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Evaluation of Alternative Discrete Event Simulation Experimental Methods

ALAN JAMES WARN
ABSTRACT

The aim of the research was to assist non-experts produce meaningful, non-terminating discrete-
event simulations studies. The exemplar used was manufacturing applications, in particular

sequential production lines. The thesis addressed the selection of methods for introducing
randomness, setting the length of individual simulation runs, and determining the conditions for
starting measurements. “Received wisdom” in these aspects of simulation experimentation was

not accepted. The research made use of a Markov Chain queuing model and statistical analysis of
exhaustive computer-based experimentation using test models. A specific production-line model

drawn from the motor industry was used as a point of reference.

A distinctive, quality control like, process of facilitating the controlled introduction of
“representative randomness” from a pseudo random-number generator was developed, rather than

relying on a generator’s a priori performance in standard statistical tests of randomness. This

approach proved to be effective and practical.

Other results included:
o The distortion in measurements due to the initial conditions of a simulation run of a queue
was only corrected by a lengthy run and not by discarding early results.
o Simulation experiments of the same queue, demonstrated that, a single long run gave greater
accuracy than having multiple runs.

o The choice of random number generator is less important than the choice of seed. Notably,
RANDU (a “discredited” MLCG) with careful seed selection was able to outperform in tests
both real random numbers, and other MLCGs if their seed were chosen randomly, 99.8% of

the time. Similar results were obtained for Mersenne Twister and Descriptive Sampling.
o Descriptive Sampling was found to provide the best samples and was less susceptible to errors
in the forecast of the required sample size.

e A method of determining the run length of the simulation that would ensure the run was
representative of the true conditions was proposed.

An interactive computer program was created to assist in the calculation of the run length of a
simulation and determine seeds so as to obtain “highly representative” samples, demonstrating the

facility required in simulation software to support these selected methods.
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Evaluation of Alternative Discrete Event Simulation Experimental Methods

1. INTRODUCTION

1.1 THE IMPORTANCE OF SIMULATION

Simulation is the construction and use of a computer-based representation, or
model, of some part of the real world as a vehicle for experimentation, where to
experiment on the real world would be impractical, costly, or impossible. The
purpose of the experimentation is to enable a user-organisation to develop and
validate plans in advance of committing to some change (such as new
iInvestment in plant or new operating practice).

Discrete-event simulation is that form of simulation where the factors being
modelled may be regarded as changing only at discrete points in time (known
as "events"), for example a supermarket checkout, a car-body assembly line, or
an airport terminal.

Continuous simulation is the form of simulation where the factors being
modelled vary continuously over time. Examples are the temperature changes
within an iron ingot and the relative position of a sprung axle travelling over a
rough surface.

This research is concerned with discrete-event simulation.

An example of such a study is one that was made when a major vehicle
manufacturer was proposing a major investment in a test facility for motorcar
engines. A discrete-event simulation model was constructed of the proppsed
design. One of the decisions that faced the engineers was which of two types
of material handling devices (called wait tables) was to be used. One wait table
had complicated operating logic and would store more than one engine while
the alternative had only simple operating logic and was only able to store one
engine.
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The more complex equipment needed more maintenance, had a shorter
expected time between failure and a longer expected repair time due to the
greater number of moving parts and complex logic. It did however offer greater
buffering capability. Much to the disappointment of the Design Engineers, when
the two designs were compared using the simulation model, the simpler
equipment gave a higher throughput. The savings, made from using the
simpler material handling equipment, allowed for more conveyors to be
installed, which reduced the impact of breakdowns, and thus an even higher

long-term throughput was obtained.

Mathematical analysis of such real industrial situations is often intractable and
requires the analyst to make many simplifications to enable a solution to be

obtained. The applicability of any results obtained from such analysis is thus
restricted to situations where the simplifications are acceptable. The ability of
simulation to examine real situations with the minimum of simplification, has
thus given it great appeal and it is reported as the most frequently used
simulation technique in Operational Research (Harpell et al. 1989). It is also
reported as being successful (Simulation Study Group 1991).

It Is surprising that simulation is not as widely used throughout industry as
would be expected. There is a popular view that simulation is only suitable for
the larger companies. The DTl initiated an investigation into why it was not
used in the middle size companies (Simulation Study Group 1991). The study

concluded that one of the main reasons was the need for an expert analyst.
Such an expert is not always available even in a large company.
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By way of comparison with simulation it is instructive to reflect on the use of
Statistical Experimental Design. Grove and Davis (1992) attribute the
‘extraordinary progress in quality improvement made by the Japanese,” to the
ability of the Japanese engineers to perform experiments based on statistical
methods, through the creation by Genichi Taguchi of statistical experimental
methods that are both easy to understand and to apply.

There may be many who doubt some of the theoretical basis of Taguchi’'s

methods but his “cookbook-like” guides have enabled this revolution. The older
standard texts on experimental design often reflected agricultural experiments.
This was probably due to the origins of the methodology in the 1920s (Fisher
1960). It was generally considered that a statistician was required to apply the

techniques. The move to totally industry based and “easily understood’
procedures has led to statistical experimental design being available to all
engineers and to a much wider use. A similar establishment of a set of simple
basic rules for simulation studies could give the technique a similar stimulus.
Indeed Wadsack and Tobias (1994) stated that there was a need for a
framework giving assistance “beyond automatic run generation and report
generation” to “help practitioners to ensure experimental validity.” Hollocks
(19995) also expressed the need to provide the practitioner with a robust
experimental framework that will at least prevent erroneous results from
incomplete experimentation and if possible enable the identification of the
optimum design to be made within the existing time pressures.

Wadsack and Tobias confirmed that they found, from their interviews, that many
organisations were operating under time pressures. Wadsack and Tobias
expressed concern with the limited experimentation and analysis performed by
these organisations. They found that many organisations were, in their view,
“not allowing their models to ‘warm-up’ sufficiently” and “not running their
models for a long enough period of time” and they reported that they found
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some instances where the organisation “only performs a single simulation run at
the ‘eleventh hour'.”

1.2 THE AIM OF THIS RESEARCH

Although the use of simulation may be broken down to a large number of

phases, it is possible to group them into three major phases:
1. Construction of the model to reflect the real life system,
2. Using the model to resolve the questions being asked of the real life

system
3. Applying the results.

In this research, decisions within the second phase were studied (the phase

highlighted as a concern by Wadsack and Tobias, 1994). The decisions
investigated were those made at the commencement of a simulation “run.”

To provide the required information from a model using simulation, a number of
“‘runs” are made in which various factors are changed. In the example of the
test facility for motorcar engines described earlier the question asked was,
“What type of material handling equipment should be used?” To answer this

question two sets of runs were made. One set was with the simple material
handling equipment and the other set was with the complex material handling
equipment. From the results of the two sets of runs the most effective material

handling equipment was then selected.

But it is not that straightforward. In real life there is variability in performance
and there are unpredictable breakdowns. For the simulation model to be

realistic some form of randomness needs to be introduced to reflect the
stochastic nature of the various real life processes. Thus any analysis of the

measurements from such a system must be based on statistical methods.
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In the example above any conclusion about the benefits of one material
handling system over the other must be based on enough information, which

means, in practical terms, making sufficient number of runs of adequate length
In order to determine that any measured difference is real.

It is also necessary, in order to achieve trustworthy resuits, not only to have
runs long enough to truly reflect the performance of the system but to have
suitable conditions at the start of the measurements so that all the

measurements are relevant. The relevant conditions that need to be
considered may include for example whether machines or men are busy or idle
or how many parts should be in the storage areas.

The aim of this research was to select simple methods for use by non-
specialists who wish to perform discrete event simulation runs. These methods
would later be included in a total framework, which when finally created, will
enable the non-expert user to obtain accurate and meaningful results with the
least use of his or her resources. In this thesis the aim was to evaluate the
choices made when establishing the actual simulation run. This is only a part of
the total framework required. However the decisions made while setting up the
computer run may be seen to be crucial, as it is unlikely that any action taken

later would be able to eliminate any errors introduced at this stage. For
example, if the sampling procedures are non-representative or if the run length
Is too short to give an accurate reflection of the performance, incorrect

conclusions may be made on the accuracy obtained in the simulation and the
significance of the results.

The aim of the research was also to determine what changes are required in the
specialist software to enable the selected methods to operate in their systems.

To produce a tighter definition of the aims of the research it was necessary to
determine the decisions required to establish a simulation run.
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1.3 THE DECISIONS REQUIRED TO ESTABLISH A SIMULATION RUN

It has been assumed that the analyst engaged in a simulation study is at the
stage where there exists a plan of experimentation runs, probably based on
statistical methods, to test the various alternative designs. The requirement
then is to perform the individual set of tests such as to obtain meaningful

results.

As previously mentioned, one of, if not the most, critical requirement is a sound
method of introducing some form of randomness into the simulation to

accurately reflect the true stochastic nature of real life. In practical terms this
has usually meant using a random number generator. Such a random number

generator is an arithmetic calculation whose resulting sequence of numbers is
deemed random. Construction of simulation models has been made easier by
the availability of specialist packages. The specialist packages normally have
imbedded generators that often cannot be changed by the user of the package.
The choice is often, as in Witness (Lanner Group 1998), one of the most
popular simulation software packages, to select from a limited number of a
predetermined seeds. The imbedded generator may not be satisfactory, as is
demonstrated by the concern with Microsoft's EXCEL whose random number

generator has indeed been deemed unsatisfactory (McCullough and Wilson
1999, L'Ecuyer 2001). Although EXCEL is software designed for creation of
spreadsheet rather than being a specialist simulation software package, it is
widely used and indicates that any embedded software within a package must
be reviewed with caution. Indeed the lack of a random number generator that is

universally accepted is discussed later.
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There has been a revival of interest in real random number generators (these
are not based on an arithmetic procedure but instead use some naturally
occurring “chaotic” process to create the random number) and these will be
discussed later. Indeed a set of real random numbers was used in the thesis to
perform a mathematical calculation (in this case, a calibration) using a
numerical analysis method, Monte Carlo Method, which is based on random
numbers, (see Hammersly and Handscomb 1964) where traditional analytical
methods were considered not to be feasible. As yet (2003) real random number
generators have not been seriously proposed for use in present day discrete-
event simulation.

The arithmetic procedures require a number, or numbers, to be selected in
order to initiate the sequence. These numbers are called “seeds’. It will be
seen that the choice of these seed values has received virtually no analysis in
the literature. Indeed the choice of seed or seeds has usually been considered
as unimportant.

Most writers considered it is important to determine a point or time in the
simulation run when measurements should begin to be taken and this is not
usually the beginning of the simulation run. This is because it is usual after
having developed a model for it to be empty, that is it is without intermediate
stocks of partly worked parts, and has machines and men idle. Such a position
may be very unusual in real life and if the simulation was to start from this
position and measurements were taken from the start, the initial readings would
be correctly considered as untypical. It is generally supported in the literature
(see for example Law and Kelton 2000) that when measuring the “on-going”
performance of a system that it is necessary to have a “warm up” period, and
not to take measurements until this period has passed so as to overcome any
distortion due to the actual starting position. Indeed many writers state that
measurements should only be taken when “steady state” is obtained. As will be
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discussed later, “steady state” is difficult to detect and the need to discard early
readings has been questioned.

The length of run after the “warm up” period must be long enough so that the
results obtained are statistically sound and thus meaningful. This may be
considered as not a vital decision at the start of a simulation run as
measurements during the run can be made and these may be used to
determine if the run was of sufficient length and, if not, the run could be
extended. Such an analysis is not so straightforward, as most systems will
have a degree of autocorrelation in any frequently measured metric of
performance, since most industrial systems will have queues and machines

whose state will be dependent on their condition when the previous
measurement of the metric of performance was made. Thus the measurements

taken over time will not be statistically independent, as is required by many
statistical tests. There is information in the literature on techniques to determine
the adequacy of a run that take account of autocorrelation and a reference to
them is given later. As stated by Robinson (1994) these methods still rely on
the initial run being sufficiently long as to be representative otherwise any
measurement to determine if the run length has been sufficient would be
flawed. In this thesis, the determination of a suitable run length before any
simulation runs have made was considered. There is virtually no analysis in the
literature available to assist in this decision. However they may exist a number
of rules of thumb. However they do not appear to have been published.
Robinson (1994) made reference to one such rule of thumb:

“‘during a run, at least ten to twenty samples should
be taken from every distribution of the model”

In a personal communication Robinson (2003) stated that he now considered
that this would not lead to an adequate run time.
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For this research the following fundamental basic design decisions were
rigorously investigated:

e The choice of method of introducing randomness into the simulation
e Determination of the initial condition and warm up period
e The initial setting of the duration of the computer run.
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2. THE METHODOLOGY USED

For this research, a real life model of a part of a production plant producing
engines for a medium size luxury car was used as the test vehicle. This
consists of a machining line and an engine assembly line. Ladbrook (1998)

reports that five similar facilities (four machining lines and one engine assembly
line) would require an investment of over 400 million US dollars.

The majority of analysis in this thesis was made using mathematical techniques
that included simulation, Monte Carlo Methods, and use of Markov Chain
models. Analytical mathematical analysis (e.g. Markov Chain analysis) of even

this part of the production plant, without excessive simplification, was not
considered feasible due to the large number of state variables and associated

values (See for example Kouikoglou and Phillis 2001 pages 1-7) and such
analysis was restricted to single elements (queues) within the model.

Alternative methodologies based on studying practices currently employed by
users of simulation, such as surveys or ethnographics were considered to be
less likely to be successful due to the limited range of statistical procedures
either used or able to be used by the majority of modellers (Wadsack and
Tobias 1994, Hollocks 1995). One of the causes of this limitation is that most
efficient model-builders use specialised simulation software that restrict the
statistical methods available to the user. An example that will be discussed
later is the imbedded random number generators. Thus any results from such a
study using these methodologies would tend to perpetuate the weaknesses that

exist in current practice.

Action learning techniques were also rejected as using a real life development
would have imposed problems if techniques being tested proved to be
inefficient, since almost all projects in industry are subject to time pressures and
any wasted time would be unacceptable (See Wadsack and Tobias 1994).
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3. LITERATURE REVIEW

3.1 FOCUS OF THE REVIEW

As stated in the earlier section, the following design decisions were
investigated:

o The choice of method of introducing randomness into the simulation
o Determination of the initial condition and warm up period
e The initial setting of the duration of the computer run.

The current literature was reviewed to determine what was the current
understanding of the best methods of making these decisions.

The first review was to examine the methods proposed to introduce
randomness. Since randomness especially in the form of random numbers is
used in numerous fields other than simulation, notably the fields of Monte Carlo
Methods and Cryptography, the literature is widespread. The designers of
generators of random numbers appear to be aiming to design them so that they
are universally applicable rather than for discrete-event simulation studies. The
review has concentrated on literature that apparently is for, although not
exclusively for, the simulation community.

3.2 DEFINITION OF RANDOMNESS

In order to understand the difficulties facing the designers of methods of
introducing randomness it is instructive to consider the definition of randomness
and random numbers.
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3.2.1 Definition of Randomness and Random Numbers

Bennett (1998) gives a brief description of the main attempts to define
randomness but states that the search for a universally accepted definition has
not yet been successful. The usual form of randomness used in simulation

studies is a stream of random numbers where the numbers take random values
between 0 and 1.

In developing methods of creating random numbers in discrete-event

simulation, most writers have assumed a pragmatic definition for randomness.
They consider a sequence of numbers is to be acceptable as being random if it

passes a set of established tests (see for example Knuth 1998). The term
“pseudorandom numbers” is a convenient term for a string of random numbers

generated by some arithmetic process. Such “pseudorandom numbers” would
not suffice for all purposes; they cannot for example replace the randomising

device used in the British National Lottery.

Bennett states, that such practical definitions “are not without their deficiencies.
In such a pragmatic approach a generator is rejected if and only if it creates a
string of numbers that is unlikely to be random to such an extent as to give
incorrect results in our proposed use.

This reference to “proposed use” is important since random numbers are not
only used in simulation. They are useful in mathematical methods referred to
as Monte Carlo methods where the mathematics of statistics is used to solve
problems that are deterministic (Hammersly and Handscomb 1964). Often
Monte Carlo Methods are used where “traditional” analytical methods are
impractical or even impossible. These methods typically require large
sequences of random numbers.
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Another area where random numbers are required is in cryptography. Here the
desire is for the sequence to be unpredictable and that the generating function
cannot be discovered in any reasonable time (see for example Blum et al.1986).

The development of methods of creating random numbers and the development

of tests have proceeded in parallel. As one method of creating random
numbers is developed, a test has been developed which the method fails. For
this study the development of tests will first be considered then the development

of methods.

3.2.2 Tests to Ensure a Stream of Numbers is Acceptable as Random

At present no professional or learned body has established a standard list of
tests, a recommended random number generator, or a standard set of tables.
Knuth (1980 and 1998) however gives a range of empirical tests (see table 3.1
on page 26).

Tocher (1960) gives several of the tests given later by Knuth. Several of the
tests were devised by Kendall and Babington-Smith (1938,1939). These are
indicated within table 3.1. The Babington-Smith tests were originally designed
to be applied to the individual digits in the random sequence. Tocher also gives
another test that Knuth did not include in his list. Tocher states that Yule (see
Yule 1938) devised it, and refers to it as the “Yule's test”. The test consisted of
determining the distribution of sums of sets of non-overlapping 5 digits within
the sequence and testing the actual against the theoretical distribution. This
test seems to have been forgotten, maybe due to the need to determine the
theoretical distribution by a “practical arithmetic process.”
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Brief Description

Equidistribution test** [The spread of the random numbers over the whole range

Serial test** The frequency that a certain of pairs of numbers occur

Gap test™” The length of sequences between certain range of values
Poker test** The values of sets of five sequential numbers

Coupon collector's test|The length of sequence required to obtain all the values
_ The frequency of the different relative orderings of sets
Permutation test _
of a fixed number of sequential numbers
Test the frequency of run lengths of numbers
increasing (or decreasing)
‘ Test the frequency of the maximum number in
Maximum-of-t test ,
a set of t sequential numbers
o Test distribution of n-tuples in n-dimensional space.
Collision test

Description given later.
Birthday spacing test*

Test the frequency of the difference in the numbers

of a fixed length sequence after sorting.
A number of sequences need to be tested

, _ Test the serial correlation between n sequential numbers
Serial correlation test . :
and the same sequence cyclically shifted sequence

* Not in the second edition 1980 but included in the third edition 1998.
** Included by Tocher (1960) devised by Kendall and Babington-Smith (1938)

Table 3.1 The List of Empirical Test Given by Knuth
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Another test described by Tocher, the D? test, was devised by Gruenberger and
Mark (1951), in which four consecutive random numbers are used to construct
two points within a square and the distance between the points is calculated.
The test consists of comparing the distribution of the actual distances with the
theoretical distribution. This test is special since it is aimed at determining if the
random number stream is suitable for its purpose, which in this case is
evaluating integrals. Tocher considered it would be ideal to use tests that were
“tailor-made” for the proposed use of the random numbers. He stated that in
1960, “This tailor-made approach, of course, is not very realistic in practice.”

Knuth classifies the tests for random number generators as being either

empirical or theoretical. He states that, in a theoretical test, the statistic can be
calculated from the values used in the function that creates the sequence. This

requires there to be developed an analytical method to calculate the statistic,
which even Knuth himself states is difficult.

In empirical tests, the actual sequence is analysed. Knuth warns that even if a
generator passes a theoretical test, the sequence to be used should be tested
for short-term non-random behaviour by empirical tests.

Marsaglia (1985) states that the list of tests given by Knuth is not to be taken as
the standard, however in practice many writers still refer to the tests in Knuth's
list. (See for example Law and Kelton 2000). Knuth states that of the tests in
Table 3.1, the “spectral test”, a theoretical test is the most powerful, and any
generator with high “accuracy” scores is acceptable. The spectral test is only
applicable to one type of random number generator, but it is the most popular

(This generator, the Mixed Linear Congruent Generator or MLCG, and the
“spectral test” are described later).

Marsaglia gives a set of more stringent tests and other sets of tests exist.

Dudewicz and Ralley (1981) created TESTRAND, although not now available,
which is basically the same as Knuth’s. Marsaglia has made his tests available
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as a battery of tests called DIEHARD, which is available on the Internet
(Marsaglia 2002). Most tests, as can be seen from Table 3.1, are based on
simple concepts, for example the length of sequences of ascending or
descending numbers. Dudewicz and van de Meulen (1983) (also Walker 1998)

have developed a more radical approach based on the thermodynamic

measure of disorder, which is termed entropy, and introduced the concept of
“the entropy of the sequence”. However, the use of this “entropy measure” was
put into doubt by Bernhofen et al. (1996) who showed that RANDU, a
discredited generator (see for example Knuth 1998 and Appendix 2), is

‘recommended” by the Dudewicz and van de Meulen’s “entropy measure’!

The concerns regarding the validity of existing random number generators have
led to this growth in the number of tests. As Marsaglia (1985) states, there is no

problem in creating more tests for determining whether a sequence is random.
This reflects the statement of the earlier workers, Kendall and Babington-Smith
(1938), that the number of tests that can be developed is only limited by human
ingenuity and, as Tocher noted, “their implication that a test may be able to be
found that will fail any particular sequence of random numbers”.

Currently many workers in the field are considering tests based on creating
points in n-dimensional space. They consider that these points are created by
the sequence of random numbers; a sequence of n random numbers being

used to define a single point in n-dimensional space. A lengthy sequence of
random numbers will create many points and various tests have been design to

check if the distribution of these points is random. An early version was one by
Davis and Rabinowitz (1956). Here the distribution of the number of points
falling within an n-dimensional sphere is compared with the theoretical

distribution. A direct use of this concept is the measure of merit, j1, used by
Knuth in determining the performance of generators when analysed by the
“‘spectral test”. Here u, is related to the number of points, formed by the
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sequence of “pseudorandom numbers” created by the MLCG being tested, in
an ellipsoid in n-dimensional space. (See page 105 Knuth 1997)

Marsaglia (2000), although fully supporting the use of this type of test, states
that these tests require a large number of random numbers.

Two recently described tests of this form that are often failed by the most
popular random number generator, the Mixed Linear Congruent Generator
(described later), are the Collision and Birthday Spacing tests (both now

included in Knuth's list). The Collision test is similar to the test of Davis and
Rabinowitz. Descriptions of the Collision test and the Birthday Spacing test,
which was devised by Marsaglia (1985), and the test statistic applied, the
measurement of discrepancy, are given by L'Ecuyer (2001).

A brief description of these two tests is that they measure the difference
between the positions of points in n-dimensional space. This is performed by
dividing the axes of the space into m equal divisions, thus forming m" cells.
Each cell has n sides. The tests consist of determining how many cells have
two points (Collision test) and the distribution of the distance between occupied
cells (Birthday Spacing test). The distribution of the number of expected
collisions and the distance between occupied cells can be calculated from
statistical theory.

Statistical methodology states that the null hypothesis “that the sequence is a
random sequence” should be rejected if the probability of obtaining the result
actually obtained, if the null hypothesis were true, would be small. Thus if
statistical methodology is strictly applied, generators giving evenly distributed
points, which may have a low probability of occurring if the points were really
random, will be rejected equally as generators that give “severely bunched’

points. Indeed L'Ecuyer (2001) strictly applied the methodology and when
using the collision test rejected random number generator that had too few, as

well as those having too many collisions. Therefore he proposed rejecting
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random number generators based on the spread of random numbers in n-
dimensional space being too uniform! Indeed, Niederreiter (1992) had stated
that MLCGs produced pseudo-random numbers with too regular in structure
and thus were consistently failing these tests.

There is however a valid case for selecting a generator where the spread would
be considered by a statistical test as being “too uniform” since it has been
noted that a generator that gives an even spread of random numbers gives
more accurate results (Saliby 1990a). This is considered to be true for Monte
Carlo analyses where “quasi-random numbers” have been to obtain greater
accuracy (Niederreiter 1978). These “quasi-random numbers” are specially

generated to give evenly spread random numbers. Indeed in a paper
addressing Monte Carlo methods based on quasi-random numbers, L'Ecuyer

and Lemieux (1999) contradicts both the need for a long cycle, that L’'Ecuyer
usually advocates (see discussion later), and for randomly distributed points. In
this paper they state,

“What we suggest is the opposite: Take a small random number
generator with only n states, and let P, be the set of all vectors of t
successive output values generated by the generator, from all its
initial states (i.e. over all its cycle). If the generator is designed so
that P, covers the unit hypercube more evenly than random points, it
appears plausible that Q, could be a better approximation than Q;
obtained by random points.”

Qn is here the approximation of an integral using a Monte Carlo method. The
idea of quasi-random numbers is not new and will be discussed later.

A measure of the evenness within the n-dimensions is given by a metric called
discrepancy. This measures the distribution of the number of points in
predefined cells shapes in the n-dimensional space. This concept is explained

further by L'Ecuyer (2000).
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As previously discussed the development of these tests has been alongside a
development of random number generators.

3.3 METHODS OF SUPPLYING THE STREAM OF RANDOM NUMBERS

3.3.1 Physical Devices and Tables

A brief history of the creation of random numbers is given by Bennett (1998)
and Knuth (1998). In the early days of computing, devices based on natural
random processes were proposed to supply the required random numbers
(Tocher 1960).

Knuth reports that,

‘the Ferranti Mark 1 computer, first installed in 1951, had a built-in
instruction that put 20 random bits into the accumulator using a
resistance noise generator; this feature had been recommended by A.
M. Turing.”

Tocher (1960) stated that he had never seen details of the mechanism nor
of any description of any studies made using it. He went on to state no
further Ferranti machine had incorporated such a feature.

Details of a number of such natural random process devices are given by
Tocher (1960). However the devices were found to be too slow. Tocher
reports the device used by the RAND Corporation produced and printed
random decimal digits at the rate of one a second. Instead tables of
random number were published (for example RAND Corporation, 1955).
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These tables (usually also available on tape) would then be made
available for use in the computer based simulation model.

The early researchers found even accessing tables of data (possibly held on a
magnetic drum) extremely slow, and arithmetic methods of generating random

numbers, or to be more accurate “pseudorandom numbers”, were sought
(Tocher 1960). Two of the criteria that were used then, and are still considered
important, for selecting a suitable method were speed and cycle or period
length. Since computer have a limited set of numbers, all arithmetic processes

used to produce random numbers will repeat. Too short a cycle was
considered undesirable as it was considered that the experimental results would
be questionable if the same set of random numbers were repeated. Due to the
high cost of fast memory they also had to consider the size of the code.

Tocher states that there are advantages in using arithmetic process for
generating “pseudorandom” numbers as the sequence is repeatable and

experiments can therefore be reproduced.

The developments within data processing that have enabled large amounts of
data to be quickly read, have lead to resurgence of the idea of tables.
Marsaglia has produced a CD-ROM containing what he intended to be “an
unassailable source” of real random numbers. This he created by,

“..a combination of several of the best deterministic random number
generators (RNGs), together with three sources of white noise, as

well as black noise (from a rap music digital recording)” (Marsaglia
2002).

There are a number of web sites that offer tables that can be downloaded.
Such a web site has been created by Haahr (1999). It produces a random
stream of bits by tuning into a frequency where nobody is broadcasting. Many
of the bits are discarded and then the remaining stream is amended to remove
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any bias and is regularly tested by a measure based on entropy (Walker 1998).
The site, as well as allowing real time sampling of the stream, also provides
random streams created earlier. The real time speed of creation in 2002 was
only 8 KB of raw data a minute but a faster version is planned (Haahr 2002).

For discrete-event simulation the most viable source at the present time is still

considered to be one based on an arithmetic process and no specialised
simulation software package was found that did not have one as its standard

RNG.

3.3.2 Linear Congruent Generators

The most commonly used arithmetic based random number generators are

those based on the congruential generator. The most popular, by far, is the
linear congruential generator (LCG). This method, exploiting number theory,

was first proposed by Lehmer (1951).

There are now a number of formulations of the generator. A definition
embracing these formulations is:
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X =X, _a+c)mod(m)
where X, 1s a seed given by the user
cz0
ifc=0X,>0
1ifc>0 X, 20
a>>0
m>a
Thetermr, isthe nth random number.
if 1, is not to take the values O or1
r, =X, /m c=0 or
=(X, +1)/(m+1) ¢>0
if r_ is not to take the value 0 but can take the valuel
r,=X,/(m=1) c¢c=0 or
r,=(X,+1)/m  ¢>0
if r, is not to take the value1but can take the value 0
r, =(X, -1)/(m-1) ¢=0 or
r, =X, /m c>0
if r, can take the valuesOand
r,=(X, -1)/(m-2) c=0o0r
r, =X, /(m-1) c>0

The usual selection of ¢ and calculation of r, has:

c=1{
X,
m

r. =

With such a choice it is obviously not advisable to have a seed of zero.

This general form is usually referred to as the “mixed linear congruent
generator” or sometimes “multiplicative linear congruent generator”, with the
abbreviation MLCG, to distinguish it from the linear congruent generator (LCG)
where there was no c or “offset” term. In this study the abbreviation MLCG will
be used for both. Fishman and Moore (1986) have made an exhaustive search
for the best set of mixed linear congruent generators with a modulus of 211,
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L'Ecuyer (1999) produced a table of moduli and multipliers with good
performance in the spectral test. Knuth has published on the Internet (Knuth
1999) that the multiplier 2650845021 obtained by Killingbeck after an
exhaustive search of all multipliers of the form a =1mod4 for an MLCG based

on a modulus of 2 performs very well. Knuth went on to state ‘its spectacular
1 scores (3.61, 4.20, 5.37,8.85, 4.11) exceed all values p2, ps, ps, and ps for

any modulus in the entire table.” The term p is, as described earlier, Knuth’s

metric of merit that he uses when applying the “spectral” test.

An extension of the MLCG with more than one multiplier is the Multiple
Recursive Generator (MRG). A k™-order MRG has the form:

Kao and Tang (1997) searched for the best MRG with a modulus of 231.1 and
selected a third order MRG. (Unfortunately the abbreviation MRG is also used
for random generators created by combining MLCGsl)

3.3.3 Serious Concerns with the Linear Congruential Generator

Confidence in the linear congruential generator was seriously shaken by the
paper “Random Numbers Fall Mainly in the Planes” by Marsaglia (1968). In
this paper he proved that Lehmer’s random number generator (MLCG)

produced results with a “crystalline” structure. That is the points, created by
sets of m successive “pseudorandom numbers’”, lie on a limited number of
hyperplanes.

Marsaglia gives the example of using a modulus of 2°2, Fewer than 2,953
hyperplanes will contain all the 3-tuples. (3-tuples are the points created by
three sequential “pseudorandom numbers” in a three dimensional space.) |f the
numbers were truly random Marsaglia stated that it could be theoretically shown
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(but not in his paper) that the smallest number of planes that would contain all
the points is about 10°. Based on this, Marsaglia stated that MLCGs were

unsatisfactory.

He restated this view in 1985 (Marsaglia 1985) and introduced his more

stringent tests, which MLCGs fail.

Knuth (1998) does not share Marsaglia’s view. He states

“At first glance we might think that such systematic behaviour is so
non-random as to make congruential generators quite worthless, but

more careful reflection, remembering that m is quite large in practice,
provides a better insight.”

He goes on to state that if we take truly random numbers between 0 and 1 and
round or truncate them (he did not give an indication to what degree of
truncation he meant) then we would obtain an extremely regular structure when
viewed under a microscope. One must imagining he is considering plotting the
points, following Marsaglia’s scheme, in space and that he is using a scale that
provides a dense mass of points such that a microscope is needed to see the
structurel lgnoring this imprecise imagery it is clear that Knuth's view is that
MLCGs with hyperplanes that are close together are acceptable (His measure

of acceptability is that the hyperplanes are close together that is the generator
passes the so called spectral test, which measures the distance between the

hyperplanes). Knuth defined the reciprocal of the distance between the
hyperplanes as the “accuracy”. Thus he states that the larger the accuracy the
‘better” is the generator. Here “better” means that the lattice structure is finer
and thus the objection raised in Marsaglia’s paper has less validity. Knuth also
has a metric of merit p, as discussed earlier, for evaluating if a generator

passes the “spectral” test. James (1994), when criticising Marsaglia for
apparently accepting MLCG as “still pretty good”, stated, “I hold that a random
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number generator which unknowingly gives you an incorrect result is not only
bad, it is catastrophic.”

During this search of literature, no published paper was found that stated an
Incorrect result had been obtained, or bad decision had been made due to the

poor random number generator used in a real life discrete-event simulation
study. This indirectly gives support to Knuth’s view, but later in this thesis an
account of a “biased” result in a computational physics study is discussed. Also
it may be considered that the lack of such reports of incorrect results within
discrete-event simulation maybe due to a reluctance to report such an error or
simply that the error would not have been detected, as feared by James. ltis

also important to note the criticisms have often come from users of random
numbers in application not connected to discrete-event simulation, for example

James's interest in random numbers appears to be with Monte Carlo Method
calculations within computational physics.

3.3.4 Alternative Psuedo-Random Number Generators

MLCGs are still widely used and marked improvements in the values of m, and
a have been achieved, but there is a drive to create generators without their
weaknesses.

To examine every type of RNG ever suggested is a large task and is beyond
the needs of this thesis, as only the more significant RNGs are likely to be
selected and therefore only they need to be considered. However of the many
alternative RNGs that have been developed, and are being developed, they
may be classified into two main forms:

e Fibonacci and Lagged Fibonacci Sequences
e Shift-Register Generators
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It is also true that improvements in already existing RNGs have been made by
combining RNGs.

These will now be discussed.

3.3.5 Fibonacci and Lagged Fibonacci Sequences

An early alternative method of obtaining “pseudorandom numbers” (Knuth 1998,

suggested the method was considered in the early 1950s) was by using the
sequence of numbers of already generated. That is:

Xo+1=H(Xa-m, Xo(m-1), .....Xn)

An example of such a “Fibonacci Sequence’ is

Xn+1 = (Xg+ Xn.1) mod m

In order to improve the performance in the test for randomness the sequence
was ‘lagged’ i.e.

Xn=(Xnt+Xns) Mod m, n>r, n>s

Knuth (1998) states that values of r and s (the lags), as suggested by Mitchell
and Moore (unpublished), of 24 and 55 respectively, and m having an even
value, are particularly good values.
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Marsaglia and Zaman (1991) state that all “additive” Fibonacci and Lagged
Fibonacci sequences fail the “rigorous tests” (tests suggested by Marsaglia
1985) and although they stated that the “multiplicative” form:

Xn=(x|1.1 . Xn.r) mOd m

passes these stringent tests, Marsaglia and Zaman (1991) suggested a new
class of generator.

This new class of generator consisted of improved versions of the “additive”
Lagged Fibonacci sequences. In these improved versions, the carry or borrow

bit is used to amend the next number in the sequence. (They appear to have
followed this development as they wished to avoid the slower operation of

“multiply’). These new methods are called “Add with Carry” and “Subtract with
Borrow” or “ACSB” (Marsaglia and Zaman 1991). The “Add with Carry” is used
when the numbers in the function are added and the “Subtract with Borrow™ is
used when the numbers are subtracted. The terms come from “schoolboy”
arithmetic.

These generators (ACSBs) found favour in applications where a large number
of random numbers were required and speed of generation was important.
Ferrenberg et al. (1992) have reported that there have been problems with this
generator due to “long-term autocorrelation”. When the generator was used In
their Monte Carlo studies in theoretical physics, the results were found to be

biased.

Ferrenberg et al. found that an old congruential random number generator,
originally proposed by Lewis et al. (1969) was more precise in its estimates.

LGscher (1994) states that to avoid these long-term autocorrelation problems,

both in ACSBs and other RNGs, 24 random numbers should be generated then
the next (p-24) should be discarded. The value of p may be changed to give
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different level of protection against autocorrelation. This has been implemented
Into a computer program (RANLUX) by James (1994), where the default value
of p is 223 and the highest selectable value is 389. The random generator used
by this implementation was the original “ACSB” of Marsaglia and Zaman. [The
Implementation, by James, of this original “ACSB”, without the discarding of
“pseudorandom numbers’, was called RCARRY (see Liischer 1994).]

This stratagem of throwing away the majority of the created sequence is one
reason for seeking longer cycle lengths.

Further to the problems of long-term autocorrelation found when using the “Add

with Carry and Subtract with Borrow” generators, Tezuka et al. (1993) and
Couture & L'Ecuyer (1994) showed that these RNGs also produced lattice

structures and a Mixed Linear Congruent Generator could be found that would
produce the same random number streams.

Knuth (1998) was thus able to include one of these ACSB generators in his
tables of “spectral” test resuits. At the time of publication of Knuth’s book
(1998), the “ACSB” RNG gave the highest value of “accuracy.” Since then
Knuth has, as previously stated, declared that using the “spectral test,” the
random number generator of Killingbeck out performs all the generators in his
table 1 (page 106 of Knuth 1998), including the “ACSB”.

3.3.6 Shift-Register Generators

A popular alternative RNG is the Shift-Register Generators (see Golomb 1967),
of which a well-known form is that suggested by Tausworthe (1965). Here the
random sequence is a stream of bits that are generated by a logic operation

(e.g. XOR) on earlier portions of the bit sequence. Knuth (1998) states a
commonly considered method to create a random number from the bit stream is

to consider the bits by, b2 simply concatenated thus:
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But Knuth states that such random numbers do not pass the necessary
statistical tests even if the individual bits are random.

The method of using logic operations on the string of bits has been improved by
including register shifts and by using a number of streams of bits that are then
combined to form a single number. In more complex implementations the
logical operations are also performed across the streams. This is termed

“Twisting”.

The apparent need for computational physics to have uniform density of large
numbers of random numbers in multi-dimensional space has led to a

development of a spectacular “twisted generalised feedback shift register’
(TGFSR) pseudorandom number generator called the Mersenne Twister
(Matsumoto and Nishimura 1998). (Mersenne is the name of a prime number of
the form 2"-1). This “pseudorandom number” generator has 624 bit streams
and thus requires 624 seeds. To create the seeds another random number
generator is used. The FORTRAN version of the Mersenne Twister (Takano
1999) uses a random number generator suggested by Marsaglia (line 15 in
Table 1, Knuth 1998) to generate the 624 seeds from a single seed. There
have been reports that in an earlier version of the generator there was a
problem with certain seed selection (Mersenne Twister Home Page, 2002).
This has led to a rejection of some of the earlier methods of producing the

seeds.

3.3.7 Combining Existing RNGs
One method of improving on the performance of a single random number
generator is to combine two or more random number generators. A number of

writers have claimed success in combining RNGs. For example L'Ecuyer
(1988), when wishing to create an acceptable random number generator for a
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16-bit computer, combined three multiplicative linear congruent generators to
form a generator with a much longer cycle then the three original MLCGs
(increasing from approximately 3 x 10* to 8 x 10'%). Knuth (1998) however
states that at present the theoretical basis for such combinations seems
complex and obscure, and he warns of the danger that if the choice of random
number generator is based on an inability to understand, then it may be
considered that the random number generator is itself being selected at
random. Knuth concludes sagely, that the choice of a random number
generator should never be made at random.

3.4 ALTERNATIVE METHODS OF SUPPLYING “RANDOMNESS”

In the field of Monte Carlo Methods there have been developments where the
‘randomness” has been replaced by specially constructed sequence of
numbers called “quasi-random numbers” (see for example Niederreiter 1992).
This has been shown to be more accurate in evaluating integrals (Niederreiter
1978). In the area of simulation, Brenner (1963) and Saliby (1990a) both
proposed methods of constructing a sequence of random variates of fixed
length, having a perfect mean and distribution. Their methods are very similar.
A description of this method will be described later when it is tested. This
method has not been widely used. Pidd (1992) suggested it should be given
more attention. When Saliby presented his method to the Simulation Study
Group of the Operational Research Society in 1988 it was heavily criticised as
being contrary to “well known good practice.” Kleijnen and van Groenendaal
(1992) rejected the method as they considered it would give biased results.

3.5 CYCLE LENGTH

One of the driving forces to develop new generators is to increase the cycle
length. One of the reasons for requiring a large cycle length is to accommodate

the suggestion to reject large portions of the generated sequence. This
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suggestion is not only made for “Add with Carry and Subtract with Borrow”
random number generators when long-term autocorrelation was being removed
but there is also a wish to reject most of a MLCG sequence (L'Ecuyer 1994)
since it is claimed that MLCGs are too evenly distributed (Niederreiter 1992).
However does not appear to be the main reason for requiring longer cycle
lengths. The main reason seems to be to meet the needs of those studies that

require millions, or as suggested by Marsaglia and Zaman (1991) billions, of
random numbers. Such requirements do not arise from normal discrete-event
simulation. As discussed below the cycle lengths discussed seem rather

extreme.

L’Ecuyer (1994) discusses that the period of 2%° of a MLCG with a modulus 2%,
“can be exhausted in a few minutes of CPU time of a small workstation” ana

that a period length of “at least 2°% is the minimum now required. This seems

excessive since even though a modest workstation can now in 2003, create 2%
(approximately one million) “pseudorandom numbers” in not a few minutes, but
one second, it would still take nearly 36 thousand years to create 2%

Kao and Tang (1997) state that their generator has a cycle of 2%°, If it only
takes one second to create 2%° then the Kao and Tang generator would take
over 3 x 10" years (this is 30,000 times the life of the Universe so far) to run
through the whole cycle! The Mersenne Twister generator has a cycle length
that is a vast number of orders larger (x10°%°%) than the one of Kao and Tang!

3.6 SEED CHOICE

All the arithmetic methods require one or more numbers (seeds) to be provided
by the user to start the process of creating “pseudorandom numbers”. The
MLCG require a single number. Using the lags suggested by Mitchell and
Moore, their lagged Fibonacci series would need 56 seeds and as previously
stated the Mersenne Twister generator requires 624.
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If more than one seed is required a MLCG can be used to generate them. In
such a situation, the user has only to supply one seed (as in the FORTRAN
version of the Mersenne Twister written by Takano 1999).

The literature (for example: Knuth 1998, Law & Kelton 2000 and Fishman &
Moore 1986) reports that the choice of seed is not important. Fishman (1978)
gave tables of “pseudorandom numbers” created 10,000 apart. These were to
be used for seeds that would then have sequences that did not overlap, unless

more then 10,000 samples were required. There is no suggestion that they
would perform any better than any randomly chosen seed, just that the
sequences would not overlap.

In reporting results produced during the testing of RNGs, the seeds used are
not normally stated. However Marsaglia (1993), when discussing his Monkey
tests, does state the seed he used in a set of tests. It was always 1234567
His choice of seed may be considered as indicating he did not consider the
value of the seed important.

As previously noted, it has been recently reported that the Mersenne Twister
has produce very non-random behaviour with poor selection of seeds. This at
present has not been fully discussed.

A few authors have stated that the choice is important and a number of workers
in the field, who unfortunately have not published their findings, have stated that

they have had very poor results when certain seeds were used. Two such
internal reports are Hollocks (1966) and Robson (1970).

It is however reasonable to state that the major writers have the view that the

choice of seeds is not important. The lack of any evidence that this is true,
especially for the smaller samples sizes used in discrete-event simulation

indicates this must be tested.
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3.7 CONCERNS WHEN CREATING RANDOM VARIATES FROM OTHER
DISTRIBUTIONS

Within simulation models, “pseudorandom numbers” are not usually used as

such but only after transformation to produce a sample from a particular
statistical distribution (such as Normal or Negative Exponential) with the

parameters (e.g. mean) supplied by the user. Using the pseudorandom number
string produced by MLCGs to produce random variates from other distributions

has led to another problem. Ripley (1987) states that Nieve while using the
modified Box and Muller polar method of producing normal deviates (the

essential point is that this method uses pairs of sequential “pseudorandom
numbers”) found that when he plotted the nth value against the n+1th value he

obtained a spiral pattern. Ripley points out that Nieve used a poor MLCG but
the concern still exists that even with a sequence of what would otherwise be
considered “perfect” random numbers, the random variates created by a
particular transformation procedure using a certain RNG may be unacceptable
since they may not be a representative sample.

An example of a transformation where the random deviates would be
unacceptable even if the random numbers were “perfect” was the method of
producing Normal deviates from a stream of random numbers used by the
Subroutine Gauss in IBM’s Scientific Subroutine Library for the 1BM 360. (IBM
1970) The method used by the subroutine consists of adding a sequence of 12
random numbers then subtracting 6. The result is an approximation to normal

distribution with a mean of 0 and a variance of 1. However the approximation is
poor in the regions of the “tails”.

For this thesis combinations of RNG and transformation must be considered.
Thus when deciding on the method of producing a random input into a
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simulation, the actual sample values need to examined rather than the random
numbers themselves.

3.8 SUMMARY OF THE LITERATURE ON METHODS OF INTRODUCING
RANDOMNESS

There are a number of “pseudorandom” number generators available. All
appear to have been criticised and rejected by theoreticians. This includes the
most popular generator MLCG. Even one of the most recently suggested RNG,
the Mersenne Twister, has already been criticised and the authors themselves
have stated that it is unsuitable for one particular application, that of
cryptography (Mersenne Twister Home Page, 2002).

Since no attempt appears to have been made to match the statistical tests to
the actual requirement of discrete-event simulation, the validity of the criticism

was uncertain.

The move to long cycles beyond any practical requirement is of concern as
there was some evidence from research made concerning the effectiveness of

Monte Carlo Methods that smaller cycle lengths may give more accurate
results.

Methods of producing sequences of random variates with perfect mean and
distribution have been described but have no extensive use. A concern is that
the method appears to require the sample size to be known.

The alternative of using “unassailable real” random numbers is a possibility but
they are still slow to create.
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The general advice from most writers is that all generators should be tested for
suitability for the intended purpose and as already stated Knuth (1997)
recommends testing the actual sequence to be used. This is not very helpful as
there is little guidance on what test would be relevant for what simulation tasks.
Some of the tests need large samples and thus the sequences actually going to
be used in the simulation cannot be used in these tests, as they are too short.

It is also known from the literature that there exists a concern that the actual
sample may be unacceptable even if the random number generator is

acceptable. Thus testing the samples rather than the sequence of random
numbers seems to be important but this has not been reflected in the literature.

As previously discussed, the general view that the seed selection is
unimportant, needed to be investigated.

To meet our requirement for a simple method of providing randomness into the
simulation to accurately reflect real life, it was necessary to determine:

e What RNGs provide the quality samples required?
o (Can MLCGs still be used?
o |s the choice of seeds important?

e (Can Descriptive Sampling out perform RNGs?
o |s our choice of a RNG or Descriptive sample affected by the need to
forecast sample size?

The first concern was how to determine if a sample is a quality sample in terms
of the needs of discrete-event simulation.

A Warn Page 47



Evaluation of Alternative Discrete Event Simulation Experimental Methods

3.9 SELECTING THE INITIAL CONDITION AND WARM UP PERIOD

3.9.1 Terminating and Non-Terminating Simulations

In the literature when discussing such factors as the initial conditions required to
commence measurements, and run length, a number of writers have found it
useful to define two types of simulation study. These are normally referred to

as, terminating and non-terminating simulations. Law and Kelton (2000)
defined the two forms such that a terminating simulation is one where a ‘natural’

event specifies the length of each run (e.g. the end of a day) while no such
event exists for a non-terminating simulation. Law and Kelton consider that with

terminating simulations their initial conditions and run length are defined by the
description of the problem. Thus the selection of a suitable initial condition and

run length is not a problem. The remaining problem in this situation is how
many replicates are needed to obtain the required accuracy. Law and Kelton

(Page 515, 2000) offer the following rule of thumb, “Regardless of the cost per
replication, we recommend at least three to five replications.”

In this research the non-terminating simulations are being considered. Here
methods of determining when to start recording, how long to record and number
of number of runs need to be evaluated.
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3.9.2 The Problem of Setting the Initial Conditions and Determining the
Warm Up Period

Since many stochastic processes will have a degree of autocorrelation, the
state of the model when measurements commence will affect the early readings
In the run.

Pidd (1992) states there are two acceptable states for initialising the
measurements:

e Arepresentative state
e The state after a warm up period.

Wilson and Pritsker (1978) examined two systems, a single server queue with a
capacity of 15 and a machine-repair system with 3 men and 14 machines, to
determine from the available procedures what was the best setting for the initial
condition when measurements would start to be made. They concluded that
the best initial condition was the mode of the “steady state” system. This is in
line with Pidd’s representative state. No paper was found that determined a
general procedure to obtain a representative state.

Most writers only discuss “the warm up period” method of setting the initial
condition. This may be due to the difficulty of defining or even setting the model

to a representative state.

Since in many stochastic systems the behaviour of the system is independent of
the initial condition when “steady state” is reached, it is frequently considered
that the warm up period should only end when the system has reached a
“steady state”. Indeed most writers consider that, for non-terminating
simulations, the “steady state” values are required to describe the performance
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of the system. They suggest that inaccurate results will be obtained if
measurements are taken outside of this “steady state” condition.

Having a warm up period that enables the system to reach “steady state” and
only starting the measurements at that point in time, appears to be commonly
accepted as meeting the two requirements of starting from a representative
position and taking measurements only at “steady state” conditions.

The detection of reaching “steady state” is not easy. Conway (1963) has

pointed out that there are difficulties in determining when the warm up period
has finished and when measurements should commence and Gafarian et al
(1978) found that none of the methods of detecting steady state available in

1978 performed well.

Welch (1983) has suggested a graphical method but it is both time consuming
and expensive in resources. (Law and Kelton 2000 state on page 522 “The
major difficulty in applying Welch's procedure is that the number of replicates ..
may be large if the process ... is highly variable” and on page 521, they state,
‘m should be much larger than the anticipated value of ", where m is the run
length of each replicate and [ is the time to get to “steady-state”.) Hollocks
(19995) reports that graphical methods are used for determining warm-up
periods and some specialised simulation packages (e.g. AutoMod) offer
automatic calculation of moving averages (see Wadsack and Tobias, 1994),
however the time pressures reported both by Hollocks and by Wadsack &
Tobias would question the common use of this technique in its correct form due
to the resources required.

Law and Kelton (1983) developed a method for determining the length of the
warm up period and the total simulation run length in order to get the best
results. They state however that it depends on the expected value of the
characteristic being measured (which varies over simulated time), monotonically
converging on the long-term expected value (or mean of the steady state
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system). Kelton (1985), Kelton & Law (1985), and Murray & Kelton (1988)
demonstrated that for some simple queues this assumption is violated if the
simulation started with certain initial queue sizes.

Kelton and Kelton & Law, from an analytical analysis of the expected queue

size of simple queues, considered that the “steady state” was obtained quickest,
and therefore the greatest accuracy could be obtained from a certain total run
length, by starting with relatively large queues. Here they were considering that
the steady state condition was not known and the system could not be set to

such a condition due to lack of knowledge. They did however consider that
there might exist a starting condition that would require the shortest warm up

period to enable the model to reach steady state conditions and thus the
measurements to commence. Thus they introduced the concept of two initial

conditions: one to start the model and one to start the recording. They, and
many other writers, assumed that the “steady state” is reached when the
expected value of queue size is steady.

The concept that more accurate results will be obtained by discarding the initial
readings is contradicted by the analytical resuit of Blomqvist (1970) who
showed that for a whole range of types of simple queues, the accuracy of the
measured expected queue size was greatest when none of the results are
discarded. It should be noted that since it was a simple queue, with no delays
before the first part arrived to be processed, the initial condition can be
considered acceptable as a representative condition. That is no warm-up

period to fill the system was required.

The two sets of studies however used different measures of accuracy. Kelton,
and Kelton & Law used the absolute difference between the expected queue
size and the steady state average queue size, while Blomgvist used the mean
square error of the expected measured queue size from the steady state queue
size. Other writers (for example Kleijnen 1974) consider that Blomqvist's resuit

was only true for very long computer runs or they suggested that using mean
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square error is inappropriate (Kleijnen and van Groenendaal 1992) but they
offer no quantitative measurements. Blomqvist result does assume that the
length of run is long enough as to get accurate results. Previously it had been
shown that to get accurate results it was necessary to have lengthy runs (see
for example Daley 1968). The minimum run length required by Blomqvist
analysis is such that a point is reached when the accuracy of measurement is
increasing with run length. For short experiments with certain starting queue
sizes the accuracy initially reduces (See Graph 7.5 page 180)

Other methods have been suggested that use a single run to detect the “steady
state’ thus avoiding the use of resources required by the graphical method of

Welch. Goldsman et al. (1994) suggested a method that incorporates earlier
methods of Schruben (1982) and Schruben et al. (1983). The methods consist

of batching the values of the output of the simulation and comparing estimates
of their variances. If the variance of a batch is statistically significantly different
to the variance of a later batch, then it is considered still to contain a bias from
the initial conditions. There is obviously a problem in determining if the
variances are statistically different. With the assumption of large batch sizes
the standard F test may be applied. There are other similar techniques all
attempting to provide estimates of the variance of the batches but require,

according to Goldsman et al., more complex statistics.

3.10 SUMMARY OF THE LITERATURE ON SELECTING THE INITIAL
CONDITION AND WARM UP PERIOD

Although there is no doubt that there needs either to be an initial setting to a
realistic condition, either by direct intervention or by a warm up period, the need
to obtain “steady state” is not commonly agreed. If it is accepted that a “steady
state” has to be obtained, a widely accepted method that does not requires
heavy use of resources to determine the required warm up period has not yet
been found.
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Clarification and a practical solution are required in determining how to set the
initial condition and when measurements should commence in order to use the
minimum of resources whilst obtaining the required accuracy.

3.11 SETTING OF THE DURATION OF A COMPUTER RUN

In order to obtain the required degree of accuracy the computer simulation
could be run for a single long run or a number of shorter runs. There is
disagreement on what is the best policy.

Most of the literature assumes that the simulation is set to run for a
predetermined period and greater accuracy is obtained by repeating the

experiment with identical design choices (replicates) but with different random
number streams (see for example Lanner Group 1998). This is in line with the
statistical designs of Fisher (1960). Such a design has a large body of
supporting statistical literature. The results from the various runs can be
considered as independent estimates.

In most statistical experiments, such as agriculture field trials or drug trials,
there is limited scope in increasing accuracy by prolonging the duration of the
experiment. (Replicates are also used so as to have a full range of values for
the factors not able to be controlled in such experiments, another feature not
relevant to computer simulation where the user inputs all “randomness’.)
Terminating simulation also cannot be extended beyond the natural conclusion.
However in non-terminating simulation this is not the usual case. The only
physical limit on a single computer simulation run for non-terminating

simulations is the available computer time and the cycle length of the random
number generator.

Page 53



Evaluation of Alternative Discrete Event Simulation Experimental Methods

It is simpler however to perform a single lengthy run than to construct replicates.
Replicates require different seeds for the random number generators or the
result would be identical (Tocher 1960). Without the use of a simulation

package this is difficult or time consuming to set up.

The discussions on whether the best design should be a number of short runs

(with different seeds) or one long run in order to get an accurate estimate of the
important variables is not conclusive. Whitt (1991) fails to clarify the discussion
and only rules out a large number of very short runs. Whitt's analysis accepted

the need for a lengthy warm up period and thus would be invalid if long warm up

runs proved unnecessary.

Kleijnen and van Groenendaal (1992) state that their favoured approach for
non-terminating simulations is to have a single long run with a number of
readings spaced so as to give negligible autocorrelation.

Law and Kelton (page 528, 2000) have produced a summary of the various
methods of constructing an experiment for a non-terminating simulation so as to
get meaningful statistics.

They have identified six methods:
e Multiple Replication each with a separate warm up period
e Single run considered as a set of sequential batches with only one warm
up period (spaced measurements)
e Autoregressive
e Spectral
e Regenerative

o Standardised Time series

Law and Kelton give detailed descriptions of the methods and suitable
references. Only the first case has replicates. The other methods have a single
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run. Since the application of these methods is not part of this research, the
literature on these methods will not be discussed further.

The first two methods of the six, suggested by Law and Kelton, have been
already mentioned. Law and Kelton state that the problem with the Multiple
Replication procedure is there is no sound way of knowing what is a suitable
run length and warm up period. The difficult in determining the set up period

has already been discussed. Law and Kelton (page 537, 2000) state that no
procedure in which the run length is fixed before the simulation begins can be

relied on to give the required accuracy.

Law and Kelton state that the shortcomings with the spaced measurements is
the difficulty in determining how long there should be between measurements.

Although not stated specifically in the literature, this problem is equivalent to
determining the warm up period required to reach “steady state”, since the
starting position of each batch (and thus the ending position of the previous
batch) should be independent of the starting point of the previous batch.
Otherwise the batches would be correlated. Thus the spaced measurement
method may well be seen as a run of n+1 equal periods with a total length of
n+1 times the length of the required warm up period with the first period
discarded and the measurement at the end of the next n periods used in the
analysis.

The remaining methods consist of fitting statistical models to the

measurements. Here the general concern is how to determine if the statistical
model is appropriate and how to measure any required parameter of the model.
In summary all the methods have concerns and in the case of “Regeneration’
are difficult to apply to a real life situation (see page 533 Law and Kelton 2000).
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3.12 SUMMARY OF THE LITERATURE ON THE NUMBER OF RUNS

REQUIRED AND THE NEED TO DETERMINE THE INITIAL LENGTH OF
THE COMPUTER RUN

The literature supports the idea of a single run if there is a requirement for a

lengthy warm up period. However the methods of analysis of the outputs is
problematic. If there is no need for a lengthy warm up period then the Muitiple
Replicate procedures may be preferred as there are sound methods of analysis
In the existing statistical literature.

The choice of a single or multiple runs both require an initial estimate of the run
length of the individual computer runs. The only information on making the
choice is that stated above by Law and Kelton that there is no reliable method

and thus they suggest a sequential sampling method of determining when the
run has been long enough. Even if their advice is taken there is still a
requirement that the initial length of the first run must be long enough as to be
representative of the performance of the system.

Hence a method of determining a run length that will be representative of the
system and thus will have sufficient number of infrequent events and values In

the tails of the distributions of the real life variables so that any measurement
taken from the simulation will be valid.

3.13 CONCLUSION OF THE LITERATURE SURVEY

The literature survey fails to obtain clear guidance on the decisions:
e The choice of method of introducing randomness into the simulation

e Determination of the initial condition and warm up period
e The initial setting of the duration of the computer run.
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The advice is confused, including contradictions, misdirections, and omissions.

To obtain the information necessary to make the decisions on what method will
be selected, as previously stated, it was necessary

1) For selection of the method of inputting the required randomness it was
necessary to select what method should be used to generating the samples
by determining:

« What RNGs provide the quality samples required?

e (Can MLCGs still be used?

e |s the choice of seeds important?

e Can Descriptive Sampling out perform RNGs?

e Is our choice of a RNG or Descriptive sample affected by the need to
forecast sample size?

and for this, the first question was how to determine if a sample is a quality
sample.

2) For setting the Initial condition and determining the warm up period it was
necessary to devise a practical solution to determine how to set the initial
condition and when measurements should commence in order to use the
minimum of resources whilst obtaining the required accuracy.

3) To determine if there should be one run or many replicates a study was

needed to determine which method, given a certain resource, provided the
most accurate answer.

4) To ensure that no error arises from too short a computer run, a practical

method of ensuring sufficient infrequent events and values in the tails of the
distributions of the real life variables was required.
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4. SELECTION OF THE SOURCE OF RANDOMNESS
(CREATING THE TEST)

4.1 INTRODUCTION

As discussed in the conclusion of the literature review, in order to answer the
questions

e What RNGs provide the quality samples required?

e Can MLCGs still be used?

o Is the choice of seeds important?

o (Can Descriptive Sampling out perform RNGs?

e Is our choice of a RNG or Descriptive sample affected by the need to
forecast sample size?

It is necessary to be able to determine if a sample is a quality sample. For this
a suitable test needs to be selected and if necessary developed.

This i1s done in the next section.

4.2 REQUIREMENT FOR A DISCRIMINATING TEST TO SELECT HIGH
QUALITY SAMPLES

The most straightforward conclusion from reading the literature is that no
generator has been proved to be acceptable based on the concept that a
generator should pass all the tests. The simplistic view of only accepting a
generator that passes all the tests is however easily discarded. In Appendix 8 a
test is devised which will fail any generator of the form:
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where the nth term of a random number sequence is determined from Kk earlier
values. It will be noted that such a sequence would need k seeds.

Such a test may be considered “contrived” but without a justification of
applicability to a real situation all tests are “contrived”. The policy of rejecting
any RNG if it fails a particular test, can be seen to be seen to be unacceptable,
as all RNGs will fail a number of tests. This is shown in a general proof given

| by L'Ecuyer (1998).

Thus attempting to create a new RNG that would pass all known tests was
rejected and the RNG to be selected was to be found within those already

developed.

It is equally true to accept a RNG that fails a test by simply ignoring the test
result without any justification for such an action would seem to be foolhardy.

In the literature survey it was clear that the tests to decide if a RNG was
acceptable were not aimed directly at the needs of discrete-event simulation but
at testing for random behaviour. To perform a verification of any RNGs
suitability for use within discrete-event simulations, the various tests first need
to be evaluated in terms of their relevance to the actual requirements of
discrete-event simulation. A procedure on selecting which tests are relevant
appears to be as elusive as finding a random number generator that will be
acceptable to everyone. For any test to be discarded it would need to be shown
that there is no real life situation where the test would apply. Thus in selecting
candidate RNGs their ability to pass the established tests is not irrelevant but
their failure to pass certain of the more esoteric tests may be.

In this thesis the attempt to select a generator based solely on its ability to pass
tests for randomness was abandoned in favour of an approach more akin to the
testing of a product. That is a form of “Quality Control” was applied. In this
approach the requirement is redefined as the samples used in a discrete-event
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simulation will be those samples that pass a quality standard rather than to
select a RNG based on its ability to pass test and to accept the samples it

creates indiscriminately.

The transfer of the emphasis of the selection to choosing representative

samples rather than RNGs leads to some samples from a particular RNGs
being rejected whilst others are accepted. It may well be that many RNGs,
even ones considered inferior may produce a number of “perfect samples”
whilst a highly regarded RNG, (e.g. one passing the “spectral’ test with “flying
colours”) may produce a number of samples that are unacceptable. If there
were to be a selection of a RNG to be used in specialised simulation software,

then using this methodology, it would be selected on its ability to create a larger
percentage of quality samples than other RNGs.

Traditionally in applying “Quality Control” to screen parts in an industrial
process, a “Go/Fail” test is often applied. In this quality control, a part is
accepted if it passes the test and is rejected if it fails. To apply such a “Quality
Control”, in selected or rejecting samples created by a RNG a test must be
applied. The ideal test is one based on statistics. Thus a discriminating test
based on statistics is required to screen the very good samples from the others.

4.2 SELECTION OF A SUITABLE TEST

As previously discussed, the first priority is to make sure our source of
randomness will enable the simulation analyst to get accurate results. In the
previous section it was assumed that a good sample, one passing the test,
would produce better results than a sample that is less representative of the
true distribution.

As already discussed, the importance of a good sample was shown in the
studies that led Saliby to suggest Descriptive Sampling (Saliby 1980). In this
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work he demonstrated that the average queue size measured in a simulation
was closer to that predicted by theory if the actual traffic intensity produced by
the samples was used in the theoretical calculation rather than using the values
of the underlying distribution from which the samples were purported to have
been drawn. He went on to demonstrate that he obtained superior results by
forcing the samples from the distribution to have the “correct’ mean and
standard deviation. Saliby demonstrated by this work and his later studies
(Saliby 1990a) that if good representative samples are obtained then more
dependable simulation results should ensue.

But large differences in the quality of samples can be obtained even with a RNG
considered by many as acceptable.

As a demonstration, two samples of 1000 random negative exponential
samples values were created using different seeds with same pseudorandom
number generator (the method to convert pseudorandom numbers to negative
exponential samples values is described later). The generator used to create

the pseudorandom numbers was a widely used RNG described by Lewis et al.
(1969).

Two samples were created using two different seeds. These seeds were
determined by procedure described later. The samples were tested to see if
their values followed the expected distribution. The measure of goodness of fit
was made by using the Chi Squared Test (see for example page 42-47 Siegel
1956).
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The following results were obtained:

Seed Probability of x*Value
64689 154.8 99.112%
39170 262.8 0.163%

Degrees of Freedom = 199
RNG used: Lewis at al. (1969) with a Log, transform used to create negative

exponential distribution samples.

Table 4.1: The y* Values of 1000 Samples Using with Two Different Seeds

The results in table 4.1 clearly show that for these very carefully selected seeds,
there is a significant difference in the ability for the two samples to represent a
negative exponential distribution. Seed value 64689 give 1000 samples values
which were distributed as expected, while a seed of value 39170 give a set of
values which would be rejected at the 0.2% “confidence” level and be
considered as not having come from a negative exponential distribution.
(Rejecting at the 0.2% “confidence” level is very conservative and rejection
would be certain in all usual circumstances, as the risk that the distribution was
in fact a negative exponential distribution was equivalent to the risk that an
event had occurred that had a chance of 1/500 or less of occurring.)

If 1000 sample values were required for a single simulation run then the
simulation analyst would not want to use a seed of 39170 with the Lewis et al.

random number generator but he or she would be very satisfied with the sample
if a seed of 64689 was used with that random number generator.

It is not only simulation runs that can be affected by samples that are

considered far from the normal behaviour, real life studies can suffer from
sampling problems.
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Warn (1972) when collecting “real life data” for a simulation of a spare parts
depot using a day long industrial engineering study covering the whole plant,
was informed at the end of the day by the management of the depot, that the
day chosen was most unusual. Such comments from the management of an
area being studied are usual, but on investigation it was found to be the lowest
demand on the depot for ten years!

Woodward (1961) when allocating at random the towns to be allocated to the
research students taking part in a large study of the occupations of English

towns’ inhabitants, was horrified to discover that they had been allocated a
large number of seaside towns, which would tend to have a high proportion of
retired people.

In both cases the sampling was repeated. This is in contrast to the view of
Hacking (1965) who, wishing to preserve the integrity of any table of random
numbers, considered that any set of random tables should include a string of
zeros and that he would not wish to exclude them, although he realised that

such a part of the table should be avoided by anyone using the table for
sampling.

The requirement for truly representative samples so that the results can be
used with confidence is similarly true for discrete event simulation. The need

for a test to ensure the sample is a quality sample was thus well established.

Thus it was helpful to restate the actual requirement as:

“ An RNG should provide, after transformation, a sample of stochastic

variables that are truly representative of the real life variable both in
value and sequence” (See also Saliby 1990a)

A Warn Page 63



Evaluation of Alternative Discrete Event Simulation Experimental Methods

rather than the definition of L'Ecuyer (2001),

“The aim of (pseudo)random number generators (RNGs) is to
implement an imitation of the abstract mathematical concept of
mutually random variables uniformly distributed over the interval
[0,1] (i.i.d.U[0,1], for short)”.

Although both definitions may select the same RNGs as acceptable, there is a
strong possibility that a RNG that will produce satisfactory, or even the best,
samples according to the first definition will fail the definition stated by L’Ecuyer.

In order that the results of the simulation should be accepted, the choice of the
test to be used to perform the selection of quality samples should be such that it

appears to an engineer as straightforward and completely relevant to his or her
needs. Thus a test that evaluates whether the sequence of random numbers
obeys some, If what in certain cases of the more complex tests may be
considered by non-mathematicians, esoteric behaviour of true random numbers
would not be acceptable.

From a standpoint of testing for random behaviour, Knuth's tests (1997) appear
to be a very reasonable method of selecting suitable RNGs and many RNGs
pass these tests. None of these tests, other than the “Equidistribution test’
meet the requirement of being directly relevant. The “Equidistribution test”
alone is insufficient. None of these tests were selected as the discriminating
test.

Other possible candidates for a practical discriminating test were those where
the sequences being evaluated are actually used in simulation models where
the correct result is well known. The quality of each sequence is considered to
be given by the accuracy of the results obtained. Saliby (1990b) compared the

quality of samples created by Descriptive Sampling to certain other RNGs by
such a method.
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Use of such simulation models as quality measures is open to the criticism that
the measurements made in any particular model may not be sensitive to certain
errors In the sample. For example in two of the examples used by Saliby
(1990b), the simple queue, and the “newsboy problem”, there are such
concerns. It is possible that the average queue length in a simple queuing
model may be similar for a range of arrival patterns (see the expression for the
average queue size for a queue with a general service-time distribution on page
99 of Tanner 1995) and that the 