mainly use
a relatively large-scale evaluation. For other parameters, and in
order for the simplicity we simulate the system with three users
over three servers, each has the same number of VM requests
with diverse demand profiles. Furthermore, each server is
configured with < 3000CPU, 6000RAM > since the total
capacity of the data center is < 9000CPU, 18000RAM >.

Fig.6 illustrates the number of dominant resources in each
server in 1000 iterations over three hosts, comparing FFMRA
with and without MRFS. As can be seen in Fig.6 (1)(2)(3)
the population of dominant resources in CPU is significantly
higher than dominated tasks on RAM. However, under MRFS
scheduling as it is illustrated in Fig. 6(4)(5)(6), the difference
between the number of dominant resource types is consid-
erably low. This is due to that according to the queuing
mechanism in MRFS, the scheduler tries to equalize the
number of dominant resources in each server in the entire
data center. For example, based on Fig. 6(4)(5) after iteration
900, the difference of dominant resources in servers A, and B
is increasing. However, MRFS tries to minimize it in server
C as it is shown in Fig. 6(6).

Equalizing the number of dominant resources in each
specific resource type may contribute to maximizing the
proportion of the entire resource pool in the data-center to
all dominant resources. Based on the FFMRA allocation
policy(see[17]), Fig.7(a)(b) clearly states that the proportion of
resource pool for dominant resources under the MRFS policy

is considerably better than the VM Allocation policy in which
FFMRA operates accordingly. Assume that CPU and RAM
are considered as two types of resources, the total proportion
for dominant CPU and RAM in MRFS scheduling policy
is strictly better than FFMRA in absense of MRFS in the
CloudSim. However, Fig.7(b) presents that the proportion for
non-dominant tasks on CPU, and RAM in FFMRA is higher
than scheduling under MRFS.

Assume that FFMRA shares a certain proportion of data-
center resources to each specific group of users dominated on
a particular resource type. Since, under MRFS the number of
dominant resources on CPU and RAM is well-balanced, based
on Fig. 8, the corresponding proportional value is considerably
high compared to the same scenario in FFMRA. In Fig.8(a)
though the proportion for CPU is higher than the value for
RAM under MRFS. This is due to that the sum of requested
demands for CPU is greater than RAM.

Fig. 7: The proportion of entire resource pool to dominant
resources under FFMRA in presense of MRFS and without
MRFS

Fig. 9 represents the allocated tasks to users under MRFS.
Typically, as the competition among tasks dominated on each
resource type is well-balanced in MRFS, the total allocated
resources to users is slightly better than the policy used by
FFMRA. However, based on Fig. 9(1) FFMRA allocates more
resources to user A due to that user A has more non-dominant
task submissions on CPU in contrast to users B, and C. On
the other hand, users A and C regularly submit non-dominant
tasks on RAM. Therefore, the allocated tasks to those users
in some iterations are lower than the allocation under MRFS.
The penalty variable α is shown in Table II where the values
are randomly selected from different servers in time-series
experiments. Accordingly, the greatest value in the table refers
to a higher penalty. As is has been already discussed, the
scheduler applies α for each user’s allocation based on (5). The
calculations of α, δ-CPU, and δ-RAM are randomly drawn
using β values for dominant, and non-dominant CPU and
RAM in TABLE I. The values in both tables are strongly
depended to each other.

To analyze the sharing incentive property under MRFS
policy, we conduct an experiment using 100 servers each of
which is eligible to host 40 demands in each time t. In order
for simplicity, it is assume that the configuration of all servers
is identical. Therefore, each task is recognized by a global

Fig. 8: The entire resource pool proportion for dominant, and
non-dominant resources in FFMRA in presence and absence
of MRFS

dominant resource on a particular resource type. Furthermore,
we have selected eight demands in random from one of the
servers that is also randomly selected. according to Fig. 10(a)
all demands schedule more CPU-dominated tasks than the
fairshare. On the other hand, and based Fig. 10(b) demands
5 cannot schedule more tasks above the fairshare in some
iterations. This is due to that the scheduler is not able to find
a suitable host to locate that task. Consequently, demand 5 is
placed in non-dominant queues so that it schedules less tasks
than the fairshare. However, this is trivial and it could not be
happened in scenarios with large number of servers. Nonethe-
less, in a general setting MRFS captures %95 − 97 sharing
incentive for demands dominated on a specific resource type.
For example for a scenario with 10000 servers, the probability
of locating a task with dominant resource in non-dominant
queue is something like 1/10000 which is a trivial value.
Therefore, in this occasion the sharing-incentive property is
almost fully achievable.

TABLE I: The values of Beta in which d and nd refer to
dominant, and non-dominant resources respectively

Beta d-cpu Beta d-RAM Beta nd-CPU Beta nd-RAM
1.066834069 0.728409041 0.108561842 0.250502592
1.035760848 0.719698324 0.10183153 0.244452501
1.012268025 0.711362962 0.103893504 0.246280228
0.999276224 0.700556703 0.107685474 0.262689845
0.998897746 0.820490563 0.141714168 0.312789566
1.066772968 0.728390924 0.108579392 0.250518144

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new multi-resource fair schedul-
ing algorithm called MRFS where users impose a great interest

TABLE II: The calculation of Alpha based on Delta variable
over CPU and RAM

Delta CPU Delta RAM Alpha
2457.352941 10203.4375 0.264436581

2600 10289.0625 0.254453125
2705.588235 9435.625 0.201222426
2720.882353 9909.375 0.223380515
2173.333333 8273.888889 0.196361111
2457.255882 10203.25 0.264436912

Fig. 9: The number of tasks allocated as dominant resources
for three users

Fig. 10: The allocation of resources for eight demands under
FFMRA with and without MRFS with respect to the fairshare

in submitting tasks on multiple types of resources over the
servers with distinct configurations. The proposed algorithm
tries to equalize the number of dominant resources to reduce
the competition among tasks dominated by a specific resource
type. The main purpose of MRFS is to maximize the per-
user utility function of with dominant resource submissions.
We employ Lagrangian multipliers to schedule tasks in a
server with the most availability in terms of resources and the
number of dominant resources. Then we conduct time-series
experiments in the cloudsim driven by randomly-generated
workloads to evaluate the performance of MRFS. The experi-
ments show that FFMRA allocation under MRFS policy leads
to a maximum allocation to users compared to FFMRA in
absence of MRFS. We also show that the sharing-incentive and
Pareto-efficiency are improved under MRFS. For future work
we intend to extend MRFS in cutting-edge cloud frameworks
such as Kubernetes as a novel cloud-native solution.

REFERENCES

[1] Zhongni Zheng, Rui Wang, Hai Zhong and Xuejie Zhang, ”An approach
for cloud resource scheduling based on Parallel Genetic Algorithm,”
2011 3rd International Conference on Computer Research and Develop-
ment, Shanghai, 2011, pp. 444-447.

[2] Z. Zhan, X. F. Liu, Y. j. Gong, J. Zhang, H. S. Chung, and Y. Li, ”Cloud
Computing Resource Scheduling and a Survey of Its Evolutionary
Approaches, ” 2015 ACM Comput. Surv. 47, 4, Article 63 (July 2015),
33 pages.

[3] D. Dong, H. Xiong, G.G. Castañé, P. Stack, J.P. Morrison, ”Heteroge-
neous Resource Management and Orchestration in Cloud Environments”
2018 Cloud Computing and Service Science. Communications in Com-
puter and Information Science, vol 864. Springer, Cham

[4] C. Reiss, A. Tumanov, G. Ganger, R. Katz, M. Kozuch, ”Heterogeneity
and dynamicity of clouds at scale: Google trace analysis”, Proc. ACM
3rd Symp. Cloud Comput., pp. 7, 2012.

[5] R. Boutaba, L. Cheng, Q. Zhang, ”On cloud computational models and
the heterogeneity challenge”, J. Internet Services Appl., vol. 3, no. 1,
pp. 77-86, May 2012.

[6] C. Joe-Wong, S. Sen, T. Lan, M. Chiang, ”Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework”, Proc. IEEE Conf.
Comput. Commun., pp. 1206-1214, 2012.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I.
Stoica, ”Dominant resource fairness: Fair allocation of multiple resource
types,” in Proc. USENIX NSDI, 2011.

[8] A. Ghodsi, M. Zaharia, S. Shenker, I. Stoica, ”Choosy: Max-min fair
sharing for datacenter jobs with constraints”, Proc. 8th ACM Eur. Conf.
Comput. Syst. (EuroSys), pp. 365-378, Apr. 2013.

[9] D. Klusáček, H. Rudová, ”Multi-resource aware fairsharing for hetero-
geneous systems”, Proc. 18th Int. Workshop Job Scheduling Strategies
Parallel Process. Revised Selected Papers (JSSPP), pp. 53-69, May 2015.

[10] W. Li, X. Liu, X. Zhang, X. Zhang, ”Dynamic fair allocation of multiple
resources with bounded number of tasks in cloud computing systems”,
Multiagent Grid Syst., vol. 11, no. 4, pp. 245-257, 2015.

[11] D. C. Parkes, A. D. Procaccia, N. Shah, ”Beyond dominant resource
fairness: Extensions limitations and indivisibilities”, Proc. 13th ACM
Conf. Electron. Commerce (EC), pp. 808-825, Jun. 2012.

[12] W. Wang, B. Li, B. Liang, ”Dominant resource fairness in cloud
computing systems with heterogeneous servers”, Proc. 33rd Annu. IEEE
Int. Conf. Comput. Commun. (INFOCOM), pp. 583-591, Apr. 2014.

[13] J. Zhang et al., ”ATFQ: A fair and efficient packet scheduling method in
multi-resource environments”, IEEE Trans. Netw. Service Manag., vol.
12, no. 4, pp. 605-617, Dec. 2015.

[14] Y. Tahir, S. Yang, A. Koliousis, J. McCann, ”Udrf: Multi-resource
fairness for complex jobs with placement constraints”, GLOBECOM,
pp. 1-7, Dec 2015.

[15] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar and Y. Zhao,
”Per-Server Dominant-Share Fairness (PS-DSF): A multi-resource fair
allocation mechanism for heterogeneous servers,” 2017 IEEE Interna-
tional Conference on Communications (ICC), Paris, 2017, pp. 1-7.

[16] ”Towards multi-resource fair allocation with placement constraints”,
Proc. ACM SIGMETRICS, 2016.

[17] H. Hamzeh, S. Meacham, K. Khan, K. Phalp and A. Stefanidis,
”FFMRA: A Fully Fair Multi-Resource Allocation Algorithm in Cloud
Environments”, 2019 The 3th IEEE International Workshop on Software
Engineering for Smart Systems (SESS).

[18] S. A. Ali and M. Alam, “A relative study of task scheduling algorithms
in cloud computing environment,” 2016 2nd International Conference
on Contemporary Computing and Informatics (IC3I), 2016.

[19] S. Wang and G. Ji, ”Comprehensive Survey on Particle Swarm Opti-
mization Algorithm and Its Applications, ” 2015, Hindawi.

[20] https : //hadoop.apache.org/docs/r1.2.1/fairscheduler.html
[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.Dryad: distributed

data-parallel programs fromsequential building blocks. InEuroSys 07,
2007.

[22] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,K. Talwar, and A.
Goldberg. Quincy: Fair scheduling fordistributed computing clusters.
InSOSP ’09, 2009.

[23] X. Liu, X. Zhang, Q. Cui and W. Li, ”Implementation of Ant Colony
Optimization Combined with Tabu Search for Multi-resource Fair Allo-
cation in Heterogeneous Cloud Computing,” 2017 ieee 3rd international
conference on big data security on cloud (bigdatasecurity).

[24] W. Wang, B. Li, B. Liang and J. Li, ”Multi-resource Fair Sharing for
Datacenter Jobs with Placement Constraints,” SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Salt Lake City, UT, 2016, pp. 1003-1014.

[25] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar and Y. Zhao,
”A Cost-Efficient and Fair Multi-Resource Allocation Mechanism for
Self-Organizing Servers,” 2018 IEEE Global Communications Confer-
ence (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-7.

[26] Notes on Calculus and Optimization.

