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ABSTRACT 

The aim of the research was to assist non-experts produce meaningful, non-terminating discrete- 

event simulations studies. The exemplar used was manufacturing applications, in particular 

sequential production lines. The thesis addressed the selection of methods for introducing 

randomness, setting the length of individual simulation runs, and determining the conditions for 

starting measurements. "Received wisdom" in these aspects of simulation experimentation was 

not accepted. The research made use of a Markov Chain queuing model and statistical analysis of 

exhaustive computer-based experimentation using test models. A specific production-line model 
drawn from the motor industry was used as a point of reference. 

A distinctive, quality control like, process of facilitating the controlled introduction of 
"representative randomnese' from a pseudo random-number generator was developed, rather than 

relying on a generator's a priori performance in standard statistical tests of randomness. This 

approach proved to be effective and practical. 

Odier results included: 

9 Ile distortion in measurements due to the initial conditions of a simulation run of a queue 

was only corrected by a lengthy run and not by discarding early results. 

9 Simulation experiments of the same queue, demonstrated that a single long run gave greater 

accuracy than having multiple runs. 
Ile choice of random number generator is less important than the choice of seed. Notably, 

RANDU (a "discredited" MLCG) with careful seed selection was able to outperform in tests 

both real random numbers, and other MLCGs if their seed were chosen randomly, 99.8% of 

the time. Similar results were obtained for Mersenne Twister and Descriptive Sampling. 

* Descriptive Smnpling was found to provide the best samples and was less susceptible to errors 

in the forecast of the required sample size. 

9A method of determining the run length of the simulation that would ensure the run was 

representative of the true condifions was proposed. 
An interactive computer program was created to assist in the calculation of the run length of a 

simulation and determine seeds so as to obtain "highly representative" samples, demonstrating the 

facility required in simulation software to support these selected methods. 
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1. INTRODUCTION 

1.1 THE IMPORTANCE OF SIMULATION 

Simulation is the construction and use of a computer-based representation, or 
model, of some part of the real world as a vehicle for experimentation, where to 

experiment on the real world would be impractical, costly, or impossible. The 

purpose of the experimentation is to enable a user-organisation to develop and 
validate plans in advance of committing to some change (such as new 
investment in plant or new operating practice). 

Discrete-event simulation is that form of simulation where the factors being 

modelled may be regarded as changing only at discrete points in time (known 

as "events"), for example a supermarket checkout, a car-body assembly line, or 

an airport terminal. 

Continuous simulation is the form of simulation where the factors being 

modelled vary continuously over time. Examples are the temperature changes 
within an iron ingot and the relative position of a sprung axle travelling over a 

rough surface. 

This research is concerned with discrete-event simulation. 

An example of such a study is one that was made when a major vehicle 
manufacturer was proposing a major investment in a test facility for motorcar 
engines. A discrete-event simulation model was constructed of the proposed 
design. One of the decisions that faced the engineers was which of two types 

of material handling devices (called wait tables) was to be used. One wait table 
had complicated operating logic and would store more than one engine while 
the alternative had only simple operating logic and was only able to store one 
engine. 
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The more complex equipment needed more maintenance, had a shorter 
expected time between failure and a longer expected repair time due to the 
greater number of moving parts and complex logic. It did however offer greater 
buffering capability. Much to the disappointment of the Design Engineers, when 
the two designs were compared using the simulation model, the simpler 
equipment gave a higher throughput. The savings, made from using the 

simpler material handling equipment, allowed for more conveyors to be 
installed, which reduced the impact of breakdowns, and thus an even higher 

long-term throughput was obtained. 

Mathematical analysis of such real industrial situations is often intractable and 
requires the analyst to make many simplifications to enable a solution to be 

obtained. The applicability of any results obtained from such analysis is thus 

restricted to situations where the simplifications are acceptable. The ability of 

simulation to examine real situations with the minimum of simplification, has 

thus given it great appeal and it is reported as the most frequently used 

simulation technique in Operational Research (Harpell et al. 1989). It is also 

reported as being successful (Simulation Study Group 1991). 

It is surprising that simulation is not as widely used throughout industry as 

would be expected. There is a popular view that simulation is only suitable for 

the larger companies. The DTI initiated an investigation into why it was not 

used in the middle size companies (Simulation Study Group 1991). The study 

concluded that one of the main reasons was the need for an expert analyst. 
Such an expert is not always available even in a large company. 
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By way of comparison with simulation it is instructive to reflect on the use of 
Statistical Experimental Design. Grove and Davis (1992) attribute the 
U extraordinary progress in quality improvement made by the Japanese, " to the 

ability of the Japanese engineers to perform experiments based on statistical 

methods, through the creation by Genichi Taguchi of statistical experimental 

methods that are both easy to understand and to apply. 

There may be many who doubt some of the theoretical basis of Taguchi's 

methods but his "cookbook-like" guides have enabled this revolution. The older 
standard texts on experimental design often reflected agricultural experiments. 
This was probably due to the origins of the methodology in the 1920s (Fisher 
1960). It was generally considered that a statistician was required to apply the 
techniques. The move to totally industry based and "easily understood" 
procedures has led to statistical experimental design being available to all 
engineers and to a much wider use. A similar establishment of a set of simple 
basic rules for simulation studies could give the technique a similar stimulus. 
Indeed Wadsack and Tobias (1994) stated that there was a need for a 
framework giving assistance "beyond automatic run generation and report 

generation" to "help practitioners to ensure experimental validity. " Hollocks 

(1995) also expressed the need to provide the practitioner with a robust 

experimental framework that will at least prevent erroneous results from 

incomplete experimentation and if possible enable the identification of the 

optimum design to be made within the existing time pressures. 

Wadsack and Tobias confirmed that they found, from their interviews, that many 

organisations were operating under time pressures. Wadsack and Tobias 

expressed concern with the limited experimentation and analysis performed by 
these organisations. They found that many organisations were, in their view, 
lanot allowing their models to 'warm-up' sufficiently" and unot running their 
models for a long enough period of time" and they reported that they found 
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some instances where the organisation "only performs a single simulation run at 
the 'eleventh houe. " 

1.2 THE AIM OF THIS RESEARCH 

Although the use of simulation may be broken down to a large number of 

phases, it is possible to group them into three major phases: 
Construction of the model to reflect the real life system, 

2. Using the model to resolve the questions being asked of the real life 

system 
3. Applying the results. 

In this research, decisions within the second phase were studied (the phase 
highlighted as a concern by Wadsack and Tobias, 1994). The decisions 

investigated were those made at the commencement of a simulation "run. " 

To provide the required information from a model using simulation, a number of 
Nruns" are made in which various factors are changed. In the example of the 

test facility for motorcar engines described earlier the question asked was, 
"What type of material handling equipment should be used? " To answer this 

question two sets of runs were made. One set was with the simple material 
handling equipment and the other set was with the complex material handling 

equipment. From the results of the two sets of runs the most effective material 
handling equipment was then selected. 

But it is not that straightforward. In real life there is variability in performance 
and there are unpredictable breakdowns. For the simulation model to be 

realistic some form of randomness needs to be introduced to reflect the 

stochastic nature of the various real life processes. Thus any analysis of the 

measurements from such a system must be based on statistical methods. 
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In the example above any conclusion about the benefits of one material 
handling system over the other must be based on enough information, which 
means, in practical terms, making sufficient number of runs of adequate length 
in order to determine that any measured difference is real. 

It is also necessary, in order to achieve trustworthy results, not only to have 

runs long enough to truly reflect the performance of the system but to have 

suitable conditions at the start of the measurements so that all the 

measurements are relevant. The relevant conditions that need to be 

considered may include for example whether machines or men are busy or idle 

or how many parts should be in the storage areas. 

The aim of this research was to select simple methods for use by non- 
specialists who wish to perform discrete event simulation runs. These methods 
would later be included in a total framework, which when finally created, will 
enable the non-expert user to obtain accurate and meaningful results with the 
least use of his or her resources. In this thesis the aim was to evaluate the 

choices made when establishing the actual simulation run. This is only a part of 
the total framework required. However the decisions made while setting up the 

computer run may be seen to be crucial, as it is unlikely that any action taken 
later would be able to eliminate any errors introduced at this stage. For 

example, if the sampling procedures are non-representative or if the run length 
is too short to give an accurate reflection of the performance, incorrect 

conclusions may be made on the accuracy obtained in the simulation and the 

significance of the results. 

The aim of the research was also to determine what changes are required in the 

specialist software to enable the selected methods to operate in their systems. 

To produce a tighter definition of the aims of the research it was necessary to 
determine the decisions required to establish a simulation run. 
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1.3 THE DECISIONS REQUIRED TO ESTABLISH A SIMULATION RUN 

It has been assumed that the analyst engaged in a simulation study is at the 

stage where there exists a plan of experimentation runs, probably based on 

statistical methods, to test the various alternative designs. The requirement 
then is to perform the individual set of tests such as to obtain meaningful 
results. 

As previously mentioned, one of, if not the most, critical requirement is a sound 
method of introducing some form of randomness into the simulation to 

accurately reflect the true stochastic nature of real life. In practical terms this 
has usually meant using a random number generator. Such a random number 
generator is an arithmetic calculation whose resulting sequence of numbers is 
deemed random. Construction of simulation models has been made easier by 
the availability of specialist packages. The specialist packages normally have 
imbedded generators that often cannot be changed by the user of the package. 
The choice is often, as in Witness (Lanner Group 1998), one of the most 
popular simulation software packages, to select from a limited number of a 
predetermined seeds. The imbedded generator may not be satisfactory, as is 
demonstrated by the concern with Microsoft's EXCEL whose random number 

generator has indeed been deemed unsatisfactory (McCullough and Wilson 
1999, L'Ecuyer 2001). Although EXCEL is software designed for creation of 

spreadsheet rather than being a specialist simulation software package, it is 

widely used and indicates that any embedded software within a package must 
be reviewed with caution. Indeed the lack of a random number generator that is 

universally accepted is discussed later. 
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There has been a revival of interest in real random number generators (these 

are not based on an arithmetic procedure but instead use some naturally 
occurring "chaotic" process to create the random number) and these will be 
discussed later. Indeed a set of real random numbers was used in the thesis to 

perform a mathematical calculation (in this case, a calibration) using a 
numerical analysis method, Monte Carlo Method, which is based on random 
numbers, (see Hammersly and Handscomb 1964) where traditional analytical 
methods were considered not to be feasible. As yet (2003) real random number 
generators have not been seriously proposed for use in present day discrete- 

event simulation. 

The arithmetic procedures require a number, or numbers, to be selected in 

order to initiate the sequence. These numbers are called "seeds". It will be 

seen that the choice of these seed values has received virtually no analysis in 

the literature. Indeed the choice of seed or seeds has usually been considered 

as unimportant. 

Most writers considered it is important to determine a point or time in the 

simulation run when measurements should begin to be taken and this is not 

usually the beginning of the simulation run. This is because it is usual after 
having developed a model for it to be empty, that is it is without intermediate 

stocks of partly worked parts, and has machines and men idle. Such a position 
may be very unusual in real life and if the simulation was to start from this 

position and measurements were taken from the start, the initial readings would 
be correctly considered as untypical. It is generally supported in the literature 
(see for example Law and Kelton 2000) that when measuring the "on-going" 

performance of a system that it is necessary to have a "warm up" period, and 
not to take measurements until this period has passed so as to overcome any 
distortion due to the actual starting position. Indeed many writers state that 

measurements should only be taken when *steady state" is obtained. As will be 
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discussed later, usteady state" is difficult to detect and the need to discard earlY 
readings has been questioned. 

The length of run after the "warm up" period must be long enough so that the 

results obtained are statistically sound and thus meaningful. This may be 

considered as not a vital decision at the start of a simulation run as 
measurements during the run can be made and these may be used to 
determine if the run was of sufficient length and, if not, the run could be 

extended. Such an analysis is not so straightforward, as most systems will 
have a degree of autocorrelation in any frequently measured metric of 
performance, since most industrial systems will have queues and machines 
whose state will be dependent on their condition when the previous 
measurement of the metric of performance was made. Thus the measurements 
taken over time will not be statistically independent, as is required by many 

statistical tests. There is information in the literature on techniques to determine 
the adequacy of a run that take account of autocorrelation and a reference to 
them is given later. As stated by Robinson (1994) these methods still rely on 
the initial run being sufficiently long as to be representative otherwise any 
measurement to determine if the run length has been sufficient would be 
flawed. In this thesis, the determination of a suitable run length before any 

simulation runs have made was considered. There is virtually no analysis in the 

literature available to assist in this decision. However they may exist a number 
of rules of thumb. However they do not appear to have been published. 
Robinson (1994) made reference to one such rule of thumb: 

"during a run, at least ten to twenty samples should 
be taken from every distribution of the model" 

In a personal communication Robinson (2003) stated that he now considered 
that this would not lead to an adequate run time. 
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For this research the following fundamental basic design decisions were 
rigorously investigated: 

* The choice of method of introducing randomness into the simulation 

* Determination of the initial condition and warm up period 

9 The initial setting of the duration of the computer run. 
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2. THE METHODOLOGY USED 

For this research, a real life model of a part of a production plant producing 

engines for a medium size luxury car was used as the test vehicle. This 

consists of a machining line and an engine assembly line. Ladbrook (1998) 

reports that five similar facilities (four machining lines and one engine assembly 
line) would require an investment of over 400 million US dollars. 

The majority of analysis in this thesis was made using mathematical techniques 
that included simulation, Monte Carlo Methods, and use of Markov Chain 

models. Analytical mathematical analysis (e. g. Markov Chain analysis) of even 
this part of the production plant, without excessive simplification, was not 
considered feasible due to the large number of state variables and associated 
values (See for example Kouikoglou and Phillis 2001 pages 1-7) and such 
analysis was restricted to single elements (queues) within the model. 

Alternative methodologies based on studying practices currently employed by 

users of simulation, such as surveys or ethnographics were considered to be 
less likely to be successful due to the limited range of statistical procedures 
either used or able to be used by the majority of modellers (Wadsack and 
Tobias 1994, Hollocks 1995). One of the causes of this limitation is that most 

efficient model-builders use specialised simulation software that restrict the 

statistical methods available to the user. An example that will be discussed 
later is the imbedded random number generators. Thus any results from such a 

study using these methodologies would tend to perpetuate the weaknesses that 

exist in current practice. 

Action learning techniques were also rejected as using a real life development 

would have imposed problems if techniques being tested proved to be 
inefficient, since almost all projects in industry are subject to time pressures and 
any wasted time would be unacceptable (See Wadsack and Tobias 1994). 
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3. LITERATURE REVIEW 

3.1 FOCUS OF THE REVIEW 

As stated in the earlier section, the following design decisions were 
investigated: 

* The choice of method of introducing randomness into the simulation 

9 Determination of the initial condition and warm up period 

9 The initial setting of the duration of the computer run. 

The current literature was reviewed to determine what was the current 

understanding of the best methods of making these decisions. 

The first review was to examine the methods proposed to introduce 

randomness. Since randomness especially in the form of random numbers is 

used in numerous fields other than simulation, notably the fields of Monte Carlo 

Methods and Cryptography, the literature is widespread. The designers of 

generators of random numbers appear to be aiming to design them so that they 

are universally applicable rather than for discrete-event simulation studies. The 

review has concentrated on literature that apparently is for, although not 

exclusively for, the simulation community. 

3.2 DEFINITION OF RANDOMNESS 

In order to understand the difficulties facing the designers of methods of 
introducing randomness it is instructive to consider the definition of randomness 
and random numbers. 
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3.2.1 Definition of Randomness and Random Numbers 

Bennett (1998) gives a brief description of the main attempts to define 

randomness but states that the search for a universally accepted definition has 

not yet been successful. The usual form of randomness used in simulation 

studies is a stream of random numbers where the numbers take random values 
between 0 and 1. 

In developing methods of creating random numbers in discrete-event 

simulation, most writers have assumed a pragmatic definition for randomness. 
They consider a sequence of numbers is to be acceptable as being random if it 

passes a set of established tests (see for example Knuth 1998). The term 
"pseudorandom numberso is a convenient term for a string of random numbers 
generated by some arithmetic process. Such "pseudorandom numbers" would 
not suffice for all purposes; they cannot for example replace the randomising 
device used in the British National Lottery. 

Bennett states, that such practical definitions "are not without their deficiencies. 
In such a pragmatic approach a generator is rejected if and only if it creates a 

string of numbers that is unlikely to be random to such an extent as to give 
incorrect results in our proposed use. 

This reference to uproposed use" is important since random numbers are not 
only used in simulation. They are useful in mathematical methods referred to 

as Monte Carlo methods where the mathematics of statistics is used to solve 

problems that are deterministic (Hammersly and Handscomb 1964). Often 

Monte Carlo Methods are used where "traditional" analytical methods are 
impractical or even impossible. These methods typically require large 

sequences of random numbers. 
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Another area where random numbers are required is in cryptography. Here the 

desire is for the sequence to be unpredictable and that the generating function 

cannot be discovered in any reasonable time (see for example Blum et al. 1986). 

The development of methods of creating random numbers and the development 

of tests have proceeded in parallel. As one method of creating random 

numbers is developed, a test has been developed which the method fails. For 

this study the development of tests will first be considered then the development 

of methods. 

3.2.2 Tests to Ensure a Stream of Numbers Is Acceptable as Random 

At present no professional or learned body has established a standard list of 
tests, a recommended random number generator, or a standard set of tables. 

Knuth (1980 and 1998) however gives a range of empirical tests (see table 3.1 

on page 26). 

Tocher (1960) gives several of the tests given later by Knuth. Several of the 

tests were devised by Kendall and Babington-Smith (1938,1939). These are 

indicated within table 3.1. The Babington-Smith tests were originally designed 

to be applied to the individual digits in the random sequence. Tocher also gives 

another test that Knuth did not include in his list. Tocher states that Yule (see 

Yule 1938) devised it, and refers to it as the "Yule's test". The test consisted of 

determining the distribution of sums of sets of non-overlapping 5 digits within 

the sequence and testing the actual against the theoretical distribution. This 

test seems to have been forgotten, maybe due to the need to determine the 

theoretical distribution by a "practical arithmetic process. " 
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Test Name Brief Description 

Equidistribution test** The spread of the random numbers over the whole range 
Serial test** The frequency that a certain of pairs of numbers occur 
Gap test** The length of sequences between certain range of values 

Poker test** The values of sets of five sequential numbers 
Coupon collectors test The length of sequence required to obtain all the values 

The frequency of the different relative orderings of sets 
Permutation test 

of a fixed number of sequential numbers 
Test the frequency of run lengths of numbers 

Runs test** 
increasing (or decreasing) 

Test the frequency of the maximum number in 
Maximum-of-t test 

a set of t sequential numbers 
Test distribution of n-tuples in n-dimensional space. 

Collision test 
Description given later. 

Test the frequency of the difference in the numbers 
Birthday spacing test* of a fixed length sequence after sorting. 

A number of sequences need to be tested 

Test the serial correlation between n sequential numbers 
Serial correlation test 

I and the same sequence cyclically shifted sequence 

* Not in the second edition 1980 but included in the third edition 1998. 

** Included by Tocher (1960) devised by Kendall and Babington-Smith (1938) 

Table 3.1 The List of Empirical Test Given by Knuth 
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Another test described by Tocher, the D2 test, was devised by Gruenberger and 
Mark (195 1), in which four consecutive random numbers are used to construct 
two points within a square and the distance between the points is calculated. 
The test consists of comparing the distribution of the actual distances with the 
theoretical distribution. This test is special since it is aimed at determining if the 

random number stream is suitable for its purpose, which in this case is 

evaluating integrals. Tocher considered it would be ideal to use tests that were 
"tailor-made" for the proposed use of the random numbers. He stated that in 
1960, "This tailor-made approach, of course, is not very realistic in practice. " 

Knuth classifies the tests for random number generators as being either 
empirical or theoretical. He states that, in a theoretical test, the statistic can be 

calculated from the values used in the function that creates the sequence. This 

requires there to be developed an analytical method to calculate the statistic, 

which even Knuth himself states is difficult. 

In empirical tests, the actual sequence is analysed. Knuth warns that even if a 

generator passes a theoretical test, the sequence to be used should be tested 
for short-term non-random behaviour by empirical tests. 

Marsaglia (1985) states that the list of tests given by Knuth is not to be taken as 
the standard, however in practice many writers still refer to the tests in Knuth's 
list. (See for example Law and Kelton 2000). Knuth states that of the tests in 

Table 3.1, the 'spectral test", a theoretical test is the most powerful, and any 
generator with high "accuracy" scores is acceptable. The spectral test is only 

applicable to one type of random number generator, but it is the most popular 
(This generator, the Mixed Linear Congruent Generator or MLCG, and the 
uspectral test" are described later). 

Marsaglia gives a set of more stringent tests and other sets of tests exist. 
Dudewicz and Ralley (1981) created TESTRAND, although not now available, 
which is basically the same as Knuth's. Marsaglia has made his tests available 
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as a battery of tests called DIEHARD, which is available on the Internet 
(Marsaglia 2002). Most tests, as can be seen from Table 3.1, are based on 
simple concepts, for example the length of sequences of ascending or 
descending numbers. Dudewicz and van de Meulen (1983) (also Walker 1998) 
have developed a more radical approach based on the thermodynamic 

measure of disorder, which is termed entropy, and introduced the concept of 
Othe entropy of the sequence". However, the use of this "entropy measure" was 
put into doubt by Bernhofen et al. (1996) who showed that RAN DU, a 
discredited generator (see for example Knuth 1998 and Appendix 2), is 
grecommended" by the Dudewicz and van de Meulen's "entropy measure"I 

The concerns regarding the validity of existing random number generators have 

led to this growth in the number of tests. As Marsaglia (1985) states, there is no 

problem in creating more tests for determining whether a sequence is random. 
This reflects the statement of the earlier workers, Kendall and Babington-Smith 
(1938), that the number of tests that can be developed is only limited by human 
ingenuity and, as Tocher noted, "their implication that a test may be able to be 

found that will fail any particular sequence of random numbers 

Currently many workers in the field are considering tests based on creating 
points in n-dimensional space. They consider that these points are created by 

the sequence of random numbers; a sequence of n random numbers being 

used to define a single point in n-dimensional space. A lengthy sequence of 
random numbers will create many points and various tests have been design to 

check if the distribution of these points is random. An early version was one by 

Davis and Rabinowitz (1956). Here the distribution of the number of points 
falling within an n-dimensional sphere is compared with the theoretical 
distribution. A direct use of this concept is the measure of merit, P, used by 

Knuth in determining the performance of generators when analysed by the 
uspectral test'. Here gn is related to the number of points, formed by the 
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sequence of upseudorandom numbers' created by the MLCG being tested, in 
an ellipsoid in n-dimensional space. (See page 105 Knuth 1997) 

Marsaglia (2000), although fully supporting the use of this type of test, states 
that these tests require a large number of random numbers. 

Two recently described tests of this form that are often failed by the most 
popular random number generator, the Mixed Linear Congruent Generator 
(described later), are the Collision and Birthday Spacing tests (both now 
included in Knuth's list). The Collision test is similar to the test of Davis and 
Rabinowitz. Descriptions of the Collision test and the Birthday Spacing test, 

which was devised by Marsaglia (1985), and the test statistic applied, the 

measurement of discrepancy, are given by L'Ecuyer (2001). 

A brief description of these two tests is that they measure the difference 
between the positions of points in n-dimensional space. This is performed by 
dividing the axes of the space into m equal divisions, thus forming mn cells. 
Each cell has n sides. The tests consist of determining how many cells have 
two points (Collision test) and the distribution of the distance between occupied 
cells (Birthday Spacing test). The distribution of the number of expected 
collisions and the distance between occupied cells can be calculated from 

statistical theory. 

Statistical methodology states that the null hypothesis "that the sequence is a 

random sequence" should be rejected if the probability of obtaining the result 

actually obtained, if the null hypothesis were true, would be small. Thus if 

statistical methodology is strictly applied, generators giving evenly distributed 

points, which may have a low probability of occurring if the points were really 
random, will be rejected equally as generators that give "severely bunched" 

points. Indeed L'Ecuyer (2001) strictly applied the methodology and when 
using the collision test rejected random number generator that had too few, as 
well as those having too many collisions. Therefore he proposed rejecting 
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random number generators based on the spread of random numbers in n- 
dimensional space being too uniforml Indeed, Niederreiter (1992) had stated 
that MLCGs produced pseudo-random numbers with too regular in structure 
and thus were consistently failing these tests. 

There is however a valid case for selecting a generator where the spread would 
be considered by a statistical test as being "too uniform" since it has been 

noted that a generator that gives an even spread of random numbers gives 
more accurate results (Saliby 1990a). This is considered to be true for Monte 
Carlo analyses where "quasi-random numbers" have been to obtain greater 
accuracy (Niederreiter 1978). These "quasi-random numbers" are specially 
generated to give evenly spread random numbers. Indeed in a paper 
addressing Monte Carlo methods based on quasi-random numbers, L'Ecuyer 

and Lemieux (1999) contradicts both the need for a long cycle, that L'Ecuyer 

usually advocates (see discussion later), and for randomly distributed points. In 

this paper they state, 

"What we suggest is the opposite: Take a small random number 
generator with only n states, and let Pri be the set of all vectors of t 

successive output values generated by the generator, from all its 
initial states (i. e. over all its cycle). If the generator is designed so 
that Pn covers the unit hypercube more evenly than random points, it 

appears plausible that bn could be a better approximation than Qn 

obtained by random points. " 

Qn is here the approximation of an integral using a Monte Carlo method. The 

idea of quasi-random numbers is not new and will be discussed later. 

A measure of the evenness within the n-dimensions is given by a metric called 
discrepancy. This measures the distribution of the number of points in 

predefined cells shapes in the n-dimensional space. This concept is explained 
further by LEcuyer (2000). 
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As previously discussed the development of these tests has been alongside a 
development of random number generators. 

3.3 METHODS OF SUPPLYING THE STREAM OF RANDOM NUMBERS 

3.3.1 Physical Devices and Tables 

A brief history of the creation of random numbers is given by Bennett (1998) 

and Knuth (1998). In the early days of computing, devices based on natural 
random processes were proposed to supply the required random numbers 
(Tocher 1960). 

Knuth reports that, 

uthe Ferranti Mark I computer, first installed in 1951, had a built-in 

instruction that put 20 random bits into the accumulator using a 

resistance noise generator; this feature had been recommended by A. 

M. Turing. " 

Tocher (1960) stated that he had never seen details of the mechanism nor 

of any description of any studies made using it. He went on to state no 
further Ferranti machine had incorporated such a feature. 

Details of a number of such natural random process devices are given by 
Tocher (1960). However the devices were found to be too slow. Tocher 

reports the device used by the RAND Corporation produced and printed 
random decimal digits at the rate of one a second. Instead tables of 
random number were published (for example RAND Corporation, 1955). 
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These tables (usually also available on tape) would then be made 
available for use in the computer based simulation model. 

The early researchers found even accessing tables of data (possibly held on a 
magnetic drum) extremely slow, and arithmetic methods of generating random 
numbers, or to be more accurate upseudorandom numbers", were sought 
(Tocher 1960). Two of the criteria that were used then, and are still considered 
important, for selecting a suitable method were speed and cycle or period 
length. Since computer have a limited set of numbers, all arithmetic processes 
used to produce random numbers will repeat. Too short a cycle was 
considered undesirable as it was considered that the experimental results would 
be questionable if the same set of random numbers were repeated. Due to the 
high cost of fast memory they also had to consider the size of the code. 

Tocher states that there are advantages in using arithmetic process for 

generating "pseudorandom" numbers as the sequence is repeatable and 
experiments can therefore be reproduced. 

The developments within data processing that have enabled large amounts of 
data to be quickly read, have lead to resurgence of the idea of tables. 
Marsaglia has produced a CD-ROM containing what he intended to be "an 

unassailable source" of real random numbers. This he created by, 

u.. a combination of several of the best deterministic random number 

generators (RNGs), together with three sources of white noise, as 

well as black noise (from a rap music digital recording)" (Marsaglia 

2002). 

There are a number of web sites that offer tables that can be downloaded. 
Such a web site has been created by Haahr (1999). It produces a random 
stream of bits by tuning into a frequency where nobody is broadcasting. Many 

of the bits are discarded and then the remaining stream is amended to remove 
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any bias and is regularly tested by a measure based on entropy (Walker 1998). 
The site, as well as allowing real time sampling of the stream, also provides 
random streams created earlier. The real time speed of creation in 2002 was 
only 8 KB of raw data a minute but a faster version is planned (Haahr 2002). 

For discrete-event simulation the most viable source at the present time is still 
considered to be one based on an arithmetic process and no specialised 
simulation software package was found that did not have one as its standard 
RNG. 

3.3.2 Linear Congruent Generators 

The most commonly used arithmetic based random number generators are 
those based on the congruential generator. The most popular, by far, is the 
linear congruential generator (LCG). This method, exploiting number theory, 

was first proposed by Lehmer (1951). 

There are now a number of formulations of the generator. A definition 

embracing these formulations is: 
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Xn Em (X. 
-, a+ c) mod(m) 

where Xo is a seed given by the user 
C>o 
if C=O XO >0 
if c>0 XO ý-- 0 

a >> 0 

m>a 
The term r. is the nth random number. 
if % is not to take the values 0 or I 

To =Xn/M c=O or 

r. = 
(xn + 1)/(m + 1) c>0 

if r. is not to take the value 0 but can take the value I 

r, = X, /(M - 1) c=0 or 
r, = (X. + 1)/m C>O 

if r. is not to take the value I but can take the value 0 
rn = 

(Xn 
- 1)/(m - 1) c=0 or 

r. = X.. /m c>O 
if r,, can take the values 0 and I 

r. = 
(Xn- 1)/(m - 2) c=0 or 

ra =Xn/(M-1) C>O 

The usual selection of c and calculation of rn has: 

C=o 

r. = 

With such a choice it is obviously not advisable to have a seed of zero. 

This general form is usually referred to as the "mixed linear congruent 
generator" or sometimes "multiplicative linear congruent generator, with the 

abbreviation MLCG, to distinguish it from the linear congruent generator (LCG) 

where there was no c or "offset" term. In this study the abbreviation MLCG will 
be used for both. Fishman and Moore (1986) have made an exhaustive search 
for the best set of mixed linear congruent generators with a modulus of 2 31_1. 
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L'Ecuyer (1999) produced a table of moduli and multipliers with good 

performance in the spectral test. Knuth has published on the Internet (Knuth 
1999) that the multiplier 2650845021 obtained by Killingbeck after an 

exhaustive search of all multipliers of the form aaI mod 4 for an M LCG based 

on a modulus of 2 32 performs very well. Knuth went on to state "its spectacular 
g scores (3.61,4.20,5.37,8.85,4.11) exceed all values 92,93, p, and p5 for 

any modulus in the entire table. " The term p is, as described earlier, Knuth's 

metric of merit that he uses when applying the "spectral" test. 

An extension of the MLCG with more than one multiplier is the Multiple 
Recursive Generator (MRG). A kth-order MRG has the form: 

(a, X�-, . ............ aX�)modm 

Kao and Tang (1997) searched for the best MRG with a modulus of 2 31_1 and 

selected a third order MRG. (Unfortunately the abbreviation MRG is also used 
for random generators created by combining MLCGsl) 

3.3.3 Serious Concerns with the Linear Congruential Generator 

Confidence in the linear congruential generator was seriously shaken by the 

paper "Random Numbers Fall Mainly in the Planes' by Marsaglia (1968). In 

this paper he proved that Lehmer's random number generator (MLCG) 

produced results with a "crystalline" structure. That is the points, created by 

sets of m successive "pseudorandom numbers", lie on a limited number of 
hyperplanes. 

Marsaglia gives the example of using a modulus of 2 32 
. Fewer than 2,953 

hyperplanes will contain all the 3-tuples. (3-tuples are the points created by 

three sequential "pseudorandom numbers" in a three dimensional space. ) If the 

numbers were truly random Marsaglia stated that it could be theoretically shown 
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(but not in his paper) that the smallest number of planes that would contain all 
the points is about 108. Based on this, Marsaglia stated that MLCGs were 
unsatisfactory. 

He restated this view in 1985 (Marsaglia 1985) and introduced his more 

stringent tests, which MLCGs fail. 

Knuth (1998) does not share Marsaglia's view. He states 

"At first glance we might think that such systematic behaviour is so 

non-random as to make congruential generators quite worthless; but 

more careful reflection, remembering that rn is quite large in practice, 
provides a better insight. " 

He goes on to state that if we take truly random numbers between 0 and 1 and 
round or truncate them (he did not give an indication to what degree of 
truncation he meant) then we would obtain an extremely regular Structure when 
viewed under a microscope. One must imagining he is considering plotting the 

points, following Marsaglia's scheme, in space and that he is using a scale that 

provides a dense mass of points such that a microscope is needed to see the 

structurel Ignoring this imprecise imagery it is clear that Knuth's view is that 
MLCGs with hyperplanes that are close together are acceptable (His measure 
of acceptability is that the hyperplanes are close together that is the generator 
passes the so called spectral test, which measures the distance between the 
hyperplanes). Knuth defined the reciprocal of the distance between the 
hyperplanes as the "accuracy". Thus he states that the larger the accuracy the 

"better" is the generator. Here "better means that the lattice structure is finer 

and thus the objection raised in Marsaglia's paper has less validity. Knuth also 
has a metric of merit g, as discussed earlier, for evaluating if a generator 
passes the "spectral" test. James (1994), when criticising Marsaglia for 

apparently accepting MLCG as "still pretty good", stated, *I hold that a random 
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number generator which unknowingly gives you an incorrect result is not only 
bad, it is catastrophic. " 

During this search of literature, no published paper was found that stated an 
incorrect result had been obtained, or bad decision had been made due to the 

poor random number generator used in a real life discrete-event simulation 
study. This indirectly gives support to Knuth's view, but later in this thesis an 
account of a "biased" result in a computational physics study is discussed. Also 
it may be considered that the lack of such reports of incorrect results within 
discrete-event simulation maybe due to a reluctance to report such an error or 

simply that the error would not have been detected, as feared by James. It is 

also important to note the criticisms have often come from users of random 
numbers in application not connected to discrete-event simulation, for example 
James's interest in random numbers appears to be with Monte Carlo Method 

calculations within computational physics. 

3.3.4 Alternative Psuedo-Random Number Generators 

MLCGs are still widely used and marked improvements in the values of m, and 

a have been achieved, but there is a drive to create generators without their 

weaknesses. 

To examine every type of RNG ever suggested is a large task and is beyond 

the needs of this thesis, as only the more significant RNGs are likely to be 

selected and therefore only they need to be considered. However of the many 

alternative RNGs that have been developed, and are being developed, they 

may be classified into two main forms: 

Fibonacci and Lagged Fibonacci Sequences 

Shift-Register Generators 
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It is also true that improvements in already existing RNGs have been made by 

combining RNGs. 

These will now be discussed. 

3.3.5 Fibonacci and Lagged Fibonacci Sequences 

An early alternative method of obtaining "pseudorandom numbers" (Knuth 1998, 

suggested the method was considered in the early 1950s) was by using the 

sequence of numbers of already generated. That is: 

Xn+l4(Xn-m, Xn4m-1) 
. ...... 

Xn) 

An example of such a "Fibonacci Sequence" is 

Y. n+, = (Xa+ X�., ) mod m 

In order to improve the performance in the test for randomness the sequence 

was "lagged" i. e. 

Xn=(Xn-r+Xn-s) mod m, n>r, n>s 

Knuth (1998) states that values of r and s (the lags), as suggested by Mitchell 

and Moore (unpublished), of 24 and 55 respectively, and m having an even 

value, are particularly good values. 
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Marsaglia and Zarnan (1991) state that all "additive" Fibonacci and Lagged 
Fibonacci sequences fail the "Hgorous tests" (tests suggested by Marsaglia 

1985) and although they stated that the "multiplicative" form: 

X, =(X, i. X�) mod m 

passes these stringent tests, Marsaglia and Zaman (1991) suggested a new 

class of generator. 

This new class of generator consisted of improved versions of the "additive" 
Lagged Fibonacci sequences. In these improved versions, the carry or borrow 
bit is used to amend the next number in the sequence. (They appear to have 
followed this development as they wished to avoid the slower operation of 
"multiply"). These new methods are called "Add with Carry" and "Subtract with 
Borrow" or "ACSB" (Marsaglia and Zaman 1991). The "Add with Carry" is used 
when the numbers in the function are added and the "Subtract with Borrow" is 

used when the numbers are subtracted. The terms come from "schoolboy" 

arithmetic. 

These generators (ACSBs) found favour in applications where a large number 
of random numbers were required and speed of generation was important. 
Ferrenberg et al. (1992) have reported that there have been problems with this 

generator due to "long-term autocorrelation". When the generator was used in 

their Monte Carlo studies in theoretical physics, the results were found to be 
biased. 

Ferrenberg et al. found that an old congruential random number generator, 
originally proposed by Lewis et al. (1969) was more precise in its estimates. 

LOscher (1994) states that to avoid these long-term autocorrelation problems, 
both in ACSBs and other RNGs, 24 random numbers should be generated then 

the next (p-24) should be discarded. The value of p may be changed to give 
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different level of protection against autocorrelation. This has been implemented 
into a computer program (RANLUX) by James (1994), where the default value 
of p, is 223 and the highest selectable value is 389. The random generator used 
by this implementation was the original WSW of Marsaglia and Zaman. [The 
implementation, by James, of this original "ACS13", without the discarding of 
a pseudorandom numbers", was called RCARRY (see LOscher 1994). ] 

This stratagem of throwing away the majority of the created sequence is one 

reason for seeking longer cycle lengths. 

Further to the problems of long-term autocorrelation found when using the "Add 

with Carry and Subtract with Borrow" generators, Tezuka et al. (1993) and 
Couture & L'Ecuyer (1994) showed that these RNGs also produced lattice 

structures and a Mixed Linear Congruent Generator could be found that would 

produce the same random number streams. 

Knuth (1998) was thus able to include one of these ACSB generators in his 

tables of uspectral" test results. At the time of publication of Knuth's book 

(1998), the "ACSB" RNG gave the highest value of "accuracy-" Since then 

Knuth has, as previously stated, declared that using the "spectral test, " the 

random number generator of Killingbeck out performs all the generators in his 

table 1 (page 106 of Knuth 1998), including the "ACSBO - 

3.3.6 Shift-Register Generators 

A popular alternative RNG is the Shift-Register Generators (see Golomb 1967), 

of which a well-known form is that suggested by Tausworthe (1965). Here the 

random sequence is a stream of bits that are generated by a logic operation 
(e. g. XOR) on earlier portions of the bit sequence. Knuth (1998) states a 

commonly considered method to create a random number from the bit stream is 

to consider the bits bl, b2 simply concatenated thus: 
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Xný(O. bjb2 ............ )2 

But Knuth states that such random numbers do not pass the necessary 
statistical tests even if the individual bits are random. 

The method of using logic operations on the string of bits has been improved by 
including register shifts and by using a number of streams of bits that are then 

combined to form a single number. In more complex implementations the 
logical operations are also performed across the streams. This is termed 
"Twisting". 

The apparent need for computational physics to have uniform density of large 

numbers of random numbers in multi-dimensional space has led to a 
development of a spectacular "twisted generalised feedback shift register" 
(TGFSR) pseudorandom number generator called the Mersenne Twister 

(Matsumoto and Nishimura 1998). (Mersenne is the name of a prime number of 
the form 2n_1 ). This "pseudorandom number" generator has 624 bit streams 

and thus requires 624 seeds. To create the seeds another random number 

generator is used. The FORTRAN version of the Mersenne Twister (Takano 

1999) uses a random number generator suggested by Marsaglia (line 15 in 

Table 1, Knuth 1998) to generate the 624 seeds from a single seed. There 

have been reports that in an earlier version of the generator there was a 

problem with certain seed selection (Mersenne Twister Home Page, 2002). 
This has led to a rejection of some of the earlier methods of producing the 

seeds. 

3.3.7 Combining Existing RNGs 

One method of improving on the performance of a single random number 
generator is to combine two or more random number generators. A number of 
writers have claimed success in combining RNGs. For example L'Ecuyer 
(1988), when wishing to create an acceptable random number generator for a 
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16-bit computer, combined three multiplicative linear congruent generators to 
form a generator with a much longer cycle then the three original MLCGs 

(increasing from approximately 3x 104 to 8X 1012) 
. 

Knuth (1998) however 

states that at present the theoretical basis for such combinations seems 

complex and obscure, and he warns of the danger that if the choice of random 

number generator is based on an inability to understand, then it may be 

considered that the random number generator is itself being selected at 
random. Knuth concludes sagely, that the choice of a random number 
generator should never be made at random. 

3.4 ALTERNATIVE METHODS OF SUPPLYING "RANDOMNESS" 

In the field of Monte Carlo Methods there have been developments where the 

grandomness" has been replaced by specially constructed sequence of 

numbers called "quasi-random numbers" (see for example Niederreiter 1992). 

This has been shown to be more accurate in evaluating integrals (Niederreiter 

1978). In the area of simulation, Brenner (1963) and Saliby (1990a) both 

proposed methods of constructing a sequence of random variates of fixed 

length, having a perfect mean and distribution. Their methods are very similar. 
A description of this method will be described later when it is tested. This 

method has not been widely used. Pidd (1992) suggested it should be given 

more attention. When Saliby presented his method to the Simulation Study 

Group of the Operational Research Society in 1988 it was heavily criticised as 
being contrary to "well known good practice. " Kleijnen and van Groenendaal 

(1992) rejected the method as they considered it would give biased results. 

3.5 CYCLE LENGTH 

One of the driving forces to develop new generators is to increase the cycle 
length. One of the reasons for requiring a large cycle length is to accommodate 
the suggestion to reject large portions of the generated sequence. This 
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suggestion is not only made for "Add with Carry and Subtract with Borrow" 

random number generators when long-term autocorrelation was being removed 
but there is also a wish to reject most of a MLCG sequence (L'Ecuyer 1994) 

since it is claimed that MLCGs are too evenly distributed (Niederreiter 1992). 
However does not appear to be the main reason for requiring longer cycle 
lengths. The main reason seems to be to meet the needs of those studies that 

require millions, or as suggested by Marsaglia and Zaman (199 1) billions, of 
random numbers. Such requirements do not arise from normal discrete-event 

simulation. As discussed below the cycle lengths discussed seem rather 
extreme. 

L'Ecuyer (1994) discusses that the period of 2 20of a MLCG with a modulus 2 32, 

ucan be exhausted in a few minutes of CPU time of a small workstation' and 
60' - that a period length of "at least 2 is the minimum now required. This seems 

excessive since even though a modest workstation can now in 2003, create 220 

(approximately one million) *pseudorandom numbers" in not a few minutes, but 
60 

one second, it would still take nearly 36 thousand years to create 2 

93 Kao and Tang (1997) state that their generator has a cycle of 2. If it only 
takes one second to create 2 20 then the Kao and Tang generator would take 

over 3x 1014 years (this is 30,000 times the life of the Universe so far) to run 

through the whole cyclel The Mersenne Twister generator has a cycle length 

that is a vast number of orders larger (X, 05952) than the one of Kao and Tangl 

3.6 SEED CHOICE 

All the arithmetic methods require one or more numbers (seeds) to be provided 
by the user to start the process of creating "pseudorandom numbers". The 
MLCG require a single number. Using the lags suggested by Mitchell and 
Moore, their lagged Fibonacci series would need 56 seeds and as previously 
stated the Mersenne Twister generator requires 624. 
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If more than one seed is required a MLCG can be used to generate them. In 

such a situation, the user has only to supply one seed (as in the FORTRAN 

version of the Mersenne Twister written by Takano 1999). 

The literature (for example: Knuth 1998, Law & Kelton 2000 and Fishman & 

Moore 1986) reports that the choice of seed is not important. Fishman (1978) 

gave tables of "pseudorandom numbers" created 10,000 apart. These were to 

be used for seeds that would then have sequences that did not overlap, unless 

more then 10,000 samples were required. There is no suggestion that they 

would perform any better than any randomly chosen seed, just that the 

sequences would not overlap. 

In reporting results produced during the testing of RNGS, the seeds used are 

not normally stated. However Marsaglia (1993), when discussing his Monkey 

tests, does state the seed he used in a set of tests. It was always 12345671 

His choice of seed may be considered as indicating he did not consider the 

value of the seed important. 

As previously noted, it has been recently reported that the Mersenne Twister 

has produce very non-random behaviour with poor selection of seeds. This at 

present has not been fully discussed. 

A few authors have stated that the choice is important and a number of workers 

in the field, who unfortunately have not published their findings, have stated that 

they have had very poor results when certain seeds were used. Two such 
internal reports are Hollocks (1966) and Robson (1970). 

It is however reasonable to state that the major writers have the view that the 

choice of seeds is not important. The lack of any evidence that this is-l-ru-P.... 

especially for the smaller samples sizes used in discrete-event simulation- 
indicates this must be tested. 
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3.7 CONCERNS WHEN CREATING RANDOM VARIATES FROM OTHER 

DISTRIBUTIONS 

Within simulation models, "pseudorandom numbers" are not usually used as 

such but only after transformation to produce a sample from a particular 
statistical distribution (such as Normal or Negative Exponential) with the 

parameters (e. g. mean) supplied by the user. Using the pseudorandom number 

string produced by MLCGs to produce random variates from other distributions 

has led to another problem. Ripley (1987) states that Nieve while using the 

modified Box and Muller polar method of producing normal deviates (the 

essential point is that this method uses pairs of sequential "pseudorandom 

numbers") found that when he plotted the nth value against the n+1th value he 

obtained a spiral pattern. Ripley points out that Nieve used a poor MLCG but 

the concern still exists that even with a sequence of what would otherwise be 

considered "perfect" random numbers, the random variates created by a 

particular transformation procedure using a certain RNG may be unacceptable 

since they may not be a representative sample. 

An example of a transformation where the random deviates would be 

unacceptable even if the random numbers were "perfect" was the method of 

producing Normal deviates from a stream of random numbers used by the 

Subroutine Gauss in IBM's Scientific Subroutine Library for the IBM 360. (IBM 

1970) The method used by the subroutine consists of adding a sequence of 12 

random numbers then subtracting 6. The result is an approximation to normal 

distribution with a mean of 0 and a variance of 1. However the approximation is 

poor in the regions of the "tails". 

For this thesis combinations of RNG and transformation must be considered. 
Thus when deciding on the-method of groducing a random ingut into a 
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simulation, the actual sample values need to examined rather than the-random 

numbers themselves. 

3.8 SUMMARY OF THE LITERATURE ON METHODS OF INTRODUCING 
RANDOMNESS 

There are a number of "pseudorandom" number generators available. All 

appear to have been criticised and rejected by theoreticians. This includes the 

most popular generator MLCG. Even one of the most recently suggested RNG, 
the Mersenne Twister, has already been criticised and the authors themselves 
have stated that it is unsuitable for one particular application, that of 
cryptography (Mersenne Twister Home Page, 2002). 

Since no attempt appears to have been made to match the statistical tests to 
the actual requirement of discrete-event simulation, the validity of the criticism 

was uncertain. 

The move to long cycles beyond any practical requirement is of concern as 
there was some evidence from research made concerning the effectiveness of 
Monte Carlo Methods that smaller cycle lengths may give more accurate 
results. 

Methods of producing sequences of random variates with perfect mean and 

distribution have been described but have no extensive use. A concern is that 

the method appears to require the sample size to be known. 

The alternative of using "unassailable real" random numbers is a possibility but 

they are still slow to create. 
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The general advice from most writers is that all generators should be tested for 

suitability for the intended purpose and as already stated Knuth (1997) 

recommends testing the actual sequence to be used. This is not very helpful as 
there is little guidance on what test would be relevant for what simulation tasks. 

Some of the tests need large samples and thus the sequences actually going to 

be used in the simulation cannot be used in these tests, as they are too short. 

It is also known from the literature that there exists a concern that the actual 

sample may be unacceptable even if the random number generator is 

acceptable. Thus testing the samples rather than the sequence of random 

numbers seems to be important but this has not been reflected in the literature. 

As previously discussed, the general view that the seed selection is 

unimportant, needed to be investigated. 

To meet our requirement for a simple method of providing randomness into the 

simulation to accurately reflect real life, it was necessary to determine: 

" What RNGs provide the quality samples required? 

" Can MLCGs still be used? 

" Is the choice of seeds important? 
Can Descriptive Sampling out perform RNGs? 
Is our choice of a RNG or Descriptive sample affected by the need to 
forecast sample size? 

The first concern was how to determine if a sample is a quality sample in terms 
of the needs of discrete-event simulation. 
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3.9 SELECTING THE INITIAL CONDITION AND WARM UP PERIOD 

3.9.1 Terminating and Non-Terminating Simulations 

In the literature when discussing such factors as the initial conditions required to 

commence measurements, and run length, a number of writers have found it 

useful to define two types of simulation study. These are normally referred to 

as, terminating and non-terminating simulations. Law and Kelton (2000) 
defined the two forms such that a terminating simulation is one where a 'natural' 

event specifies the length of each run (e. g. the end of a day) while no such 

event exists for a non-terminating simulation. Law and Kelton consider that with 
terminating simulations their initial conditions and run length are defined by the 

description of the problem. Thus the selection of a suitable initial condition and 

run length is not a problem. The remaining problem in this situation is how 

many replicates are needed to obtain the required accuracy. Law and Kelton 

(Page 515,2000) offer the following rule of thumb, "Regardless of the cost per 
replication, we recommend at least three to five replications. " 

In this research the non-terminating simulations are being considered. Here 

methods of determining when to start recording, how long to record and number 

of number of runs need to be evaluated. 
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3.9.2 The Problem of Setting the Initial Conditions and Determining the 
Warm Up Period 

Since many stochastic processes will have a degree of autocorrelation, the 

state of the model when measurements commence will affect the early readings 
in the run. 

Pidd (1992) states there are two acceptable states for initialising the 

measurements: 

oA representative state 

* The state after a warm up period. 

Wilson and Pritsker (1978) examined two systems, a single server queue with a 

capacity of 15 and a machine-repair system with 3 men and 14 machines, to 
determine from the available procedures what was the best setting for the initial 

condition when measurements would start to be made. They concluded that 
the best initial condition was the mode of the "steady state" system. This is in 

line with Pidd's representative state. No paper was found that determined a 

general procedure to obtain a representative state. 

Most writers only discuss "the warm up period" method of setting the initial 

condition. This may be due to the difficulty of defining or even setting the model 

to a representative state. 

Since in many stochastic systems the behaviour of the system is independent of 
the initial condition when "steady state" is reached, it is frequently considered 
that the warm up period should only end when the system has reached a 
usteady state". Indeed most writers consider that, for non-terminating 
simulations, the asteady state" values are required to describe the performance 
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of the system. They suggest that inaccurate results will be obtained if 

measurements are taken outside of this "steady state" condition. 

Having a warm up period that enables the system to reach "steady state" and 
only starting the measurements at that point in time, appears to be commonly 
accepted as meeting the two requirements of starting from a representative 
position and taking measurements only at "steady state" conditions. 

The detection of reaching "steady state" is not easy. Conway (1963) has 

pointed out that there are difficulties in determining when the warm up period 
has finished and when measurements should commence and Gafarian et al 
(1978) found that none of the methods of detecting steady state available in 
1978 performed well. 

Welch (1983) has suggested a graphical method but it is both time consuming 
and expensive in resources. (Law and Kelton 2000 state on page 522 "The 

major difficulty in applying Welch's procedure is that the number of replicates.. 
may be large if the process ... is highly variable" and on page 521, they state, 
Um should be much larger than the anticipated value of I", where rn is the run 
length of each replicate and I is the time to get to "steady-state". ) Hollocks 
(1995) reports that graphical methods are used for determining warm-up 
periods and some specialised simulation packages (e. g. AutoMod) offer 
automatic calculation of moving averages (see Wadsack and Tobias, 1994), 
however the time pressures reported both by Hollocks and by Wadsack & 
Tobias would question the common use of this technique in its correct form due 

to the resources required. 

Law and Kelton (1983) developed a method for determining the length of the 

warm up period and the total simulation run length in order to get the best 

results. They state however that it depends on the expected value of the 

characteristic being measured (which varies over simulated time), monotonically 

converging on the long-term expected value (or mean of the steady state 
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system). Kelton (1985), Kelton & Law (1985), and Murray & Kelton (1988) 

demonstrated that for some simple queues this assumption is violated if the 

simulation started with certain initial queue sizes. 

Kelton and Kelton & Law, from an analytical analysis of the expected queue 
size of simple queues, considered that the "steady state" was obtained quickest, 
and therefore the greatest accuracy could be obtained from a certain total run 
length, by starting with relatively large queues. Here they were considering that 
the steady state condition was not known and the system could not be set to 

such a condition due to lack of knowledge. They did however consider that 
there might exist a starting condition that would require the shortest warm up 
period to enable the model to reach steady state conditions and thus the 

measurements to commence. Thus they introduced the concept of two initial 

conditions: one to start the model and one to start the recording. They, and 
many other writers, assumed that the "steady state" is reached when the 

expected value of queue size is steady. 

The concept that more accurate results will be obtained by discarding the initial 

readings is contradicted by the analytical result of Blomqvist (1970) who 
showed that for a whole range of types of simple queues, the accuracy of the 

measured expected queue size was greatest when none of the results are 
discarded. It should be noted that since it was a simple queue, with no delays 

before the first part arrived to be processed, the initial condition can be 

considered acceptable as a representative condition. That is no warm-up 
period to fill the system was required. 

The two sets of studies however used different measures of accuracy. Kelton, 

and Kelton & Law used the absolute difference between the expected queue 
size and the steady state average queue size, while Blomqvist used the mean 
square error of the expected measured queue size from the steady state queue 
size. Other writers (for example Kleijnen 1974) consider that Blomqvist's result 
was only true for very long computer runs or they suggested that using mean 
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square error is inappropriate (Kleijnen and van Groenendaal 1992) but they 

offer no quantitative measurements. Blomqvist result does assume that the 
length of run is long enough as to get accurate results. Previously it had been 

shown that to get accurate results it was necessary to have lengthy runs (see 

for example Daley 1968). The minimum run length required by Blomqvist 

analysis is such that a point is reached when the accuracy of measurement is 

increasing with run length. For short experiments with certain starting queue 
sizes the accuracy initially reduces (See Graph 7.5 page 180) 

Other methods have been suggested that use a single run to detect the "steady 

state" thus avoiding the use of resources required by the graphical method of 
Welch. Goldsman et al. (1994) suggested a method that incorporates earlier 

methods of Schruben (1982) and Schruben et al. (1983). The methods consist 

of batching the values of the output of the simulation and comparing estimates 

of their variances. If the variance of a batch is statistically significantly different 

to the variance of a later batch, then it is considered still to contain a bias from 

the initial conditions. There is obviously a problem in determining if the 

variances are statistically different. With the assumption of large batch sizes 
the standard F test may be applied. There are other similar techniques all 

attempting to provide estimates of the variance of the batches but require, 

according to Goldsman et al., more complex statistics. 

3.10 SUMMARY OF THE LITERATURE ON SELECTING THE INITIAL 
CONDITION AND WARM UP PERIOD 

Although there is no doubt that there needs either to be an initial setting to a 

realistic condition, either by direct intervention or by a warm up period, the need 
to obtain "steady state" is not commonly agreed. If it is accepted that a "steady 

state" has to be obtained, a widely accepted method that does not requires 
heavy use of resources to determine the required warm up period has not yet 
been found. 
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Clarification and a practical solution are required in determining how to set the 

initial condition and when measurements should commence in order to use the 

minimum of resources whilst obtaining the required accuracy. 

3.11 SETTING OF THE DURATION OF A COMPUTER RUN 

In order to obtain the required degree of accuracy the computer simulation 
could be run for a single long run or a number of shorter runs. There is 
disagreement on what is the best policy. 

Most of the literature assumes that the simulation is set to run for a 
predetermined period and greater accuracy is obtained by repeating the 

experiment with identical design choices (replicates) but with different random 

number streams (see for example Lanner Group 1998). This is in line with the 

statistical designs of Fisher (1960). Such a design has a large body of 

supporting statistical literature. The results from the various runs can be 

considered as independent estimates. 

In most statistical experiments, such as agriculture field trials or drug trials, 

there is limited scope in increasing accuracy by prolonging the duration of the 

experiment. (Replicates are also used so as to have a full range of values for 

the factors not able to be controlled in such experiments, another feature not 

relevant to computer simulation where the user inputs all "randomness". ) 

Terminating simulation also cannot be extended beyond the natural conclusion. 
However in non-terminating simulation this is not the usual case. The only 
physical limit on a single computer simulation run for non-terminating 
simulations is the available computer time and the cycle length of the random 
number generator. 
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It is simpler however to perform a single lengthy run than to construct replicates. 
Replicates require different seeds for the random number generators or the 

result would be identical (Tocher 1960). Without the use of a simulation 

package this is difficult or time consuming to set up. 

The discussions on whether the best design should be a number of short runs 
(with different seeds) or one long run in order to get an accurate estimate of the 

important variables is not conclusive. Whitt (1991) fails to clarify the discussion 

and only rules out a large number of very short runs. Whitt's analysis accepted 
the need for a lengthy warm up period and thus would be invalid if long warm up 

runs proved unnecessary. 

Kleijnen and van Groenendaal (1992) state that their favoured approach for 

non-terminating simulations is to have a single long run with a number of 

readings spaced so as to give negligible autocorrelation. 

Law and Kelton (page 528,2000) have produced a summary of the various 

methods of constructing an experiment for a non-terminating simulation so as to 

get meaningful statistics. 

They have identified six methods: 

9 Multiple Replication each with a separate warm up period 

* Single run considered as a set of sequential batches with only one warm 

up period (spaced measurements) 

" Autoregressive 

" Spectral 

" Regenerative 

" Standardised Time series 

Law and Kelton give detailed descriptions of the methods and suitable 

references. Only the first case has replicates. The other methods have a single 
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run. Since the application of these methods is not part of this research, the 
literature on these methods will not be discussed further. 

The first two methods of the six, suggested by Law and Kelton, have been 

already mentioned. Law and Kelton state that the problem with the Multiple 
Replication procedure is there is no sound way of knowing what is a suitable 
run length and warm up period. The difficult in determining the set up period 
has already been discussed. Law and Kelton (page 537,2000) state that no 
procedure in which the run length is fixed before the simulation begins can be 

relied on to give the required accuracy. 

Law and Kelton state that the shortcomings with the spaced measurements is 

the difficulty in determining how long there should be between measurements. 
Although not stated specifically in the literature, this problem is equivalent to 
determining the warm up period required to reach usteady state", since the 

starting position of each batch (and thus the ending position of the previous 
batch) should be independent of the starting point of the previous batch. 
Otherwise the batches would be correlated. Thus the spaced measurement 
method may well be seen as a run of n+1 equal periods with a total length of 

n+1 times the length of the required warm up period with the first period 
discarded and the measurement at the end of the next n periods used in the 

analysis. 

The remaining methods consist of fitting statistical models to the 

measurements. Here the general concern is how to determine if the statistical 

model is appropriate and how to measure any required parameter of the model. 
In summary all the methods have concerns and in the case of "Regeneration" 

are difficult to apply to a real life situation (see page 533 Law and Kelton 2000). 
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3.12 SUMMARY OF THE LITERATURE ON THE NUMBER OF RUNS 

REQUIRED AND THE NEED TO DETERMINE THE INITIAL LENGTH OF 

THE COMPUTER RUN 

The literature supports the idea of a single run if there is a requirement for a 
lengthy warm up period. However the methods of analysis of the outputs is 

problematic. If there is no need for a lengthy warm up period then the Multiple 

Replicate procedures may be preferred as there are sound methods of analysis 
in the existing statistical literature. 

The choice of a single or multiple runs both require an initial estimate of the run 
length of the individual computer runs. The only information on making the 

choice is that stated above by Law and Kelton that there is no reliable method 

and thus they suggest a sequential sampling method of determining when the 

run has been long enough. Even if their advice is taken there is still a 

requirement that the initial length of the first run must be long enough as to be 

representative of the performance of the system. 

Hence a method of determining a run length that will be representative of the 

system and thus will have sufficient number of infrequent events and values in 

the tails of the distributions of the real life variables so that any measurement 
taken from the simulation will be valid. 

3.13 CONCLUSION OF THE LITERATURE SURVEY 

The literature survey fails to obtain clear guidance on the decisions: 

* The choice of method of introducing randomness into the simulation 

* Determination of the initial condition and warm up period 
o The initial setting of the duration of the computer run. 
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The advice is confused, including contradictions, misdirections, and omissions. 

To obtain the information necessary to make the decisions on what method will 

be selected, as previously stated, it was necessary 

1) For selection of the method of inputting the required randomness it was 

necessary to select what method should be used to generating the samples 
by determining: 

* What RNGs provide the quality samples required? 

o Can MLCGs still be used? 

o Is the choice of seeds important? 

Can Descriptive Sampling out perform RNGs? 

Is our choice of a RNG or Descriptive sample affected by the need to 

forecast sample size? 
and for this, the first question was how to determine if a sample is a quality 

sample. 

2) For setting the Initial condition and determining the warm up period it was 

necessary to devise a practical solution to determine how to set the initial 

condition and when measurements should commence in order to use the 

minimum of resources whilst obtaining the required accuracy. 

3) To determine if there should be one run or many replicates a study was 

needed to determine which method, given a certain resource, provided the 

most accurate answer. 

4) To ensure that no error arises from too short a computer run, a practical 

method of ensuring sufficient infrequent events and values in the taiis of the 

distributions of the real life variables was required. 

Warn Page 57 



Evaluation of Alternative Discrete Event Simulation Experimental Methods 

4. SELECTION OF THE SOURCE OF RANDOMNESS 

(CREATING THE TEST) 

4.1 INTRODUCTION 

As discussed in the conclusion of the literature review, in order to answer the 

questions 

What RNGs provide the quality samples required? 
Can MLCGs still be used? 
Is the choice of seeds important? 
Can Descriptive Sampling out perform RNGs? 
Is our choice of a RNG or Descriptive sample affected by the need to 
forecast sample size? 

It is necessary to be able to determine if a sample is a quality sample. For this 

a suitable test needs to be selected and if necessary developed. 

This is done in the next section. 

4.2 REQUIREMENT FOR A DISCRIMINATING TEST TO SELECT HIGH 
QUALITY SAMPLES 

The most straightforward conclusion from reading the literature is that no 

generator has been proved to be acceptable based on the concept that a 

generator should pass all the tests. The simplistic view of only accepting a 

generator that passes all the tests is however easily discarded. In Appendix 8a 

test is devised which will fail any generator of the form: 

Xn ' F[ Xn-1 
9 

Xn-2o 
....... t 

Xn-0 
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where the nth term of a random number sequence is determined from k earlier 

values. It will be noted that such a sequence would need k seeds. 

Such a test may be considered "contrived" but without a justification of 

applicability to a real situation all tests are "contrived". The policy of rejecting 

any RNG if it fails a particular test, can be seen to be seen to be unacceptable, 

as all RNGs will fail a number of tests. This is shown in a general proof given 
by L'Ecuyer (1998). 

Thus attempting to create a new RNG that would pass all known tests was 

rejected and the RNG to be selected was to be found within those already 
developed. 

It is equally true to accept a RNG that fails a test by simply ignoring the test 

result without any justification for such an action would seem to be foolhardy. 

In the literature survey it was clear that the tests to decide if a RNG was 

acceptable were not aimed directly at the needs of discrete-event simulation but 

at testing for random behaviour. To perform a verification of any RNGs 

suitability for use within discrete-event simulations, the various tests first need 
to be evaluated in terms of their relevance to the actual requirements of 
discrete-event simulation. A procedure on selecting which tests are relevant 

appears to be as elusive as finding a random number generator that will be 

acceptable to everyone. For any test to be discarded it would need to be shown 
that there is no real life situation where the test would apply. Thus in selecting 

candidate RNGs their ability to pass the established tests is not irrelevant but 

their failure to pass certain of the more esoteric tests may be. 

In this thesis the attempt to select a generator based solely on its ability to pass 
tests for randomness was abandoned in favour of an approach more akin to the 

testing of a product. That is a form of "Quality Control" was applied. In this 

approach the requirement is redefined as the samples used in a discrete-event 
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simulation will be those samgles that i2ass a aualitv standa rather than to 

select a RNG based on its ability to pass test and to accept the samples it 

creates indiscriminately. 

The transfer of the emphasis of the selection to choosing representative 
samples rather than RNGs leads to some samples from a particular RNGs 
being rejected whilst others are accepted. It may well be that many RNGs, 

even ones considered inferior may produce a number of "perfect samples" 

whilst a highly regarded RNG, (e. g. one passing the "spectral" test with "flying 

colours") may produce a number of samples that are unacceptable. If there 

were to be a selection of a RNG to be used in specialised simulation software, 
then using this methodology, it would be selected on its ability to create a larger 

percentage of quality samples than other RNGs. 

Traditionally in applying "Quality Control" to screen parts in an industrial 

process, a "Go/Fail" test is often applied. In this quality control, a part is 

accepted if it passes the test and is rejected if it fails. To apply such a "Quality 

Control", in selected or rejecting samples created by a RNG a test must be 

applied. The ideal test is one based on statistics. Thus a discriminating test 
based on statistics is required to screen the very good samples from the others. 

4.2 SELECTION OF A SUITABLE TEST 

As previously discussed, the first priority is to make sure our source of 
randomness will enable the simulation analyst to get accurate results. In the 

previous section it was assumed that a good sample, one passing the test, 

would produce better results than a sample that is less representative of the 
true distdbution. 

As already discussed, the importance of a good sample was shown in the 

studies that led Saliby to suggest Descriptive Sampling (Saliby 1980). In this 
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work he demonstrated that the average queue size measured in a simulation 
was closer to that predicted by theory if the actual traffic intensity produced by 
the samples was used in the theoretical calculation rather than using the values 
of the underlying distribution from which the samples were purported to have 
been drawn. He went on to demonstrate that he obtained superior results by 
forcing the samples from the distribution to have the "correct" mean and 
standard deviation. Saliby demonstrated by this work and his later studies 
(Saliby 1990a) that if good representative samples are obtained then more 
dependable simulation results should ensue. 

But large differences in the quality of samples can be obtained even with a RNG 

considered by many as acceptable. 

As a demonstration, two samples of 1000 random negative exponential 

samples values were created using different seeds with same pseudorandom 

number generator (the method to convert pseudorandom numbers to negative 

exponential samples values is described later). The generator used to create 
the pseudorandom numbers was a widely used RNG described by Lewis et al. 
(1969). 

Two samples were created using two different seeds. These seeds were 
determined by procedure described later. The samples were tested to see if 
their values followed the expected distribution. The measure of goodness of fit 

was made by using the Chi Squared Test (see for example page 42-47 Siegel 

1956). 
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The following results were obtained: 

Seed X;, Value Probability of X" Value 

64689 154.8 99.112% 

39170 262.8 0.163% 

Degrees of Freedom = 199 
RNG used: Lewis at al. (1969) with a Log,, transform used to create negative 

exponential distribution samples. 

Table 4.1. The jI Values of 1000 Samples Using with Two Different Seeds 

The results in table 4.1 clearly show that for these very carefully selected seeds, 
there is a significant difference in the ability for the two samples to represent a 

negative exponential distribution. Seed value 64689 give 1000 samples values 

which were distributed as expected, while a seed of value 39170 give a set of 

values which would be rejected at the 0.2% "confidence' level and be 

considered as not having come from a negative exponential distribution. 
(Rejecting at the 0.2% "confidence" level is very conservative and rejection 

would be certain in all usual circumstances, as the risk that the distribution was 
in fact a negative exponential distribution was equivalent to the risk that an 

event had occurred that had a chance of 11500 or less of occurriing. ) 

If 1000 sample values were required for a single simulation run then the 

simulation analyst would not want to use a seed of 39170 with the Lewis et al. 

random number generator but he or she would be very satisfied with the sample 
if a seed of 64689 was used with that random numbergenerator. 

It is not only simulation runs that can be affected by samples that are 

considered far from the normal behaviour, real life studies can suffer from 

sampling problems. 

A Warn Page 62 



Evaluation of Alternative Discrete Event Simulation Experimental Methods 

Warn (1972) when collecting "real life data" for a simulation of a spare parts 
depot using a day long industrial engineering study covering the whole plant, 

was informed at the end of the day by the management of the depot, that the 
day chosen was most unusual. Such comments from the management of an 

area being studied are usual, but on investigation it was found to be the lowest 

demand on the depot for ten yearsl 

Woodward (1961) when allocating at random the towns to be allocated to the 

research students taking part in a large study of the occupations of English 

towns' inhabitants, was horrified to discover that they had been allocated a 
large number of seaside towns, which would tend to have a high proportion of 

retired people. 

In both cases the sampling was repeated. This is in contrast to the view of 
Hacking (1965) who, wishing to preserve the integrity of any table of random 
numbers, considered that any set of random tables should include a string of 
zeros and that he would not wish to exclude them, although he realised that 

such a part of the table should be avoided by anyone using the table for 

sampling. 

The requirement for truly representative samples so that the results can be 

used with confidence is similarly true for discrete event simulation. The need 
for a test to ensure the sample is a quality sample was thus well established. 

Thus it was helpful to restate the actual requirement as: 

" An RNG should provide, after transformation, a sample of stochastic 
vana es that are truly representative of the real life variable both in 

value and sequence" (See also Saliby 1990a) 
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rather than the definition of L'Ecuyer (2001), 

"The aim of (pseudo)random number generators (RNGs) is to 

implement an imitation of the abstract mathematical concept of 

mutually random variables uniformly distributed over the interval 

[0,1 ] (i. Ld. U[O, 1 ], for short)". 

Although both definitions may select the same RNGs as acceptable, there is a 

strong possibility that a RNG that will produce satisfactory, or even the best, 

samples according to the first definition will fail the definition stated by LEcuyer. 

In order that the results of the simulation should be accepted, the choice of the 
test to be used to perform the selection of quality samples should be such that it 

appears to an engineer as straightforward and completely relevant to his or her 

needs. Thus a test that evaluates whether the sequence of random numbers 
obeys some, if what in certain cases of the more complex tests may be 

considered by non-mathematicians, esoteric behaviour of true random numbers 
would not be acceptable. 

From a standpoint of testing for random behaviour, Knuth's tests (1997) appear 
to be a very reasonable method of selecting suitable RNGs and many RNGs 

pass these tests. None of these tests, other than the "Equidistribution test" 

meet the requirement of being directly relevant. The 'Equidistribution test" 

alone is insufficient. None of these tests were selected as the discriminating 

test. 

Other possible candidates for a practical discriminating test were those where 
the sequences being evaluated are actually used in simulation models where 
the correct result is well known. The quality of each sequence is considered to 
be given by the accuracy of the results obtained. Saliby (1 990b) compared the 

quality of samples created by Descriptive Sampling to certain other RNGs by 

such a method. 
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Use of such simulation models as quality measures is open to the criticism that 

the measurements made in any particular model may not be sensitive to certain 

errors in the sample. For example in two of the examples used by Saliby 

(1990b), the simple queue, and the "newsboy problem", there are such 

concerns. It is possible that the average queue length in a simple queuing 

model may be similar for a range of arrival patterns (see the expression for the 

average queue size for a queue with a general service-time distribution on page 
99 of Tanner 1995) and that the "newsboy problem" is insensitive both to the 

form of the demand distribution (see Pearson 2000 for the expression of the 

optimum order quantity) and as Saliby noted, to the sequence of the random 
deviates. Thus a sample that would perform badly in another example may be 

selected by such a test. Such a method of testing for quality was thus rejected. 

For this study a discriminating test that directly measures the quality of the fit of 
the sample to the required data distribution both in distribution of values and 

sequence, was used. The test chosen was a development of the simple test 

described by Tocher (page 47,1960) as the "Yule's test". 

4.3 SELECTION OF TARGET DISTRIBUTION AND TRANSFORMATION 
METHOD 

Before describing the test, the selection of a target distribution and 
transformation method are made. This makes description of the parameters 
within the test easier to describe. 

There is no obvious reason why one RNG would be acceptable for all 
distributions or that every method of transforming the pseudorandom numbers 
into sample values from other distributions will be equally as good (for a 
comprehensive description of methods of creating sample values for various 
distributions see Devroye 1986). For example, some methods of creating a 
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normally distributed sample value require two consecutive random numbers 
while other methods require only a single random number. Thus any generator 

where there is a correlation between successive pseudorandom numbers may 
lead to a poor sample of normal deviates using the first set of methods. 

In this research only one combination of target distribution and method of 
transformation was considered. 

Providers of RNGs within general software have a difficulty in that the future use 
of the routine is unknown. However in discrete event simulation the use is likely 
to be more limited and predictable. In one of the most, if not the most, popular 
software packages, WITNESS, (Lanner Group, 1998) there were, in 1998,14 
inbuilt distributions, namely: 

Distribution 

Name 

Type of 
Variable 

Description 

BINOMIAL Integer Binomial Distribution 

INORMAL Integer Uniform Distribution 

POISSON Integer Poisson Distribution 
BETA Real Beta Distribution 
ERLANG Real Erlang 
GAMMA Real Gamma Distribution 

LOGNORML Real Lognormal Distribution 

NEGEXP Real Negative Exponential Distribution 
NORMAL Real Normal Distribution 
RANDOM Real Uniform Distribution between 0.0 and 1.0 
TNORMAL Real Truncated Normal Distribution 

TRIANGLE Real Triangular Distribution 
UNIFORM Real Uniform Distribution over a stated range 
WEIBULL 

I- I 
Real 

I 
Weibull Distribution 

Table 4.2: Standard Distributions in WITNESS (Release 9) 
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Although it is easy for the modeller using WITNESS to add user-defined 
distributions, these appear to cover most of the design requirements of 
WITNESS users. 

For the target distribution, the distribution of the major variable in the real life 

example was chosen. Breakdown, or machines unplanned stopping, is the 

most important disruption in the target real life example, which is a transfer line 
(Ladbrook 1998, Kouikoglou and Phillis 2001). Thus the important factors are 
the time between breakdowns and the time to repair. 

Ladbrook describes how difficult it is to obtain accurate information. Some of 
the reasons he gives are: 

For manual recording: 
* Not all stoppages reported 

9 Exaggerated reporting of times 

o Incorrect data input due to typing errors 

For electronic data collection: 

e Data Collection Equipment not operating (repair completed outside 
normal working time) 

o Try-outs (short runs to check repair) recorded as multiple breakdowns. 

9 Attempt to repair halted (e. g. over weekend, missing parts) 

Ladbrook reports that it is usual for many companies to use the negative 
exponential distribution for both time between breakdowns and time to repair, 

even when the data that is collected does not appear to come from a negative 
exponential distribution. In his thesis, Ladbrook gives data for "operation 80" on 

a transfer line within the Dagenham Plant but does not attempt to fit a 
distribution to the data. 
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In this research, a negative exponential distribution has been successfully fitted 
to the data using Microsoft Excel (Microsoft 1994). The square error between 

each real life data values and the equivalent point on the theoretical cumulative 
curve was calculated, from which the total squared error was then calculated. 
Using the inbuilt optimising function 'Solver' to minimise the squared error by 

changing the value of the mean of the theoretical curve, a fit was obtained. The 
fit was then tested using a Chi Square test (see for example page 42 of Siegel 
1956). It was found to be a remarkable good fit having a Chi Square value of 
only 3.6 for 79 degrees of freedom (Note: There is a 99.99% chance of getting a 

value of 34 or more by chance. ) 

The fit may be visually observed by examining graph 4.1. 
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Graph 4-1: Fitting of Real Life Data from Operation 80 to a Negative 
Exponential Distribution 
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Since the negative exponential distribution has such importance both within the 

real life model and in general simulation, it was chosen as the target 

distribution. 

The method chosen for creating negative exponential variates using a random 
number was as follows (see for example Ahrens and Dieter 1972): 

dd=-pln(I-r. ) 

Where 
d. is the nth negative exponential sample 
y is the mean time to breakdown 

r,, is the nth random number 0<r,, <I 

Since it is a precise inversion function the only disadvantage of this method is 

the need for a "log" to be calculated. Ahrens and Dieter stated that when 
programmed in FORTRAN, 72 percent of the time to convert the random 
numbers to negative exponential variates was required to calculate the "log". 
But as may be seen from the fact that it now needs less that 35 seconds elapse 
time to convert a stream of 1010 random numbers between 0 and 1 into 1010 

negative exponential sample values, using a 60OMH PC, that this is no longer a 

problems. To put the number 1010 in perspective, if one was to simulate a 
system with 1000 random negative exponentially distributed processes, each 

with a mean time of only 10 seconds, that operated for 8 hour days and 5 day 

weeks, then with that many sample values the system to be able to be 

simulated for over 10 years operation. 

6 The Program used to measure the time taken was LNTIME. The listing is in Appendix 1. 
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4.4 DESCRIPTION OF THE TEST AND QUALITY MEASURE 

4.4.1 Calculation of Test Variables and Test Statistics 

The test is applied to single samples. An example of a "single sample" is the 

set of 1000 "sample values" produced when a section of 1000 sequential real 
random numbers are taken from the random number stream and converted into 
1000 negative exponential sample values, or in the case of an RNG when 1000 

psuedo-random numbers are created and converted into 1000 sample values of 
the negative exponential distribution. (A description of the terminology used is 

given in Appendix 5. This includes definitions of Sample, Sample Value, Test 
Variable, and Test Statistic. ) 

To perform the test, the test variables first have to be calculated. For this test 

there are several sets of test variables created from a single sample. Since one 

of the quality measurements required is that the individual sample values in a 

sample should appear to come from the correct distribution, the first set of test 

variables is the actual samples values themselves. 

The sequence of the sample values is important and other sets of test variables 

are created so as to reflect the sequence. Each set of test variables is created 
by summing a fixed number of sample values. The sample values summed are 
sequential but the sequences do not overlap. By not overlapping the sample 
values when forming the test variables, the test variables created are then 
independent and thus able to be tested by the standard statistical tests that 

require such independence. 

Thus after having formed the first set of test values from the actual sample 
values, the second set of test variables was created by summing the sample 
values in pairs, the third set of test variables was produced by summing threes 

and so on until ten sequential sample values were summed. (The number ten 
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was chosen as the default value and was used throughout this study but the 

computer programs allow the value of the maximum number of sequential 
values to be summed to be changed. ) 

N 
Sample Value Number 

3 4 15 6 7 8 9 10 11 12 13 14 15 16 117 1 18 19 20 

1 0.391 I 0.70 0.74 0.63 10.45 0.65 0.49 0.85 0.46 0.48 0.94 0.83 0.99 0.82 0.52 0.67 0.381 
i 
0.50 0.40 0.53 

2 1.09 
1 

1.37 1.1 1.34 0.94 1 1.77 1.81 
1 

1.19 0.88 
1 

0.93__ 

3 1.83 1.73 1.8 2.25 2.33 1.55 1 

4 2.46 1 2.44 2.71 3.00 1.81 

5 2.91 - T 2.93- 4.1 2.48 

6 3.56 4.05 3.88 

7 4.0 5.37 

8 4.9 5.71 

9 5.36 6.13 
1 101 5.84 6.58 

Where N is the number of sequential sample values used to calculate the test variable 

Diagram4.1: Illustrating the Non-overlapping Sums for the First Twenty 
Sample Values 

Diagram 4.1 illustrates, for the first 20 sample values, the calculations of the 

sets of test variables. On line one of Diagram 4.1, is shown the individual 

sample values. 

On line two, the sample values are summed in pairs, and on line three they are 

summed in triplets and so on until there are two values for the sum of ten 

sequential values. 

If there were 1000 sample values then there would be 1000 single values, 500 

pairs, 333 triplets, 250 sets of fours, 200 set of fives, 166 set of sixes, 142 set of 

sevens, 125 set of eights, 111 set of nines and 100 set of tens. 
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The test variables may be defined by the following expression: 

For our sequence of N generated sample values and when the sums of sub- 
sequences of m sample values are being considered, then: 

Vl, 
m ' 'ý SI+S2+- 

-- 
Sm 

V2, 
M'--Sm+14 ...... 

S2m 

Vk, 
M ýSmk-(m-l) ....... Smk 

Where: 
Vi, m is the ith. test variable for sequences of m sample values 
Si is the ith of the generated sample value 
k is the largest integer such that mk: 5 N 

Having created 10 sets of test variables these are then converted to 10 test 

statistics. The test statistic chosen was Xý. (This is pronounced chi-squared. ) 

This is defined in mathematical terms: 

2 
t-k Actual Number in cell i- Expected Number in cell i z=2: 

1-1 

( 
Expected Number in cell i 

Where 
k is the number of cells 
1:! ý i<k 

The definition of the cells is discussed later. The degrees of freedom for the 

statistic, when the mean is known, is the number of cells-1. 

The distribution of X2is known to be approximated by the chi-square 
distribution. The chi-square distribution for k degrees of freedom is the gamma 
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distribution with shape parameters k/2 and 2 (see Page 174 Arnold 1990). In 

statistics it is usual to name the test statistic, the distribution it follows and the 
test all by the same name. In this case it is confusing as the test statistic here is 

useful as a general measure of fit and it is necessary to have a quick method of 

referring to it. The convention being observed within this thesis is that X2 is 

used for the statistic calculated from the above equation, and chi-square is used 
for the distribution or variates drawn from the distribution. 

The test is well known and has already been used in this study. (A simple 
mcookbook" description is given by Siegel page 42,1956). 

4.4.2 The Determination of the Number of Cells 

The basic requirement for the Chi-Square test is to count the numbers of values 
of the test variables that fall within certain ranges. These ranges are termed the 

cells or categories. The Chi-Square test requires that the cell size be such that 
the expected number in a cell must be at least 5 (Chochran, 1954). 

If the minimum value of 5 is used the maximum number of cells for the single 

values if there are 1000 sample values is 1000/5, that is 200. Thus the 

maximum number of cell for the different numbers of sequential sample values 
summed is shown in Table 4.3. 
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Number of Sequential Sample 
Values in the Test Variable 

Number of 
Test Variables 

Number of Cells 

1 1000 200 

2 500 100 

3 333 66 

4 250 50 

5 200 40 

6 166 33 
7 142 28 
8 125 25 

9 Ill 22 

10 100 20 

I 
Table 4.3: Maximum Number of Cells for the Chi Test 

for 1000 sample values 

The cell size in terms of the expected count was calculated so that the cells with 
the larger expected count are in the mid-values of the variables. 

In the table 4.3 it can be seen that when 7 sequential sample values are being 

summed to provide the test variable, the 142 test variables have to be allocated 
to 28 cells. Thus the lower 13 values cells were dimensioned to have an 
expected count of 5, the middle two cells were dimensioned to have a count of 
6, and the upper 13 have a size such that the expected count is S. The use of 
integer values for the cell size is not essential. In this example, if non-integer 
values had been used, the cell size could have been identical with an expected 

count of 5.0714. However the use of integers made the testing of the whole 
system simpler. 

The determination of the number of cells and expected number in each cell (as 

an integer) is performed by the program "SMALL". (See Appendix 1). The 

actual dimension of each cell is determined next. 
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4.4.3 Definition of the Cell Limits 

In the computer programs the limits on each cell are stated as upper values. 
Consider the case where there are n cells. For cell 1, all calculated test 

variables with a value equal or less than the cell limit are counted in cell 1. The 

count in cell 2 is when the value of the test variable is greater than the limit on 
cell 1 but equal or less than the limit on cell 2. This is continued for all cells until 
the nth cell. The nth cell would not have a specified limit and the count in the 

nth cell is the number of times the value of the test variable is greater than the 
limit for cell n-1. Thus where there are n cells there are n-1 values of cell limits. 

4.4.4 Calculation of the Cell Limits for the Single Sample Values 

For this study, as the actual mean of the negative exponential distribution acts 

as a scaling factor, the mean has been taken here as 1. (The unit of time has 

therefore been standardised. ) 

As the unit of time is standardised and thus the mean of the negative 
exponential distribution is 1, the cumulative distribution of the negative 
exponential is then given by (see for example Law and Kelton 2000): 

P(t) =1- e-, 
Where: 

(t) is the probability of an arrival or compiction of an event 
by time t and t ; -> 0 
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The cell limits are calculated thus: 

i-k 
C(k) = E(i) 

A(k) =- log, [I - C(k)] 

Where 
1:: 5 k< 

n is the number of cells 
E(i) is the Expected number of entries in cell i 
A(k) is the cell limit for cell k 

A FORTRAN subroutine (FIXPB) calculates the values of n and k. The program 
SETUP calls this subroutine. They are listed in Appendix 1. 

4.4.5 Calculation of the Cell Limits for the Test Variable created by the 

Addition of Sequential Sample Value 

The distribution of a sum of k sample values from a negative exponential is the 

gamma distribution (see Arnold 1990). The gamma distribution has two shape 

parameters, cc and P. The shape factor a has in this case the integer value k 

and since we are standardizing time, then 0 is equal to 1. 

Thus 

P(t) =I- e- 
k-I tJ Iz 

J-0 
ji 

The FORTRAN function GAMCUM (listing in Appendix 1) employs logarithms to 

calculate this function. 
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The limit for cell k, A(k) is calculated from the expression: 

C(k)= E(i) 

A(k)k-' [A (k )IJ 
C(k)= I- e- 2: 

I 

J-0 ji 

Where 1: 5 k<n 

The value of A(k) is determined by a search. In the routine SERGAM (in 
Appendix 1) this is accomplished by a binary search. 

4.4.6 The Selection Criterion and Quality Measure 

Using the expressions above, a set of cell definitions for each set of test 

statistics was calculated. To apply the test the sample values for a particular 
sample were used to create the 10 sets of test statistics and the number of 
values failing in the cells was determined. The )? value for each set of test 

statistic was determined. For clarity the ,e value obtained when n sequential 
sample values are summed will be termed )? n. If the fit were perfect the test 

statistic )en would have the value of 0. If the fit were poor then )? n would be 
large. What is considered large is dependent only on the degrees of freedom, 

which in this case where the mean is known, is the number of cells minus one. 

The sample is considered to be of a suitable quality if every )e,, value is less 

than its specific rejection level. Since each test statistic will have a different 

number of cells, and thus degrees of freedom, the rejection level is dependent 

on the value of n. The determination of the individual rejection levels is made 
later. 
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For ranking purposes a single metric was required so the sum of the )e,, values 
was used. However since the values of )e,, have different scales, the values of 
)en were multiplied by suitable weightings. The metric thus obtained was used 
as the "quality measure". It should be noted that the best quality sample has 
the smallest value of this quality measure. 

4.4.7 The Computer Programs 

The program SETUP is a housekeeping program that interactively allows the 

user to set the number of observations, the maximum number of consecutive 

sample values to be combined and the minimum number of observations 
required in each cell. These parameters have default values of 1000,10 and 5. 

SETUP then runs the subroutines SMALL and FIXPB that in turn calls the 

subroutine SERGAM that uses the function GAMCUM. A file giving the 

specification of the cells and their limits is created for use in the tests. SETUP 

uses subroutines that are specific to the Exponential Negative distribution. If a 
different distribution were to be used then different subroutines would be 

needed. 

SETUP needs only to be run if the number of observations, the maximum 
number of consecutive sample values to be combined, or the minimum number 
of observations required in each cell need to be changed. 

A diagram of the programs and their listings is given in Appendix 1. All were 

programmed and were compiled using Microsoft FORTRAN version 4 
(conforming to FORTRAN 77) for a computer with a "maths" processor. 

The test is performed in two stages. In the first stage a computer program that 

was specially constructed for each source of random numbers is used. 
REALTST was developed for real random numbers. It is listed in Appendix 1. 
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It uses standard subroutines GAPC2 and CHICAL which in turn call subroutines 
INSERT and CHISQ. These standard subroutines are used in all the versions 
of the test and are independent of the source of the random numbers. The 

output from REALTST and the versions created for the other sources of 
randomness is a file where there is a record for each sample being tested. 
Each record has the sample's ten values Of )? n. 

The second part uses a program SELECT. This selects the best samples and 

gives them a quality measure. 

4.5 CALIBRATION AND TESTING USING REAL RANDOM NUMBERS 

4.5.1 Introduction 

In the section the file from REALTST will be used to verify the performance of 
its standard subroutines and then to calibrate the values that were later used by 

SELECT. 

Although the subroutines used in REALTST and in the other versions of the first 

part of the test were tested at all stages of development a "systems" test was 

made by using real random numbers and determining the percentage of 
samples, for a certain value of n, have a value of )& greater than some critical 
value. Since )? n approximately follows the chi-square distribution, the 
theoretical value can be calculated. Thus the actual values can be compared 
with the theoretical values and tested statistically to check the validity of the 

calculations. 

As described in section 4.4.6, the operation of the method of rejecting the 

poorer samples, that is the "filter", that was used in SELECT compared all the 

calculated )e. against a set of critical values. The setting of the critical values 
for the filter in SELECT is not amenable to a theoretical calculation so 
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ucalibrating" using real random numbers was required. But first a source of real 
random numbers had to be obtained. The method of obtaining the real random 
numbers is described in Appendix 6. 

4.5.2 Determining the Rejection Rates for Real Random Numbers 

As previously discussed the first use of the test in the form of REALTST, was on 
the real random numbers obtained from the stream of random digits 

downloaded from "http: //www. random. o[g and extracted as described in 
Appendix 6. As already stated the output from REALTST was used to 
determine the percentage of samples that have for a certain value of n, 

greater than some critical value (or are "rejected"). Table 4.4 give the critical 
value Of ' en for certain 'confidence" levels. Normal uconfidence" levels of 0.1 %s 

0.5%, 1%, and 5% are given and also 95% and 50% values for reference and 

will be used later in constructing the filter. 

Number of 
Sequential Number 

Probability Of )en Being Above the Table Value 

Sample 

Values 

n 

of Cells 

k 95.0% 50.0% 5.0% 

- 

1.0% 

I 

0.5% 0.1% 

1 200 167.36 198.33 232.91 248.33 254.13 266.39 
2 100 77.05 98.33 123.23 134.64 138.99 148.23 
3 66 47.45 6 4. T3- 84.82 94.42 98.10 105.99 
4 50 33.93 48.33 66.34 74.92 78.23 85.35 

5 40 25.70 38.34 54.57 62.43 65.48 72.06 

6 33 20.07 31.34 46.19 53.49 56.33 62.49 
7 28 16.15 26.34 40.11 46.96 49.65 55.48 
8 25 13.85 23.34 36.42 42.98 45.56 51.18 
9 22 11.59 20.34 32.67 38.93 41.40 46.80 
10 20 10.12 1 18.34 30.14 

t-36-. 
19 38.58 ý, 73ý8ý2 

Table 4A The Critical Values of the Chi-Square Distribution 
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If both the program is correct and the extract acts as if it contains real random 
numbers, then the percentage "rejected" should be equal to the "confidence" 
level. This reflects the weakness in statistical methodology that errors from 

rejection of correct distributions will occur. 

This test using real random numbers is the same as an evaluation using a 
classical Monte Carlo method. In this case it is measuring the actual 
uconfidence" level of each of the stated critical Chi-Square values. Since the 

Chi-Square distribution is a good approximation to the real case the estimate 

should be close. As with Monte Carlo studies it is possible to construct limits to 

our estimate. 
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These were calculated from the standard Normal approximation when the 
sample size is large (see Page 144 Arnold 1990): 

^-3. O8V7rl-: -lr 
r=r+- 

, 
FN 

Where 
f is the estimate 
f is the measured mean 
Nis the sample size 

From the four 10 Megabyte files available to be downloaded, it was possible to 

create over 40 million random numbers. This enabled a sample size of 40,000 
to be used. 

The tables AP7.1 to AP7.4 in Appendix 7 give the measured percentage of the 

samples "rejected" at the theoretical 5%, 1%, 0.05%, and 0.01% value. Inall 

but two of the cases the measured rejection rate lies in the expected range 
forecast from the Chi-Square distribution. Those in which the measurement lies 

outside the expected range are marked with an asterisk. Since the "confidence" 

limit used to construct the estimate (the value in the formula above is 3.08) was 
0.1 % the probability of more than one or more measurements lying outside the 

expected range if there are 40 independent measurements is 3.9%. However 

the measurements are not independent. It should also be note that the Chi- 

Squared distribution is an approximation and the constructed limits were also 
based on an approximation. 

Thus the hypothesis that the deviates are a random sequence of deviates from 

a negative exponential distribution is not rejected. It is also noted that no 
problem had been discovered in the previous testing of the real random 
numbers (Foley 2001). 
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This result gave the confidence that the program was correctly calculating Xn 
values. The task of calibrating the filter for the simultaneous testing of the 10 

)? n values and using the filter to evaluating the ability of the real random 

number to create quality samples was then able to start. 

4.5.3 Calibration of the Filter 

As already discussed a method of determining the best samples was required. 
The sample, in order to pass the quality check, was required to be acceptable 
for all the test statistics. That is, the test was to be applied to all the sample's 

xývalues. 

Since the Xn 2 values within a sample cannot be considered as independent, a 

method of constructing a rule to be applied simultaneously to all the Xn 2 values, 
based on statistical behaviour, is mathematically difficult. The most 
straightforward method is to construct a asuitable" rule and then to calibrate it 

using the results from real random numbers. 

The proposed rule is to reject all samples that have one or more Xn2value 
greater than some specified "confidence" level. For simplicity the "confidence" 
level was set to be the same for all values of n. The rate at which the samples 
constructed from the real random numbers "pass" is shown in table 4.5. 
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Number of "Confidence" Level 
Criteria Passed 5.0% 1.0% 0.5% 0.1% 95.0% 50.0% 

10 61.230% 90.143% 94.583% 98.853% 0.000% 0.195% 

9 29.553% 9.198% 5.215% 1.140% 0.000% 1.475% 

8 7.505% 0.608% 0.188% 0.008% 0.000% 5.620% 

7 1.390% 0.043% 0.013% 0.000% 0.000% 12.375% 

6 0.250% 0.005% 0.003% 0.000% 0.000% 19.498% 

5 0.040% 0.003% 0.000% 0.000% 0.01 O'Yo 21.970% 

4 0.018% 0.003% 0.000% 0.000% 0.163% 18.758% 
3 0.008% 0.000% 0.000% 0.000% 1.168% 11.955% 

2 0.005% 0.000% 0.000% 0.000% 7.425% 5.648% 

1 0.003% 0.000% 0.000% 0.000% 29.055% 2.045% 

0 0.000% 
. 

0.000% 0.000% 
. 

0.000% 
. 
62.180%1 0.463%1 

Table 4.5: The Measured Pass Rate of Samples of 1000 Real Random 
Numbers 

The table demonstrate that if the common "confidence" level were set at 5% 

over 60% of the samples would pass at all 10 values of n. 

If only the best samples are required the "confidence" level may be altered to 
the 95% or 50% levels. These would, if applied in a statistical test, lead to 

many erroneous decisions but here the aim is to develop a method to obtain the 

most representative sample. 

The measured acceptance rate using these higher "confidence" levels is also 

given in table 4.5. At 95% most samples fail all the confidence levels and over 
90% fail to pass eight of the ten levels. This is obviously too severe a filter. At 

50%, 0.195% of the samples pass at every value of n. To get 100 best samples 
to pass the test there would need to be a total of 51823 samples. Thus for 

60,000 samples there would be 117 samples expected to pass at all values of n 
when the level is the 50% level. 
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A confidence level of 50% was selected and it was expected that 60,000 

samples would need to be examined in order to obtain 100 "highly 

representative samples". 

4.5.4 Ranking the Samples 

Any of the samples of 1000 values that pass the filter may be considered as a 
quality sample. But if the best samples, and in terms of RNG that require a 

seed the best seeds, are required then the samples need to be ranked. This 

also provides a means to determine which of the various methods of introducing 

randomness gives the best representative samples. 

The method of ranking that was chosen was by producing for each sample a 

single quality measure created by adding a weighted sum of the Xn 2 values. 

1-10 

Ewal 
1-1 

The lower the value of this quality measure, the higher the quality of the sample. 

The simplest set of weights was for all the weights to be one. Since the mean 

of the Xn 2 values is not the same this in fact weights X2X, 02 greater than the 

value. 

To provide an estimate of the inequality of using a constant weight of 1, the size 
of the critical values of the chi-square value at the 50% confidence level may 

used to give the equivalent weighting. These values are given in table 4.6. 
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n 
Equivalent 

Weight 

1 10.8 

2 5.4 

3 3.5 

4 2.6 

5 2.1 

n 
Equivalent 

Weight 

6 1.7 

7 1.4 

8 1.3 

9 1.1 

10 1 

Table 4.6: The Equivalent Weightings or Bias using a 50% Confidence Level 

The bias towards the smaller n may be removed by making wi equal to the 
reciprocal of the equivalent weighting and scaling so that wi is 1. The 

weightings are as follows: 

A 

2 2 

3 3.086 

4 4.154 

5 5.143 

I Wi 

6 6.353 

7 7.714 

8 8.308 

9 9.818 

10 10.8 

Table 4.7: The Weightings Required to remove Bias 

If a sample was at the limit of each value of the filter, the weighted value for 

each test statistic would be 198.33, thus the highest quality measure that a 

sample could have and still pass the filter is 1983. This procedure of filtering 

and ranking is performed by the program SELECT. 

Thus a procedure has been created that will select high quality samples and 

give them a quality measure. Before the test was applied a further evaluation 
was made. This was to determine if the test would reject poor samples that had 

been specially constructed and may "fool" it. 
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4.6 PERFORMANCE OF TEST ON PATTERNS 

There must always be a concern that a constructed sample may pass an 
empirical test even though it has obvious characteristics that would make it 

unsuitable for use in discrete-event simulation. For the test and selection 
procedure to be acceptable it must be able to distinguish between these 

constructed sets of data and a real representative sample of the variable. 

4.6.1 The Pafterns 

One method of systematically testing such a procedure is to produce patterns. 
Two basic patterns that should be always be used in such an evaluation are the 

constant value and the ramp. The constant value used was 0.5. The ramp 

consisted of the 1000 values growing linearly from 0.0005 to 0.9995. 

A standard method to introduce patterns with strong autocorrelations is to 

produce saw tooth patterns. To create such saw tooth patterns the following 

expression was used: 

Value(n) =1 -[1 mod (n, 1 000/k)-(l 000/2k) 1/(l 000/2k)] 
If Value(n) was zero it was set to 0.0000001. 

The value of k decides how many peaks there are in the series. Following are 

shown three examples, with k equal to 1,3, and 10. 
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Pattern for One Peak 

0.8 - i 
0.6- 

a .0 
ro 

Iv 

'M 0.4 - orý 

0.2 

0 
0 200 400 600 800 1000 

Sequence Number 

Diagram 4.2: Pattern for One Peak 

Pattern for Three Peaks 

C 0.8- 

0.6- 
'M A 
aý 

0.4 - C: OL4 

tl 
0.2 - 

W, 
0 

0 200 400 600 800 1000 

Sequence Number 

Diagram 4.3: Paftern for Three Peaks 

A Warn Page 88 



Evaluation of Alternative Discrete Event Simulation Experimental Methods 

Pattern for Ten Pea! g 

0.8 - 

V. 0 - 

0.4 - 
0.2- 

0 
0 200 400 600 800 1000 

Sequence Number 

Diagram 4A Pattern for 10 Peaks 

For the evaluating of the power of the test to discriminate between randomness 
and patterns of data, saw tooth patterns varying from one peak to twenty-five 

were used. 

The patterns of values varying between 0 and I were converted into negative 
exponential samples and the test was applied using the computer program 
NONRAND. (See Appendix 1) 
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4.6.2 The Results Obtained 

Number of 
Consecutive 

Samples 

1 2 3 4 5 6 7 8 9 10 

Pattern 
; '11V vii,, N., 

Flat 199,000 49,500 21,845 12,250 7,800 5,345 3,891 3,00OJ 2,353 1,900 

Ramp 0 302 582 663 636 575 508 454 398 359 

1 Peak 40 302 567 664 655 
. 
583 508 472 398 1 352 

2 Peaks 118 308 575 674 664 1 584 519 454 414 362 

3 Peaks 200 354 739 681 676 565 517 473 386 359 

4 Peaks 594 342 601 1 669 677 585 487 
1 
454 391 

. 
345 

5 Peaks 990 380 587 1 720 690 588 494 1 560 383 1 370 

6 Peaks 1,394 458 616 718 634 572 526 450 414 368 

7 Peaks 1,796 553 707 1 695 660 612 508 473 422 375 

8 Peaks 2,187 578 688 1 717 1,093 601 502 463 408 454 

9 Peaks 2,588 727 1,303 1 724 725 622 541 488 386 375 

10 Peaks 2,960 780 652 1970 880 608 524 440 400 380 

11 Peaks 3,393 876 993 785 813 695 509 486 488 474 

12 Peaks 3,791 1,039 894 783 731 616 581 472 427 362 

13 Peaks 4,192 1,041 735 913 741 616 550 520 438 1383 

14 Peaks 4,596 1,280 951 896 723 660 585 486 414 358 

15 Peaks 4,966 1,112 1,335 1 790 779 893 537 466 477 380 

16 Peaks 5,344 1,222 897 807 760 654 526 512 439 581 

17 Peaks 5,776 1,348 969 762 724 660 627 506 41 392 

18 Peaks 6,209 1,573 1,192 911 1,7381 722 573 484 426 1518 

19 Peaks 6,542 1,576 1,186 1,176 808 614 586 536 444 402 

20 Peaks 6,840 1,660 878 970 1,080 648 531 460 398 460 

21 Peaks 7,424 1,978 1,128 
f 
989 878 692 576 600 433 390 

22 Peaks 7,793 2,099 2,463 1,080 1,481 945 613 546 22 2 

23 Peaks 8,198 1,908 1,330 1,076 842 838 678 596 79 

P 

360 

24 Peaks 8,642 2,031 1,413 888 840 732 547 481 437 O 1 

25 Peaks 
. 
8,750 2,000 1 1,289 1,250 1 1,0501 674 491 1750 

. 
415 650 

Table 4.8: The X2n Values Obtained for Certain Patterns 
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4.6.3. Discussion of the Results 

The discrimination was completely successful. Every sample produced by the 

patterns fails to be selected by SELECT 

Even if the filter is amended to have a most lenient criterion, that is a very low 

sconfidence" level of 0.1 %, all the patterns fail. 

Using the critical values of the Chi-Square Distribution given in Table 4.4 and 
examining the)?. in Table 4.8 shows that virtually all the values Of ý,, are 
rejected at the 0.1% confidence level. Only the)?, values for the Ramp and the 
Saw Tooth patterns of up to three peaks were acceptable at the 0.1 % 

"confidence" level of 266.39. All other)? values are above the 0.1% 

aconfidence" level. 

The Ramp obviously provides a perfect set of values for the distribution but the 

sequence is of course is very regular and not random, and thus it fails at every 
combination of samples. 
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5 SELECTION OF METHOD OF PRODUCING RANDOMNESS 

(SELECTING THE METHOD) 

Four methods of creating samples of a stochastic negative exponential deviates 

were considered. The methods were: 

e Real Random Numbers (or to be more precise ones created from a 

random physical device) 

* MLCG 

o Mersenne Twister 

o Descriptive Sampling 

In each case the random number created was converted to a negative 
exponential deviate by the "natural log" transform. 

The basis of the selection was that 

* Real random numbers are often considered as the "ideal", 
MLCGs are still the most popular, 
Mersenne Twister is the one now often given in a list of suggested RNG 
(see for example L'Ecuyer 1998). 

* Descriptive Sampling has in the past been shown for certain simulation 
problems to more efficient than MLCGs. (Saliby 1990b) 

5.1 REAL RANDOM NUMBERS 

As discussed in the Literature Review, the availability of faster methods of 

retrieving saved random numbers from storage devices that in turn are able to 

hold large amounts of data, has lead to the revival of the idea of using real 
random numbers for discrete-event simulation. 

It is assumed in most texts that the ideal source of randomness for simulation 
would be real random numbers and thus the search continues for generators 
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that mimic as closely as possible the behaviour of random numbers. However, 

as discussed in the Literature Review, the concept of quasi-random numbers for 

use in Monte-Carlo analysis has gained favour among some workers as they 

provide more accurate results. Thus non-random methods of introducing 

stochastic behaviour should also be considered. However, to provide a basis of 

comparison, the first step was to measure and evaluate the ability of real 

random numbers to create highly representative samples. 

The source of real random numbers used in the evaluation was that already 

used for the calibration of the filter. Indeed the same set of random numbers 

was used. The results are a therefore a reflection of that calibration. The 

values used in the filter were selected to give a relatively small number of very 
high standard samples. The low number of good samples obtained is a 

reflection of this high standard but also the ability of the real random number 

source to create them. Thus the number of samples selected from 40000 

samples was able to be used as a measure of the ability of the source of 

randomness to produce high quality samples. 

The distribution of the values of the "quality measure" is independent of the 

values used in the filter measure and is thus a measure of the quality of the 

samples. 
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Quality 

Sequence 

Section 

Number 

Weighted 

Sum 
Quality 

Sequence 
Section 

Number 

Weighted 

Sum 

Quality 

Sequence 

Section 

Number 

Weighted 

Sum 

1 629 1467.25 27 32334 1599.89 53 15370 1670.53 
2 38865 1469.84 28 7230 1610.72 54 24064 1672.48 
3 24076 1477.70 29 15600 1620.35 55 3300 1678.71 

4 20378 1483.38 30 5129 1620.93 56 11556 1682.06 
5 32489 1484.21 31 37942 1625.24 57 35797 1682.87 
6 22823 1490.54 32 2928 1625.82 58 30391 1682.91 
7 8814 1501.17 33 8507 1626.48 59 23006 1688.36 
8 35000 1515.09 34 10366 1626.92 60 5925 1688.56 
9 19444 1517.56 35 27197 1627.00 61 19514 1694.20 
10 1796 1522.55 36 8759 1628.67 62 19361 1697.04 
11 10337 1528.24 37 13223 1630.75 63 38583 1697.96 
12 3697 1535.34 38 2189 1634.98 64 30605 1703.05 
13 6816 1537.14 39 15365 1637.12 65 6379 1712.11 
14 31482 1547.93 40 31701 1640.34 66 30870 1718.48 

15 9716 1553.89 41 17748 1643.85 67 19904 1719.62 
16 964 1556.73 42 9066- 1645.06 68 22306 1721.89 
17 11176 1561.11 43 31267 1645.48 69 20673 1725.38 

18 26732 1561.12 44 23017 1647.78 70 4709 1730.69 
19 38813 1564.94 45 25250 1648.98 71 16978 1731.60 
20 15853 1567.74 46 30121 1649.56 72 10100 1731.89 

21 5921 1568.94 47 14685 1655.42 73 34612 1732.88 

22 21144 1569.80 48 7058 1663.00 74 25585 1735.12 

23 6472 1572.00 49 32818 1664.92 75 34155 1739.52 

24 31283 1577.98 50 2903 1668.82 76 27714 1739.85 
25 29263 1580.14 51 17555 1669.14 77 23594 1740.10 
26 20492 1582.39 52 7679 1669.20 78 28117 1789.26 

Table 5.1: The Selected Sections of the Real Random Numbers in "Quality" 
Sequence 
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5.1.1 The Number of Quality Samples. 

As described in Appendix 6, the real random numbers available on the web site 
(Random. org) enabled 40,000 samples of 1000 negative exponential deviates 

to be created. The choice of the values used in the filter lead to 78 samples 
being selected as highly representative from the 40,000 created. 

5.1.2 The Distribution of the Quality of the Samples. 

Table 5.1 gives the distribution of the Quality Measure for the selected samples. 
The samples are identified by the sequence number of the section of 1000 

random numbers used to create their sample values. The samples were 
created from consecutive non-overlapping sections of 1000 random numbers. 
The sample with the highest quality is the one with the lowest quality measure 
of 1467. The sample with the lowest quality, but still selected as highly 

representative, has a quality measure of 1789. 

5.1.3 Discussion 

The use of real random numbers has a number of practical difficulties. They 

would only be chosen if the other methods of providing randomness created 
inferior samples. The results from the real random numbers were used as the 

standards that had to be equalled or surpassed. 

5.2 MLCG 

5.2.1 Selection of MLCGs 

In the "Methods of Supplying the Stream of Random Numbers" section the 

continuing popularity of MLCGs was discussed. This popularity still exists even 
though there have been serious concerns about their use due to the easily 
demonstrated non-random behaviour that can be observed when consecutive 
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samples values are converted into points in n-dimensional space. Some writers 
have used cautionary phrases when discussing this failure, such as 'if this is 

important to you" (Bennett 1998) but none have reputed the findings as being 

irrelevant, nor has any researcher produce a measurement that demonstrated 

that if the MLCG had a certain "good result" in the spectral test (Knuth 1988) 

that they were acceptable. Knuth offers an opinion on the acceptability of 

certain results from the spectral test but not an opinion based on measurement. 

In order to examine if MLCGs are acceptable for use within discrete-event 

simulation, a number of MLCGs were tested using the discriminating test that 

has been developed in the previous section, and the results obtained with the 
MLCGs were compared with those achieved using real random numbers. The 

following seven MLCGs were considered: 

Proposer Reference 
Line in Table 1 

Page 106 of 
Knuth (1998) 

Fishman and Moore Fishman G. S. and Moore L. R., (1986) 18 

UEcuyer UEcuyer P., (1988) 21 

Lewis et al. Lewis PAW, Goodman AS and Miller JM (11969) 19 

Knuth Knuth (11998) 17 

Killingbeck L Knuth (1999) No Entry 

IBM Knuth (1998 12 

Marse and Roberts Marse and Roberts (1968) No Entry 

Table 5.2: The MLCGs Considered 

The choice of the first five MLCGs was based on their good performance in the 

tests specified by Knuth, especially the spectral test. Their performance in the 

spectral test is documented by Knuth in his Table 1 (Knuth 1998) and for the 

one proposed by Killingbeck in his proposed future amendments to the table 
(Knuth 1999). The modulus of the selected MLCGs made them easy to Port to 

many computers and thus suitable choices. 
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Two other MLCGs that were not recommended by Knuth were also Included in 

the study. The first was the one proposed by Marse and Roberts (1968) called 
UNIRAN, which was designed as a "portable" random number generator and as 

speed was then a major concern, had an alternative method of computation of 
the "pseudorandom" number so as to avoid the division and thus performed the 

calculation quicker. In this thesis the divide was made in the form of a "mod" 

operation and was used for all the generators, since the concern with speed 
that existed in 1968 is no longer as relevant. 

The other MLCG added to the list was RANDU. This RNG was introduced by 

IBM, and was once frequently used, being in the original IBM FORTRAN 

Scientific Subroutine Library for the IBM 360 (IBM 1970), but was later 

discredited (see Knuth and Appendix 2) and replaced in IBM's IMSL Scientific 

Subroutine Package (1978) by the Lewis et al. generator (Lewis et al., 1969). 

One of the main reasons for it being discredited is that it is considered to fail the 

spectral test in 3-dimensional space. Knuth (Page 107,1997) states that, "it 

should never have been used. 0 

The definitions of the generators as used in the study are given in the following 

table. 
Proposer Name Used In Study Modulus Multiplier 

Fishman and Moore F&M 2147483647 62089911 

L'Ecuyer L'Ecuyer 2147483399 40692 

Lewis et a[. Lewis 2147483647 16807 

Knuth Flying 2147483647 314159269 

Killingbeck L Killingbeck 4294967296 2.650845021 

Marse and Roberts UNIRAN 2147483647 630360016 

IBM RANDU 2147483648 65539 

Table 5.3: The Definitions of the MLCGs Being Considered 

The MLCGs had no offsets and thus were strictly speaking LCGs. 
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The spectral test ignores the offset value c (see page 34), or as it is sometimes 

called "the additive constant", so no value for any offset is given in Knuth's table 

1 (page 106 of Knuth 1998). However, if in the MLCG referenced here by the 

name Flying (this is because it is stated by Knuth as being one of the MLCG 

that passing his tests with flying colours), an offset of the value 1 is used, the 

MLCG no longer has the maximum cycle length. For all but one seed, the cycle 
is one less than the maximum and that seed, which has a value of 

1,395,119,659, has a cycle of only one (See Appendix 4). 

It was stated by L'Ecuyer and Lemieux (1999) that it may be better in Monte 

Carlo studies to choose a RNG with a reduced cycle size as the accuracy of the 

result may be improved by having a more even spread set of sample values. 

This may be true for discrete-event simulation as well. A brief study was 

therefore made of other MLCGs with much smaller cycle sizes to determine if 

this suggestion was correct. 

5.2.2 Performing the Test 

The tests were made to determine: 

If the MLQGs 1? roduce the same number of highly reg-resentative 

sarngles as the real random numbers. This was performed by creating 
for each MLCG 40,000 samples using seeds values from 1 to 40000 and 

comparing how may of the 40000 were selected as by SELECT with the 

78 selected from the 40000 samples created from the real random 
numbers. 

o If the MLCGs groduce the same Quality of samples-as the real random 
numbers. This was determined by measuring the distribution of the 

quality measure of the selected samples. 
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If one of the MLCGs was superior in creating good samgles. This was 
determined by checking all the samples created by the MLCGs, to see if 

the distribution of any MLCG samples was significantly different from the 

average. The check was one able to determine location as well as 

shape of distribution differences. 

* If the seed-selection was important. This was determined by comparing 
the quality measure obtained by samples created by different seeds for 

the same MLCG. 

For testing the MLCGs, the program LCGTEST was used (see Appendix 1). 

This program calls a subroutine MCG that is a double precision version of a 

general MLCG and it is thus able to use all the moduli of the actual generators 
being tested. As previously stated, it performs a standard double precision 

mmod" operation. A listing of the subroutine MCG is given in Appendix 1- 

5.2.3 Removal of Overlapping Sets of Random Numbers 

It is possible to select two seeds that will produce 1000 random numbers that 

overlap. This will occur in an MLCG if the 1000 random numbers created by 

one of the seeds contains the other seed. This may not be considered a 

problem in actual use, since the simulation model will most likely be in a very 
different situation when the numbers are repeated. But in order that there is no 

remaining concern a program COMB (see appendixl) was created that would 
detect and remove any overlapping seed. 
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5.2.4. Result of the test if MLCGs produce the same Number of Highly 

Representative Samples as the Real Random Numbers 

The following table give the number samples selected (high quality or highly 

representative samples) from the 40,000 samples of 1000 sample values 

created by the real random numbers and the corresponding results from the first 

40,000 seeds of the MLCG random number generators. 

In none of the cases did the COMB program reduce the number of samples 

selected by SELECT. Thus there was no overlap. 

Name Used Number Number of Samples Having Quality Measure Less than: 

in Study Selected 1500 1550 1600 1650 17001 1750 1800 1850 

Real 
Random 
Numbers 

78 6 14 27 46 63 77 78 78 

F&M 80 4 10 17 40 59 70 78 80 

UEcuyer 84 2 10 26 41 62 78 83 84 

Lewis 63 1 3 12 27 40 59 61 63 

Flying 82 2 6 16 37 65 77 81 82 

Killingbeck 64 2 6 13 23 49 61 63 64 

UNIRAN 68 2 6 16 32 49 63 67 68 

RANDU 78 1 11 24 41 59 78 

Table 5A The Number of Samples Selected and the Distribution of their Quality 

Measure (Comparing Real Random Numbers and MLCGs) 

The results for the real random numbers and the MLCGs appear similar, but it 

was necessary to test them statistically. 
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The values of "Number Selected" obtained from the MLCGs and the real 
random numbers must be considered as sample values, as the results using 
different sets of 40000 seeds or from another stream of real random numbers 
would be different but may be assumed to be distributed according to some 
statistical distribution. To test if the number selected is statistically significantly 
different a test not dependent on the distribution of the "Number Selected" was 
used. The test used was the chi-square test. (See pages 42-47 Siegel 1956). 
In this application of the test all the ONumber Selected" values for all the MLCGS 

were tested simultaneously and were considered to give values of "Number 
Selected" that had the same distribution as would be given by real random 
numbers. It was assumed that the expected number to be selected was 78. 

Only the cells for "selected" were used in the calculation since the unon- 

selected" cells would not add any measurable value to the x' value. Thus there 

are really 14 cells and since there are 7 totals there are (14-7), that is 7 degrees 

of freedom. Table 5.5 details the calculation. 

Name Used 

in Study 

Number 

Selected 

Expected 

(From Random) 
Calculation 

F&M 80 78 0.05 
L'Ecuyer 84 78 0.46 

Lewis 63 78 2.88 

Flying 82 78 0.21 

Killingbeck 64 78 2.51 

UNIRAN 68 78 1.28 
RANDU 78 78 0.00 

7.40 

Table 5.5: Calculation of X2 

The 30% "confidence" limit for 7 degrees of freedom is 8.38 (Table C, Siegel 

1956). A "confidence level" of 30% is a severe test. Thus the null hypothesis 
that, the "Number Selected" values are statistically the same as the values 
obtained from real random numbers, cannot be rejected. Thus the MLCGs 
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were able to create the same number of highly representative samples (i. e. 

approximately I from 500 candidates) as the real random numbers. 

5.2.5 Comparing the Quality of the Selected Samples with those from Real 

Random Numbers 

Having determined that the number of quality samples selected is the same as 

that created by the real random numbers, the next question that was asked was 

"are the selected samples of the same quality? " To answer this question the 

distribution of the quality measure of the samples selected was compared. This 

was performed using the Kolmogorov-Smirnov two-sample test. (See pages 
127-136 Siegel 1956). To perform this test the cumulative fraction of the 

sample having a sample measure less than a certain value was calculated from 

Table 5.4. The maximum absolute deviation between the result from the real 

random numbers and the individual MLCG was calculated. The critical 10% 

value calculated from the expression given in table M of Siegel 1956 was also 

calculated. The results are shown in the following table 5.6. 

All except the results from Killingbeck's RNG passed the severe 10% 

"confidence" level and the null hypothesis that they are the same distribution is 

accepted. Thus it is considered that they all come as if from the same 
distribution as the real random samples. Killingbeck's passes at the more liberal 

but acceptable 2.5% "confidence" level (critical value 0.25) and thus also must 

also be taken as coming as if from the same distribution as the real random 

numbers. There is a probability of 52% that in seven independent tests, at least 

one null hypothesis that should not be rejected will fail at the 10% "confidence " 

level. 
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Name Fraction of Selected Samples Having Quality 
Maximum 

Used Number Measures Less than: 
Absolute 

in Study Selected 1500 1550 1600 1650 1700 1750 1800 1850 
Deviation 

Real From 
10% 

Random 

1 

Random 
Critical 

Numbers 78 0.08 0.18 0.35 0.50 0.81 0.00 1.00 1.00 Value 

F-71 
F&M 80 10.05 0.13 0.21 0.50 0.74 0.88 0.98 1.00 0.13 0.19 

L: Ecuyer 84 0.02 0.12 0.31 0.49 0.74 0.93 0.99 1.00 0.10 0.19 

Lewis 63 0.02 0.05 0.19 0.43 0.63 0.94 0.97 1.00 0.17 0.21 

Flying 82 0.02 0.07 0.20 0.45 0.79 0.94 0.99 1.00 0.15 0.19 

Killingbeck 64 0.03 0.09 0.20 0.36 0.77 0.95 0.98 1.00 0.23 0.21 

UNIRAN 68 0.03 0.09 0.24 0.47 0.72 1 0.93 1 0.99_ 1 1.00 1 0.12 0.20 

RANDU 

-- 
78 

- ----- 
b. 01 -. 14 ý7 0.31 0.53 

f 
0.76 1 0.95 1.00 I 1 1.00 1 O. W 0.20 

Table 5.6: The Fraction of the Selected Seeds having a Certain Quality 

Measure 

The statistical test was able to detect any difference in quality between the 

selected samples from the MLCGs and the real random numbers 

5.2.6 Discussion of the Comparison of MLCGs and Real Random Numbers 

All the MLCGs that were considered in the study produced highly representative 

samples at the same rate and quality as the real random numbers. 

This supports the contention that the MLCGs are acting like real random 

numbers. Thus, for this purpose the MLCGs, may be used instead of real 

random numbers. The ability to select a seed (either by inputting the seed value 
directly or by using a stream number) and always get the same sample gives 
them a convenience over "on-line" real random numbers. 
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The surprising conclusion that can be taken from the results, is that the 
udiscredited" RANDU, if used with certain selected seeds, can create samples of 
the negative exponential distribution that are as good as the best created by the 

other MLCGs, that unlike RAN DU, are considered to pass the spectral test. 

Since the chance of selecting a seed at random, or a sequence of real random 
numbers that will create a sample that would rival the performance of RANDU 

with one of the carefully selected seeds, is approximately 1/500 or 0.2%, it may 
be said that indeed RANDU, used in these conditions would in the majority of 
cases (99.8%), outperform the real random numbers and other MLCGs with 
randomly chosen seeds. 

The next question is which if any of the MLCGs outperforms the others. 

5.2.7 Determining the Relative Performance of the MLCGs 

In order to improve the accuracy of the study, the number of samples of 1000 

sample values, and thus the number of seeds, was increased to 60,000. 

The values of the quality measure of all the samples are given in Table 5.7. 
It must be noted that there has been no removal of poor quality samples and 
every one of the 60000 seeds is included. Thus any difference will not be due 
to the action of the filter. 

The results from each MLCG can be seen to be similar. The distributions were 
then examined statistically. 

To perform the analysis, an average distribution for MLCGs was created by 

pooling all the samples. This was therefore based on 420,000 samples. With 

such a large number of samples this distribution was taken as the true 
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population values. Cumulative percentages of the quality measures were 

calculated for this population distribution, each of the MLCGs and also the 
40000 samples from the real random numbers. 

Name Used In Study Up to 1500 1600 1700 1800 1900 2000 

F&M 151 967 4013 8965 12852 12921 

L'Ecuyer 146 1062 4018 8812 12884 13013 

Lewis 155 1000 3915 8979 12968 13071 
Flying 156 1082 3963 9034 13049 12939 

Killingbeck 132 1015 4078 8839 12906 13114 

UNIRAN 155 1075 4062 8992 12944 12836 

RANDU 158 1121 
1 

3919 8883_ 12927 13020 

Name Used In Study 2100 2200 2300 2400 2500 Above 2500 

F&M 9611 5657 2833 1206 506 318 

L: Ecuyer 9611 5647 2719 1270 490 328 

Lewis 9630 5544 2794 1167 466 311 

Flying 9563 5536 2733 1189 445 311 

Killingbeck 9626 5577 2815 1160 459 279 

UNIRAN 9693 5467 2736 1238 475 327 

RANDU 9670 5588 2685 1197 495 337 

Table 5.7: The Quality Measure Counts from 60,000 seeds for each MLCG 

The distribution of the samples from the real random numbers was included to 

enable a check to be made that, using all the samples rather than just those 

passing the filter, would not invalidate the analysis. The result is shown in the 

following table. 
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Name Used in Study Up to 1500 1600 1700 1800 1900 2000 

F&M 0.25% 1.86% 8.55% 23.49% 44.91% 66.45% 

L'Ecuyer 0.24% 2.01% 8.71% 23.40% 44.87% 66.56% 

Lewis 0.26% 1.93% 8.45% 23.42% 45.03% 66.81% 

Flying 0.26% 2.06% 8.67% 23.73% 45.47% 67.04% 

Killingbeck 0.22% 1.91% 8.71% 23.44% 44.95% 66.81% 

UNIRAN 0.26% 2.05% 8.82% 23.81% 45.38% 66.77% 

RANDU 0.26% 2.13% 8.66% 23.47% 45.01% 66.71% 

Average 0.25% 1.99% 8.65% 23.54% 45.09% 66.74% 

Real Random Numbers 0.28% 1.99% 8.44% 23.41% 44.73% 66.38% 

Name Used In Study 2100 2200 2300 2400 2500 Above 2500 

F&M 82.47% 91.90% 96.62% 98.63% 99.47% 100.00% 

L'Ecuyer 82.58% 91.99% 96.52% 98.64% 99.45% 100-00% 

Lewis 82.86% 92.10% 96.76% 98.71% 99.48% 100.00% 

Flying 82.98% 92.20% 96.76% 98.74% 99.48% 100.00% 

Killingbeck 82.85% 92.15% 96.84% 98.77% 99.54% 100-00% 

UNIRAN 82.93% 192.04% 96.60% 98.66% 99.46% 100-00% 
-- RANDU 82.83% 92.14% 96.62% 98.61% 99.44% 160 . 00% 

Average 82.78% 92.07% 96.67%- 98.68% 99.47% 100.00% 

Real Random Numbers 
1 
82.44% 91.89% 96.640YýO -98.68%-- 99.47'Yo- 100.00% 

Table 5.8: The Percentage of the 60,000 Seeds for each MLCG falling in certain 
Quality Measure Ranges 

Since the average distribution of the MLCGs is being used as the population 
distribution against which all other distributions will be measured, the one 

sample Kolmogorov-Smirnov test was used. 
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The first test was to determine if the distribution created by the real random 

numbers was the same as the population. The maximum absolute deviation of 

the cumulative distribution of the samples' quality measures created by the real 

random numbers from the cumulative distribution of the population was 0.0036; 

the critical value at 20% "confidence" level is 0.0054 (See Table E, Siegel 1956). 

Thus the distributions of the quality measures obtained from real random 

numbers and the distribution of the population created by the average quality 

measures obtained from the MLCGs can be considered as being the same. 
Thus the average quality measure that is being used as the population 
distribution may be used in the further tests with confidence. 

The individual MLCGs were next tested to see if any were significantly better or 

worse than the average performance. The one sample K-S test was used. In 

this case as there were 60000 samples rather than the 40000 samples created 

by the random numbers, the critical value is smaller and at 20% is 0.0044. 

Table 5.9 gives the maximum absolute deviation for each MLCG. All were 

within this severe critical value and therefore it can be considered that they all 

share the same distribution of quality measures, which was just shown to be the 

distribution of quality measure created by the real random numbers. 

The result shown in table 5.9 show that none of the MLCGs were seen to be 

superior. Even RANDU was not seen as inferior even though "failing" the 

spectral test. 
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Name Used In Study Maximum Absolute Deviation 

F&M 0.0032 

L'Ecuyer 0.0022 

Lewis 0.0020 

Flying 0.0038 

Killingbeck 0.0016 

UNIRAN 0.0029 

RANDU 0.0014 

Table 5.9: Maximum Absolute Deviation Between the Average and the 
individual MLCGs 

The next investigation was to determine how important was the selection of the 

seed. 

5.2.8 The Importance of the Seed Selection 

The program BADIOO (see Appendix 1) selects the 100 seeds that created the 

worst samples (that is the 100 samples with highest values of the quality 

measure), from the 60,000 seeds. Table 5.10 gives the top 10 and bottom 10 

seeds for each MLCG. 

it can easily be seen that selecting a seed from the top rather than the bottom 

10 makes a major difference in the quality of the sample created for every one 

of the MLCGs. The smallest change in quality measure by changing from the 

best seed to the worst for any MLCG is an increase of 1771. The increase in 

the quality measures by keeping the same ranking of seed but changing the 

selected MLCG is at most 74. This could be tested for statistical significance 
but the difference is so large as to make such a calculation redundant. 
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MLCý_ F&M UEcuyer Lewis Flying Killingbeck UNIRAN RANDU 

Rank 

1 1430 1448 1430 1442 1447 1444 1443 

2 1431 1484 1449 1479 1470 1445 1481 

3 1463 1504 1482 1499 1476 1458 1501 

4 1470 1508 1527 1544 1501 1504 1504 

5 1482 1514 1535 1548 1503 1518 1507 

6 1497 1515 1537 1548 1520 1528 1511 

7 1497 1517 1537 1548 1525 1529 1517 

8 1506 1518 1552 1551 1536 1533 1520 

9 1512 1533 1561 1560 1539 1538 1524 

10 1536 1534 1565 1561 1548 1538 1529 

59991 3061 3082 3031 3008 3006 2989 2970 

59992 3090 3083 3055 3051 3012 2990 2973 

59993 3092 3083 3055 3063 3022 3011 2978 

59994 3121 3102 305a 3067 3052 3033 2983 

59995 3154 3105 3106 3075 3076 3036 3003 

59996 3192 3168 3280 3108 3085 3040 3006 

59997 3203 3171 3281 3148 3091 3059 3012 

59998 3365 3175 3322 3188 3160 3099 3182 

59999 3504 3271 3373 3287 3376 3121 3193 

60000 3593 3339 3544 3553 3767 3214 ý5 

Table 5.10: The Best and Worst Seeds for Each M LCG 

It is clear that when a sample of 1000 negative exponential sample values are 

required the selection of the seed values is much more important than the 

choice of MLCG. 

The test demonstrated that the MLCGs produce quality samples at the same 

rate and distribution as real random numbers. The performance difference 
between MLCGs is small but the choice of seed is very important. 
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However all the MLCGs had a large modulus when compared with the sample 

size. Such MLCGs are used to give large cycle sizes and to pass the spectral 

test. LEcuyer and Lemieux (1999) suggested better results could be obtained 

with a smaller modulus. This was next investigated. 

5.2.9 Reduced Cycle MLCGs 

It was stated by L'Ecuyer and Lemieux (1999) that it may be better in Monte 

Carlo studies to choose a RNG with a reduced cycle size as the accuracy of the 

result may be improved by having a more "even spread" set of sample values 

over the sample space being investigated. This is possibly true for discrete- 

event simulation as well. A study was therefore made of MLCGs with much 

smaller cycle sizes then have been considered so far. These were taken from 

Table 2 in the paper by L'Ecuyer (1999) entitled "Tables of Linear Congruential 

Generators of Different Sizes and Good Lattice Structure. " They are shown in 

Table 5.11. 

The method of analysis was as before but in this case because the cycles for 

the MLCG were small, the full cycles were analysed. 

The results of the computer runs are given in Table 5.11 

5.2.10 The Quality Measures Obtained 

In this case with the smaller cycle sizes, there were many overlaps. When the 

lower quality seed of an overlapping pair was removed the number of seeds 

available greatly reduced. In the case of the Modulus 524287 and multiplier 
28374 1, there were initially 1155 seeds that met the quality criteria, but when 

overlaps were removed this reduced to 187. 
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Total Number Number of Seeds 
Range of Quality 

Modulus Multiplier of Seeds After Overlaps 
Measure 

Selected Removed 

1021 65 44 1 1331.0 

331 0 0 

2039 995 10 1 1430.2 

328 69 1 1339.0 

393 13 1 1390.8 

4093 209 12 2 1398.6 1596.3 
235 27 2 1463.2 1636.9 

219 78 3 1401.2 1572.1 

3551 30 2 1364.2 1540.2 

8191 884 10 4 1603.0 1727.5 
1716 56 3 1379.6 1677.0 
2685 48 5 1439.9 1588.2 

16381 572 74 8 1449.0 1679.2 

3007 44 8 1470.1 1812.4 

665 90 9 1458.3 1608.4 

12957 82 7 1345.3 1586.0 

32749 219 110 13 1427.3 1759.2 

65521 2469 126 23 1499.5 1752.6 

131071 43156 301 45 1416.3 1796.2 

262139 92717 423 96 1376.3 1791.7 

524287 283741 1155 187 1436.5 1822.1 

Table 5.11: The Number of Seeds Meeting the Quality Criteda using MLCGs 

with Relatively Small Modulus 

Table 5.11 shows that as predicted, the MLCGs, with the smaller modulus tend 
to give a higher quality of sample. The following graphs indicate that the best 

and worst seeds for any modulus tended to have higher numerical quality 
values, which indicate a poorer quality sample, as the size of the modulus 
increased. (Note: The quality measure is the size of deviation from the ideal 
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and thus grows in value as the quality reduces. ) In the graphs the size of the 

modulus was measured as log to the base 2. (The conversion to log Is used 
here is to reflect "a rate of growth" and the base 2 is used to obtain a convenient 

scale. ) 

It should be noted that due to different sample sizes and theoretical limitations 

of statistics of the form "best" and "worst", any confidence limits being placed on 
slopes or correlation factors may only be taken as indications. 

2000.0- 

1900.0- 

1800.0- 

1700.0 - 

1600.0 - 

1500.0- 

1400.0 - 

1300.0- 
9 11 13 15 17 19 21 

Modulus Size (Log to the base 2) 

Graph 5.1: Best Seed's Quality Measure against Modulus Size 
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Graph 5.2: Worst Seed's Quality Measure against Modulus Size 

The "r coefficient" for the best seeds performance against modulus size is 0.66 

and for the worst seeds performance against modulus size is 0.83. These "r 

coefficient" values would indicate acceptable at the 3.7% and 0.3% level 

respectively (Calculated using Excel; also see table 6.2 Neave 1989). If in the 

*best" plot the rather poor result for 65521 is removed, the *r coefficient* value 
increases to 0.78. This passes the more serve 1% "confidence" level. 

Two factors are present in the plot of worst seeds. The modulus increase and 

so does the number of seeds in the set being considered. Thus for very small 

modulus where there was only one seed passing the quality criteria, the worst 

and best are the same seed whilst for 524287 there were 187 seeds. It must 

also be noted that the "worst seeds" are the worst drawn from the set of 187 

passing the quality criteria and are certainly not the worst seeds when all the 

possible seeds are considered. 
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However a Multiple Regression Analysis of the worst (largest numeric value) 

quality measures against the multiplier and the number of seeds In the set gave 

the coefficient for the number of seeds in the set as -1.5. This is obviously a 

spurious result and the result would be taken as zero, thus the number of seeds 
in the set can be rejected as a factor in the reduction in the quality of the 

samples. 

The use of the smaller moduli is however limited as it could only provide few 

seeds that both met the criteria and did not overlap. They would also unlikely to 

be suitable for providing larger sample sizes. However the two largest moduli in 

the table, 262139 and 524286 with their respective multipliers 92717 and 

283741 are very acceptable MLCGs for when only 1000 sample values are 

needed. The results for these MLCGs are given in Appendix 3. 

This result may be of great importance when small samples are being 

considered. If the *rule of thumb" for run length that at least 10-20 samples are 

taken from a distribution were used, then samples of as small as 10-20 values 

would need to be considered. 

5.2.11 Summary of the Evaluation of MLCGs 

The test proved successful in isolating seeds that gave highly representative 

samples. The behaviour was as predicted by the application of the test on real 

random numbers. 

All the MLCGs in table 5.3, when used with certain selected seeds gave highly 

representative samples with 1000 sample values. If only a small number of 

seeds are required then the MLCGs with smaller moduli, again with selected 
seeds can also be recommended. 
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These seeds and MLCG combinations that are recommended are given In 

Appendix 3. 

Although the results for RANDU and UNIRAN are not included in the results in 

Appendix 3, they did not show any performance problems. This indicates that 

the spectral test may not be as relevant as the quality check of the sample for 

selecting RNGs for use within discrete event simulation, at least in the situations 

where the sample is created from a single random number. In cases where two 

or more random numbers are needed to create a single sample value there may 

still be a performance problem and until that has been resolved the spectral test 

may remain an essential test. Since the number of generators that pass 

spectral test is sufficiently large it may remain prudent to use only -MLCG 
that 

pass this test and select the seed to be used by the tests-developed here. 

5.3 EVALUATION OF THE MERSENNE TWISTER 

5.3.1 Description of the Mersenne Twister 

A RNG that is gaining interest in the simulation and computational analysis 

communities is the Mersenne Twister (MT) of Matsumoto and Nishimura (1998) 

which is a modification of a "Generalised Feedback Shift Register Generator 

(see for example L'Ecuyer 1998 and also the Mersenne Twister Home Page 

2002 httg: /Iwww. math. keio. ac. ip/-matumoto/emt. html). 

L'Ecuyer (1998) states that in his view it is one of the few RNGs that can be 

recommended. In their paper Matsumoto and Nishimura give the scientific 
bases for the 623 "dimensional equidistribution* and state that it passes all the 

tests that are available, including Marsaglia's Diehard. Thus MT avoids all the 

criticism aimed at the MLCGs. They state it can be tested more rigorously than 

MLCGs, as the spectral test is limited in the dimensionality able to be tested 
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due to the existing computational difficulties (dimensions greater than 100 are 
claimed to be too lengthy in computer time). Thus they claim MT is not open to 
the criticism that it is chosen due to the difficulty in demonstrating non- 
randomness due to an inability to analyse its behaviour. They also make the 
important claim that its formulation corrects the deficiencies that exist in a 
similar simple form of this type of RNG, which were reported by Ferrenberg et 
al. (1992). However, as already stated, it has been reported that certain seeds 
can lead to non-random behaviour. It cannot be assumed that the excellent 
behaviour of the generator over a full cycle, determined by a theoretical 

analysis, will give any guarantee for short, or even what may be considered In 

practical terms long, term behaviour. Thus empirical tests on the sample sizes 
that are used in practical investigations are still essential. 

5.3.2 Concerns with the Mersenne Twister 

One of the concerns is that MT required 624 seeds and thus there is a start up 

cost in terms of processing time and time to generate a random number. MT 

was designed to be used in Monte Carlo studies where often there is only a 

single stream of a very large number of random numbers used. Therefore this 

need to generate 624 seeds at the start of a simulation run is not a serious 

concern for Monte Carlo studies and that by their nature require lengthy 

computer runs or very fast computers. Discrete-event simulation Vill typically 

required many streams as this gives the ability to repeat the behaviour of any 

variable (Tocher 1960). Therefore a number of sets of 624 seeds will need to 

be generated. Although in practice the number of streams required is not 
normally that great, as may be seen from the fact that WITNESS, a leading 

simulation package, has 100 built in random number streams (Lanner 1998). 
(The package has actually 200 but 100 use the full word size and these 100 

streams have larger cycles and are recommended to be chosen; the first 100 

remain available in the package for backward compatibility. ) 
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The MT generator has, as already stated, an enormous cycle length. This 

brings great benefits from the standpoint of the creation of as nearly as perfect 

as possible imitation of real random numbers. But in the study just described, it 

was shown that, where a small sample is required, the MLCGs with the smaller 

cycles give the more representative samples. This leads to the concern that 

MT, with its large cycle, may create fewer high quality small samples and thus 

not be an ideal choice for discrete event simulation where there may frequently 
be a requirement for small samples. 

5.3.3 Creation of the 624 Seeds 

The first problem in implementing MT is its requirement for 624 seeds. As 

already discussed in the implementation of MT by Nishimura (Mersenne Twister 

Home Page, 2002), a MLCG suggested by Marsaglia (described in Knuth 1999 

page 108) was used to create the 624 seeds from a single seed. Thus from the 

user's viewpoint the total procedure, when using this implementation, only 

requires the one seed. The full set of values 1 to 2 32_1 are available for seeds 

to be input into the Marsaglia MLCG, which has a modulus of 2 32 
. The study 

used the same implementation and thus the samples created for this 

investigation were those created using the seeds generated by Marsaglia's 

MLGC. 

5.3.4 Performing the Tests 

The tests were designed to determine: 

If MT groduce the same number of highly regresentative samples as the 

real random numbers. This was performed by creating 40,000 sets of 
624 seeds using Marsaglia's MLGC with seeds values 1 to 40000. Then 

creating from these sets of seeds, 40,000 samples of looo sample 
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values using the MT generator and comparing how many of the samples 
thus created were chosen by SELECT with the number selected from the 
40000 samples created from the real random numbers, that is 78. 

,o If MT produce the same guality of samples as the real random numbers. 
This was determined by comparing the distribution of the quality measure 
of the selected samples from the MT generator and real random 
numbers. 

9 If MT produces higher-guality of samples than the MLCG. In this case 
the number of samples created using NIT was increased to 60,000. Thus 

seeds of 1 to 60000 were used in the Marsaglia's MLGC to create the 

sets of seeds for the MT generator. The samples selected by SELECT 

were compared with the samples similarly selected from the 60,000 

created by the MLCGs. The distribution of the "Quality measure' for the 

MT selected samples was compared with the average distribution of the 

MLCGs selected samples. The measurement of whether the MLCGs 

were better, or even just different, was made. 

9 If the seed selection is more important than the choice between using MT 

instead of MLCG RNGs. This was determined by measuring the 
difference in Quality Measure from changing to MLCGs from MT against 
the change that occurs by changing seeds in the MT generator. 

To perform the above set of tests, a program IVITTEST was written. Details of 
the program are in Attachment 1. The subroutines creating the initial seeds and 
the "pseudorandom" numbers use the coding of Nishimura. (The only 
adaptation was the introduction of a subroutine argument list and the ability to 

change the seed for the MLGC generating the 624 initial seeds. ) As already 
stated, the effect of using a different MLCG from that chosen by Nishimura for 

producing the initial set of 624 seeds was not considered in this study. The 
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choice of this MLGC was probably based on its ease of implementation and 
speed as well as having a leading expert as its designer. 

The samples created were as in the other studies; they each consisted of 1000 

sample values from a negative exponential distribution. MT created the 
"pseudorandom" numbers and the negative exponential deviates were created 
by the "log" transformation. SETUP was run with the default values and thus 
the calibration of the tests previously made was use. 

The probability that there would be any overlap (that is any of 624 sequence of 
pseudo random numbers created would be the same as one of the sets of 624 

seeds) is so small that no test was made for any overlap. 

5.3.5 Comparison of the Number of Highly Representative Samples 
Created 

Name Fraction of Selected Seeds (or Sets) Having a Quality 
I 

Used Number Measure Less than: 
m Maximu 

in Study Selected 1500 1550 1600 1650 17001 1 50 18001 1850 Deviation 

- F 
Real rom 10% 

Random 
Random Critical 

Numbers 1 78 0.08 0.181 0.35 0.59 0.81 10.99 1.001 1.00 Value 

-1 

MT 71 0.11 0.15 1 0.301 0.4ý 10.76 10.87 10.96 1 1.00 0.13 

Table 5.12: Distribution of the Quality Measure for Highly Representative 
Samples 

The probability of obtaining 71 or less when the expected number is 78 is 

greater than 20% so the null hypothesis that the numbe of high quality samples 
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created is the same as with real random numbers cannot be rejected. Thus it 

may be assumed that the number of highly representative created by real 
random numbers and MT is the same. 

5.3.6 Comparing the Quality of the Selected Samples with those from 
Real Random Numbers 

To determine if the distribution of the quality measures in the selected samples 
was the same as obtained when using the real random numbers the 

Kolmogorov-Smirnov two-sample test (See Siegel 1956 pages 127-136 table M) 

was used. The null hypothesis that the two distributions are the same cannot 
be rejected even at the severe "confidence" limit of 10%. Thus the results from 

the MT RNG indicate the results are as if from real random numbers. 

5.3.7 Comparison of the MT and MLCG Results 

Since it was shown in section 5.2.9 that there was an improvement in the 
Quality Measures as the cycle size reduced it may be considered that the 

samples from MT could be of lower quality (that is larger numerical quality 
measure) than from the relatively small cycle MLCGs. 

To determine if the results of the MT are inferior to those obtained from the 

MLCG previously analysed, the distributions of the quality measures were 
compared. 

The results from selecting the highly representative samples from the 60000 

samples were used. From the 60,000 samples created by MT, SELECT chose 
115; for the 300,000 samples created by the five MLCGs (F&M, L'Ecuyer, 
Lewis, Flying and Killingbeck), 570 samples were chosen. These 570 were 
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considered as coming from the same distribution. The two cumulative 
distributions were calculated and the results compared. 

The Kolmogorov-Smirnov two-sample test was again used. This time a single- 
tailed test was used. (Since there were a large number of samples, a transform 

was made on the maximum deviation of the MLCGs' distribution from the MT 
distribution such that the created test statistic follows the chi-square distribution 

with 2 degrees of freedom, (see page 131 of Siegel 1956). The null hypothesis 

was that the distributions were as if from the same distribution, while the 

alternative hypothesis is that MLCG were from a "better' distribution. The visual 
examination of the plots (Graph 5.3) clearly indicates that the alternative 
hypothesis is false. 
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S. 
- 
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Quality Measure 
1.8 1.9 
Thousands 

Graph 5.3: Comparison of Performance of the MLCGs and MT 

MLCG 
MT 

The largest deviation in the correct direction for the alternative hypothesis (a 

positive difference) is 2% at a Quality Measure of 1750. This is too small to see 
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on the plot. Using the tabulated values of chi-squared, the test shows that there 
is a 99.7% chance of getting this result or better from the null hypothesis and 
that the null hypothesis cannot be rejected in favour of the alternative 
hypothesis. Thus there is no evidence of the MT producing inferior samples. 

A two-tail test also fails to find a significant difference; the null hypothesis that 
the distributions were the same would only be rejected at the 8% level. Thus 
the quality of the accepted samples from the MT generator was statistically the 

same as from the MLCGs, 

Thus it has been shown that MT is not inferior to MLCGs in producing highly 

representative samples and indeed they appear to be equal in performance. 

5.3.8 The Effect of Seed Selection 

Using the results of the 60000 seeds the best 10 and worst 10 for the MT RNG 

are tabulated in table 5.13. The corresponding results from the five MLCGs are 
also shown. 

As with the MLCGs, the difference between the results of the top seeds and 
bottom seeds is much greater than obtained by changing the RNG. In this 

case, to change between a MLCG and MT is at most 117 whilst changing from 

the top seed to the bottom of the values for MT is a change of over 2000, and 
even changing from the top seed to the 101h (a change of 101) gave a difference 

greater than could be expected from changing generator. 
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RNG MT F&M L'Ecuyer Lewis Flying Killingbeck 

Rank (MLCG) (MLCG) (MLCG) (MLCG) (MLCG) 

1 1429 1430 1448 1430 1442 1447 

2 1449 1431 1484 1449 1479 1470 

3 1466 1463 1504 1482 1499 1476 

4 1473 1470 1508 1527 1544 1501 

5 1479 1482 1514 1535 1548 1503 

6 1488 1497 1515 1537 1548 1520 

7 1488 1497 1517 1537 1548 1525 

8 1489 1506 1518 1552 1551 1536 

9 1518 1512 1533 1561 1560 1539 

10 1530 1536 1534 1565 1561 1548 

'Y 
59991 3061 3061 3082 3031 3008 3006 

59992 3070 3090 3083 3055 3051 3012 

59993 3073 3092 3083 3055 3063 3022 

59994 3091 3121 3102 3053 30G7 3052 

59995 3116 3154 3105 3106 3075 3076 

59996 3160 3192 3168 3280 3108 3085 

59997 3174 3203 3171 3281 3148 3091 

59998 3205 3365 3175 3322 3188 3160 

59999 3374 3504 3271 3373 3287 3376 

60000 3442 3593 3339 3544 3553 3767 

Table 5.13: Best and Worst 10 seeds for the MT Generator 

5.3.9 Conclusion of the Study of the MT 

The test again was able to determine a number of seeds that produce high 

quality samples. 
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It has been shown that even with its massive cycle size, the MT RNG produces 
as least as good samples of 1000 sample values as the MLCGs. But it does 

not produce better samples. When selecting a RNG based on an arithmetic 
process, the IVIT generator, because it lacks the shortcomings of the MLCGs, 

may be considered the preferred RNG of the two. However there is a concern 
that the IVIT generator requires processing time to initialise and is slower to 

produce the random numbers. This is discussed later when the timing of all the 

methods was considered. 

5.4 EVALUATING DESCRIPTIVE SAMPLING 

Descriptive Sampling is not really a random number generator but a method of 

constructing samples. The method of construction and the method of 
introducing randomness will now be described. 

5.4.1 Description of Descriptive Sampling 

Descriptive Sampling, or as it was originally called Selective Sampling, which 
was referred to in the Literature Survey, is a method of constructing a sample 

such that it will have the same distribution as the required distribution. That is 

the sample values have the same moments as the distribution of the variable. 
The problem in the method is to obtain a suitable sequence. In Saliby's 
description of the method the procedure is: 

1. Determine the Number of Samples Values, N 
2. Construct an Array with N values varying from 0.5/N to (N-0.5)/N in steps 

of O. S/N 

3. Convert each value to the required sample distribution with an inverse 

transformation 
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4. Sort the array into a random sequence or as it may be termed, "shu e" 
the array. 

Later Saliby and Paul (1993) moved the shuffle so that a single interchange, 

one step in the shuffle, is performed as the sampling takes place. This 

amended method is described later. 

A similarity of the sample created by DS and the ramp used as one of the test 

patterns is that the sample values are calculated in the same way. Since both 

are a perfect sample in terms of sample values, both their X, 2 values are zero. 

The important difference is the sample values when used in Descriptive 

Sampling are shuffled in an attempt to give a representative sample in 

sequence as well as in sample values. If the shuffling were considered perfect 

then the values Of Xn 2 for all the values of n would be zero. This is not likely to 

be achieved. 

5.4.2 Performance with Existing Tests 

It may be noted that it is possible to change the sequence of steps to create the 

sample. If steps 4 and 3 were transposed, that is shuffling the unconverted 

values before the conversion, the resultant sample would be the same as 
before. This changed sequence within the algorithm provides after the sort, a 

set of what may be considered "pseudorandom" numbers that can then be 

tested using the established tests such as Knuth's or Marsaglia's list of tests 

(but not the "spectral" test which is only for MLCGs). However, if there are only 

a relatively small number of "pseudorandom" numbers then some tests will be 

impossible to apply. 

Although from the method of construction of the sample some simple test such 

as a test for uniform spread of numbers will be met, it is very likely that the 

method of construction will also guarantee that such a set of "pseudorandom" 
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numbers would fail some tests, for example they would fail the tests in the 
"Monkey Tests" suite of Marsaglia (1993). (In these tests, ranges of numbers 
are assumed to represent individual keys on a keyboard, thus the sequence of 
numbers is converted to a string of letters, and these are considered to have 
been typed by a monkey). The tests consist of comparing the theoretical 

sequences of letters with the theoretical rate that the monkey should have 
typed. (Is "GOD" ever mentioned and does "SIN" occur too often? ) As may be 

easily seen, in a sample of 1000 sample values constructed using Descriptive 
Sampling, there is no possibility of having more than one sample value in the 

range 0-0.001, while this Monkey Test would expect there to be a chance of 
26.4% of having more than one value (probability of I or more from a Binomial 
Distribution of 1000 trials each with a chance of success of 1/1000). Similarly if 

all 1000 ranges of width 0.001 between 0 and 1 are considered, the probability 
if the upseudorandom" numbers were true random numbers that every interval 

would have one occurrence has a probability of 10,432 . This is a near 
impossibility. 

It may be noted that if N is the number of ranges (the number of sample values 
in the example above) then (NI/N N) is the probability that each range would 
have one occurrence. The (N I /N N) value can be derived by calculating the 

probability of success by considering the probability of placing sequential 
random numbers into an empty range. The probability of the first random 
number being so placed is (N/N), the second is ((N-1)/N) and if that was 
successfully placed the probability of the third would be ((N-2)/N) and so on. 

But the sample was construct to have one value in each range. Thus it fails the 
test and therefore is shown clearly not to be a random sample. This is not a 
concern since our requirement is for a highly representative sample. The 

evaluation of the performance of Descriptive Sampling to produce highly 

representative samples will be made here by testing the set of samples it 

creates in the same manner as was performed with samples created by the real 
random numbers and the other generators. 
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5.4.3 Concerns with Descriptive Sampling 

Since the requirements for many standard statistical tests will not be met if the 

samples are not drawn randomly, care would need to be taken when making 
any statistical analysis of the outputs from a simulation model in which this was 
not the case. Descriptive Sampling does not provide independent samples. 
The samples are related by having the exact mean and standard deviation, not 
the situation that would be obtained by independent samples. As was 
discussed previously the statistical analysis of simulation models is difficult and 
more so if the inputs are not independent samples and that statistical rigour 
may have to here be sensibly sacrificed for more dependable results. This is 
the case for all attempts to reduce variability in the output of simulation studies. 
Descriptive Sampling would therefore be unsuitable for some Monte Carlo 

studies, such as determining the distribution of a stochastic variable 

A more fundamental problem is the requirement to sort the constructed values 
into a random sequence or in terms of a deck of cards, to shuffle them. Knuth 

stated that the fundamental problem of shuffling into random order can be seen 
if it is remembered that the number of possible permutations for the results of a 

random shuffle is massive. For 1000 samples there are 10001, or over 102567 

possible permutations. If a billion permutations could be created in one second 
it would still take over 102550 years to create them all. It can easily be seen that 
to shuffle by selecting at random from all the permutations by the use of a RNG 

such as an MLCG is impossible since they do not have such a range of random 
numbers. A RNG would need to be used with a very large cycle size. 

An alternative approach is to have an algorithm that gives each sample value 
an equal chance of being put in any position in the sequence. Such an 
algorithm is used in the program SHUFFLE given in Appendix 1. This requires 

A Warn Page 127 



Evaluation of Alternative Discrete Event Simulation Experimental Frameworks 

a source of random numbers but "pseudorandom" numbers would suffice and 
the RNG need only have a cycle length of the number of sample values. 

5.4.4 Selecting a Method to Shuffle 

Searches of the literature, and direct requests for information have not provided 

any information on what shuffles have been proposed for Descriptive Sampling 

or to be more precise, since shuffling algorithms do exist (such as SHUFFLE), 

the source of randomness to be to be used by the shuffling algorithm. As stated 

above all shuffling algorithms require a source of randomness that is usually 

provided by a supply of "pseudorandom" numbers. 

As previously mentioned Saliby and Paul (1993) suggested that the shuffle 

should not be made when the list of sample values is created but that one step 

of the shuffle should be made whenever a sample is taken. Thus in their 

implementation of the method, at the moment of taking a sample there is a 

random selection from the remaining values which one can visualised as being 

at the lower end of the list while those already chosen are at the top. The 

chosen value is swapped with the top of the unused values. The dividing line 

between chosen and un-chosen values then moves down one place. If more 

samples are required than are in the list all the values in the list are made 

available and the shuffle starts again with the top value in the list being 

swapped for the chosen value. When more than N samples are required there 

is a deviation from the perfect set of values but this will be investigated later. 

Their paper does not give information on how the random number is actually 

created. The assumption being the inbuilt random number generator of the 

simulation language is used. Brenner (1963) when describing a selection 

procedure (which he termed Selective Sampling), which is identical to 

Descriptive Sampling, used a look-up table created from the values in the book 

of tables created and published by the RAND Corporation (1955). 
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For use in the evaluation, the shuffling subroutine called SHUFFLE was written 
(see Appendix 1). 

This algorithm operates in the same way and gives the same result as the 

procedure used by Saliby and Paul. (The version of SHUFFLE given by 

Durstenfeld (1964) appears similar and has no advantages. ) 

As already mentioned, if a source of randomness within SHUFFLE was a true 

random source, instead of the subroutine MCG, it can easily be shown that 

every member of the list would have an equal chance of being in any position in 

the shuffled array. However many permutations would be unwanted as 
sequences for our "highly representative sample. " A practical shuffle that can 
create such "highly representative samples" is required. Thus the use of a 
MLCG to produce the randomness may be more suitable since, once a suitable 

combination of MLGC and seed is determined, the quality of the sequence of a 
certain number of values can be assured. For this study, the SHUFFLE 
program was used since any results may then be used within the 
implementation suggested by Saliby and Paul. The randomness required was 
provided by the MLCGs that have been used in the previous section. The 
MLCGs, seeds, and number of shuffles were examined to see which gave 
"highly representative samples. " 

The first set of tests was to determine if repeated shuffles would give better 

samples. The five MLCGs previously used were used to provide the 

randomness for the SHUFFLE program. The seed used for each MLCG was 
the seed that had the top ranking for its MLCG in the results in Appendix 3. 

The sequences were tested after each shuffle. The sequences were shuffled 
up to 100 times. The list was sorted from its last sequence using the same 

seed. 
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5.4.5 Results of the Multiple Shuffles 

The results of the quality measures are given in the following five graphs. 
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Graph 5A The Quality Measures from Repeated Shuffles using F&M 
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Graph 5.6: The Quality Measures from Repeated Shuffles using Lewis 
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Graph 5.8: The Quality Measures from Repeated Shuffles using Flying 

The results clearly show that there is no guaranteed improvement by repeating 
the shuffle (often it became worse). Table 5.14 gives the best number of 

shuffles and the worst. There is no way to predict the number of shuffles to 

produce the best sample for a RNG and seed combination. 

RNG used in Seed Number of Shuffles 
Quality measure 

SHUFFLE Best Worst Best Worst 
F&M 52260 63 95 1411.9 2266.5 

L'Ecuyer 33180 93 84 1343.1 , 2196.5 
Lewis 36670 19 50 1377.9 2152.9 
Flying 8528 76 44 1375.3 -2326.4 

Killingbeck 3612UT 4-7 80 1430.1 - Yli 9 3-2 

Table 5.14: Summary of the Results from Repeated Shuffles 

b 646,6 40W6 Ih 
% qp dir * 0* 
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Thus in the investigation of the effectiveness of various MLCGs and seed 

combinations when used in the program SHUFFLE a single shuffle was used. 

5.4.6 Performing the Tests 

The tests were designed to determine: 

If IDS produce the same number of highly- reQresentative samgles as the 

real random numbers. This was performed using IDS to create 40,000 

samples of 1000 sample values. Five sets of 40,000 samples were 

created using the five MLCGs that passed the spectral test, each time 

using seeds of value 1 to 40000. The numbers of samples selected by 

SELECT were compared with the number selected from the 40,000 

samples created from the real random numbers, that is 78. 

Does DS produce the same guality of samples as the real random 

numbers. This was determined by comparing the five distributions of the 

quality measure of the selected samples from the DS generator with the 

distribution when the real random numbers was used. 

If the choice of MLCG in the SHUFFLE algorithm is Lmgortant In this 

case the number of samples created using DS was increased to 60,000. 

Thus seeds of 1 to 60000 were used in the MLCGs used in SHUFFLE. 

The distributions of the Quality measures of the samples selected by 

SELECT were compared with their average distribution. Thus any 

MLCG that was superior was able to be detected. 

If the seed selection is more inlDortant than the choice of the-MLCG use 

in SHUFFLE. This was determined by measuring the difference in 

Quality Measure from changing MLCG against the change that occurs by 

changing seeds. 
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The tests were performed using DESCTST, which in turn called subroutine DES 

that includes a call to SHUFFLE. (See Appendix 1) 

5.4.7 Evaluation of DS's ability to produce the same number of highly 

representative samples as the real random numbers 

In order to compare the performance of IDS with the results from real random 

numbers, sets of 40000 samples of 1000 sample values were created. As 

previously stated, the five originally chosen MLCGs were used as the source 

randomness for each set with seed values of I to 40000. The program 
SELECT, again with the 50% "confidence" level filter, was used to determine 

the samples that were considered highly representative. Table 5.15 gives the 

number of selected samples and the number of times certain quality measures 

were obtained. It clearly shows that IDS produces a higher number of selected 

samples than when using real random numbers. To determine if the rate of 

creating the highly representative samples using IDS is statistically the same as 

for real random numbers a critical value has first to be calculated. If each 

sample created is considered as an independent trial, then the chance of 

getting 106 samples or more selected as "highly representative' (successes) 

from 40,000 samples (or trials), given a success rate of 1/500, is less than 

0.01%. In this case the numbers selected are all greater than 106. Therefore it 

may be stated with confidence that IDS produces more quality samples than 

obtained either from real random numbers or from MLCGs and MT. (Since 

MLCG and MT give identical distributions to the real random numbers. ) 
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Name Used Number 
Number of Seeds used In SHUFFLE (or Sets of Real 

Random Numbers) Having Quality Less than: 
- in Study Selected T5 00 [T550 1600 1650 1700 1750 1800 

Real 

Random 

Numbers 

78 6 14 27 46 63 77 78 

F&M 291 2131 266 287 291 291 291 291 

L'Ecuyer 306 223 282 305 306 306 306 306 

Lewis 271 194 245 270 271 271 271 271 

Flying 286 
- 

206 251 279 286 286 286 286 

Killingbeck 254 TT7-1 F224 248 1 254 1 254 254 1 254 

Table 5.15: Distribution of the Quality Measures of Selected Seeds 

5.4.8 Comparing the Quality of the Selected Samples created by DS with 
those from Real Random numbers 

Table 5.15 also indicates that the quality from IDS was superior to that from real 

random numbers. It is so superior any statistical test is redundant. 

This clearly shows the non-random nature of the samples and the benefit of 
forcing the X, 2 term to zero. IDS is a significantly better method of 12roducing 
highly representative samples. 

The next investigation was to determine if the choice of MLCG as the provider 
of randomness for the shuffle was important. 
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5.4.9 Effect of the Choice of MLGC for use In the SHUFFLE 

In this study again the seeds of range 1-60000 were used and a single shuffle 

was performed. Samples of 1000 sample values were again created. All the 
five MLCG in the above table were used to provide the randomness for the 

shuffle. 

Again SELECT was used to determine the required samples. The distributions 

of the quality measure were determined. They are shown in table 5.16. 

MLCG used Number 
Quality Measure 

in SHUFFLE of Samples 
Below 

1301 I 
1301 

to 1349 

1350 

to 1399 

1400 

to 1449 

1450 

to 1499 

1500 

to 1549 

1550 

to 1599 

Above 

1600 

F&M 416 17 31 60 95 103 74 29 

12Ecuyer 435 14 39 67 95 109 79 31 1 

Lewis 407 12 20 57 86 104 88 33 7 

Flying 425 1 10-1 -29-1 71 84 108 71 43 9 

Kllingbeck 402 26 1 65 
- 

88 
L- 

102 72 35 6 

Table 5.16: Distribution of the Quality Measure for the Selected DS Seeds 

Using the average result to create the "expected values", the following X 
values were created: 
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MLCG Used 
in SHUFFLE 

X2 

Values 

F and M 3.71 

L'Ecuyer 7.74 

Lewis 5.45 

Flying 5.53 

Killingbeck 1.74 

Table 5.17: Calculated X2 Values for the Different MLCG used in SHUFFLE 

For 7 degrees of freedom the critical value at a severe "confidence" level of 
10% is 12.02. Thus the null hypothesis that there is no difference cannot be 

rejected and thus it can be stated that the choice of MLCG. for use in 

SHUFFLE. from the five used was not imgortant. 

The next investigation was to determine if the choice of seed was important. 

5.4.10 Effect of Changing the Seed 

The data created for the previous analysis was used. For this analysis the best 

and worst performing seeds were determined. The selection of the worst seeds 

was made by using BADIOO (see Appendix 1). 

The best 10 and worst 10 seeds for each of the M LCGs are shown in table 
5.18. 
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MLCG F&M l.: Ecuyer Lewis Flying Killingbeck 

Rank 
1 1231 1221 1172 1119 1172 

2 1232 1246 1223 1155 1239 

3 1241 1249 1258 1237 1247 

4 1253 1250 1265 1265 1261 

5 1258 1250 1272 1277 1263 

6 1260 1254 1284 1279 1264 
7 1269 1270 1297 1288 1285 

8 1270 1272 1300 1291 1289 

9 1277 1272 1307 1296 1293 

10 1277 1273 1307 1298 1296 

59991 2427 2441 2430 2424 2424 

59992 2440 2452 2460 2433 2433 

59993 2444 2453 2463 2438 2438 

59994 2449 2457 2469 2445 2445 

59995 2450 2488 2481 2452 2452 

59996 2459 2501 2492 2460 2460 

59997 2461 2511 2509 2464 2464 

59998 2478 2517 2541 2468 2468 

59999 2533 2585 2560 2473 2473 

60000 2568 1 2591 2574 2487 2487 

Table 5.18: Worst and Best Seeds for Each MLCG used in SHUFFLE 

Table 5.18 shows that the choice of MLCG to provide the randomness to the 

SHUFFLE procedure is not as important as the choice of seed. The change in 

Quality Measure at the same rank for a change in the MLCG is at most 112 

whilst the difference from the top seed to the worst seed for a particular MLCG 

is at least 1314. The tables of the seeds that produced sorted sequences that 

passed the 50% confidence filter (and thus were "selected) and then sorted in 

quality measure sequence are given in appendix 3. 
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A summary of the number of seeds that passed, and their highest and lowest 

quality measure are shown in table 5.19. The top 120 seeds for the MLCG 
listed are given in Appendix 3. 

MLCG used Number 
Quality 

Measure 
in Shuffle of Seeds Highest Lowest 

F&M 416 1231 1641 
L'Ecuyer 435 1221 1612 
Lewis 402 1172 1675 
Flying 425 1119 1651 
Killingbeck 407 1172 16 3ý1 

Table 5.19: Summary of the Results of Selecting Seeds for IDS 

5.4.11 Summary of the Evaluation of Descriptive Sampling 

As may be seen from table 5.19, Descriptive sampling gave significantly more 

and better guality of sarngles than can be expected from the real random 
numbers or processes that mimic true randomness (MLCG and MT). 

It is not sensitive to the choice of the five MLCG used to provide the random 

numbers required by the shuffle algorithm but it is sensitive to the seed used, at 
least when 1000 sample values are being created. 

5.7 SELECTION FROM DS, MT, AND MLCG 

As stated in the introduction, the aim of this thesis is to select methods that will 
enable inexperienced users to produce accurate simulations. To provide further 

assistance, a computer program was developed that will assist the user to 

select seeds and, during the time before the implementation of the RNG within 
the specialised simulation software, to create files of random deviates. Most 
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specialised software will allow either the introduction of a user defined RNG or a 
file of random deviates. 

The decision as to which of the RNGs should be used must be based on their 

ease of use, their practicability, as well as their capability to produce accurate 
simulations. All the generators examined in the previous section are capable of 
producing highly representative samples. The diagram 5.1 on page 141 
illustrates their relative performance. (Note: The diagram has the highest 

quality at the top of the drawing. ) It shows that DS is the best performer. This 

can be accounted for by the fact that it does not attempt to mimic randomness 
but "constructs" its samples. The diagram shows that 90% of the acceptable 
samples created by DS were broadly as of as high or higher quality as the top 
10% of the acceptable samples provided by MT and the MLCGs. The highest 

quality sample from DS with a quality measure of 1221 easily outperforms the 
best sample from MT that had a quality measure of 1429. The number of 
samples produced by DS was also greater than three times than the number 
produced by MT or any of the MLCGs. 

The diagram also shows that there is little difference between the performance 
of MT and the two MLCGs shown on the diagram. (It will be remembered that 
there was little difference in the performance of the seven MLCGs examined. ) 

There remain other aspects that need to be considered. These are: 
* Speed of Operation 

e Requirement for Computer Memory 

9 Sensitivity to the Accuracy of the Forecast of the Number of Samples 
Required 

9 Ease of Use and Acceptability 

The first to be considered is the relative speed of operation. 
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1231 1221 

13431 1134 

1451 1450 

Quality 1544 1542 

IF 1612 
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Diagram 5.1: Illustration of the Performance of the RNGs 
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5.7.1 Relative Speed of Operation 

The usefulness of providing any timing measurements is limited since there are 
many factors that will affect the timings. Some of the more important factors are 
the computer's processor speed, type of memory and memory management, 
and the efficiency of the coding. However if all the elements are kept the same 
for all the generators such measurements can give an indication of the relative 
speed. 

All the timings reported here were performed on a relatively slow computer 
having only a 60OMHz AMD Athlon processor with 128MB SDRAM. The 

operating system was MS DOS operating under Windows ME and the 

algorithms were coded in Microsoft FORTRAN. It may be reasonably claimed 
that any future implementation will beat the timings given. 

The timings in table 5.20 are for the creation of 1 000,000 random numbers. 
There are different timings given for different number of streams. The values in 

the table are not meant to be representative of "normal" simulations studies but 
to illustrate the fact that both IDS and MT have a set up cost for each stream 
and thus, with the same total number of random numbers generated, the total 

elapse time for these generators increases with the number of streams. 

RNG Number of Streams 
Number of Random 
Numbers per Stream 

Elapse Time 
(seconds) 

MLCG (F & M) 
100 100000 1.15 

1000 1,000 1.15 

MT 
100 10,000 134.2 

1000 1,000 134.7 

IDS 
100 10,000 2.4 

1000 1,000 3.6 

Table 5.20: Timings for the RNGs to Create One Million Random Numbers 
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As may be seen from table 5.22, MT is the slowest by far. The time to produce 
1000 samples in 1000 streams is 100 times longer than the MLCG and 40 times 
IDS. However in absolute terms, the timing of 134.7 seconds is not a real 
concern and thus it may be stated that none of the timings is so long as to make 
the speed of calculation a deciding factor in selecting a RNG. 

5.7.2 Memory Requirements 

The processing code for all the RNG may be considered to be small. If the 

memory to hold the program and the seeds is considered, but not the data 

values, the largest requirement for memory is for MT. MT requires 1.2KB while 
the MLCG requires only 128 bytes. However the greatest requirement for 

memory is DS as it does require storage of an array of data values. This would 
have been a serious concern when limitations on memory sizes were severe 
and accessing data from storage devices was slow, but in modem processing 
environments such requirements are easily met even with desktop computers. 
It would be simple to develop an implementation that did not need to hold the 
full sample values but simply a list of "pseudorandom' numbers that could be 
held in a more condensed form. (The speed of conversion is now very fast. ) If 

the number of samples for any stream is less than 64000 then each number 
could be held in two bytes. Thus a model requiring a total of 10,000,000 
sample values would need (what in modem processing terms would be 

considered as "only") 20MB of memory for these data. Modern memory control 

software will enable such data to be held on disk until needed and will use disk 

caching to reduce the time to retrieve the data. 

In order to give a measure of the time penalty that could be expected from 

access a file of data, an experiment was performed. Using a FORTRAN 
program an unformatted file of 10,000,000 numbers held as INTEGER*2 (that is 
2 bytes per number) was created both on Hard Disk and a ZIP drive. With the 
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numbers written as individual records there is an overhead leading to the file 
being 40,000,006 bytes long. The file was read using a second FORTRAN 

program. The time to read all the numbers on the file when on a hard disk took 
14.72 seconds. When the file was on a ZIP drive, which Is a much slower 
device, it took 3 minutes 55.2 seconds to be read. If the records on the file 

were written and read 1000 numbers at a time such that a record in the file 

contained 1000 numbers, the space required reduces to 20,323,034 bytes and 
the time to read from the hard disk reduces to 2.25 seconds and if written and 
read from the slower ZIP drive it becomes I minute 58.5 seconds. The 

programs were run using a 60OMHz AMD Athlon processor with 128MB 
SDRAM and under MS DOS operating within Windows ME. 

These experiments indicate that the penalty of having the "pseudorandomn 

numbers for use in IDS held in a file is acceptable especially if the file is held on 

a hard disk. 

5.7.3 Sensitivity to the Accuracy of the Forecast of the Number of Samples 
Required 

In all the types of RNGs examined and DS, it has been shown that the choice Of 

seed is important. In MLCGs it is the actual seed, for MT it is the seed to 

enable the large set of seeds to be generated, and in DS it is for initialising the 
MLCG used in the shuffling algorithm. The selection of the best seeds has in all 
the studies been based on the number of sample values required. If the 

performance of a RNG to create a good sample were to drop dramatically if the 
forecast of the number of sample values required was inaccurate, then this 
RNG would not be a suitable choice, as it would not meet the requirement of 
being a robust procedure suitable for the non-expert. 
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Graph 5.9 shows the deterioration of the quality measure of the samples due to 

a poor forecast of the required number of samples. It assumes a forecast of 
1000 was made but the actual requirement was higher. For each generator the 
best seed to provide a sample size of 1000 was chosen and a set of samples of 
sizes of 1000,1200,1400,1600,1800, and 2000 were created using that seed 

and the quality measure for each sample was measured. In this study it has 
been assumed that the simulation run will be such as to met or exceed design 

requirements and thus samples sizes smaller than that forecast have not been 

considered. This analysis must be one for further research. 

The Fishman and Moore generator, which in the previous analysis had the best 

two seeds (52260 and 56242 with quality measures of 1430 and 1431 

respectively), was used as the example of the MLCG. 

The MT and the MLCGs did not need any extra coding to enable more samples 
than the forecast number to be generated. In DS the forecasted number of 
sample required is the number of sample values created and if more were 
required the array of created values would need to be sorted for a second time. 
In the implementation suggested by Paul and Saliby, there would be a need to 

reset the pointer to the top of the array of created values and again perform a 

swap for each value selected. In the implementation used in this study, the 

array was sorted at the beginning of the simulation and, if afterwards a sample 
value was required in excess of the forecast number, then the array was sorted 
when the first sample in excess of the forecast was requested. Subsequent 

sample values are then taken in sequence from the top of the re-sorted array. 

The results are shown in graph 5.9 on the following page. For all but a short 
part of the range of 1000-2000 sample size, IDS is still the best. (The graph 5.9 
has been plotted such that the highest quality is at the top of the graph. ) For 
both the MLCG and MT there was a steady deterioration In the quality of the 

samples as the forecast became more inaccurate. 
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Actual Sample Size 
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Graph 5.9: The Effect of Error in Sample Size on the Quality Measure of the 

Sample 

The result for the DS indicates a dip and climb. The DS result reflects that at 

sample size 2000 all the 1000 created sample values have been used twice and 

at that point X12 again becomes zero. It will be remembered that it was 
originally zero at a sample size of 1000. The quality at 2000 is not as good as 

at 1000 for as was seen earlier, a second shuffle does not guarantee an 
improvement in the sample and using a seed chosen to give a highly 

representative sample it would be expected that the second shuffle would lead 

to less representative sample. 

In many cases forecasts of the number of samples values required by the 

simulation will be quite accurate. The actual number of sample values required 

and thus the ability to accurately forecast this number will vary according to the 

generator selected. As an example of how the accuracy of the forecasts of 

sample sizes can vary according to the RNG selected, is the case where 
breakdowns are modelled to occur as a function of the production time. If the 

run was for 1000 units of time and the average time between breakdowns was 
1, then using the generator T and M" with the seed value of 52260, (the best 

seed for 1000 sample size in the range 1-60000) the actual number of sample 

---- . I. gloom 10 Im Arm- 
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values taken during the 1000 units of time is 996. With DS the number will be 

exactly 1000 whatever the choice of seed. Ina situation where the number of 
sample values is dependent on some value being measured and this value is 
difficult to forecast accurately (e. g. number of parts processed), then the 
forecast of the number of sample values required will naturally also be more 
inaccurate. In many cases there will a stated design requirement for this value 
(e. g. number of parts required to be produced) and this may be used as the 
forecast. Finally if all methods fail, a short run may give an estimate from which 
an acceptable forecast may be made. In practice this is unlikely to be more 
inaccurate than the values that have been used in the study to measure the 

sensitivity to the forecast, of which the results were reported earlier (graph 5.9). 

5.7.4 Must be easy to use and be acceptable 

None of the methods of producing samples that have been examined are 
difficult to use. MT has been made easy by the implementation suggested by 
Nishimura. There are two points to consider when considering how easy the 

method is to apply. Since the seed choice has been shown to be important 
then it must be easy to determine suitable seeds. The test described previously 
is easy to run but the advantage obtained with IDS is that there are more than 
three times as many suitable seeds in any range of possible seed values. 

It will be seen later that when using IDS it is easier to predict how many extreme 
sample values will actual occur during a simulation. 

One advantage with IDS is in making the results from simulation more 

acceptable. In particular when IDS is used to generate the sample values for 
breakdown, since the sample values were constructed to have the required 
mean, the actual breakdown rate in the simulation is exactly the requested rate. 
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5.8 CONCLUSION 

DS with a MLCG as the random input to SHUFFLE is the first choice: 

" it produces the best samples, 

" its speed of operation is acceptable, 

" it is easy to implement and to use, 

" it enables results to be obtained that have used the exact design values 
for such factors as breakdown rate. 

Its disadvantage is that it requires more memory, which for the very large 

models may require storage on hard disk but if the file is held on hard disk it is 

an acceptable small increase in elapsed time. 

It is also a major disadvantage that at this time (2003), none of the specialised 

simulation software offer, as a built in feature, the use of Descriptive Sampling. 

However most of the specialised simulation software packages are able to 

accept a file of random deviates thus enabling Descriptive Sampling to be used 

until the packages make it available. 

The analyst needs to know how to set the model so that only valid 

measurements are made. This will be achieved by developing a simple method 
that will enable the analyst to determine the initial setting when measurement 

should commence. 
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6 DETERMINING THE INITIAL SETTING AND WARM UP PERIOD OF THE 

SIMULATION MODEL 

6.1 DETERMINING THE INITIAL SETTING OF THE SIMULATION MODEL 

As was discussed in the literature survey, the correct initial setting of the 

computer model so that accurate measurements can be obtained has been the 

subject of much debate. In the literature review it was noted that it is standard 

practice, in cases of non-terminating simulations, to run the model until it 

reaches "steady state" before any measurements are made. Thus using this 

procedure the initial condition for the measurements are the conditions the 

system happens to reach at the end of this warm up period. 

As previously discussed there are two main reasons given to justify the 

requirement for an initial warm up period during which no measurements are 

made. The first arises from the fact that at the start of the simulation many 

computer models will be empty; that is the buffers will be empty and the 

machines will all be idle and, if modelled, the labour will be unassigned. This 

will often represent the system being in a state that will never be achieved 

during normal production. In such cases it may be legitimately considered that 

no meaningful measurements can be taken until the model represents the 

facility in a "normal" condition. For example, if the production facility is empty 

and the rate of production is to be measured then it may take some simulated 

hours (although only a short amount of actual computer time) before the first 

product is made and it is doubtful that anyone would suggest that this period 

should be included in the measurement. 

It may reasonably be stated that the only time that one would commence 

measurement at the start, when the model of the production facility is empty, is 
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if the study is treated as a terminating simulation and the selected performance 
criterion is the time it takes to complete the manufacture of a certain large 

number of parts starting with such an empty system. When deciding on the 
best method to determine when to commence readings, it is being assumed 
that the requirement is to measure the Non going" production capability. Thus a 

warm up period is required so as to obtain "normal" conditions. 

The second reason given to support a warm up period is that it is insufficient 
just to fill the system and obtain "normal" conditions, but that it is necessary to 

extend the warm up to enable the system to achieve a state where if 

measurements commence they will be undistorted by the starting condition and 
thus according to this argument, be valid and unbiased and give a 
measurement reflecting a true on-going capability. This is the state referred to 

as usteady state". The term is borrowed from other fields. This term is 

frequently used in physical experiments where external factors are artificially 
held constant and the equipment is allowed to settle until all measurements 
appear steady thus enabling a simpler mathematical analysis to be applied. But 

even in such experiments the term "steady state' is challenged. Feller (page 

395,1968) found the use of the term in such circumstances misleading. 

Feller who actual uses the term equilibrium rather than "steady state" (in his 

index the entry steady state refers the reader to equilibrium distribution), when 
discussing a stationary Markov chain process and the invariant distribution 

obtained after a long period states: 

Ig .... called equilibrium distribution. Unfortunately this term 

distracts from the important circumstances that it refers to a 

so-called macroscopic equilibrium that is, an equilibrium 
maintained by a large number of transitions in opposite 
directions. " 
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In the industrial situation the movements of the parts, vehicles and such items 

are the "transitions" and they are not a large number compared with the number 
of electrons in the physical experiment. However there are many non-industrial 
systems where there are a large number of items. A number of such systems 
are of the form of "birth and death" processes where individuals are "born", live 

through many states, and finally "die". If there are a large number of individuals 

and equilibrium exists, then the number in each state will be approximately the 

same through time. No individual is in equilibrium only the whole system. But 

many industrial situations do not have a large number of items and cannot be 

accurately described as reaching such equilibrium. 

The property of certain Markov chains to move to an equilibrium distribution, 

which is independent of the initial conditions, is the basis on which the 

statement that measurements should only be made when the simulation 
reaches this equilibrium or "steady state' appears to be made. The justification 

is if the simulation acts like a Markov chain, the behaviour of the simulation from 

that point must be independent of the starting condition. 

If this concept of a "steady state" existing at a certain instance in time is 

accepted, it follows there ought to exist a state that, if the system could be set to 
it, then the system would be at steady state and thus no warm up would be 

required. In the physical experiment it may well be that the temperatures of the 

various parts of the apparatus could be set to their equilibdum or "steady state" 
temperature and thus no more time would be required to obtain an equilibrium. 
In the birth and death model the population numbers for each state could be set 

to their equilibrium number and thus usteady state" would be achieved. 

In the simulation context, it may be reasonably assumed that the time required 
to move from an unusual condition would also be unnecessary as the system 
would already be in a unormal' condition. 
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One of the reasons that it is not be possible to set the system to such a state 
may be due to lack of knowledge. This appears to be the view of Kelton and 
Law (1985) as they stated, 

"The problem stems from the inability to initialize the 

simulation according to a steady state distribution, which is 

presumably unknown" 

Given this belief that the inability to set the system to a steady state was due to 

lack of knowledge, Kelton and Law attempted, whilst investigating the transient 
behaviour of queues, to determine the best queue size to commence a study so 

as to reach the steady state in the shortest time. Again, in terms of the physical 
experiment, if the equilibrium temperatures are not accurately known, then the 
temperatures of the apparatus may be set to values close to what is considered 
to be the equilibrium temperatures and thus the time to obtain the real 

equilibrium values would be expected to be less. 

It was first assumed that such a state exists and it is only lack of knowledge that 

stopped Kelton and Law setting the queue to this state. If however such a state 
does not exist then no warm up, however lengthy, would ever achieve itl 

Kelton and Law investigated the transient behaviour of queues with random 
arrivals, negative exponential service time, and a number of servers. They 

measured the queue size by calculating the average time the parts had to wait 
in the queue. In this study, a simple queuing system was analysed. Queues 

are simple examples of sub-systems that appear within most production 
models. They exist in the target real life model of this research. Here they are 
in front of machines on the transfer line, the queues acting as buffers where 
parts wait to be processed. 

The particular form of queue being considered here is one where there is a 

single machine with a constant cycle time (time to process a part) and that the 
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parts arrive in a random fashion due to disturbances in the progress of the part 
caused by failures during earlier processing. This is reasonable approximation 
to the situation in the real life model. 

The measure of queue length used in the study reflects this type of production 
and is the queue length at the time a part finishes processing. This is relevant 
when the design problem is to determine the size of buffering required as at the 

point when the machine finishes processing a part the queue is at it longest. 

However as already described, this was not the form of queue investigated by 
Kelton and Law nor did they use the same measure of queue size. Their queue 
with its negative exponential service time is not a realistic assumption for a 
transfer line or other production systems where the cycle time of machines is 

precise. 

The steady state properties of this simple queue are particularly easy to 

analyse. The queue size is the only stochastic variable and this is what must be 

set to initialise the system into a "steady state. " 

6.1.1 The Long Term Expected Queue Size and Steady State Probabilities 

As stated above, the queue size measured was that of the queue when an item 
had just completed being processed, the processing time was constant and the 

arrival of the parts was random. This enables a relatively straightforward 
analysis to be made (this is shown in Cox and Smith, 1979). 
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Cox and Smith give the steady state expected size of this measure of queue 

size as: 

pIp 

LL =2 I-P 
Where 
LL = the average queue left when processing of an item 

is complete and before a part leaves the queue. 

machine utilisation p<I 

For p=0.9, the expected queue size is 4.95. 

Cox and Smith also give the equations that define the steady state probabilities. 
Using their equations a more convenient set of recurrence equations was 

derived from which an EXCEL program was created to calculate the steady 

state pro a ities. 
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The expressions derived were: 

z(o) 1-p 
z(i) Mok - p(0)1 

p(0) 
2(2) = 

Z(I) - [Z(O) 

p(0) 
n-1 

Z(n-l)-[Z(O)+Z(I)lp(n-i)- EZ(i). p(n-i) 
Z(n) = P(O) 

I 
i-2 

I 

ný: 3 

Where: 

Z(n) is the steady state probability of a queue size of n. 

p(i) is the probability of 1 arrivals during the processing time. 
is the machine utilisation. 

The values for 90% machine utilisation are given in table 6.1 for queue sizes (Q 

in the table) of up to 54. (The EXCEL program measures the probability of a 

having larger queue sizes, for example a queue size of 216 is 1.3x1 0-16). 

Q Probability 

0 0.100000 

1 0.145960 

2 0.137640 

310.115050 

410.093804 

5 0.076255 

6 0.061985 

7 0.050387 

8 0.040960 

9 0.033296 
=. 027066, 

Q Probability 
11 0.022002 
12 0.017886 
13 0.014539 
14 0.011815- 
15 0.009608 
16 0.007810 
17 0.006349 
18 0.005161 
19 0.004195 
20 0.003410 
21 0.002772 

0 lProbability 

3310.000231 

3410.000188 

35 0.000153 

360.000124 

37 0.000101 

38 0.000082 

39 0-00006T 

400-000054 

41 0.000044 

42 0.000036 

43 0.000029 

Table 6.1: Steady State Probabilities of The Remaining Queue (Q) with 

Machine Utilisation of 90% 
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From the table 6.1 the mode for this measurement of queue size can be seen to 
be 1. 

6.1.2 Using a Markov Chain Model to Investigate Initial Queue Sizes 

In order to determine the rate at which the queue will obtain steady state with 
certain initial queue sizes a Markov Chain model (see Feller 1968) was 

constructed. This was based on the transitional probabilities depicted in 

Diagram 6.1 (on Page 157) The program was written in FORTRAN and is listed 

as MARKOV in Appendix 1. 

This is similar to a study by Kelton and Law (1985) but they used the 
umemorylessness" feature of the service time and arrival distributions to 

produce simple functions for the probabilities of average waiting times. 

The first results measured were the changes in the expected queue size that 

occurred as the parts Were processed for four starting conditions. The four 

starting queue used were 0,5.10 and 15. The results are shown in table 6.2 

and in graph 6.1. 

The results show that the expected queue size after 700 parts have been 

processed is equal to the long term expected queue size to an accuracy of two 
decimal places for starting queue sizes of 0,5 and 10. At 900 parts processed, 
all the expected queue sizes for all the starting queues had become the long 

term expected queue size. 
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P(O) 

P(l) P(OU) 

Pro) 

P(n-1) 

P(n) 
P(n) n-1 

P(O) 

P(l) 
P(m-n+l) 

. 
KEY 

Final 
Queue 
Size 

- P(n) 
Probability of n arrivals 

continue 

Diagram 6.1: Diagram of Markov Chain Model of Queue 
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Initial Queue Size 

Items 
Processed 

0 5 10 15 

1 0.90 4.90 9.90 14.90 

2 1.21 4.80 9.80 14.80 

3 1.42 4.70 9.70 14.70 

4 1.59 4.60 9.60 14.60 

5 1.73 4.50 9.50 14.50 
6 1.86 4.41 9.40 14.40 
7 1.97 4.34 9.30 14.30 

a 2.07 4.27 9.20 14.20 

9 2.16 4.22 9.10 14.10 

10 2.24 4.18 9.00 14.00 
20 2.84 4.04 8.06 13.00 
30 3.22 4.07 7.33 12.00 
40 3.49 4.14 6.81 11.11 

50 3.70 4.21 6.43 10.30 

60 3.87 4.29 6.15 9.60 

70 4.01 4.35 5.93 9.01 

80 4.12 4.41 5.76 8.51 

90 4.22 4.46 5.63 8.07 
100 4.30 4.51 5.53 7.70 

200 4.72 4.78 5.09 5.86 

300 4.85 4.88 5.00 5.30 

400 4.91 4.92 4.97 5.10 

500 4.93 4.93 4.96 5.02 
600 4.94 4.94 4.96 4.98 
700 4.95 4.95 4.95 4.97 
800 4.95 4.95 4.95 4.96 
900 4.95 4.95 4.95 4.95 
1000 4.95 4.95 4.95 4.95 

Table 6.2: Expected Queue Size after a Number of Items Processed for 

Different Initial Queue Sizes 
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Effect of Initial Queue Size 
Single Server with Constant Service Time 

Random Arrh, al 
umisation or o. 9 

14 

12 

Items Procrased 

0 

---5 
10 
15 

Graph 6.1 - The Change in the Expected Queue Size 

Kelton and Law (1985) created similar graphs when they also were attempting 

to determine the best starting position and length of run required to obtain 
Osteady statew conditions. Based on a measure of convergence rate they used 

the absolute difference between the long term average and the expected 

waiting time after a certain elapse time from initiating the queue, they concluded 

that the larger queue size (an initial queue size of 15 for when there was one 

machine at 90% utilisation) appears to enable the steady state to be obtained 

quickest. In the case of the queue with constant procesaing time the 

oonvergence appears to be for a range of initial queue sizes of 0 to 10. 
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Although it is true that at steady state the expected mean queue size has a 

predictable value, the fact that the measured average mean of the queue has 

that value after a certain number of parts have been processed is not a 
dependable indicator that steady state has been reached. It is false logic to 

state that since, at the steady state, the expected mean is the long term 

average, then if the measured mean is the same as the long term average then 

the system must be at steady state and such a state must exist. 

Kelton and Law noted that their study had concentrated on the expected delay 

time and suggest further studies with criteria based on the probability of delay 

time being greater than a certain value. This reflects the concern that the mean 

is insufficient an indicator of the whole distribution. 

The Markov model enabled other criteria of convergence onto steady state to 

be examined. The model calculates the distribution of the probability of each 

possible queue size remaining after a certain number of parts have been 

processed. The expected square difference of the queue size from the 

expected mean at steady state (or expected square error) was measured. The 

results are shown in graph 6.2. (Page 161) 
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Effect of Initial Queue Size 
Single Server with Constant Service Time 

Ronflam Arrival 

*0 30 
go 

rA 
25 

4- 20 
6 
C 

15 
-E ;ö 

10 
l Ei r, 

0 

Graph 6.2: The Change in the Squared Error of the Queue 

The result confirms the expected value result that after 700 parts being 

processed, the expected squared error of the queue size for the initial queue 

sizes of 0,5 and 10, converged onto the long-term value, whilst the curve for 

the initial queue size of 15 converged to this long-term value at a higher value of 
items processed (840). 

In this case, the initial queue size that apparently was the fastest to converge is 

a queue size of zero as it had the smallest variance from the long-term average 

after 40 parts had been processed. 
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The study indicates that the initial queue sizes of 0 to 10 do not give 

significantly different times to converge. 

The assumption used in the study just described and in Kelton and Law (1985) 

is that the steady state exists but is unknown. However the steady state 

probabilities are known and thus it should be possible to set the queue so as to 

be at steady state without any warm-up period if such a state exists. 

6.1.3 Attempting to set the Initial Queue to a Steady State Value 

If the concept that a steady state does exist is true then, as discussed before, 

the queue size in the model described above should be able to be initialised to 

a state such that the probabilities of obtaining a certain queue size after the first 

part is processed are the steady state probabilities, 

The situation being examined is an experiment consisting of a single run. The 

situation where there are a large number of replicates and each replicate could 
be set to a different initial queue size is not being examined. 

The queue sizes examined were all those that have been considered in the 

literature as candidates for suitable starting values for steady state 

measurements. These were: 

e the system in an empty condition with an initial queue of size 0 

* the system in its initial queue size set to the mode (which for a machine 

utilisation of 0.9 is a queue size of 1) 

the long term average queue size (here a queue size of 4.95) 

represented by the two nearest integers that are queue sizes of 4 and 5. 

Table 6.3 gives the probability of obtaining queue sizes of 0,1,2,3,4 and 5, 

when the first, second, third, fourth and fifth part are processed. 

A Wam Page 162 



Evaluation of Alternative Discrete Event Simulation Experimental Frameworks 

INtial 
Queue Left after 1 Part Processed 

Queue 0 2 3 4 5 

0 
1 

0.4066 0.3659 0.1647 0.0494 0.0111 0.0020 
1 0.4066 0.3659 0.1647 0.0494 0.0111 0.0020 
2 0.0000 0.4066 0.3659 0.1647 0.0494 0.0111 
3 0.0000 0.0000 0.4066 0.3659 0.1647 0.0494 
4 0.0000 0.0000 0.0000 0.4066 0.3659 0.1647 
5 0.0000 

f 
0.0000 

1 
0.0000 1 0.0000 1 0.4066 0.3659 

Initial Queue Left after 2 Parts Processed 
Queue 0 1 2 3 4 5 

0 0.3141 0.3496 0.2075 0.0879 0.0297 0.0085 
1 0.3141 0.3496 0.2075 0.0879 0.0297 0.0085 
2 0.1653 0.2975 0.2678 0.1607 0.0723 0.0260 
3 0.0000 0.1653 0.2975 0.2678 0.1607 0.0723 
4 

- 
0.0000 0.0000 

- 
0.1653 

- 
0.2975 0.2678 0.1607 

1 
175 0.0000 0.0006 1 0.0000 0.1653 

11 
0.2975 0.2678 El 

Initlal Queue Left after 3 Parts Processed 
Queue 0 1 2 3 4 5 

0 0.2698 0.3272 0.2209 0.1112 0.0464 0.0168 
1 0.2698 0.3272 0.2209 0.1112 0.0464 0.0166 
2 0.1882 0.2782 

1 0.2395 0.1551 0.0819 0.0364 
3 0.0672 0.1815 0.2450 0.2205 0.1488 0.0804 
4 0.0000 0.0672 0.1815 0.2450 0.2205 0.1488 H 

5 0.0000 0.0000 0.0672 1 0.1815 1 0.2450 0.220 

Initial Queue Left after 4 Parts Processed 
Queue 0 1 2 3 4 5 

0 0.2427 0.3083 0.2244 0.1254 0.0597 0.0252 

1 0.2427 0.3083 0.2244 0.1254 0.0597 0.0252 
2 0.1896 0.2681 1 0.2275 0.1525 0.0873 0.0438 
3 0.1011 0.1906 0.2202 0.1938 0.1383 0,0827 
4 

- 
0.0273 0.0984 0.1771 0.2125 0.1912 0.1377 

[ 75 0.0000 0.0273 0.0964 0.1771 0.2125 0.1912 

Initial Queue Left after 5 Parts Processed 
Queue 0 1 2 3 5 

0 0.2240 0.2929 0.2238 0.1343 0.0699 0.0327 
1 0.2240 0.2929 0.2238 0.1343 0.0699 0.0327 
2 0.1861 0.2600 6.2206 0.1514 0.0912 0.0493 
3 0.1186 0.1963 0.2074 - -- 0.1778 O. j-3-03 0.0829 
4 0.0511 0.1180 0.17 

- 
0.1909 0.1711 0.1282 

15 
0.0111 0.0500 -i- 0.1125 0.1687 -6.1-898 0.1708 

Table 6.3: The Probabilities of Remaining Queues after 1-5 Parts Processed 
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None of the initial queue sizes led to the steady state probabilities given in table 

6.1, even when the time after the initial queue size was extended to five parts 

produced. It has therefore been demonstrated that it is not possible to initialise 

the system at a particular queue size and immediately obtain the steady state 

probabilities after the processing of the first item even when the steady state 

probabilities are known. It will be able to be noted that 1 and 0 were the only 

viable candidates since they were the only initial queue sizes that could, after 
the next part is processed, lead to a queue size of 0 and that for any stable 

queue there is a finite probability of having a queue of 0. 

It is also shown by this experiment that it is not possible to warm the system up 

and obtain a queue size so that the probabilities of leaving certain queue sizes 

after the next part processed will be the usteady state" probabilities since there 

is no such queue size. 

It may also be noted that the initial queue sizes examined are normal queue 

sizes and would be expected to occur 66% of the time with a machine utilisation 

of 90%. Indeed nearly a quarter of the time the queue size may be expected to 

be 1 or 0. This gives a strong case to support the argument that there is no 

reason to ignore measurements before "steady state" is achieved since there is 

a reasonable probability of obtaining after a warm up period, one of these 

normal queue sizes that would have been the starting value anyway. Even 

worse, if measurements are delayed until "steady state" is considered to have 

been reached, there is a probability of 10% of starting with a queue size of over 

10, which may be considered not a "normal" condition. 

This result means that for all systems containing queues (the queue examined 
does exist or an approximation to this queue exists in most industrial systems 
including the target real-life case) cannot be set to a "steady state* either by 

initialising to certain queue sizes or by running a lengthy warm up period. 
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6.1.4 Discussion on the Failure to set the Initial Queue to a Steady State 

Value 

The Markovian property of "steady state" does exists in a mathematical sense, 

as the steady state probabilities were able to be calculated and it is known that 

the probabilities of the queue size after a long time will equal these steady state 

probabilities and thus at this point the initial conditions are unimportant. This 

means that if a very large number of experiments with different real random 

numbers were run and the queue size examined after a large number of items 

had been processed the frequency of obtaining a certain queue size will be 

found to be independent of the initial queue size. 

This "steady state" condition is a probabilistic relationship between an initial 

state and a state after a long lapse of time. It would be useful to have a term to 

describe this time necessary to elapse to get the independence from the 

starting condition or what might be termed to "forget" the starting condition. For 

convenience the term "forgetting time" Will be used. 

There is no justification for stating that the measurements made only after a 

warm up period equal to this "forgetting time" are more valid than those made 

following a warm up period that was sufficient to simply fill the system. 

6.2 DISCUSSIONS ON THE INITIAL CONDITIONS AND WARM UP PERIOD 

Thus the need for an extension of the warm up period beyond that which is 

necessary to give system fill has been discounted. For certain production 

systems it is usual for each machine to be processing a part. To give general 

rules with allowances for these special cases is difficult and would defeat the 

fundamental idea of providing simple rules. The selected method was to start 
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with an empty system and run for sufficient time to ensure a system fill, since it 
is unlikely that in a production system this would consume much computer time. 

The system may be deemed to have been filled when the first part is fully 

processed. In most practical systems where production volumes are significant 
and computer processing times required to simulate the production of one part 
after system fill has been achieved is small, the warm up may be extended 
beyond this minimum to some convenient time (e. g. the nearest hour). 
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7 NUMBER AND LENGTH OF RUNS 

7.1 NUMBER OF RUNS 

7.1.1 Simulation Compared to Traditional Trials 

As discussed in the literature review, simulation studies do not have the same 

need as experiments in real life for replications (repeated trials). In studies such 

as agriculture or drug investigations, the use of replicates within well-planned 

experiments enables the effects of the uncontrollable external randomness to 

be isolated. Real life studies are also not easy to extend. Crops grow in a year 

and sick people die. Machines in simulation studies, unlike real life, only 
breakdown if the analyst has programmed them to. Computer models can run 

for as long as is wanted and the randomness is in control of the analyst. 

Thus for non-terminating discrete-event computer simulation there is a choice 

for the User between having one long run and having many short runs. The 

most important factor in deciding between having a single long run or a number 

of shorter runs is most likely to be the accuracy that is obtained using a 

constant resource of analyst time and computer resources. The choice based 

on the accuracy obtained is examined in the next section. 

7.1.2 Description of the Experiment 

The question of whether there is any advantage in terms of accuracy by only 

performing one run (rather than a number of runs) was investigated by 

comparing the accuracy of the result obtained from making a number of 

simulation runs (replicates) with that obtained from a longer single run of the 

model of the queue previously described in section 6.1 page 152. The total 

number of items or parts processed in the simulations is the same. The smaller 

runs consisted of two, four and eight replicates. The number of items process 
was 1000,500 and 250 respectively. The long run consisted of 2000 items. 

Thus in every case the total number of items processed in each measurement 
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was 2000. The total experiment was repeated for machine utilisation of 50%, 

60%, 70%, 80%, and 90%. 

Previously it has been discussed that a warm up period for such a queue is not 

required even for a system fill. However in this case a lengthy warm up period 

was made so as to satisfy any view that such a warm up period is required and 

thus isolate that discussion from the subject of the number of runs required. A 

single warm up run was made for each machine utilisation, and the final queue 

size was used as the starting point for each replicate or run with the respective 

machine ut isation. 

Since the warm up resource was identical for the short runs and the long run, 

and the same number of items was processed (2000) in all the runs, the total 

resource used for the long run and the short runs were the same. 

Although it has been shown in section 5 that the use of Descriptive Sampling or 

MLCGs with specially selected seeds would have given more accurate results, 
this approach was not followed. This was to prevent any distortion of the results 

on how many runs should be made from the effects of such a variance 

reduction technique. 

For this study the MLCG suggested by Fishman and Moore (see table 5.3) and 

that was the most successful in creating quality samples, was used. 

In the base experiments a single run at each machine utilisation was performed 
in which, as was stated above, 2000 parts were processed. This experiment 

was repeated 10,000 times to give a measure of the variability of the 

measurement from such an experiment. The experiments for the multiple 

replicates consisted, as described above, of 2,4, and 8 replicates, the average 

of the replicates being taken as the measurement from each experiment. The 

seeds values were set to the next sequential value at the start of each replicate 

or run. 
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7.1.3 The Results from the Warm-up 

The warm up run was started with a seed of 1 and run for 2000 items, which 

was considered to be longer than the "forgetting time". 

The queue size remaining after different number of items processed is given in 

table 7.1. 

Remaining Queue Size 

Items 
Processed 

Machine 
Utilisation 

50% 60% 70% 80% 90% 

100 

200 0 0 0 0 0 

300 0 
400 

500 0 0 1 2 2 

600 

700 

0 

0 

0 

0 

1 

0 

5 

0 

10 

1 

800 2 2 2 2 5 

900 0 0 0 1 2 

1000 1 2 2 

1100 1 2 2 9 

1200 1 6 

. 00 d6 2 3 14 

1400 2 2 2 3 3 

1500 0 0 0 0 1 

1600 1 2 4 6 

1700 0 0 0 2 2 

1800 3 

1900 0 1 1 2 4 

2000 0 0 0 0 

Table 7.1 The Remaining Queue Size for F&M MLCG with a Seed of 1 

It can be seen that the remaining queue size after a warm up of 2000 items was 

0 for all the machine utilisations examined. If the warm up had stopped at 1300 
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items processed the remaining queues, therefore the initial queue sizes for the 

replicates, and computer runs would have been different, For 90% utilisation 
the initial queue size would have been 14. This would have been a less 

"normal" queue size than 0. 

7.1.4 The Results 

7.1.4.1 90% Machine Utilisation 

The results from the 10,000 base experiments of 2000 items processed with a 

machine utilisation of 90% is shown in graph 7.1. 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

n 
2 4.5 7 9.5 12 14.5 

Avemge Queue Size 

Graph 7.1: The Base Experiment of a Single Run of 2000 Items with 90% 

Machine Utilisation 

The results from the 10,000 experiments of two replicates of 1000 items 

processed with a machine utilisation of 90% are shown in graph 7.2. 
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Graph 7.2: The Experiment of Two Replicates of 1000 Items with 90% 

Utilisation 

The results from the 10,000 experiments of four replicates of 500 items 

processed with a machine utilisation of 90% are shown in graph 7.3. 
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Graph 7.3: The Experiment of Four Replicates of 500 Items with 90% Utilisation 
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The results from the 10,000 experiments of eight replicates of 250 items 

processed with a machine utilisation of 90% are shown in graph 7.4. 
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Graph 7A The Experiment of Eight Replicates of 250 Items with 90% Utilisation 

The graphs appear similar. To determine if there was any statistically 

significant difference between them, a two-tailed Kolmogorov-Smirnov test (See 

Siegel 1956 pages 127-136 table M) was applied. In table 7.3 the maximum 

absolute deviation of the cumulative curves of the experiments with replicates 
from the single run curve is calculated. The critical values are in the following 

table: 
Confidence 

Limit 

Critical 

Value 

10.00% 0.017 

5.00% 0.019 

2.50% 0.021 

1.00% 0.023 
0.50% 0.024 

0.10% 0.028 

Table 7.2 Critical Values for the Kolmogorov-Smirnov Test for 10,000 Values 
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Cumulative Probability 
Absolute Difference 

Average Replicates 

I 

Queue Single Two Four EighT- our Eight 

2.0 0.000 0.000 0.000 0.000 0.000 0-000 0-000 

2.5 0.000 0.000 0.001 0.001 0.000 0.000 0.001 

3.0 0.015 0.018 0.024 0.033 0.003 0.009 0.018 
3.5 0.105 0.118 0.140 0.203 0.013 0.035 0.098 

4.0 0.282 0.306 0.348 0.473 0.024 0.066 0.191 
A 

, +. S 0. "" 082 0.510 O. SG7 0.711 -1: 0.028 0.085 0.229 

5.0 0.642 0.675 0.7351 0.860 0.033 0.093 0.218 

5.5 0.765 0.794 0.838 0.941 0.030 0.073 0.176 

6.0 0.846 0.868 0.904 0.976 0.022 0.058 0.130 

6.5 0.898 0.916 0.944 
, 

0.991 0.017 0.046 0.092 

70 0.931 0.945 0.968 0.998 0.014 0.037 0.067 

7.5 0.953 1 0.961 0.982 0.999 0.008 0.029 0.046 

8.0 0.967 0.973 0.991 1.000 0.006 0.024 0.033 

8.0- 0.91-8 0.9-0 0 0.9ý4 1.000 0.002 0.016 O. M 

9.0 0.9 84 0.986 0.997 1.000 

1 

0.002 0.012 0.016 

Table 7.3 Calculation of the Maximum Absolute Deviation for 90% Machine 

Utilisation 

The maximum absolute differences are 0.033,0.093, and 0.229 for the 2 

replicates, 4 replicates, and 8 replicates respectively. These values when 

referred to table 7.2 are too great for the null hypothesis that the curves are the 

same. Thus the curves are different. The theoretical value for the long-term 

mean of the queue size is 4.95. The value obtained from the jo, 000 single runs 

was 4.85, from the 10000 two replicates it was 4.74, from the 10,000 four 

replicates it was 4.54 and from the 10,000 eight replicates it was 4.16. 
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It may be seen that the larger run has a closer estimate of the mean value and 
thus the shorter runs are more inaccurate for the 90% machine utilisation. 

7.1.4.2 80% Machine Utilisation 

The results from these experiments produced similar curves and it was 

necessary to statistically test them. The maximum absolute difference was 

calculated as for the 90%. 

Cum ulative Probability 
Absolute Difference 

Average Replicates 

Queue Single Two Four Eight Two Four Eight 

2.1 0.198 0.202 0.216 0.251 0.004 0.018 0.053 

2.2 0.317 0.323 0.348 0.395 0.006 0.032 0.078 

2.3 0.446 0.456 0.485 0.542 0.010 0.039 0.096 

2.4 0.570 0.578 0.604 0.671 0.009 0.034 0.101 

2.5 0.679 0.694 0.712 0.771 0.015 0.033 0.093 

2.0 0.705 0.785 0.797 AE) 0.81* 0.019 0.031 0.002 

2.7 0.835 0.848 0.859 0.903 0.013 0.024 0.068 

2.8 0.887 0.895 0.901 0.937 0.008 0.014 0.050 

2.9 0.923 0.928 0.934 0.960 0.006 0.011 0.037 

3.0 0.947 0.951 0.957 0.975 0.004 0.010 0.028 

3.1 0.965 0.966 0.972 0.984 0.000 O. Oo7 0.019 

3.2 0.975 0.976 0.980 0.990 0.001 0.004 0.014 

3.3 0.984 0.982 0.987 0.993 0.001 0.003 0.010 

3.4 
1 

0.90 89 
1 

0.988 
1 

0.991 
1 

0.9,95 
1 . 

0.001 

--- 

0.002 0.007 

Table 7.4 Calculation of the Maximum Absolute Deviation for 80% Machine 

Utilisation 

In this case the null hypothesis that 2 replicates curve and the Single curve are 

the same cannot be rejected at the 5% confidence level, since the maximum 

absolute difference is 0.019 which is the 5% confidence level (table 7.2). The 

other curves have too large absolute differences for the null hypothesis not to 
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be rejected. Thus the 4 and 8 replicates are statistically different curves to the 

curve for the single run. The theoretical long-term queue size is 2.40 (see 

expression on page 154). The measured average queue size in the 

experiments were for the 10,000 single run, 2.39, for the 2 replicate run it was 

2.38, for the 4 replicate run it was 2.36, and for the 8 replicate run it was 2.31. 

Thus it may still be said that the single run was more accurate. 

7.1.4.3 70% Machine Utilisation 

Again the results from these experiments produced similar curves and it was 

necessary to statistically test them. The maximum absolute difference was 

calculated as before. 

Cumulative Probability 
'111'"ý"", ý-, ý Absolute Difference 

Average Replicates 

Queue Single Two Four Eight wo T Four Eight 

1.45 0.353 0.356 0.377 0.401 0.003 0.024 0.048 

1.48 0.423 0.430 0.448 0.480 0.006 0.0 

1.50 0.495 0.506 0.520 0.553 0.011 0.025 0.058 

1 53 564 0 0.573 0.589 0.630 0.009 0.025 0.066 
. 

1.55 
. 

0.634 0.640 0.650 0.691 0.007 0.017 0.057 

1.5,03 0.6 9"'Or 0.701 0.713 0.7 466 0.004 0.015 0.049 

1.60 0.753 0.754 0.764 0.797 0.001 0.011 0.044 

1.63 0.797 0.802 0,807 0.839 0.005 0.011 0.043 

1.65 0.834 0.846 0.845 0.876 0.012 0.011 0.042 

1.68 0.866 0.875 0.876 0.904 0.009 0.010 0.037 

1.70 0.894 0.898 0.903 0.928 0.004 0.008 0.034 

Table 7.5 Calculation of the Maximum Absolute Deviation for 70% Machine 

Utilisation 
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Referencing table 7.5 shows that the curves for both the 2 replicates and the 4 

replicates may be considered to be statistically the same as the single run. The 

curve for the 8 replicates however is statistically not the same. The theoretical 

long-term average queue size for 70% machine utilisation is 1.52. The measure 

queue size for the single run, the 2 replicates and the 4 replicates was 1.51, 

while the value for the 8 replicates was 1.49. Thus for 70% machine utilisation 

the accuracy for the single, 2 replicates and 4 replicates was statistically 

identical whilst the accuracy for the 8 replicates was lower. 

7.1.4.4 60% Machine Utilisation 

As before the results from these experiments produced similar curves and it 

was necessary to statistically test them. The maximum absolute difference was 

calculated as before. 
Cu mulative Probabilit y Absolute Differ ence 

Average Replicates 

Queue Single Two Four Eight Two Four Eight 

0.98 0.195 0.194 0.201 0.211 O. C)01 O. Ow 0.016 

1.00 0.251 0.252 0.257 0.272 0.001 0.006 0.021 

1.01 0.315 0.313 0.323 0.338 0.002 0.008 0.023 

1.02 0.383 0.380 0.392 0.406 0.004 0.009 0.023 

1.03 0.451 0.448 0.461 0.482 0.003 0.010 0.031 

1.05 0.519 0.518 0.530 0.511+9 0.001 0.011 0.031 

1.06 0.581 0.588 0.596 0.619 0.008 0.015 0.038 

1.07 0.645 0.647 0.656 0.679 0.002 0.011 0.034 

1.09 0.700 0.704 0.714 0.735 0.004 0.014 0.035 

1.10 0.752 0.755 0.766 0.787 0.003 0.014 0.035 

1.11 0.797 0.803 0,814 0.829 0005 0.016 0.031 

1.13 0.842 0.844 0.850 0.866 0.002 0.008 0.024 

Table 7.6 Calculation of the Maximum Absolute Deviation for 60% Machine 

Utilisation 
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In this case all the curves are statistically the same. The theoretical long-term 

average queue size for 60% machine utilisation is 1.05. The measured average 

queue size for the single, 2 replicates, and 4 replicates was 1.05 and for the 8 

replicates it was 1.04. For 60% machine utilisation, the result was as with 70%, 

the accuracy for the single, 2 replicates and 4 replicates was statistically 
identical whilst the accuracy for the 8 replicates was lower although in this case 

only slightly. 

7.1.4.5 50% Machine Utilisation 

In this case the curves are very similar and again it was necessary to 

statistically test them. Again the maximum absolute difference was calculated: 
Cu mulative Probabilit y Absol ute Differ ence 

Average Replicates 

Queue Single Two Four Eight Two Four Eight 

0.69 0.084 0.087 0.091 0.083 0.003 0.006 0.001 

0.70 0.118 0.125 0.126 0.121 0.007 0.009 0.003 

0.70 0.158 0.168 0.171 0.165 0.009 0.013 0.006 

0.71 0.214 0.218 0.218 0.219 0.004 0.004 0.005 

0.72 0.274 0.279 0.275 0.278 0.005 0.000 0.004 

0.73 0.332 0.343 0.343 0.345 0.010 0.011 0.013 

0.74 0.401 0.407 0.409 0.417 0.006 0,009 0.016 

0.74 0.478 0.472 0.482 0.488 0.006 0.005 0.011 

0.75 0.547 0.541 0.553 0.558 0.005 0.006 0.011 

0.76 0.615 0.608 0.617 0.629 0.007 0.002 0.013 

0.77 0.682 0.670 0.678 0.691 0.012 0.004 0.009 

0.78 0.737 0.727 0.737 0.744 0.010 0.000 0.007 

0.78 0.781 0.778 0.786 0.796 0.004 0.00 0.014 

0.79 0.824 0.821 
1 

0.826 0.839 0. 004 0.002 0 . 
015 

Table 7.7 Calculation of the Maximum Absolute Deviation for 50% Machine 

Utilisation 
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As in the previous case all the curves are statistically the same. The theoretical 

long-term average queue size is 0.75. The actual measured value was 0.75 for 

every case. However if the results are examined at three decimal places the 

following table is obtained: 

Type of 
Experiment 

Average 
Queue Size 

Theoretical 0.7500 
Single run 0.7498 

2 Replicates 0.7496 

4 Replicates 0.7490 

8 Replicates 0.7477 

Table 7.8 Actual Average Queue Size Measured with Machine Utilisation of 
50% 

The accuracy may be seen to be higher for the single run. Similar results were 

seen for all the machine utilisation examined. 

7.1.5 Conclusion 

The most accurate forecasts were obtained from a single run. The multiple runs 

were able to reached statistically identical performance when the variability in 

the process was less. (The variability reduces as the machine utilisation 

reduces. See the queue sizes variability in the warm up, table 7-1) 

7.2 LENGTH OF RUN 

In section 6 when considering the setting of the initial conditions the change in 

the expected queue size as parts were processed was measured. This was to 

establish the expected queue values at the various times of production. 
However in a simulation study the measurement of average queue size is 
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usually made by computing the average queue size based on all the measured 

queue sizes (as was used in section 7.1). That is: 
i-n 
I: qi 

Average Queue Size = 'ý" 
n 

thus 
i-n 
I: Eqi 

Expected Cumulative Queue Size = '-1 
n 

Where: 

qj is the measured queue size after producing the ith part or item 

n is the number of parts 
Eqj is the expected queue size after producing the ith part or item 

The term Expected Cumulative Queue Size is used for clarity. 

In graph 7.5 on the following page the value of the expected cumulative 

average queue size is shown as it changes with production (simulation run 

time). The study was performed using the Markov model of section 6.1-2. 

Previous studies in section 6 had indicated that 1000 parts processed is 

sufficient for the "forgetting time" (see section 6.1.4), graph 7.5 indicates that 

1000 parts processed is not sufficient for the bias to be removed from the 

estimate of the long term average created by the average of the queue sizes 

obtained. In order not to have any bias, 2000 items are required to be 

processed with any initial queue size in the range 0 to 15. 
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Single Server with Constant Service Time 
Random Arrival 
Utilisation of 0.9 

064 

09 
-P 

Graph 7.5: The Change in the Estimate of Average Queue Size 

This result may at first be considered to undermine the statement that, for a 

queue any warm up time is detrimental to the accuracy of the final estimate. It 

may be considered that the extended run required to remove the bias is only 

necessary to overcome the distortion caused by including the measurements 
that were affected by the initial value of the queue, which in the case of a queue 

of zero was an empty system. But graph 7.5 demonstrates that Blomqvist's 

result that no warm up is required if the simulation is long enough to get an 

accurate result is correct. If it is considered that computer power for 2000 parts 
is to be used, then any warm up period would mean less than 2000 parts could 
be used to provide the estimate. Any reduction below 2000 can be seen to 
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reduce the accuracy of the estimate by introducing a bias, whatever the queue 
size obtained after the warm up period. For example, if a warm up period of 
500 is chosen then, assuming the queue size at the end of the warm up is 0, 
then it can be seen from graph 7.5 that the accuracy after the remaining 1500 

parts are processed, taking the initial queue size as 0, is less than the accuracy 
if there had been no warm up and the measurement had been for 2000 parts. 
Different values of queue after the warm up period may be considered but the 

result is the same that the accuracy with warm up is less. 

Thus there is distortion due to the measurements affected by the initial 

condition, even if the initial condition is a "normal" condition and this can only be 

countered by increasing the length of the run beyond the "forgetting time" (see 

section 6.1.4) not by discarding the "distorting" measurements". For our queue 
with its 90% utilisation the length of run to remove the bias is equal to twice the 
Nforgetting time". 

7.3 BLOMQVIST'S RESULT USING ABSOLUTE DEVIATION 

Since graph 7.5 is not indicating square error but a visual estimate of the 

absolute error, Blomqvist's result can therefore be seen to hold for absolute 
deviation as well as a squared error measure of accuracy, at least for this type 

of queue and with a 90% machine utilisation. Thus the rejection of the result 
based on the choice of a squared deviation measure of error is unfounded as it 
holds for absolute deviation as well. 

The result indicates that the run length for systems containing queue needs to 
be well in excess of the "forgetting time" (possibly double) and that any time 

spent on warm up past the initial obtaining of "normal" conditions is detrimental 

to the accuracy obtained. A means of obtaining some estimate of the actual run 
length that should be used in the first run of the model is required. This will be 

discussed next. 
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7.4 A METHOD OF DETERMINING LENGTH OF RUN 

In the earlier section it has been shown that there should be one run of 

sufficient length to allow any initial distortion to be reduce to insignificance 

however Law and Kelton (2000) claim that, before any experimentation has 

taken place, it is impossible to determine the run length required to obtain the 

necessary accuracy. As discussed in the literature review, developments are 
being made to provide methods of establishing if a run needs to be extended to 

obtain greater accuracy. These methods are not discussed here. Law and 
Kelton (2000) do not give a method of determining the initial computer run but 

do give some guidance on run time in a section on determining what they 

considered is the necessary warm up period in which they state that the 

computer run should be: 

"...... large enough to allow infrequent events (e. g., machine breakdowns) to 

occur a reasonable number of times. " 

A method of establishing a run length that will provide at least a firm basis to 

determine such action as extending a run or to determine if the run already 

made is sufficient is required. It is proposed that the length of run should be 

chosen with the same criteria as was used in selecting the method of producing 

randomness and that reflects the requirement stated by Law and Kelton. 

Applying the concept that the requirement is that the run should be highly 

representative of the environment of the system being studied, leads directly to 

the requirement, noted by Law and Kelton, that the length of run should be such 

that there are a representative number of important events occurring during the 

simulation run. Only with such a representative run can any reasonable 
statements be made of the effectiveness of the design of the facility and indeed, 

as stated above, if a longer run is required to obtain the necessary accuracy. 
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In many manufacturing facilities there is an important stochastic event, which 

although it may not be the major variable controlling the performance of the 

system, will dominate the run length of any simulation attempting to accurately 

model the facility. This is normally because it a relative rare event and for the 

run to be considered realistic enough occurrences have to occur. In our real-life 

target model the number of machines, their layout and buffering may have the 

major effect on throughput, but there are disruptions in the process due to parts 
jamming or machines breaking down. In order for the measurement of 
throughput to be representative there must be an adequate number of machine 
breakdowns within the computer run. Indeed in order that the effect of these 

disruptions is correctly reflected, there must be sufficient number of the longer 

duration machine breakdowns within the computer run. 

In this study, a method will be examined for determining the minimum run time 

of a simulation run based on ensuring that a representative number of these 

events occur in the simulation. There may exist other concepts, philosophies 

and methods (as yet not published) of determining the initial run length but this 

need for a representative number of events is a basic requirement and must be 

met. 

In practical cases it may be sensible to exclude some very lengthy breakdowns. 

In the target example, the management excluded breakdowns of over 8 hours. 

They did not expect these to be included in the measurement of expected 
throughput. Such breakdowns would be seen as "reasonable excuses' for 

failure to produce the required output and they would use 8overtime" to recover 

such production losses. 

It has been assumed that, within the simulation model the stochastic factor 

controlling the length of the simulation is machine breakdowns and it is 

considered, as before, that both the duration of the disruption and the time 
between occurrences follow negative exponential distributions. 
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For the analysis a machine is selected that is significant in the production and 
has significant but infrequent breakdowns. This is termed, for this discussion, 
the "target machine". 

The required run length may be seen to be determined by the number of 
breakdowns of the "target machine" required to give the requisite number of 
larger duration breakdowns. This is equivalent to determining the number of 
samples required for determining the durations of the breakdowns of the target 

machine. This is discussed in the next section. 

7.5 SELECTION OF A SUITABLE NUMBER OF SAMPLES 

In this section a suitable method will be discussed for determining a run length 

in terms of the number of samples required for an important, although 
infrequent, event, so that representative behaviour is ensured. It is assumed 
that the initial warm up period (or as previously discussed system fill) has been 

completed and the run length is measured from that position. 

As a measure of achieving reasonable representation the metric chosen was 
the number of sample values that will lie in the critical areas of the statistical 
distribution during the simulation run. This critical area in the reference real-life 

model is the duration of a disruption so larger that it would be considered a 
major disruption to production. 

If the underlying distribution of the disruption is negative exponential (a not- 

uncommon characteristic) the probability P of being within a certain range, say 
ti to t2, when the mean duration time is X, is given by 

P=e -Xt2 

- e-xt, 

As stated the critical area in the case of disruptions within the target real-life 
model is the tail of the long clurations. This upper tail may be defined by a 
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single parameter time T where the tail is defined by the area that contains all 
duration times greater than T and is defined by the value of T. (In the case of 

our real life model the duration of a major breakdown would have been 

considered to be 5 hours when the average breakdown is an hour. ) 

If true random numbers are generating the times of the disruptions then the 

probability P of a single sample being in the tail is: 

e-xT 

Thus if the mean of the negative exponential distribution is 1 time unit, then the 

probability of a sample being in the tail is given in table 7.9. 

T Probability 

3 4.9787% 

4 1.8316% 

5 0.6738% 

6 0.2479% 

7 0.0912% 

8 0.0335% 

9 0.0123% 

10 0.0045% 

Table 7.9: Probability of a Sample Value falling into the Tail 

If the run size is to be such that there will be M disruptions the expected number 

of disruptions E(N), with durations in the tail N, is given by 

E(N) = MP 

However the choice of M may be made to give a certain probability of having at 
least N in the tail. 
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The problem is now in terms of defining the tail and the number of occurrences 

required for the users, e. g. Production Engineers, to be able to accept the 

result. They are likely to feel more comfortable in deciding the number of major 
disruptions to define a representative run length rather than just to attempting to 

estimate a suitable time. Any final confirmation run (the computer run to 

confirm the final design) would be much longer and have available, statistical 

measurements from earlier runs. 

If the samples are considered independent of each other and the probability of 
being in the tail is P then the count of occurrences in the tail M from a total 

sample of N will follow a Binomial distribution. 

That is: 

Probability of M disruption with durations in the tail from a total of N 

disruptions where P is the probability of an individual disruption 

sample falling in the tail 

pm(, _P)N-M where 0: 5 M: 5 N 

If N is large and P is small then thus may be approximated to by 

e-ArP 
(IVP)l 

M! 

Therefore the probability of at least N in an interval from a sample M where P is 

the probability of an individual sample falling within the required interval 

i-jv N 
=ý 

)P'(I-P)v 
whereO: 5i--ýM 

1=lv e -Np (NP 

il 
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Table 7.10 (page 188) gives the values for a tail of 5. That is if the mean of the 

duration of the breakdowns is 1 hour then the tail contains all observations of 

over 5 hours. 

Table 7.10 shows that if we wished to be 99% certain of having 5 observations 

of over 5 hours duration when the average duration is I hour then we would 

need 1800 disruptions in our run. If a confidence of 90% would suffice, then 

1200 disruptions would be needed. 

These results only apply to true random numbers. Since, as previously 
discussed, in a simulation the random numbers are not usually real random 

number but "pseudo-random" numbers or a constructed sample, the actual 

number of samples that will appear in the tail may be exactly established before 

the simulation run. 

If an RNG such as a MLCG or MT is being used, then it is possible to confirm 

that the number of samples is acceptable once the seed is selected by making 

a run of the actual random number generator. This may be performed before 

the full run of the model. If a selected seed is used it may be expected that the 

number in the tail would be closer to the expected value. In the case of the 

Fishman and Moore generator, the seed 52260 (rank 1 in the range 1-60,000) 

had the fifth deviate in the tail at the 642nd random number, for the seed 37846 

(rank 10) the 635t" deviate was the fifth in the tail and the seed 1562 (the rank 

100"') had the 1010 deviate in the tail. In all these three cases the sample size 

required would need to be bigger than 542,635 and 10 10 respectively but 

would be less that the 1200 to 1800 required for real random numbers. 
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Samples 500 600 700 800 900 

Expected 3.37 4.04 4.72 5.39 6.06 

90.0% 1 2 2 3 3 

95.0% 1 1 1 2 2 

99.0% o o i i i 

99.5% 0 0 0 1 1 

Samples 1000 1100 1200 1300 1400 

Expected 6.74 7.41 8.09 8.76 9.43 

90.0% 4 4 5 5 6 

95.0% 3 13 4 4 5 

99.0% 2 2 2 3 3 

99.5% 1 1 2 2 3 

Samples 1500 1600 1700 1800 1900 

Expected 10.11 10.78 11.45 12.13 12.80 

90.0% 6 7 7 8 8 

95.0% 5 6 6 71 7 

99.0% 4 4 4 5 5 

99.5% 3 3 4 4 5 

Samples 2000 2100 2200 2300 2400 

Expected 13.48 14.15 14.82 15.50 16.17 

90.0% 9 9 10 11 11 

95.0% 8 8 9 9 10 

99.0% 6 6 7 7 8 
99.5% 5 5 6 6 7 

Table 7.10: Number of Samples Values in a Tail of 5 

The computer program TAILMLCG (listing in Appendix 1) gives the number of 

values falling in a range of definitions of the tail for a certain sample size. 
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If IDS is used, the number of samples in the tail can be determined before the 

seed to be used in the shuffle is determined. The result of how many samples 

are in the tail is independent of the seed selection and is only dependent on the 

total number of samples, since the sample values are construct by a simple 

rule. The following expression gives the sample size M required to give N 

observations from a negative exponential distribution with a mean a, in a tail 

defined by t (in this case not standardised to a mean of 1): 

Mý: eyl'(N-0.5)<M+l 

Thus five observations in a tail of 5 with a mean of 1 require a sample of 668. 

The smaller run lengths required by DS and by MLGC and-MT with-selected 

seeds reflect their higher guality of sample as com2ared with MLCG or MT with 

a random choice of seed or seeds and a true random samgle. DS with its 

constant reguired-samole size is again superior in ease of use. 

7.6 CALCULATION OF THE SIMULATION TIME AND SAMPLE SIZES OF 

OTHER EVENTS 

The duration of the simulated time of the simulation can then be calculated from 

the mean of the time between the breakdowns and the mean of the duration of 

the breakdown. 

Simulation Time = Number of Samples x (mean of time between disruptions + 

mean time of duration of a breakdown) 
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If DS is used, the actual mean of he samples values-in a sample will be- the des 

values, so the calculation of the number of samples that-are reguired for a-certa 

simulation time is accurate. 

The samples sizes of the events, where the time between occurrences are 
determined by other stochastic events, cannot be calculated from the mean of the 

distribution of the time between events, as this will not be known. For those 

events, where the occurrence is dependent on the behaviour of the model, the 

forecast of number of samples would (as discussed earlier) be based on design 

values. 
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8 RESULTS FROM THE RESEARCH 

8.1 THE TARGET REAL LIFE MODEL 

In this research the concept was that the discrete-event simulation was for the 

simulation of a transfer line and thus the proposed methods had the needs of 

such a production system in mind. 

8.2 CONCERNS WITH CURRENT DEVELOPMENTS 

The latest research into new RNGs and tests, seem to be out of line with the 

requirements of discrete-event simulation. The cycle lengths of some of the 

latest RNGs being proposed are very large and far removed from the samples 

sizes indicated by the rule of thumb such that "an adequate run length in 

discrete-event simulation is when there is at least 10 to 20 samples from each 

distribution" (Robinson 1994). 

8.3 THE USE OF QUALITY CONTROL ON THE SAMPLES 

In this thesis a new methodology of selecting RNGs or other proposed methods 

of introducing randomness was developed. It used the concept of Quality 

Control. In this methodology the sampje created after the random numbers 

were transformed was tested for its "quality" not the string of random numbers. 

The driving force for such a decision being that a poor sample was to be 

avoided (it had been seen in early work by Saliby (1980) that samples that were 
highly representative gave closer result to the theoretical results) and there was 

some evidence that use of some transforms may lead to poor samples even 

with a RNG that passes the statistical tests. The quality being determined was 
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the degree by which the sample represented the true-life distribution, both In 

sample values and their sequence. The control was applied by using a 
development of Yule's test, where the actual distribution of the average values 
for sets of sequential numbers drawn from the total sequence is tested against 
the theoretical distribution (see Tocher 1960). In the thesis, sets of up to 10 

sequential sample values were used. This requirement to use samples rather 

than the raw sequence of pseudo-random numbers required a transform to be 

identified to be used in the research. The decision was to use samples of 

negative exponential distribution since the literature indicated it had wide use 

and a real life sample of breakdown durations of a machine similar to those in 

the target real life case being used to give realism to the research were seen to 

be negative exponential distributed. (The negative exponential also has a 

precise transform. ) 

Thus for the research the sample was defined as 1000 sample values from a 

negative exponential distribution. The transform used to convert random 

numbers to the distribution was the inverse log transformation. 

The guality control process was successful in obtaining a number of samp-le-S 

that were deemed "highly representative". as was shown by their high 

grobability (reflected in their )e values), of cominq from the correct distribution. 

8.4 CALIBRATION OF THE QUALITY CONTROL 

To calibrate the test and also to evaluate how real random numbers would 

perform in the quality test, a source of random numbers was obtained. it was 

noted that a 4-byte integer was required to be produced from the stream of 
binary bits to meet the stringent statistical performance required (see Appendix 

6). The test was set to accept the best 0.2% of the samples created by the real 

random numbers. Thus only "highly representative' samples would be 

accepted. The performance in terms of the percentage of sets of real number 
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that give acceptable "highly representative" samples is thus defined by the 

parameters of the test, but the calibration did not dictate distribution of the 

Nquality measure". The "quality measure" was calculated by a weighted sum of 

the )? values for the ten sequence sizes. 

8.5 PERFORMANCE OF THE MLCGS 

When the quality control was applied to the five MLCGs that passed Knuth's 

uspectral" test, the result was that they gave similar results to the real random 

number both in the percentage passing the quality test and in the distribution of 

the "quality measure". Two other MLCGs, including a discredited random 

number generator RANDU, gave similar results. There was no statistical 
difference in the quality of the samples produced by all the seven MLCGs. 

However there was a vast difference in quality in the samples depending on the 

particular seed chosen. 

The benefit of the MLCG over using a stream of real random numbers is that 

the seed may be selected from the list of high performing seeds (particular to 

that MLCG). 

It was demonstrated, contrary to the statements in the general literature, the 

choice of seed was very important and apparently more important than the 

choice of MLCG (at least for samples sizes of 1000 values). 

Thus a MLCG with a selected seed will outperform a random sequence or a 

MLCG with a random choice of seed, 99.8% of the time. This includes RANDU. 

(Of cause if the random number stream was quality checked and only the 

sequences producing highly representative samples were saved onto disk, 

theses recorded sequences would obviously match those from the MLCG with 

selected seeds. ) 
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Since there are a number of MLCGs that pass the *spectral" test it would seem 

prudent to restrict the selection of the MLCG to be used from these passing the 

"spectral" test. Thus the tables of seeds giving highly representative samples 

given in Appendix 3 are for the five MLCGs that pass the "spectral" test. It was 

noticed during the research that adding an offset to a MLCG (in this case the 

one termed "Flying" see table 5.3) that had a full cycle without an offset, caused 
it no longer to have a full cycle. 

The conclusion was that MLCG with a selected seed can provide highly 

representative samples and will outperform real random numbers chosen at 

random 99.8% of the time. 

8.6 USE OF SMALLER MODULI WITH MLCGS 

The situation that discrete-event simulation was requiring much smaller 

samples than other applications of random numbers, led to the investigation of 
MLCG with smaller moduli. These appeared to give better results than the 

larger moduli. However with the size of moduli examined (1021 to 524287) and 

with sample sizes of 1000 there was a large amount of overlap of the 

sequences. Tables of the seeds that gave highly representative and non- 

overlapping samples of 1000 sample values for two of these smaller moduli 

(262139 and 524287) are given in appendix 3. 

For smaller samples the smaller moduli MLGC outperform large moduli MLCGS. 

The use of smaller moduli for small sample sizes is worthy of more research. 

A Warn Page 194 



Evaluation of Alternative Discrete Event Simulation Experimental Frameworks 

8.7 PERFORMANCE OF THE MERSENNE TWISTER 

One of the latest developments in RNGs is the Mersenne Twister. This has a 

massive cycle such that it may be considered that for any practical 

consideration that any sequence will not repeat. When samples created by this 

RNG were tested they were found to be statistically the same as those created 
by the real random numbers. The concern that with a large cycle they would be 

inferior to the seven MLCGs previously tested were unfounded. Again the seed 

used by the MLCG to generate the 624 seeds required by the Mersenne Twister 

was very important. The seeds that gave the highest quality samples with the 

Mersenne Twister are given in Appendix 3. 

The Mersenne Twister is a viable alternative to the MLCGs but has no great 

advantage. 

8.8 PERFORMANCE OF DESCRIPTIVE SAMPLING 

Descriptive Sampling was found to produce more satisfactory samples than 

MLCGs and real random numbers. Descriptive Sampling produce greater than 

three times the number of "highly representative" samples. The quality of its 

samples was superior to the MLCGs, with 90% of its samples being equal or 

superior to the top 10% of those produced by the MLCGs. 

The effect of multiple shuffles did not seem to have any predictable effect either 

an improvement or deterioration in the quality of the sample. In this thesis only 

a single shuffle was made. It was found that the choice of MLCG to perform the 

shuffle was not important but the seed selection was very important. The seeds 

giving the high quality samples using Descriptive Sampling are given in 
Appendix 3. 
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Descriptive Sampling gave more and better "highly representative" samples 
than MLCGs, the Mersenne Twister, or real random numbers. 

8.9 SPEED OF PROCESSING 

When considering processing speed, the MLCGs were found to be fastest and 
the Mersenne Twister was the slowest, but all in practical terms were 
acceptable in the concept of discrete-event simulation. 

MLCG are fast but the Mersenne Twister and Descriptive Sampling are 
acceptable for Discrete-event Simulation 

8.10 EFFECTS OF INACCURATE FORECASTS OF SAMPLE SIZES 

Since the selection of seed for the MLCGs and for the Mersenne Twister was 
based on the sample size and Descriptive Sampling performance was 
considered to be dependent on the correct estimation of sample size, the effect 
of underestimating the sample size was considered. Errors of forecasting the 

sample size of up to 100% (the required sample size was 2000 rather than the 

estimate of 1000) were considered and Descriptive Sampling was found to be 

less affected. 

Descriptive Sampling's performance in producing "Highly Representative" 
samples is less affected by underestimating sample sizes than MLCGs and DT. 
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8.11 REQUIREMENT FOR WARM UP 

It is reasonable to accept that if the production rate of our target system the 

transfer line was being measured that the measurements should only 

commence after parts are being produced. Thus a basic system fill is accepted. 

However it is normally accepted that for long-term measurement of production 

rate the measurements should be delayed until a "steady state" is achieved. 
This research showed that using a section of the real life situation a queue, that 

the system could not be placed in the steady state condition and no length of 

run would leave the queue in such a state. The research showed that it was 

detrimental to delay commencing the measurements beyond the basic system 
fill. The mathematical model showed that Blomqvist's result (more accurate 
results with no delay in measurement) held for absolute error as well as for 

squared difference. (At least for the example analysed. ) Indeed when 
investigating the effects on accuracy measurements of a number of short runs 

against a long run, a warm up period was used and the initial queue size 

created for a range of machine utilisations was the empty queuel 

Except for a system fill no warm up is required and the loss of measurements is 

detrimental to the simulation study due to the loss of accuracy. 

8.12 REMOVING THE BIAS DUE TO THE INITIAL CONDITIONS 

The research confirmed that the measured average queue size was affected by 

the initial size of the queue, but that the effect was not removed by delaying 

measurement. The only way was to have a long simulation run. If "forgetting 

time" is defined as the time the system has to run in order for the statistical 
behaviour to be independent of the initial state, the simulation run time required 
to simulate a queue, in order to remove from the measurement of average 

queue size the effect of the initial queue size, was twice the,, forgetting time". 
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Bias in measurements due to starting conditions can be removed by lengthy 

runs; it cannot be removed by discarding early readings. 

8.13 THE NUMBER OF REPLICATES 

It is frequently stated that accuracy is improved by using a number of replicates 

rather than a lengthy run. This research demonstrated that this was not true for 

the queue. Since queues are frequently found in discrete-event models and it is 

indeed possible to state a case that all discrete-event models contain queues, 

this result may well be general. 

In the research a run of 2000 items was found to be more accurate than eight 

runs of 250. This supports the result that the bias due to the initial conditions 

requires a lengthy run. 

Greater accuracy is obtained from one long run than a number of shorter runs. 

8.14 DETERMINING THE RUN LENGTH 

A scheme was developed to enable a run time to be estimated that would 

enable a representative number of events to occur during the simulation. The 

method described assumes the engineer is able to identify an unusually event 

and the minimum number of occurrences required for the simulation run to be 

acceptable as representative. 

It was demonstrated that Descriiptive Sampling was able to ensure that a 

representative number would occur with a shorter run time than would be 

achieved from a RNG that was mimicking true random numbers or indeed true 

random numbers. This was true even if the RNG was used with a selected 

seed that assured a highly representative sample. 
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Descriptive Sampling can ensure that a certain number of representative events 
occur in a shorter run than any method of introducing randomness that mimics 
real random numbers. It can also guarantee the design rates (e. g. breakdown 

rates) are accurately reflected in the simulation run, 

8.15 REPLIES TO THE ORIGINAL SPECIFIC QUESTIONS 

In section 3.13 it was stated that to obtain the information necessary to make 
the decisions on what methods should be chosen certain specific questions 

were asked. As discussed in the previous parts of this section, the results to 

these questions and studies were: 

1) For the specific questions on the introduction of suitable randomness: 

9A quality check was applied successfully to obtain samples that were 
"highly representative". 

* MLCG, MT and DS did give quality samples and thus were able to be 

used but the seed selection was very important. 

9 MLCGs were able to be used but DS outperformed them. 

4o As stated above the seed selection was seen as vitally important, at least 

with samples of 1000. 

9 It was found that DS was less sensitive to any under-forecasting of the 

required sample size. 

2) The answers to the specific question on the initial conditions were: 

Only a warm up period to obtain system fill was necessary. 
Measurements should commence immediately after the system fill. 

3) On the question of should there be one long run or a number of short runs 
the analysis led to the conclusion: 
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9 Greater accuracy was obtained from one single long run. 

4) The need to have an initial run that was adequate to prevent false 

conclusions being drawn was answered by: 

*A procedure was developed that would ensure a representative number 
of extreme events would occur. It was found in this respect, IDS was able 
to obtain such a run with least resources. 

8.16 REPLIES TO THE "KEY" ISSUES 

By answering these questions the "key" issues raised in section 1.2 have been 

successfully addressed, although the results reject much of the *received 

wisdom" currently available in the discrete-event domain, such as the relative 
inconsequentiality of seed values, the requirement to reach a steady-state 
before commencing measurements, the need for an extended awarm up* to 

prevent distortions from the start up position, that multiple short runs are better 

than a single equivalent long run, the importance of 'proper" random number 
generation that mimic closely the behaviour of real randomness. 

The main requirement from specialised simulation software is that they should 
include Descriptive Sampling as a facility. 

If they are to continue to offer a MLCG as the standard then it should be made 

possible to input a seed value rather than just a stream number with no control 
on the actual seed used. 

Ideally they should include as part of the system the ability to select seeds 
based on the quality control procedures described in this thesis. Such software 
is demonstrated by the prototype discussed later in section 10. 
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one problem met during this research was the lack of knowledge on what 
sample sizes were actually being used. It would be helpful if the sample sizes 
actually used were reported by the packages. 
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9. IMPLICATIONS FOR THE DESIRED METHODS 

The decisions on the methods to be used were: 

e Randomness is to be provided by Descriptive Sampling 

9 Any of the MLCGs can provide the "pseudorandom' number generator. 
The Fishman and Moore generator is a suitable choice. 

e Initial Runs should be single long runs with run length calculated using 
the method in section 7. 

* Size of samples should be decided from the length of run calculations 

e Seed selection should be based on the sample sizes. 

* Seed selection should use the quality control, described in the thesis, to 

test that the samples created are *highly representative". 

9 Only a warm up sufficient to provide system fill. 

There need to be incorporate feedback to improve the operation of the 

methods. Information on the number of sample values actually used 

would assist in determining the sample required in further runs and thus 

select better seeds. 

If it is desired to use specialised simulation software that cannot support 
Descriptive Sampling, any of the five MLCGs analysis will be suitable second 

choice. The Fishman and Moore generator performed well in creating quality 

samples. As with Descriptive Sampling the seeds used should be those that 

create samples of the desired distribution that pass the quality check. 

if the specialised simulation software prevents any other its own MLCG, then 

the stream would need to be tested to see if they meet the quality requirement. 

Descriptions of computer assistance in calculating the sample size and 
determining the seed for Descriptive Sampling are described in the next section. 
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10. COMPUTER SUPPORT 

10.1 THE PROGRAM 

To provide support to the selected methods, an interactive computer program 

was developed. It uses the programs that were created to perform the quality 

control. In order that the user interface could be improved, the programs were 

however rewritten in Visual Basic 6. At present only the Negative Exponential 

distribution is supported but the menu structure is in place for more distributions 

to be included. The program operates under Windows. 

The computer system: 

* Calculates the number of samples required in the simulation for the 

target machine (the machine with significant but infrequent events e. g. 

machine breakdowns), 

Determines the requested number of seeds such that each one of the 

seeds will guarantee a "highly representative" sample given the number 

of samples values required. 

10.2 CALCULATING THE NUMBER OF SAMPLES 

On running the program "PROTOT*, the user is presented with a screen as 

shown on Diagram 10.1 with all the fields blanked. The user of the system is 

prompted to select from a drop-down menu of distributions the required 

distribution. (Although the system provides a comprehensive list only the 

Negative Exponential is programmed in the prototype) 

The next stage will depend on the distribution chosen. In the case of the 

Negative Exponential, only the mean of the distribution is requested. The 
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system then places the curser in the "What is the tail? " field allowing the user to 

specify the "tail". There is a check that the "value of the tail" is "reasonable". 

Run Time and Seed Selector 

Estimate Run Louth 

What Distribution? lNegative Exponentiai 

What is the mean 11 

%Afhnt ic tho toil") ý I. - .-- .-ý 

How Many Occurrences Required? 

Sample Size Required 668 Sample Size 

STOP w7kion by AJ. Warn 

Diagram 10.1: The First Screen of the Prototype after the Sample Size has been 
Calculated 

The number of occurrences required in the tail is next requested. Then pushing 
the button "Sample Size" causes the calculation of the sample size and this is 

displayed as shown in diagram 10.1. 

Pushing the button "Determine Seeds" moves the system on to the second 
screen. (Diagram 10.2) 
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10.3 DETERMINING THE SEEDS 

The system remembers the value of the sample size and the distribution chosen 
from the first page. If the user wishes to continue and find suitable seeds for 

this sample then the button "Select Target" is pressed which moves the sample 

size into the "Sample Size" field. At the same time the ability to input a 
distribution is removed. The sample size may be changed but a warning 
message is given if the sample size is set to a value that is less than that 

calculated originally. 

Taroet Machine 

Distribution Negatiye Exponential 

Sample Size: 668 

L, Select Target SamplcSim 11000 

IN egatiye E xponentiai 

How Many Seeds 
Flemkod 

Where to start 
searching 

I 
Find 

Number Found r- 

Deate File 
I 

Clear 
I 

S top 
I 

The Seeds are 
listed here 

Diagram 10.2: The Second Screen Ready to search for the Seeds 
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The user may input a sample size and a distribution as is shown in diagram 

10.2. The number of seeds required is then entered. The system will search 
for the seeds starting from a given number. This enables different seeds to be 

used in a simulation for the same sample size and distribution. This number is 

entered in the field "Where to start searching". 

At this stage the "Find" button is pressed and the system finds the required 

seeds. The diagram 10.2 is at the stage of where the "Find" button is to be 

pressed. The number of seeds found, shown in the "Number Found" box, 

indicates the progress of the search. The seeds found are displayed in the field 

indicated in diagram 10.2. 

T&oet Machine 

Distribution Negatiye Exponential 

Sample Size: 668 

Sa: ad Target 

sarnp!. - Size 
IN egatiye E xponentiai 

How Many Seeds 
Reqtiied 

Where to start 
searching in 

-------------- 

Number Found 80 188 

Create File 
I 

Clear 
I 

Stop I 

Diagram 10.3 Screen after the Seeds have been found 
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After the "Find" button is pressed the screen appears as in diagram 10.3. 

Pushing the button "Create File" causes a file of random deviates, one for each 

seed to be created (in the CSV format). 

The "Clear" button clears the fields ready for the program to determine the 

seeds for the next variable. 
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11.0 FUTURE RESEARCH REQUIRED 

The next step required is to extend the research and program development to 

other statistical distributions. 

There is a need to determine the best approach for very small or very large 

sample sizes. 

There is also a need to determine how best to develop the methods of creating 

samples with Descriptive Sampling that minimise the quality loss due to 

inaccurate forecasts of the number of samples required. Indeed there may be 

better ways to create the sequence than using a program like SHUFFLE 

There is a need for development of methods of determining the samples sizes, 

given the sample size of the "target" machine, required for all the other 
distributions in the simulation. This may have to be in the form of an expert 

system. 

There is a need for the results of the simulation to be analysed to determine if 

the required accuracy has actually been obtained, or, if a comparison of two 

designs of a proposed facility is being made, to determine whether any results 

obtained so far are sufficient for any measured difference in their performance 
to be statistically significant. 

It is necessary to consider other forms of production line and processes in order 
to determine if they have features that could lead to alternative results. A 

possibility may be in a system where there are lengthy feedback loops and it 

may be required to extend the warm up period until some items have been 

processed by the feedback loop. 
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LNTIME 
This program was to measure the time to convert to a negative exponential 
deviate. PTIME is the routine used in the whole study as a timing routine. 

Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 

1 $Pagesize: 50 
2c testing the time to perform a conversion to neg. exponential 
3 integer*4 n, i, k 
4 call Ptime(timel) 
5 do 100 k=1,100 
6 do 100 n=1,10000 
7 do 100 i= 1,10000 
a v=0.7 
9 expval=-dlog(i Do-v) 
10 100 continue 
11 call Ptime(time2) 
12 dur--time2-timel 
13 write(*, 200)dur 
14 200 format(f20.2) 
15 stop 
16 end 

PTIME 

subroutine Ptime(time) 
c Prints time and returns time in seconds 

call Gettime(ihr, imin, isec, ilOOth) 
f1OOth=i1OOth 
time=(ihr*60+imin)*60+isec+fl 00th/l 00 
fsec=isec+f 1 00th/l 00 
write(*, 1 OO)ihr, imin, fsec 

100 Format(' Time is', i3, 'He, i3, 'Mins', F7.3, 'Secs') 
return 
end 
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umber o SETUP Wu 
Samples Main Routine 

USER SMALL 
INPUT Determines the number of the 

cells and Expected Number in 
each cell 

FIXPB 
Determines the Limits of the 
cells if the Distribution is 
Neaative EXDonential 

SERGAM 
Performs Binary Search to 
determine the limits of the 
cell 

GAMCUM 
This FUNCTION calculates 
the gamma fundion using 
logarithms 

Diagram Al. l: Structure of Modules used in SETUP 

Number of 
Samples 
and Coll 
Definitions 

SETUP. 
DAT 
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SETUP 

The SETUP program sets up the control file to enable the Quality Measure to 

be calculated. It uses FIXPB that is programmed for the Negative Exponential 

Distribution and would need to be replaced for other distributions. 

PAGE 1 
SETUP 
Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 

1 $Pagesize: 45 
2c Program SETUP 
3c This program creates the arrays required for the CHI 
4c test and creates a file 
5c 
6c The array A is dimensioned 5000 
7c May need to be re-dimensioned dimA is set to 5000 
8c If A is re-dimensioned change value of dimA 
9C 
10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

c This program uses subroutine SMALL and FIXPB 
c 

Integer K(3), L(3) 
Real*8 A(5000) 
Integer*4 max, ntrials, minent, dimA 
Character*l Drive 

c See above 
dimA=5000 

c Set up default values 
Minent =5 
Ntrials=1000 

Square 

max= 10 
write(*, 5) 
format(' If 1000 is not the number of samples'/ 

+' Enter value or just ENTER if 1000 is acceptable') 
read(*, 6)i 
format(HO) 
if(i. ne. 0) ntrials=i 

5 

25 
26 6 
27 
28 c 
29 write(*, 10) Ntrials 
30 10 Format(//r This program will now create the files/ 
31 + necessary for performing the calculation. 7 
32 The structure of the files is dependent'/ 
33 only on the smallest required entry in a category'/ 
34 + for the Chi Square Test. 7 
35 +' The calculation is based on a sample of 'j5) 
36 write(*, 11) 
37 11 Format(r The default value for the minimum numbee 
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SETUP 
PAGE 2 
Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 

38 of entries is 5? A larger value may be used'/ 
39 Enter the larger value/ 
40 +' or just ENTER to accept default value) 
41 read(*, 20)i 
42 20 format(HO) 
43 if(i. gt. O)minent=i 
44 if(minent. GE. 5) go to 90 
45 c If Min Entry too small (i. e. less than 5) 
46 30 Continue 
47 do 80 n=1,10 
48 Write(*, 50) 
49 50 Format(' Input value must be greater than 5') 
50 read(*, 20)minent 
51 if(minent. 1t. 5) go to 80 
52 go to 90 
53 80 Continue 
54 Stop'Too many triesl' 
55 90 continue 
56 if(dimA. It. (mintrials/minent)) 
57 + Stop' In Setup: Array A too Small' 
58 Write(*, 100) 
59 100 format(' 10 is the default maximum number/ 
60 of Consecutive Observations. 7 
61 Enter other value if required 7 
62 Just ENTER to accept 10. ') 
63 read(*, 20)i 
64 if(i. gt. 0) max--i 
65 write(*, 150) 
66 150 Format(' What is the drive for the files? ') 
67 read(*, 200) drive 
68 200 Format(Al) 
69 c Open file 
70 open(l 0, fiIe=Drive//': ksetup. dat') 
71 c Write header 
72 write(l 0,300) ntrials, minent, max 
73 300 Format(VO) 
74 do 500 Nevents = 1, max 
75 do 310 nc--l, dimA 
76 310 A(nc)=O 
77 nobs=Ntrials/nevents 
78 c Given the Number of Trial, the number if events in each 
79 c observation and the minimum number of observations in each 
80 c category for the Chi square test 
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PAG E3 
SETUP 
Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 

81 c Calculate the categories so as to have the smallest number in each 
82 call SMALL(Nobs, minent, K, L, ncat) 
83 write(*, 320) 
84 320 Format(' Cells size defined') 
85 c, Determine the array A with the boundary times from 
86 ca Gamma distribution with integer number of events. 
87 Call FIXPB(A, K, L, Nevents, ncat) 
88 write(*, 330) 
89 330 Format(Cell Boundaries Defined') 
90 C 
91 c Write out table 
92 write(l 0,400)nevents, (K(J), J=1,3), (L(l), 1=1,3), ncat 
93 400 Format(8i 10) 
94 write(l 0,450) (Aa), j= 1, ncat) 
95 450 format(25W12.6) 
96 500 continue 
97 stop File setup. dat has been created' 
98 end 

No errors detected 

SETUP needs to run if the number of samples, minimum number in a cell, the 

maximum number of sample values to summed to produce the test statistic 
need to be changed. As previously stated if the distribution to be tested is to 

change then FIXPB needs to be changed. 
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SMALL 

Microsoft FORTRAN Optimizing Compiler 
Line# Source 

1c 
2 Subroutine SMALL(Nobs, minent, K, L, ncat) 
3c This subroutine determine the largest number of categories 
4c it also determines the number in each category 
5c 
6c Each category holds at least Minent 
7C Nobs is the number of samples 
8C Ncat is the number of cells (or categories) 
9cK is the output array of expected counts 
10 cL is the number of cells, bottom, middle and top 
11 c Written by A. J. Warn 2002 
12 C 
13 Integer*4 Nobs, minent, K(3), L(3) 
14 c 
15 NB=Nobs/Minent 
16 If (NB. LT. 2) 
17 + Stop'Too Few Observations in Subroutine SMALL' 
18 c Calculate K the maximum number of categories each with a 
19 c minimum of minent expected values 
20 c 
21 MS=nobs/NB 
22 MX=mod(nobs, MS) 
23 ML=(NB-MX)/2 
24 MU=NB-MX-ML 
25 K(1)=MU 
26 L(1)=MS 
27 K(2)=MX 
28 L(2)=MS+l 
29 K(3)=ML 
30 L(3)=MS 
31 ncat=K(1)+K(2)+K(3) 
32 Return 
33 End 
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FIXPB 

Microsoft FORTRAN Optimzing Compiler Version 4.01 
Line# Source Line 

1 
2 Subroutine Fixpb(A, K, L, Nevents, ncat) 
3c This subroutine takes the definitions of the categories and 
4c determines the upper limit of time of each category 
5c The probability distribution is a Gamma with positive values 
6C 
7c Written AJ Warn 2001 
8c 
9 Real*8 A(l), Totobs, Cobs, prob 
10 Integer*4 KC(3), K(1), L(1) 
11 c 
12 C Calculate the Number of Observations 
13 Totobs=O 
14 C Also change array K to cum values 
15 Kcum=O 
16 do 10 kcount=1,3 
17 Totobs=Totobs+K(kcount)*L(kcount) 
18 Kcum=Kcum+K(kcount) 
19 KC(kcount)=Kcum 
20 10 Continue 
21 if(KC(3). ne. ncat) 
22 +Stop 'Error detected in Fixfb category count' 
23 c Determine the first probability 
24 c 
25 Cobs=O 
26 i=1 
27 do 400 nt=l, ncat-1 
28 c Note there is one less boundary between categories than 
29 c than there is categories 
30 c 
31 if(nt. GT. KC(l)) go to 100 
32 Cobs=Cobs+L(l) 
33 prob=Cobs/Totobs 
34 go to 200 
35 100 continue 
36 if(nt. gt. KC(2)) go to 110 
37 Cobs=Cobs+L(2) 
38 prob=Cobs/Totobs 
39 go to 200 
40 110 Continue 
41 if(nt. gt. KC(3)) Stop'Logic Error in Fixpb' 
42 Cobs=Cobs+L(3) 
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Page 2 Fixpb 
Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 
43 prob=Cobs/Totobs 
44 200 Continue 
45 c Determine time for this cum probability 
46 c with a Gamma distribution of mean I and 
47 c Nevents (a positive integer) 
48 c The result is put in A(nt) 
49 c 50 Check if Negative Exponential (nevents = 1) 
51 c 
52 
53 c 
54 c 
55 c 
56 
57 
58 I'k 59 
61 
62 

if(nevents. gt. 1) go to 300 
c Cumulative Distribution F(x)= I -exp(-x) where x is 
c standardised time. 
c Thus x=-(In(l-F(x)) 

A(nt)=-d log (11. ODO-prob) 
go to 400 

300 continue 
call sergam(prob, Nevents, A(nt), 1000,1. OD-12) 

400 Continue 
Return 

63 End 
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SERGAM 

Line Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 

1c 
2 Subroutine Sergam (Target, Nevent, Answer, nu mit, acc) 
3c 
4c Written by Alan J Warn 2001 
5c 
6c This routine searches Cumulative Gamma Distribution to Find 
7c Target probability and Resultant Time given as Answer 
8 C 
9 C LIMITATIONS 
10 C 
11 C This assumes positive integer number of events. 
12 c Target must be between 1 and 0 
13 C 
14 c An acc accuracy can be specified 
15 C it can be positive or negative 
16 C 
17 c If accuracy (acc) is positive 
18 C a value greater than the target is acceptable 
19 C if within the limit but not below 
20 c 
21 c If accuracy (acc) is negative a value less than the 
13 C target is acceptable if within the limit but not above. 
14 C 
15 C numit is the maximum number of binary searches that will 
16 c be attempted. 
17 C 
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Page 2 Sergam 
Microsoft FORTRAN Optimizing Compiler Version 4,01 
Line# Source Line 
18 Real*8 Target, acc, Answer, top, bot, result, gamcu rn 
19 Integer*4 Nevent, numit 
20 if(target. 1t. O. or. Target. gt. 1) 
21 + STOP'Target Not Valid in SERGAM' 
22 20 Continue 
23 top= 1 
24 do 100 n=1,29 
25 result=gamcum(Nevent, top) 
26 if(result. gt. target) go to 200 
27 top=top*2 
28 100 continue 
29 Stop' OutofRangein Sergam' 
30 200 continue 
31 bot=O 
32 do 400 n=1, numit 
33 Answer-- (top+bot)/2 
34 result=gamcum(Nevent, Answer) 
35 if(result. gt. target) top=Answer 
36 if(result. 1t. target) bot=Answer 
37 if(result. eq. target) return 
38 iffaccAt. 0) go to 300 
39 if((result. ge. target). and. (result. le. (target+acc))) 
40 + Return 
41 go to 400 
42 300 if((resu It. le. target). and. (result. ge. (target+acc))) 
43 + Return 
44 400 Continue 
45 Stop' Did not get accuracy in number of iterations' 
46 End 
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GAMCUM 

Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 

1c 
2c This is a function that returns a GAMCUM 
3c value for the cumulative probability of NEvents 
4c Written by AJ Warn 2001 
5 Real*8 Function GAMCUM(NEvents, Time) 
6 Real*8 Alpha, pdfcum, value, total, tot, bot, Ivalue, time 
7 Integer*4 NEvents 
8 Alpha=NEvents 
9 if(N Events. le. 0) 
10 + Stop'Error in GAMCUM Number of Events not positive' 
11 C 
12 c Check if the Negative Exponential if it is not go to 10 
13 c 
14 if(N Events. gt. 1) go to 10 
15 GAMCUM=I. ODO-DEXP(-Time) 
16 Return 
17 C 
18 10 Continue 
19 Ivalue=-Time 
20 bot=O. ODO 
30 tot=O. ODO 
40 do 40 n=l, Nevent-1 
50 bot=bot+dlog(n) 
60 value=lvalue+dfloat(n)*(diog(Time))-bot 
70 tot=tot+dexp(value) 
80 40 continue 
90 GAMCUM=l-dexp(-Time)-tot 
100 Return 
101 End 
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REALTST 
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REALTST 

$Pagesize: 50 
C REALTST Test 
c This program is to evaluate Real Random Number 
c capability to produce satisfactory samples 
c from a Negative Exponential distribution 
c 
c Written by A, J. Warn 2002 
c 
c The Random Numbers are from random. org 
c They are produced from atmospheric noise 
c They were created by Mads Haahr 
c They were downloaded from hftp, //www. random. org 
C 

c It produces a file lcgtest. res 
C 
c the first record is the description of the method used 
c the second is the number of cells used to calculate 
c the chi squared value then follows pairs of records 
c the set number 
C 10 chi square values for sequences of 1- 10 
c (default is 10 var. max) 
C if more than 20 it will write more than one record 
c 

Real*8 A(250), AO(250,20), CHI(20) 
Real*8 seed 
integer*4 is, ntrial, max, ncata(20), iseed, iseed2, iseeds 
Character*l Drive 
Character*50 iname 
Character*30 name 

c Default Values 
c Max number in a sequence 

max= 10 
c Number of Neg Exp samples 

Ntrial=1000 
cA block size of records written on the work file 

Nblock =10 
c First Select media for files 

write(*, 10) 
10 Format(' What is the drive for the work files? ') 

read(*, 20) drive 
20 Format(All) 

c 
c set set numbering 

iseed=l 
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write(*, 30) 
30 format (' How many sets? ') 

read(*, 40)iseed2 
40 format(ilO) 

iseeds=l 
open(l 1, fi le=d rive/T: realtst. res') 
call ptime(timel) 
write(I 1,50) 

50 format('Real Random Numbers') 
do 300 is=iseed, iseed2, iseeds 
seed=is 

c Now create the random neg exp deviates with mean 1 on a file 
Call Neg RRN (seed, Ntrial, N block, Drive) 

c Create the observations by combining the random neg exp deviates 
call gapc2(Drive, max) 

c Calculate the sum of the percentage squared differences 
c (Chi square statistic) 
c 

call chical (Drive, max, CH1, ncata) 
c if first record after header write number of catagories 
c Degrees of Freedom 

if (is. eq. iseed) write(l 1,60) (ncata(l), 1=1, max) 
60 format(206) 
c write seed 

write(l 1,70)is 
c write sum of percentage squared differences 
70 format(i15) 

write(11,100) (CHI(l), 1=1, max) 
100 Format(20flO. 2) 
300 Continue 

c Now tell how long it tookl 
call ptime(time2) 
time=time2-timel 
if(time. 1t. O)time=time+(24*60*60) 
ihr--int(time/3600) 
imins=int((time-ihr*3600)/60) 
fsec=time-ihr*3600-imins*60 
write(*, 400)ihr, imins, fsec 

400 Format(' Time taken', 13, ' Hrs', 13, ' Mins', f7.3, ' Secs') 
Stop 
End 
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negRRN 

Subroutine negRRN (s, Ntrial, Nblock, Drive) 
C This subroutine produces a file of Ntrial neg exp deviates 
C File is on drive Drive 
c 

c They are blocked in blocks of Nblock 
integer*4 ntrial, nprod, nrand 
Real*8 s, output(l 000), v 
Character*1 Drive, shove, rfii le 
Character*8 MEG(4) 
Character*1 1 fname 
Integer frdata, fwork, once 
fwork=7 
frdata= 15 

c in June 2002 4 10 Meg files were used from RANDOM. ORG 
c These were 1 Omegs. 11 Omegs. 2 1 Omegs. 3 1 Omegs. 4 

MEG(1)='10megs. 1' 
MEG(2)='10megs. 2' 
MEG(3)='10megs. 3' 
MEG(4)='10megs. 4' 
NFtoP=4 

c 
c if first time open first real random number file 

if(s. GT. 1) go to 40 
NRfile=1 
nrand=O 
print'(a60)', 

+'Give the drive with the file containing files of random bits' 
read(*, 30)rfile 
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30 Format(al) 
f name= rfi le//': \'//M EG (N Rfi le) 
open (frdata, file=fname, form='binary') 
print '(a32)', ' First Random Digit File Opened' 

c Set indicator of new file 
once=O 
nerr--10 

40 Continue 
c Open work file 

open (Mork, FILE= Drive//': Xcneg2. clat') 
rewind Mork 

c 

c Write header 
write(fwork, 100) ntrial, n block, s 

100 Format('Header', 2i6, f2O. O) 
c 

nprod=O 
200 continue 

do 1000 nr--1, nblock 
c Determine a random number 
210 Continue 

call realrn(frdata, v, nerr) 
c if nerr set to 0 no error 

if(nerr. eq. O)go to 250 
c end of file was detected determine if last pass 

if(once. ge. 3) go to 220 
c set up for next pass 

rewind frdata 
print '(al 4)', ' Rewound file' 
nerr--O 

c off set the numbers by one byte 
read (frd ata, end =3200) shove 
once=once+l 
go to 210 

220 continue 
c Close old file and open next not all used 

close(frdata) 
print '(a25)', ' Random Digit File Closed' 
NRfile=NRfile+l 
if(NRfile. gt. NFtop) go to 3000 
fname=rfile//': \'//MEG(NRfile) 
open (frdata, fi le=fname, form='binary') 
print'(a3l)', ' Next Random Digit File Opened' 
once=O 
nerr-- 10 

go to 210 
250 nDrod=nDrod+l 
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nrand=nrand+l 
c Calculate a value drawn from a Negative Exponential Distribution 

expval=-dlog(l DO-V) 
output(nr)=expval 
if(n prod. G E. ntrial) go to 2000 

1000 Continue 
cA full block available to be written 

writeftork, 1 001)nblock, (output(i), i=l, nblock) 
1001 Format(13,10OE20.12) 

go to 200 
c Back to processing 
2000 continue 
c write outlast block even if an incomplete block 

write(fwork, 1 OOI)nr, (output(i), i=l, nr) 
rewind Mork 
return 

c 
c end of file error routines 
3000 Write(*, 3100) n rand, N Rfile, once+ l, frdata, fname, s, n prod, nerr 
3100 Format(' In NegRRN after, i 10, ' Random Numbers the, i3, ' file' 

+' read', i2, ' ti mes. T file number 'j3P file name', a12/ 
value of set number'J20.0/ 
number of random numbers for this set'J10 

+1 error flag was', i4) 
Stop' End of Real Random Numbers before end of processing' 

3200 continue 
write(*, 3100) nrand, NRfile, once+l, frdata, fname, s, nprod, nerr 
stop'Abnormal end Check name of random digits file. ' 

End 
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REALM 

c This routine reads a file created by Mads Haahr 
c It is able to be downloaded from 
c hftp: //www. random. org 
c It contains random bits generated from atmospheric noise. 
c this subroutine returns a number between 0 and 1. 
c Amended to read 14 June 2002 

Subroutine realrn(nfile, value, nerr) 
C 

c The routine assumes a file is on nfile 
c Value is the returned value between 0-1 
c nerr is an error code: 
c nerr--O no error 
c nerr--l end of file value to be used 
c 

c on input nerr-- 10 means a new file has started 
c 

Real*8 value 
integer nfile 
integer*4 input 

if(nerr. eq. 10) nread=O 
read (nfile, end= 1 5)Input 
nread=nread+l 

c the most negative value is hex 80000000 this is seen as -2147483648 
c the most positive value is hex 7FFFFFFF this is seen as 2147483647 
c since we do not wish to have zero or one 
C 

value=(input+2.147483649DO9)/(4.294967297DO9) 
nerr--O 

return 
15 nerr--l 

return 
end 
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GAPC2 

subroutine gapc2(D(ive, max) 
C 

integer*4 ntrial, n block, n read, n reci n, i rec, nevent, outcnt 
integer*4 max 
real*8 input(200), rem(10), vout(200), ! seed 
Character*1 Drive 

c open input file 
open (7, file= Drive//': kcneg2. dat) 
read (7,20) ntria 1, n block 

C 

C nread is the number of fields read from file 
c nrecin is the number of field being processed from current record 

nread=O 
nrecin=O 

c 

c create output file and header 
open (8, fi le= Drive/f : \gapcal. dat') 
write(8,10) ntrial, nblock 

10 Format('output2', 2i6) 
do 2000 nevent=l, max 

write(8,1 1) nevent, ntrial 
11 Format(2i6) 

c 

c here will be a loop for setting offset (not used at present) 
offset=O 

c rewind inout and read header 
rewind 7 
read (7,20) ntrial , nblock 

20 format(7X, 216) 
c 

c Read the first data record 
read(7,30) nrecs, (input(i), i=l, nrecs) 

30 format(13,10OF20.12) 
nread=nrecs 

c 

c save for later values up to offset value 
if(offset. eq. 0) go to 200 

noff=0 
go to 50 

c need to read another record 
40 read (7,30) nrecs, (i nput(i), i= 1, nrecs) 

nread=nread+nrecs 
50 continue 
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do 100 n=l, nrecs 
rem(n)=input(n) 

noff=noff+l 
if(noff. ge. offset) go to 200 

100 continue 
go to 40 

c 

c Commencing the processing 
c starting with offset field 

200 nrecin=offset+l 
if(nrecin. LE. nrecs) go to 250 

c Need to read another record 
read (7,30) nrecs, (input(i), i= 1, n recs) 
nread=nread+nrecs 
nrecin= 

250 Continue 
nrec=O 

c nrec is number of field combined 
c 

c outcnt is the field in output record being currently processed 
outcnt= 1 

C 

300 Continue 
c See if number of events has reached num. required 

if(nrec. ge. nevent) go to 400 
c If not add field to total 

vout(outcnt)=vout(outcnt)+input(nrecin) 
nrec=nrec+l 
if(nrecin. ge. nrecs)go to 700 

nrecin=nrecin+l 
go to 300 

400 nrec=O 
if(outcnt. ge. n block) go to 500 

outcnt=outcnt+l 
go to 300 

c see if record should be written 
450 if(outcnt. LE. n block) go to 700 
c If it does 
500 continue 

irec=outcnt 
write(8,600) nevent, irec, (vout(i), i= 1, irec) 
do 550 i=l, nblock 

vout(i)=O 
550 continue 
600 format(2i6,2Of2O. l2) 

outcnt= 1 
go to 300 

700 Continue 
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if(outcnt. ge. n block. and. n rec. ge. nevent) go to 900 
c Check if end of file has been reached if so go to end of file 
c processing 
800 if(n read. G E. ntrial) go to 1000 

C Read New Record 
read (7,30) n recs, (in put(i), i= 1, n recs) 
n read= n read+nrecs 
nrecin=1 
GO TO 300 

900 continue 
irec=outcnt 
write (8,6 00) nevent, i rec, (vout(i), i= 1, i rec) 
do 950 i=1, nblock 
vout(i)=O 

950 continue 
outcnt= 1 
nrec=O 
go to 800 

c Write out remaining record 
1000 continue 

c is nrec is less than nevent then outcnt must be reduced by 1 
if (nrec. 1t. nevent)outcnt=outcnt-1 
if(outcnt. gt. 0) write(8,600) nevent, outcnt, (vout(i), i=l, outcnt) 
do 1010 i=1, nblock 

vout(i)=O 
1010 Continue 

outcnt=O 
2000 continue 

rewind 8 
Return 
End 
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CHICAL 

$Pagesize: 50 
subroutine chical(Drive, max, CHI, ncatA) 

C 
integer*4 ntria 1, n block, n read, n recin, irec, n event, outcnt 
integer*4 max, nbase, KA(20,3), LA(20,3), ncatA(20), B(250,20) 
integer*4 K(3), L(3) 
real*8 vout(250), ATAB(250,20), a(250), CHI(20), value 
Character*1 Drive 

c 
c 
c 

open (8, file= Drive/f: kgapcal. dat') 
open(l O, file=Drive//': \setup. dat') 

c Read Headers 
Read(8,10) ntrial, nblock 

10 Format(7X, 2i6) 
read (10,20) nbase, minent 

20 Format(2110) 
c 
c 

Do 400 ncom=1, max 
read (10,40) nevents, (K(J), J = 1,3), (L(l), I= 1,3), ncat 

40 Format(8i 10) 
if(ncom. ne. nevents) stop' Incorrect Set-up File' 
do 100 j=1,3 

KA(nevents, J)=k(J) 
LA(nevents, J)=L(J) 

100 Continue 
ncata(nevents)=ncat 
READ(l 0,200)(Aa), j=1 1250) 200 format(250f 12.6) 
do 300 j=1,250 

ATAB(J, nevents)=Aa) 
300 continue 
400 continue 

rewind (10) 
c 
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do 1000 nevent=1, max 
read(8,450) nw, ntrial 

450 format(2i6) 
lf(nw. ne. nevent) 

+ STOP'gap cal Exp File out of sequence' 
c Calculate the number of full blocks 

itop=ntrial/(nevent*n block) 
c If number of readings remain 
c is enough there is another record 

ire m= ntria 1-itop*(nevent*n block) 
if(irem. GE. nevent)itop=itop+l 
do 700 nrec=1, itop 

Read (8,500) nev, irec, (vout(i), i= I irec) 
500 format(26,2=0.12) 

do 600 i=l, irec 
value=vout(i) 
Call Insert(Atab, B, ncata, value, nevent) 

600 continue 
700 continue 
1000 Continue 

open(6, file=drive/f Acounts. dat') 
do 1010 n=1,20 
write(6,1020) (B(i, n)j=1,250) 

1010 continue 
1020 format(250HO) 

Call chisq(B, KA, LA, CH 1, max, nbase, ntrial) 
do 2000 i =1,250 
do 2000 j=1,20 

b(i, j)=O 
2000 continue 

rewind(8) 
rewind(10) 
rewind(6) 

Return 
End 
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INSERT 

Subroutine Insert(ATab, B, ncell, value, nvalues) 
Integer*4 B(250,20), ncell(20) 
Real*8 ATab(250,20), value, CHI(20) 
ntop=ncell(nvalues)-l 
do 500 i=l, ntop 
lf(Value. Gt. ATab(i, nvalues))go to 500 
B(i, nvalues)=B(i, nvalues)+l 
Return 

500 Continue 
B(ncell(nvalues), nvalues)=B(ncell(nvalues), nvalues)+l 
Return 
End 

CHISQ 

Subroutine chisq(B, K, L, CHI, max, nbase, ntrial) 
c this uses B and K, L to calculate Chi square for each nevents 

Integer*4 B(250,20), K(20,3), L(20,3) 
Integer*4 max, nbase, ntrial 
Real*8 CHI(20), cum, exp 
do 500 nevent=1, max 

cum=O 
ncat=O 
do 400 i= 13 

if(K(nevent, i). It. 1) go to 400 
do 300 j=1, K(nevent, i) 

ncat=ncat+l 
if(ncat. GT. 250) go to 600 
exp=dfloat(L(nevent, i))*dfloat(nt(ial)ldfloat(nbase) 
Cum=cum+((b(ncat, nevent)-exp)**2)lexp 

300 Continue 
400 continue 

CHI(nevent)=cum 
500 Continue 

Return 
600 write(*, 60 1) (K(nevent, i), i= 1,3), nevent 
601 Format(' K is ', 3i6, 'number of events 'j6) 

write(*, 602) ncat 
602 Format('ncat is', i6) 

stop'*** Out of range in chisq 
End 
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LCGTEST 

$Pagesize: 50 
C LCGTest 
c This program is to evaluate LCGs/seeds capability to produce 
c satisfactory samples from a Negative Exponential distribution 
c 
c Written by A, J. Warn 2001 
c 
C The LCG may be selected from a list or input own definition 
c 
c The seed range may given also a step thus allowing only 
c odd seeds 
c 

c It produces a file lcgtest. res 
c 
c the first record is the description of the LCG used 
c the second is the number of cells used to calculate 
c the chi squared value 
c then follows pairs of records 
c the seed 
c 10 chi square values for sequences of I- 10 
c (default is 10 var. max) 
c if more than 20 it will write more than one record 
c 

c The LCG is written using double precision to allow 
c for a modulus greater than 2**31 -1 
c 

c It is not aimed at speedl 
c 
c 

Real*8 A(250), AO(250,20), CHI(20) 
Real*8 Mult, Modulus, Offset, seed 
integer*4 is, ntrial, max, ncata(20), iseed, iseed2, iseds 
Character*1 Drive 
Character*50 iname 
Character*30 name 

c Default Values 
c Max number in a sequence 

max=10 
C Number of Neg Exp samples 

Ntrial=1000 
cA block size of records written on the work file 

Nblock =10 
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c First Select media for files 
write(*, 10) 

10 Format(' What is the drive for files? ') 
read(*, 20) drive 

20 Format(Al) 
c Now Provide the information on the generator 

call Give(name, Mult, Modulus, Offset) 
c Confirm selection 

write(*, 40) name, Modulus, Mult, Offset 
40 Format(' Name of Generator, 001 

Modulus 'J20.0/ 
Multiplier 'J20.0/ 

+1 Offset 'J20.0) 
C 
c set seed range 

write(*, 50) 
50 format(' What is the initial seed7) 

read(*, 51)iseed 
51 Format(i15) 

write(*, 52) 
52 format (What is the final seed7) 

read(*, 51)iseed2 
write(*, 53) 

53 format ('What is the step? ) 
read(*, 51) iseeds 
open(l 1, file=drive/f: lcgtest. res') 
call ptime(timel) 
write(l 1,55) name, ntrial, max, iseed, iseed2, iseeds 

55 format(a30,5HO) 
do 300 is=iseed, iseed2, iseeds 
seed=is 

c Now create the random neg exp deviates with mean I on a file 
Call C neg2(M ult, Modulus, Offset, seed, Ntrial, N block, Drive) 

c Create the observations by combining 
c the random neg exp deviates 

call gapc2(Drive, max) 
c Calculate the sum of the percentage squared differences 
c (Chi square statistic) 
c 

call chical(Drive, max, CHI, ncata) 
c if first record after header write number of catagories 
c Degrees of Freedom 

if (is. eq. iseed) write(l 1,60) (ncata(l), I=J, max) 
60 format(206) 

c write seed 
write(l 1,70)is 

c write sum of percentage squared differences 
70 formatO15) 
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write(11,100) (CHI(l), 1=1, max) 
100 Format(20flO. 2) 
300 Continue 

c Now tell how long it tooki 
call ptime(time2) 

time=time2-timel 
if(time. 1t. O)time=time+(24*60*60) 
ihr--int(time/3600) 
imins=int((time-ihr*3600)/60) 
fsec=time-ihr*3600-imins*60 
write(*, 400)ihr, imins, fsec 

400 Format(' Time taken, 13, ' Hrs', 13, ' M ins', f7.3, ' Secs') 
Stop 
End 
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GIVE 

$pagesize: 50 
c 

Subroutine Give(Descr, Mult, Modulus, offset) 
Character*30 Descr, D(20) 
Character*50 idescr 
Character*l y 
Real*8 M ult, Mod ul us, offset, Am(20), ab(20), ao(20) 

C 
D(1)='F&M Line 18 Knuth(1997)' 
Am(l)=62089911 
Ab(l)=2**31 -1 
D(2)='Flying Line 17 Knuth(1997)' 
Am(2)=314159269 
Ab(2)=2**31 -1 
D(3)='Lewis+ Line 19 Knuth(1997)' 
Am(3)=16807 
Ab(3)=2**31-1 
D(4)='Uniran' 
Am(4)=630360016 
Ab(4)=2**31 -1 
D(5)='Randu' 
Am(5)=65539 
Ab(5)=2147483648. 
D(6)='L"Ecuyer Line 21 Knuth(l 997)' 
Am(6)=40692 
Ab(6)=2**31-249 
D(7)='L. C. Killingbeck' 
Am(7)=2650845021. ODO 
Ab(7)=4294967296. ODO 
Number--7 

c 

Write(*, 10) 
10 Format(' Now set the Random Number Generatoe/ 

This Program uses only MLCGs7 
Here is a list of pre programmed values for some7 
standard Generators. /ý 

write(*, 20) 
20 Format(' Ref #, ' Description 

do 50 n=1, number 
write(*, 30)n, D(n) 

30 Format(i4,2x, a3O) 
50 continue 
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do 100 n=1,10 
write(*, 55) 

55 Format(' Type the ref # to select one, or 0 for Own) 
read(*, 60)nr 

60 Format(i6) 
if (nr. gt. 0) go to 200 
if (nr. gt. number) go to 100 
go to 300 

100 continue 
Stop' Incorrect Ref # being enteredl' 

200 Descr--D(nr) 
Mult=AM(nr) 
Modulus=Ab(nr) 
Offset=AO(nr) 
go to 500 

300 Continue 
write(*, 305) 

305 Format(' What description do you wish to give the MCG7/ 
+'30 characters maximum. ') 

read(*, 306)i Descr 
306 format(a5O) 

Descr--iDescr 
if(Descr. NE. iDescr) write(*, 307) descr 

307 format(' Name given too long Will truncate to: 'P ', a30) 
Write(*, 310) 

310 Format(' If Modulus to be used is 2A31 -1 , enter y'/ 
+ if not just Enter') 

Read(*, 320)y 
320 Format(al) 

modulus=2**31-1 
if(y. eq. 'y. or. y. eq. Y)go to 400 
write(*, 330) 

330 Format( 
+1 Enter value of ModulusP finish with a decimal point) 

read(*, 340)modulus 
340 Format(f2O. O) 
400 Continue 

write(*. 41 0) 
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do 450 n=1,10 
410 Format( 

+, Enter value of Multiplier`P finish with a decimal point7 
+1 Value must be less than the Modulus) 

read(*, 340)mult 
if(mult. LT. modulus) go to 460 

450 Continue 
Stop' Entering a Multiplier Bigger than the Modulus' 

460 Continue 
write(*, 470) 

470 format( 
Enter value for offset if any if none enter 03 
Finish with a decimal point') 
read(*, 340)offset 

500 Continue 
return 
end 

MCG 

subroutine MCG(s, a, b, c) 
C This subroutine uses Real*8 variables for a MLCG 
C 
C This subroutine takes in a seed if the initial time called 
C or the previous Random Number (not normalised to 0-1) 
C and gives a Random Number not normalised. 
C 
Cs is the seed or Previous Random 
C Number as output. 
Cb is the modulus 
Ca is the multiplier 
C is the fixed value or offset. 
c 

Number as input and the next Random 

Real*8 a, b, s, c 
s=dmod((a*s+c), b) 
return 
end 
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MTTEST 
Main Routine ------------------------- --l'output of ý,, values 

For all 
MTNEG samples 

Calculates the Negative 
Exponential Deviates to 
create the Samples IVITTESTAES 

SETSEEDS 
Determines the 
624 seeds. "'A 

File of 
Samples 

RND32 
Returns a 
Random 
. 4, %% 4ý4^ 

MTRND 
This Function 
determines the 
Random Number 

File of 
Cell Test 
DefinitionE --------- ------------- VariableE 

............ 
SETURDAT ........... 

ci-tiso. 
................... .................. 

Modules used in all test - Listed Earlier 

Diagram A1.4: Structure of Modules used in IVITTEST 
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MTTEST 

C IVITTEST 
c This program is to evaluate MT capability to produce 
c satisfactory samples from a Negative Exponential distribution 
c 

c Mitten by A, J. Warn 2002 
c Amended to read a file of seeds 
c 

c The seed range is not for the MT but to prime it 
C 
c It produces a file MTtest. res 
C 
c the first record is the description of the MT used 
C the second is the number of cells used to calculate 
c the chi squared value 
c then follows pairs of records 
c, the seed 
c 10 chi square values for sequences of 1- 10 
c (default is 10 var. max) 
c if more than 20 it will write more than one record 
c 
c 

Real*8 A(250), AO(250,20), CHI(20) 
Real*8 Mult, Modulus, Offset 
integer*4 seed, aseed(1000), dseed 
integer*4 is, ntrial, max, ncata(20), iseed, iseed2, iseds 
Character*1 Drive 
Character*50 ! name 
Character*30 fseed, name 

c set file unit 
dseed=4 

cA block size of records written on the work file 
Nblock =10 

c First Select media for files 
write(*, 10) 

10 Format(' What is the drive for files? ) 
read(*, 20) drive 

20 Format(Al) 
open(l O, file=Drive/P: Xsetup. dat') 

c read header 
read(l 0,30)ntrial, minent, max 

30 Format(3i 10) 
write(*, 35)ntrial, minent, max 

35 Format('Data read from SETUP7 
+'Number of Sample ValuesJ10/ 
+'Min Entry in acell 'JIO/ 
+'Maximum Number of values combined in test'j4) 

rewind 10 
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c New 
ifseed=O 

c Is the seed values to be read from a csv file 
write(*, 42) 

42 Format(Are the seed values to be read from a file y or n') 
read(*, 20)yes 
if((yes. ne. 'y). and. (yes. ne. 'Y')) go to 49 

43 write(*, 44) 
44 Format(' How many seeds to be read from file') 

read(*, 5 1)iseed2 
write(*, 45) 

45 Format(' Give full path of file with seed values7 
+'Including extension e. g. CSV) 
read(*, 55)fseed 
ifseed=1 
open (dseed, fi le=fseed) 
read (dseed, 5 1, end =46) (aseed (n u ms), nums= 1, iseed2) 
go to 47 

46 write(*, 51) aseed(l) 
stop'Too few seeds Program Stopped' 

47 continue 
iseed=1 
iseeds=1 
go to 54 

c 

49 continue 
c set seed range 

write(*, 50) 
50 format('What is the initial seed? ') 

read(*, 51)iseed 
51 Format(i 15) 

write(*, 52) 
52 format ('What is the final seed7) 

read(*, 51)iseed2 
write(*, 53) 

53 format (What is the step? ') 
read(*, 51) iseeds 

54 continue 
open(I l, file=d rive//': MTtest. res') 
call ptime(timel) 
name='Mersenne Twister 
write(l 1,55)name, ntrial, max, iseed, iseed2, iseeds 

55 format(a30,5HO) 
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do 300 is=iseed, iseed2, iseeds 
seed=is 
if(ifseed. gt. 0) seed= aseed (is) 

c Now create the random neg exp deviates 
c with mean 1 on a file 

Call mtneg (seed, Ntrial, N block, Drive) 
c Create the observations by combining 
c the random neg exp deviates 

call gapc2(Drive, max) 
c Calculate the sum of the percentage squared differences 
c (Chi square statistic) 
c 

call chical (Drive, max, CH1, ncata) 
c if first record after header write number of catagories 
c Degrees of Freedom 

if (is. eq. iseed) write(l 1,60) (ncata(l), l=1, max) 
60 format(W5) 

c write seed 
write(l 1,70)seed 

c write sum of percentage squared differences 
70 format(i15) 

write(11,100) (CHI(l), 1=1, max) 
100 Format(20flO. 2) 
300 Continue 

c Now tell how long it tooki 
call ptime(time2) 

time=time2-timel 
if(time. 1t. O)time=time+(24*60*60) 
ihr--int(time/3600) 
imins=int((time-ihr*3600)/60) 
fsec=time-ihr*3600-imins*60 
write(*, 400)ihrjminsjsec 

400 Format(' Time taken', 13, ' Hrs', 13, ' Mins', f7.3, ' Secs') 
Stop 
End 
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MTNEG 

C 

Subroutine MTneg (seed, Ntrial, N block, Drive) 
C This subroutine produces a file of Ntrial neg exp deviates 
c with an initial seed of IS 
c File is on drive Drive 
c 

c They are blocked in blocks of Nblock 
integer*4 ntrial 
Real*8 output(l 000), v 
Integer*4 mt(0: 623), seed, is 
Real*8 mtrnd 

Character*1 Drive 
C 
c create file 

is=seed 
call setseed(mt, is) 
open(7, FILE=Drive/f: /cneg2. dat') 
rewind 7 

C 
st=s 

C 

c Write header 
write(7,1 00) ntrial, n block, s 

100 Format('Header`, 2i6, f2O. O) 
c 

nprod=O 
200 continue 

do 1000 nr--1, nblock 
c Determine a random number 

v=mtrnd(mt) 
nprod=nprod+l 

c Calculate a value drawn from a Negative Exponential Distribution 
expval=-dlog(l DO-v) 
output(nr)=expval 
if(n prod. G E. ntrial) go to 2000 

1000 Continue 
C 

write(7,1 00 1)nblock, (output(i), i= 1, nblock) 
1001 Format(13,10OE20.12) 

go to 200 
2000 continue 

c write outlast block even if an incomplete block 
write(7,1 001)nr, (output(i), i=l, nr) 
rewind 7 
Return 
End 
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SETSEED 

Subroutine setseed (array, seed) 
real*8 va(7), rnd32 
integer*4 array(0: 623), a, c, seed 

a=69069 
C=O 

do 10 n=0,623 
v=rnd32(seed, a, c) 
array(n)=seed 

10 continue 
return 
end 

RND32 

c 
c 

c 
c 
C This Function which is REAL*8 Returns a random variate between 1 and 0 
c It is a MCG with a Modulus of 21132 
c It requires a multiplier a and if required an offset c 
C Both these values should be Integer*4 
c If there is no offset it should be set to zero 
C An initial Seed is required that should be an Integer*4 
c The seed will be changed after each call of the Function 
c The seed should not be used as its Bit pattern is used not its 
c value. If printed a seed may appear as negative. 
c 
c by Takano H 

real*8 Function rnd32(seed, a, c) 
integer*4 seed, a, c 
real*8 bit 
bit= 1 DO 
if(c. NE. O)bit=OdO 
seed =iand(a*seed+c, - 1) 
if(seed. 1t. 0) rnd32=(dfloat(seed)+2DO**32)/(2dO**32-bit) 
if(seed. gt. 0) rnd32=(dfloat(seed))/(2dO**32-bit) 
if(seed. eq. 0) rnd32=0 
return 
end 
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MTRND 

c This Function mtrnd 
c 
c This routine creates random Numbers based on paper 
c written by Matsumoto M and Nishimura T (1998), 
c also a FORTRAN version of program by Takano H, (1999) 
c amended by AJ Warn 
c 
c Array mto has to be filled with seeds before the first call 
c of this routine (624 values) Integer*4 variables 
c 

Real*8 Function mtrnd(mt) 
integer*4 U mask, Lmask, Tmaskb, Tmackc 
dimension mt(0: 623) 
integer*4 mag0l(0: 1) 
magOl (0)=O 
mag0l(l)=-1727483681 
Lmask= 2147483647 
Tmaskb=-1658038656 
Tmaskc=-272236544 
Umask=-2147483647 
Umask=Umask-1 

c Microsoft Fortran does not allow Umask to be set directly to -2147483648 
c 

do 1000 kk=0,226 
it=ior(iand(mt(kk), U mask), iand (mt(kk+ 1), Lmask)) 
mt(kk)=ieor(ieor(mt(kk+397), ishft(it, -l)), magOl (iand(it, 1))) 

1000 continue 
do 1100 kk=227,622 
it=ior(iand (mt(kk), U mask), iand (mt(kk+ 1), Lmask)) 
mt(kk)=ieor(ieor(mt(kk-227), ishft(it, -l)), mag0l(iand(it, l))) 

1100 Continue 
it=ior(iand(mt(623), U mask), iand (mt(O), Lmask)) 
mt(623)=ieor(ieor(mt(396), ishft(it, -l)), magOI(iand(it, l))) 

c 
mti=O 

c 

c 

it=mt(mti) 
mti=mti+l 
it=ieor(it, ishft(it, -l 1)) 
it=ieor(it, iand(ishft(it, 7), Tmaskb)) 
it=ieor(it, iand(ishft(it, 1 5), Tmaskc)) 
it=ieor(it, ishft(it, -l 8)) 

if(it. 1t. O)mtrnd=(dfloat(it)+2. ODO**32)/(2. ODO**32-1. ODO) 
if(it. gt. O)mtmd=dfloat(it)/(2. ODO**32-1. ODO) 
if(it. eq. O)mtrnd=O. ODO 

return 
end 
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DESCTST 
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DESCTST 

$Pagesize: 50 
C DESCTST Test 
c This program is to evaluate Descriptive Sampling 
c capability to produce satisfactory samples 
c from a Negative Exponential distribution 
c 

c Written by A, J. Wam 2002 
c 
c 
c It produces a file des. res 
c 

c the first record is the description of the method used 
c the second is the number of cells used to calculate 
c the chi squared value then follows pairs of records 
c the set number 
c 10 chi square values for sequences of 1- 10 
c (default is 10 var. max) 
C if more than 20 it will write more than one record 
c 

Real*8 A(250), AO(250,20), CHI(20) 
Real*8 seed, sn 
integer*4 is, ntrial, max, ncata(20), iseed, iseed2, iseeds 
integer*4 Nset 
Character*1 Drive 
Character*30 name 
name='Descriptive Sampling' 

cA block size of records written on the work file 
Nblock =10 

c First Select media for files 
write(*, 10) 

10 Format('What is the drive for the work files? ') 
read(*, 20) drive 

20 Format(Al) 
open(I O, file=Drive/P: \setup. dat') 

c Write header 
read(l 0,30)ntrial, minent, max 

30 Format(VO) 
write(*, 30)ntrial, minent, max 

rewind 10 
closeN 0) 
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c 

c Here we set the number of values sorted 
write(*, 35) 

35 Format(' How many values should be sorted? ') 
read(*, 36)Nset 

36 Format(ilO) 
c setseeds 

write(*, 40) 
40 format(' What is the initial seed? ') 

read(*, 50)iseed 
50 Format(i 15) 

write(*, 60) 
60 format ('What is the final seed7) 

read(*, 50)iseed2 
write(*, 70) 

70 format ('What is the step? ) 
read(*, 50) iseeds 
open(l I, file=drive/P: \r\des. res') 
call ptime(timel) 
do 300 is=iseed, iseed2, iseeds 

seed=is 
c Now create the random neg exp deviates with mean 1 on a file 
c so same RNG used for all seeds 

if(is. eq. iseed)iflag=O 
if(is. gt. iseed)iflag=l 
Call DES (N set, Ntrial, N block, Drive, seed, ifiag) 

c Create the observations by combining the random neg exp deviates 
call gapc2(Drive, max) 

c Calculate the sum of the percentage squared differences 
c (Chi square statistic) 
C 

call chical(Drive, max, CHI, ncata) 
c if first record after header write number of catagories 
c Degrees of Freedom 

if(is. eq. iseed) write(l 1,75) name, ntrial, max, iseed, iseed2, iseeds 
75 format(a30,5ilO) 

if (is. eq. iseed) write(l 1,80) (ncata(l), 1=1, max) 
80 format(20i5) 

c write seed 
write(l 1,90)is 

c write sum of percentage squared differences 
90 format(i 15) 

write(l 1,100) (CHI(l), 1=1, max) 
100 Format(20fl 0.2) 
300 Continue 
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c Now tell how long it tookl 
call ptime(time2) 
time=time2-timel 
if(time. it. O)time=time+(24*60*60) 
ihr--int(time/3600) 
imins=int((time-ihr*3600)/60) 
fsec=time-ihr*3600-imins*60 

write(*, 400)ihr, imins, fsec 
400 Format(' Time taken', 13, ' H rs, 13, ' Mi ns, f7.3, ' Secs') 

Stop 
End 

DES 

$pagesize: 50 
c 

Subroutine D ES(N set, Ntrial, N block, Drive, seed, iflag) 
Character*1 Drive 
real*8 array(10000), output(1000), seed 
integer*4 Ntrial, nprod, Nset, nsample 

c Open File File Name is used by an older program 
open (7, File= Drive/P: /cneg2. dat') 
rewind 7 
write(7,100) ntrial, n block, seed 

100 Format('Header`, 2i6, f20.0) 
c 

nprod=O 
200 continue 

call DESN EXP(array, Nset, seed, iflag) 
iflag=1 
nsample=O 

300 continue 
do 1000 nr--I, nblock 

nprod=nprod+l 
nsample=nsample+l 

output(nr)=array(nsam pie) 
if(nprod. ge. ntrial) go to 2000 
if(nsample. LT. Nset) go to 1000 

call DES N EXP(array, N set, seed, iflag) 
nsample=O 

1000 Continue 
write(7,1001) nblock, (output(i), i=l, nblock) 

1001 Format(i3, lOOe2O. l2) 
go to 300 

2000 Continue 
write(7,1001) nr, (output(i), i=l, nr) 
rewind 7 
return 
end 
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DESNEX 

Subroutine DES N EXP (array, noreq, seed, iflag) 
Real*8 array(l), a, b, c, seed 
integer*4 noreq 
character*30 Descr 

c This program computes a fixed number of negative exponential 
c distribution using the method of adaptive sampling. 
C 

c Set RN if first time 
if(iflag. NE. 0) go to 10 
call EstMLCG(Descr, a, b, c) 

10 continue 
c Form Table 

call FormTab(array, noreq) 
call NegExp(array, noreq) 

c shuffle table 
call Sh uffle(array, noreq, seed, a, b, c) 
return 
end 

FORMTAB 

Subroutine FormTab(array, noreq) 
Real*8 array(l ), step, h step 
integer*4 noreq, n 

c 

c First an array is created 
step= 1 DO/dfloat(noreq) 
hstep=step/2DO 
do 10 n=l, noreq 
array(n)= n*step-hstep 

10 continue 
return 
end 

NEGEXP 

subroutine NegExp(array, noreq) 
Real*8 array(l), value 
Integer*4 noreq, n 
do 10 n=1, noreq 

value=array(n) 
array(n)=-dlog(l DO-value) 

10 continue 
return 

end 
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ESTMLCG 

Subroutine EstM LCG (Descr, M ult, Modulus, offset) 
Character*30 Descr, D(7) 
Real*8 Mult, Modulus, offset, Am(7), ab(7) 

C 
D(1)='F&M Line 18 Knuth(1997)' 
Am(l)=62089911 
Ab(l)=2**31 -1 
D(2)='Flying Line 17 Knuth(1997)' 
Am(2)=314159269 
Ab(2)=2**31 -1 
D(3)='Lewis+ Line 19 Knuth(1997)' 
Am(3)=16807 
Ab(3)=2**31 -1 
D(4)='L"Ecuyer Line 21 Knuth(l 997)' 
Am(4)=40692 
Ab(4)=2**31-249 
D(5)='L. C. Killingbeck' 
Am(5)=2650845021. ODO 
Ab(5)=4294967296. ODO 
Number--5 

C 

Write(*, 10) 
10 Format(' Now select the Random Number Generator/ 

+' To be used in the Shuffle'/O 
write(*, 20) 

20 Format(' Ref #, ' Description 
do 50 n=1, number 

wdte(*, 30)n, D(n) 
30 Format(i4,2x, a3O) 
50 continue 

do 100 n=1,10 
write(*, 55) 

55 Format(' Type the ref # to select 
read(*, 60)nr 

60 format(i6) 
if (nr. Lt. 0) go to 100 
if (nr. gt. number) go to 100 
go to 200 

100 continue 
Stop' Incorrect Ref # being entereff 

200 Descr--D(nr) 
Mult=AM(nr) 
Modulus=Ab(nr) 
Offset=O 

Return 
End 
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SHUFFLE 

C 
Subroutine Sh uffle(array, noreq, seed, a, b, c) 

C 

c This subroutine shuffles array whose size is noreq 
c The randomness is provided by a MLCG 
c MCG is a double precision version of an MLCG 
c the Modulus is b 
c the Multiplier is a 
c the offset or additive constant is c 
ca seed is required whose value changes 
C 

real*8 array(l), seed, a, b, c, temp 
integer*4 noreq, n 
do 100 n=l, noreq-1 

call MCG(seed, a, b, c) 
num=int((noreq-n)*seed/b)+n 
temp=array(n) 
array(n)=array(num) 
array(num)=temp 

100 Continue 
return 
end 
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SELECT 

c This program selects the best sets of samples 
c First it filters 
c then it sorts 
C 

c It requires a file with the cut-off values 
c It also requires a set of weights 

Character*1 Drive 
Character*30 data, name, cut, output 

Integer*4 ntrials, minent, nrec, nogood, ncelI 
Integer*4 count, nread, ftop500, fcut, finput, n500 
Real*8 CHITOT, temp 

c The program is using a default value of 10 
c as the number of values and weights 
c if this is to be change nval needs to be altered. 
c if it is to be greater than 20 
c the dimensions of the arrays need to be changed. 
C 

real*8 range(20), chi(20), w(20) 
integer*4 ncata(20), num(20), aok(20) 

c 

c Define variables 
c The following variables are defined assuming 500 best are being 
c determined 

Real*8 qual(500), tseed(500) 
Integer Index(500) 

ct is subject to both 20 and 500 
Real*8 t(500,20) 

c 
c 

c Set the default values which would need to be changed with dimensions 
n500=500 
nval=10 

c Set file numbers 
ftoP500=7 
finput=9 
fcut= 10 
W(1)=l 
w(2)=2 
w(3)=3.086 
w(4)=4.154 
w(5)=5.413 
w(6)=6.353 
w(7)=7.714 
w(8)=8.308 
w(9)=9.818 
W(10)=10.8 
rite(*, 10) 
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c Request the name of the file with the cut off values 
10 FormatC Give the file name with the cutoff values7 

+'The full path is required including the extension. ') 
read(*, 11 ) cut 

c Open the file and read the cut off values 
c There is a record per value 
11 Format(a30) 

open (fcut, fi le=cut) 
read(fcut, 1 2, end=l 3)(range(i)j=1, nval) 

12 format(f 10.4) 
go to 20 

13 StopSelect: The Cut off value file has too few values' 
20 Continue 
c Request the name of the output file 

write(*, 30) 
30 Format(' Give the file name for the output file7 

+ 'The full path is required including the extension. ') 
read(*, 11) output 

c Request the name of the file with 
c the data for the RNG to be analysed 

pdnt'(a46)', 
+'What file contains the data for the RNG to be' 

print'(a4l)', 
+' analysed? Add the extension (e. g. dat) 

read(*, 11) data 
c 

c Open the output and input files 
c Output file 

open (ftop500, fi le=output) 
c Next the file containing the sums of percentage differences 

open (fin put, fi le=data) 
c Read the heading of the data 

read (fi nput, 40) name, ntrial, max 
40 format(00,2HO) 

read(finput, 50) (ncata(l), 1=1, max) 
50 format(20i5) 
60 continue 

read(finput, 1 00, end=350)is 
100 format(il5) 

read(finput, 11 0, end=300)(CHl(l), l=j, max) 
nread=nread+l 
nok=O 

110 Format(20flO. 2) 
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do 120 n=l, max 
if(CHI(n). gt. range(n)) go to 60 

c Calculate total of square values 
CHITOT=O 
do 120 i=l, max 

CHITOT=CHITOT+CHI(i)*w(i) 
120 continue 

c Add to table 
nrec=nrec+l 
tseed(nrec)=is 
index(nrec)=nrec 
qual(nrec)=CHITOT 
do 130 i=l, max 
t(nrec, i)=CHI(i) 

130 Continue 
if(nrec. 1t. n500) go to 60 
if(nrec. eq. n500) go to 400 

300 Continue 
Stop' Select Input File out of sequence' 

350 endmet=1 
write(*, 360)nrec 

360 Format(' Select: End of input file reached'/ 
+' Number of sets selected was'J4) 

400 Continue 
c Sort the records (100) 
cA simple sort as sequence likely to be random 

do 510 n=l, nrec-1 
do 500 m=n+l, nrec 
if (qual(n). It. qual(m)) go to 500 
temp=qual(n) 
qual(n)=qual(m) 
qual(m)=temp 
itemp=tseed(n) 
tseed(n)=tseed(m) 
tseed(m)=itemp 
itemp=index(n) 
index(n)=index(m) 
index(m)=itemp 

500 Continue 
510 Continue 

c 

c Now the main loop if more records 
if(endmet. gt. 0) go to 2000 

c Read the next record 
600 Continue 
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read(finput, 1 00, end=2000)is 
read(finput, 110, end=1000) (CHI(l), 1=1, max) 

c Calculate total of square values 
CHITOT=O 
do 610 i=l, max 
CHITOT=CHITOT+CHI(i)*w(i) 

610 continue 
c if worse than the bottom record get another record 

if(CHITOT. gt. qual(nrec)) go to 600 
c 

c if better 
c The last record will be lost from the best nrec 
c Its data is held at index position index(nrec) 

notei=index(nrec) 
c replace data with new record 

do 620 k=1, max 
t(notei, k)=chi(k) 

620 Continue 
c Next find where new record slots in 
c Move records down the table until slot for new record found 

do 700 i=nrec-1,1, -l 
c Check if i+1 is the slot by examining the ith record 

if(CHITOT. gt. qual(i)) go to 800 
c not the i+1th record move ith down (ith already made vacant) 

qual(i+l)=qual(i) 
tseed(i+l)=tseed(i) 
index(i+l)=index(i) 

700 continue 
c if not found must be the top 

go to 900 
800 Continue 

c replace ith+1 record (already made vacant) 
qual(i+l)=CHITOT 
tseed(i+l)=is 

c set index to where data was stored earlier 
index(i+l)=notei 

c Record inserted go to next record 
go to 600 

900 Continue 
c New record must go to the top 

qual(l)=CHITOT 
tseed(l)=is 

c set index 
index(l)=notei 

c go back and read the next record 
go to 600 
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C 

c Abnormal End of File 
1000 continue 

write(*, 1010)is 
1010 format(' select: Record Missing for seed', F20.0/ 

+1 will continue processing') 
go to 600 

c Normal End 
2000 continue 
c At end of file write out best records 
2010 Format(aW, W15.0, Z15) 

do 2050 k=l, nrec 
write(ftop5OO, 2020)tseed(k), qual(k), (t(index(k), kk), kk= 1, max) 

2020 format(f15.0, f15.2,20f1O. 2) 
2050 Continue 

Stop' Run is complete' 
End 
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MARKOV 

Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 
1 real*8 total, var, average, sq 
2 real*8 util, proc, arrive 
3 real*8 a(O: 1000), b(O: 1000), p(O: 1000) 
4 real*8 avea(10000), vara(10000) 
5 real*8 sqa(10000), cuma(10000) 
6c On-line printer changed for file 2002 
7cAJ Warn 
8c 
9C open output file 
10 open(l O, file='c: \markov. pm') 
11 C set processing time and inter-arrival 
12 1 write(*, 2) 
13 2 Format('What machine utilisation is to be used? l 
14 + 'Must be less than 1) 
15 read(*, 3)util 
16 3 format(f6.4) 
17 if(util. gt. 1) go to 1 
18 theory=util*(l DO-5D-1 *util)/(l DO-util) 
19 4 write(*, 5) 
20 5 format('What is the initial Queue Size7 
21 +' It must not be greater than 100) 
22 read(*, 6)nstart 
23 6 format(i10) 
24 if(nstart. gt. 100) go to 4 
25 ntop=nstart+l 
26 Proc=100*util 
27 arrive= 100 
28 C Set up Probability Matrix 
29 p(O)=dexp(-util) 
30 total=p(O) 
31 do 10 n=1,999 
32 p(n)=p(n-l)*(util)/n 
33 10 total =total+ p(n) 
34 P(1000)=l-total 
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Microsoft FORTRAN Optimizing Compiler Version 4.0 
Line# Source Line 

35 C set the initial queue 
36 do 20 i=O, 1000 
37 20 a(i)=O 
38 if(nstart. LE. 1) a(0)=1 
39 if(nstart. gt. 1) a(nstart-l)=l 
40 do 500 item= 1,10000 
41 c Calculate the probabilities just before next item 
42 total=O 
43 do 110 n=0,999 
44 b(n)=O 
45 do 100 i=O, n 
46 b(n)=b(n)+a(n-i)*p(i) 
47 100 continue 
48 total=total+b(n) 
49 ntop=n 
50 c 
51 if(total. GE. O. 999999. and. b(n). Ie. I D-I 5) go to 200 
52 110 continue 
53 200 ntop=ntop+l 
54 b(ntop)=I-total 
55 C Adjust for the item just processed 
56 C note if the queue was empty the next arrival 
57 c will go direct to be served and start the cycle. 
58 c Since we are determining the distribution of the queue 
59 c size at the end of processing this is dead time and may 
60 c be ignored. There is no distortion on the patterns of 
61 c arrivals as they are exponential and there is no memory 
62 a(O)=b(O)+b(l) 
63 total=a(O) 
64 do 300 n2=1, ntop-1 
65 a(n2)=b(n2+1) 
66 300 total =total+a (n2) 
67 C a(ntop) should be zero 
68 a(ntop)=l-total 
69 500 continue 
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Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 

70 520 format(i8,4Gl5.6E3) 
71 average=O 
72 Do 600 n= 1, ntop 
73 600 average=average+n*b(n) 
74 var--O 
75 sq=O 
76 do 800 n=O, ntop 
77 var--var+b(n)*(n-average)**2 
78 sq=sq+b(n)*(n-theory)**2 
79 800 continue 
80 avea(item)=average 
81 vara(item)=var 
82 sqa(item)=sq 
83 1500 continue 
84 cuma(l)=avea(l)-theory 
85 do 1510 i=2,1000 
86 cuma(i)=cuma(i-l)+avea(i)-theory 
87 1510 continue 
88 do 1520 i=1,10000 
89 cuma(i)=cuma(i)/i + theory 
90 1520 continue 
91 write(10,2000) utilmstart 
93 1 'of, f6.4, 'Queue initialised at, i4/ 
94 2part no Average, 8x, ' Variance', 5x, 
95 3 'Stand. Error, 3x, 'Cum. Average') 
96 do 3000 i=1,10000 
97 write(10,520)i, avea(i), vara(i), sqa(i), cuma(i) 
98 3000 Continue 
99 stop 
100 end 

AJ Warn Page 265 



Evaluation of Alternative Discrete Event Simulation Experimental Methods 

MISSING 

Microsoft FORTRAN Optimizing Compiler Version 4.01 
Line# Source Line 

1 integer*4 is, n, itop 
2 itop=2**31 -1 
3 write(*, 1) 
41 format(' Program Miss Started') 
5 do 20 n=1, itop 
6 is=n 
7 call rand(is, r) 
8 if(n. ne. is) go to 10 
9 write(*, 1 OOO)is 
10 1000 Format(i20) 
11 Stop'Missing number' 
12 10 continue 
13 if(mod(n, 1 0000). eq-0) write(*, 2000)n 
14 2000 FORMAT('Reached 'J20) 
15 20 continue 
16 stop 'No loop of 1 
17 end 
18 c 
19 subroutine rand(is, r) 
20 c 
21 C This subroutine returns a random number r between 1 and 0 
22 c is is a seed which is used on the first time the subroutine 
23 c is called 
24 c it is returned with a value used in subsequent calls 
25 c IS is Integer*4 
26 integer*4 is, la, ib 
27 real*8 a, b, s 
28 a=314159269 
29 b=2**31 -1 
30 s=is 
31 s=d mod ((s*a)+ 1 DO, b) 
32 is=s 
33 r=s/b 
34 if(r. eq. 0) r--. 0000000001 
35 return 
36 end 

No errors detected 
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TAILMLCG 

c FOR NEGATIVE EXPONENTIAL DISTRIBUTIONS 
c 
c This program will give the exact number of samples values in the tail 
c for a certain size of sample it is to aid the setting of minimum 
c duration of simulation runs 
c 

cAJ Warn 2001 
c 

integer*4 size, count(10), is, tot(lo) 
real*8 seed, v, expval, a, b, c 
character*30 name 
Call Give(name, a, b, c) 
Write(*, 10) 

10 Format(' How big is the sample? ') 
read(*, 20)size 
write(*, 30) 

20 Format(HO) 
30 Format(' What seed is to be tested? ') 

read(*, 20)is 
seed=is 
do 100 n=1, size 

call MCG(seed, a, b, c) 
v=seed/b 

c Calculate a value drawn from a Negative Exponential Distribution 
expval=-dlog(1 DO-v) 
I=expval 
if(i. It. 1) go to 100 
if(i. gt. 10)i=10 

count(l)=count(l)+1 
100 Continue 

write(*, 110) name, size, is 
110 Format(' Number of Values in Tail'// 

+'This is for a Negative Exponential Distibution'/ 
+' For a MLGC', a30/ 
+'Sample Size, HOPand seed'J12/ 
+I Tail Number of Entries'ý 

tot(l 0)=count(l 0) 
do 115 n=9,1, -l 

tot(n)=tot(n+1)+count(n) 
115 continue 
120 do 140 n=1,10 

write(*, 1 30)n, tot(n) 
130 format(HOJ17) 
140 continue 

stop' Completed. Run again for different values. ' 
end 
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BAD100 

$Pagesize: 50 
C This program selects the worst 100 seeds 
c The output is a file bad 100. res 
c 

c Written by AJ Warn May 2002 
c 
c The file containing the Chi Squared Test is a Comma Separated 
c file. Using Microsoft FORTRAN Compiler the comma terminates the 
c field and the next field starts following the comma. 
c This is not in the ANSI standard 
c 

c Define variables 
Character*1 Drive 
Character*30 data, name 
Integer*4 ntrials, minent, nrec, nogood, ncelI 
Integer n 100, maxmax 
Real*8 w(20) 
Real*8 Sseed, eseed, sstep, CHITOT, temp 

c The following variables are defined assuming 100 worst are being 
c determined 

Real*8 qual(100), tseed(100) 
Integer Index(l 00), fbotl 00, finput, fchisq 

c 
c The following variables are dimensioned to the largest value 
c of max 20, if a larger values is to be used the dimension would 
c need to be increased. Note t is subject to both conditions. 
c Also maxmax will need to be changed. 

Real CHI(20) 
Real*8 t(l 00,20) 
Integer ncata(20) 

C 

c Set the default values which would need to be changed with dimensions 
n100=100 
maxmax=20 

c Set file numbers 
fbot=7 
finput=9 
W(1)=l 
w(2)=2 
w(3)=3.086 
w(4)=4.154 
w(5)=5.413 
w(6)=6.353 
w(7)=7.714 
w(8)=8.308 
w(9)=9.818 
w(10)=10.8 
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c First Request drive containing the files 
c All the files are assumed to be on the same drive 

print '(a4l)', ' What Drive contains the Chisquare values' 
print '(a28)', ' and will hold output filesT 
read(*, 10) Drive 

10 Format(Al) 
c Request the name of the file with the data for the RNG to be analysed 

print '(a46)', ' What file contains the data for the RNG to be' 
print '(a4 1)', ' analysed? Add the extension (e. g. dat) 
read(*, 20) data 

20 Format(a30) 
C 

c Open the files 
C 
c the file containing the sums of percentage differences 

open(finput, file=data) 
c Then the File for the results 

open(fbotl 00, file=Drive/P: \badl OO. res') 
C 
C Read the heading of the data 

read (fin put, 30) name, ntrial, max, isseed, leseed, isstep 
sseed=isseed 
eseed=ieseed 
sstep=isstep 

30 format(00,5HO) 

write(*, 40) name, ntrial, max, sseed, eseed, sstep 
40 Format(//P Data to be analysed: '/ 

+' Name of RNG', a30/ 
+'Number of Samples being tested', il 0/ 
+1 Maximum of Combined Samples being analysed, i4/ 
+' Seed Range: V 
+1 starting ', f2O. O, / 
+' finishing ', f2O. O, / 
+1 in steps 'J20.0,0 

c Test that number of combined readings is in the range of program 
if(max. gt. maxmax) 

+ Stop' bad 100: maxmax value too small also check dimensions, 
c Transfer information to the outputs 

write(fbotl 00,30) name, ntrial, max, isseed, leseed, isstep 
c Read the number of cells 

read(finput, 50) (ncata(l), 1=1, max) 
50 format(20i5) 

c Read the first n 100 acceptable record 
c initialise counts 

nrec=O 
nogood=O 

90 Continue 
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read(finput, 1 00, end=200)is 
100 format(i15) 

read(finput, 110, end=300) (CHI(l), 1=1, max) 
110 Format(20fl 0.2) 

nrec=nrec+l 
c; Calculate total of square values 

CHITOT=O 
do 120 i=l, max 
CHITOT=CHITOT+CHI(i)*w(i) 

120 continue 
c Add to table 

tseed(nrec)=is 
index(nrec)=nrec 
qual(nrec)=CHITOT 
do 130 i=l, max 
t(nrec, i)=CHI(i) 

130 Continue 
if(nrec. 1t. nlOO) go to 90 

if(nrec. eq. n 100) go to 400 
200 Continue 

c if end of file and fewer than n 100 stop with message 
write(*, 340)data, is, n rec 

340 Format('badlOO: File', A30/ 
+'End of file too few seeds saved will terminate' 
+F Last seed'J15 
+f Number saved', 14) 

Stop 
300 Continue 

write(*, 350) data, is 
350 Format('badlOO: File', A30/ 

+'Data out of sequence at seed', ilO, / 
+'End of file too few seeds saved will terminate') 

Stop 
400 Continue 
c Sort the records (100) 
cA simple sort as sequence likely to be random 
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do 510 n=l, nlOO-l 
do 500 m=n+l, nlOO 

if (qual(n). It. qual(m)) go to 500 
temp=qual(n) 
qual(m)=temp 
itemp=tseed(n) 
tseed(n)=tseed(m) 
tseed(m)=itemp 
itemp=index(n) 
index(n)=index(m) 
index(m)=itemp 

500 Continue 
510 Continue 

c 

c Now the main loop 
c Read the next record 
600 Continue 

read(finput, 1 00, end=2000)is 
read(finput, 11 O, end=l 000) (CHI(l), 1=1, max) 
CHITOT=O 
do 610 i= 1, max 

CHITOT=CHITOT+CHI(i)*w(i) 
610 continue 
c if worse than the bottom record get another record 

if(CHITOT. It. qual(nlOO)) go to 600 
c 

c if better 
c The last record will be lost from the worst n 100 
c Its data is held at index position index(n 100) 

notei=index(nlOO) 
c replace data with new record 

do 620 W, max 
t(notei, k)=chi(k) 

620 Continue 
c Next find where new record slots in 
c Move records down the table until slot for new record found 

do 700 i=n 100- 

c Check if i+1 is the slot by examining the ith record 
if(CHITOT. It. qual(i)) go to 800 

c not the i+1th record move ith down (ith already made vacant) 
qual(i+l)=qual(i) 

tseed(i+l)=tseed(i) 
index(i+l)=index(i) 

700 continue 
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c if not found must be the top 
go to 900 

800 Continue 
c replace ith+1 record (already made vacant) 

qual(i+l)=CHITOT 
tseed(i+l)=is 

c set index to where data was stored earlier 
index(i+l)=notei 

c Record inserted go to next record 
go to 600 

900 Continue 
c New record must go to the top 

qual(l)=CHITOT 
tseed(l)=is 

c set index 
index(l)=notei 

c go back and read the next record 
go to 600 

c 

c Abnormal End of File 
1000 continue 

write(*, 1010)is 
1010 format(' bad 100: Record Missing for seed, F20.0/ 

+1 will continue processing') 
c Normal End 
2000 continue 
c At end of file write out worst n 100 
2010 Format(aW, W15.0, Z15) 

do 2050 k=l, nlOO 
write(fbotl 00,2020)tseed (k), qual(k), (t(index(k), kk), kk= 1, max) 

2020 format(f 1 5.0, f 1 5.2,20f 10.2) 
2050 Continue 

Stop 
End 

READRAN2 

$PAGESIZE: 50 
c This is to read file from Rand. org 
c to enable Chi-Square Test 
c must be run for each file and for number of bytes ignored 
c Amended to Input integer*4 June 2002 

Character*1 Drive, Alpha, fileNo 
character*30 name 

Real*8 outp, min, max 
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iI nteger*4 input 
integer*4 count(l 00), n read, n 

print '(a44)', ' What number of the random digit file 1-4 ? 
read(*, 5)infile 

5 format(il) 
if(infile. gt. 4) stop'Try again 1-4' 
fileNo=Char(48+infile) 
name='D: kl Omegs. '//fileNo 
print'(a2l)', ' How many shoves 0-3 
read(*, 5)nsh 
if(nsh. gt. 3) stop'try again 0-3' 

Open (8, fi le= name, form='binary') 
Open(9, file='C: \counts. res') 
if(nsh. eq. 0) go to 7 
do 6 n=l, nsh 

read(8) Alpha 
6 continue 
7 nread=O 

do 10 n=1,100000oo 
read(8, end=15)input 

if(input. 1t. min)min=input 
if(max. It. input) max= input 
nread=nread+l 

c the most negative value is hex 8000000o 
c this is seen as -2147483648 
c the most positive value is hex 7FFFFFFF 
c this is seen as 2147483647 
c since we do not wish to have zero or one 
c 

outp=(input+2.147483649DO9)/(4.294967297DO9) 
index--l +int(outp*l 00) 
count(index)=count(index)+l 

10 Continue 
print '(a25)', ' End of file not reached' 

15 Continue 
write(9,50) (count(i), i= 1,100), n read 

50 format(101i`12) 
write(*, 40) n read 

40 format(' Number of records read 'J14) 
100 format(i12, fIO. 6) 

write(*, 150) min, max 
150 format(2f2O. 1) 

close(8) 
stop'Normal ending' 
end 
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APPENDIX 2: THE RANDOM NUMBER GENERATOR RANDU 

The RNG RANDU was included by IBM in its Scientific Subroutines for the 
IBM360 in the 1960s. (IBM 1970) 

The use of the spectral test indicates as Knuth (1998) states 'the generator fails 

most three-dimensional criteria for randomness and should never had been 

used. " Even if one questions the need to meet the three-dimensional criteria, it 
is easy to find a generator that does and that has no disadvantage to RANDU. 

The definition of RANDU is 

Rn+l ý (65539Rn) Mod 2 31 

The seed RO should be odd. 

It can easily be shown by induction that if Ro is odd then since 65539 is odd and 
2 31 is even, Rn must be odd for all positive n. 

If one considers all possible seeds less than 2 31 then a number of cycles of 
different sizes are obtained. To simplify description each cycle may be defined 
by its smallest member. If this is done table App2.11, which follows, is obtained. 

From the table it may be seen that there are a total of 60 cycles. It may be seen 
there are two equal size cycles of odd numbers. All odd numbers (less than 2 31 

) are included in the two cycles. One of these two cycles has 1 as its smallest 
member the other has 5 as its smallest member. 

There are 58 cycles of even numbers. The smallest consisting of one value, 
1,073,741,824. There are many small cycles of even numbers. It is clear that 
the advice not to have an even seed is well founded. 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

TABLEAPP2.1: FULL SET OF CYCLE LENGTHS OF RANDU WITH 
DIFFERENT SEEDS 

Lowest Seed Cycle Length lAwest Seed Cycle Length 
1 536,870,912 5 536,870,912 
2 268,435,456 10 268,435,456 
4 134,217,728 20 134,217,728 
8 6ý 

__8,864 
40 67PI08,864 

16 33,554,432 80 _ 33,554,432 
32 16,777,216 160 16,777,216 
64 8,388,608 320 8,388,608 
128 4,194P304 640 _ 4)194,304 
256 2,097,152 19280 

2,097.152 
512 1,048,576 2,560 11M, 576 

1,024 5Z4,288 5,120 524,288 
2,048 262,144 10,240 2629144 
4,096 131,072 20,480 131.072 
8,192 65,536 40,960 659536 
16,384 32,768 81,920 32,768 
32,768 16ý384 1631840 16,384 
65,536 8,192 327,680 81192 
131,072 4,096 655,360 4,096 
262,144 

_2,048 
1,310,720 2,048 

524,288 1,024 2,621)440 1,024 
1,048,576 512 5,242,880 512 
2,097,152 256 10,485)760 256 
4,194,304 128 20,971,520 128 
8,388,608 64 41,943,040 64 
16,777,216 32 83,886,080 32 
33,554,432 16 167,772,160 16 
67,108,864 8 335,544,320 8 
134,217,728 _ 4 ._ 671,088,640 4 
268,435,456 2 1,342,177,280 2 
536,870,912 2 

1,07 741,824 1 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

APPENDIX 3: TABLES OF SELECTED SEEDS FOR CREATING SAMPLES OF 
1000 SAMPLE VALUES 

TABLE APP3.1: FISHMAN AND MOORE MLGC (SEED VALUES 1-60000) 

Rank Seed Quaty 
Measure 

1 52260 1430 
2 56242 1431 
3 6050 1463 
4 52358 1470 
5 21204 1482 
6 1536 1497 
7 15474 1497 
8 23926 1506 
9 27836 1512 
10 37846 1536 
11 12261 1542 
12 14211 1547 

_13 
35459 1549 

14 52375 1555 
15 58334 1557 
16 11365 1557 
17 5601 1562 
18 29330 1562 

_ 19 9866 1569 
20 2111 1576 

_21 
39333 1579 

22 46803 1586 
23 54871 1589 
24 32279 1589 
25 59749 1593 
26 43880 1593 
27 42242 1599 
28 51386 1601 

_29 
34475 1601 

30 1139 1604 
31 14679 1606 
32 28651 1608 
33 22003 1609 
34 34863 1610 
35 6721 1612 
36 

. 
34307 1612 

37 44237 1614 
38 3121 1615 
39 21704 1619 
40 23291 1620 
41 49765 1621 
42 24024 1621 

Rank Seed 'Qual'ty 
Measure 

43 30200 1623 
44 7872 1623 
45 25901 1624 
46 . 45097 1625 
47 18596 1626 
48 20455 1628 
49 57479 1636 
50 4696 1636 
51 37291 1637 
52 _ 37127 1637 
53 47618 1640 
54 20720 1642 
55 37313 1642 
56 28746 1649 
57 38953 1651 
58 55042 1653 
59 45748 1657 
60 12431 1659 
61 42173 1661 
62 36478 1664 
63 32398 1664 
64 49990 1664 
65 3605 1665 
66 

. 
37464 1666 

67 33882 1666 
68 46720 1666 
69 36051 1668 

70 44302 1671 
71 45665 1674 
72 9973 1676 
73 13517 1680 
74 2682 1680 
75 46390 1680 
76 31041 1681 
77 49617 1681 
78 47466 1682 
79 39766 1683 
80 34969 1684 
81 59789 1686 
82 224 1688 
83 13068 1688 

36982 1693 

Rank Seed Qual'ty 
Measure 

85 22659 1693 
86 57611 1693 
87 40603 1696 
88 58072 1696 

89 
. 
41497 1696 

90 31037 1698 
91 9840 1702 
92 18938 1706 
93 50458 1707 
94 54047 1707 
95 33586 1712 
96 52636 1712 
97 14149 1714 
98 8978 1715 
99 43872 1719 
100 1562 1723 
101 24222 1724 
102 36002 1725 
103 24081 1727 
104 36106 1737 
105 49912 1741 
106 42939 1741 
107 45590 1742 
108 42647 1743 
109 32390 1749 

110 
. 
38060 1751 

111 52341 1754 
112 22651 1755 
113 59159 1758 

_114 . 
54710 1759 

115 
116 

29773 
20978 

1759 
1764 

117 24473 1774 
118 41514 1776 
119 32967 1777 
120 3914 1783 

. 
121 2695 1796 
122 48807 1803 
123 
124 

115 
15682 

1829 
1834 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

TABLE APP3.2: L'ECUYER MLGC (SEED VALUES 1-60000) 

Rank Seed Quality 
Measure 

1 33180 1448 
2, 7498 1484 
3 22541 1504 
4 31503 1508 
5 18282 1514 
6 1409 1515 
7 52987 1517 
8 24127 1518 
9 21998 1533 
10 10599 1534 
11 1 34895 1544 
12 1 55526 1552 
13 1 31422 1553 
14 1 29856 1554 1 
15 22300 1566 
16 16358 1566 
17 1 53337 1567 
18 1 32678 1569 
19 129063 1573 
20 37822 1575 
21 17801 1578 
22 13469 1580 
23 6736 1584 
24 37291 1585 
25 4238 1585 
26 10762 1585 
27 56228 1590 
28 47682 1593 
29 59304 1595 
30 10587 1597 
31 36537 1597 
32 25374 1598 
33 6052 1603 
34 140903 1605 
35 24784 1607 
36 20960 1610 
37 37665 1615 
38 33451 1616 

1 39 132662 1 1616 

Rank Secd Quality 
Mcasure 

40 18661 1617 
41 . 21484 1620 
42 1 16395 1624 
43 55229 1625 
44 53949 1629 
45 40441 1630 
46 18590 1631 
47 37294 1632 
48 47351 1635 
49 13050 1636 
50 

. 
40507 1639 

51 1 35629 1640 
52 40743 1641 
53 1604 1646 
54 5216 1648 
55 55188 1631 
56 28996 1653 
57 39390 1657 
58 59401 1659 
59 32451 1659 
60 37604 1660 
61 122766 1661 
62 110977 1662 
63 19118 1662 
64 137946 1667 
65 117720 1669 
66 57263 1669 H 
67 29703 167 
68 34465 1672 
69 23093 1672 

-70- 
57556 1673 

71 14157 1674 
72 3316 1680 
73 43587 1680 
74 23402 1682 
75 52520 1684 
76 22734 1687 

1_ 77 115803 1688 
7 -- L8 -F2 22645 1689 

Rank Seed Qua Ity 
hicasure 

79 18786 1690 
80 36238 1695_ 
81 22821 1697 
82 38831 1700 

84 17914 1701ý 
85 33495 1704 
86 17028 1707 
87 16983 1707 
88 22572 1712 
89 21045 1714 
90 44949 1714 
91 '28588 1715 
92 10877 1716 
93 43811 1720 
94 41790 1721 
95 6018 1721 
96 26041 1725 
97 24023 1726 
98 5436 1729 
99 40015 1731 
100 3015 1731 
101 6073 1735 
102 10290 1738 
103 39318 17"- 
104 159914 _ 1753 
105 1=8 1754 
106 25269 175 4 
107 27098 1762 
108 29736 1766 
109 40391 1773 
110 32446 1779 
111 46390 1780 
112 149091 1783 
113 55485 1800 
114 45696 1813 
Ili 34947 1822 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

TABLE APP3.3: LEWIS ET AL. MLGC (SEED VALUES 1.60000) 

Rank Seed Quality 
Measure 

1 36670 1430 
2 53224 1449 
3 43532 1482 
4 54490 1527 
5 54338 1535 
6 25450 1537 
7 5695 1537 
8 40212 1552 
9 2738 1561 
10 40048 1565 
11 49786 1569 
12 10443 1573 
13 18943 1573 
14 44132 1576 
15 59880 1580 
16 45376 1585 
17 15502 1585 
18 33657 1588 
19 6214 1590 
20 23851 1591 
21 56752 1595 
22 14079 1596 
23 13531 1598 
24 59393 1598 
25 138123 1601 
26 _ 2201 1603 
27 34526 1603 
28 31259 1606 
29 9779 1607 
30 21950 1609 
31 2377 1611 
32 51664 1614 
33 33015 1614 
34 54331 1614 
35 47097 1619 
36 , 52166 

Rank Seed Quality 
Measure 

37 53419 1623 
38 46940 1624 
39 10195 1631 
40 52405 1633 
41 58714 1634 
42 28780 1634 
43 9213 1637 
44 57691 1637 
45 46332 1638 
46 5448 1641 
47 19515 1641 
48 424 1642 
49 55440 1642 
50 30905 1643 
51 59110 1649 
52 18255 1650 
53 22942 1651 
54 19644 1655 
55 11853 1656 
56 35206 1659 
57 41313 1661 
58 21744 1661 
59 26394 1668 
60 55828 1670 
61 59164 1670 
62 35299 1672 
63 16855 1673 
64 5711 1683 
65 33272 1684 
66 41748 1687 

67 42389 1687 
68 

. 
43948 1692 

69 34257 1693 
70 31986 1697 
71 378 

, 1709 
72 14346 1 1710 

Rank Seed (loalily 
hfcmtc 

73 1723 1711 
74 43779 1712 
73 35897 1712 
76 3671 1712 
77 18462 17 lk_ 
78 21644 1716 
79 7922 1716 
80 35004 1718 
81 44341 1719 
82 47977 1 *rj 
83 6328 17.14 
94 29925 172 4 
83 34580 1724 
86 53305 1726 
87 57276 1726 
88 45178 1727 
89 21964 1728 
90 446M 1729 
91 163 12 1729 
92 _ 

. 
53439 1733 

1 93 116206 1733 
94 126870 1734 
95 12547 1739 
96 37484 1745 
97 41061 1743 
98 10830 1749 
99 T28456 1750 
100 151488 1752 
101 152584 1757 
102 23708 1764 
103 9211 1768 
104 43774 1778 
105 48704 1800 
106- 126537 1807 
107 127107 1817 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

TABLE APP3.4: OFLYING" MLGC (SEED VALUES 1-60000) 

Rank Seed 
I Quality 
Measure 

1 38381 1442 
2 8528 1479 
3 57073 1499 
4 30023 1544 
5 34518 1548 
6 24869 1548 
7 25712 1548 
8 23182 1551 
9 40753 1560 
10 26932 1561 
11 30298 1565 
12 38291 1581 
13 54377 1584 
14 39512 1584 
15 1640 1585 
16 41815 1588 
17 48322 1589 
18 28943 1591 

58023 1591 
20 14724 1597 
21 53725 1597 
22 3901 1598 
23 14421 1600 
24 25873 1602 
25 46766 1611 
26 - 5110 1611 
27 

1 

5220 1612 
28 27421 1612 
29 24506 1614 
30 1955 1614 
31 39824 1614 
32 55130 1616 
33 38792 1616 
34 39665 1619 
35 28397 1619 
36 3 1621 1 
37 17839 21 16 .2 
38 32780 1 .2 622 

Rank Seed Quality 
Mcasure 

39 37509 1626 
40 44179 1626 
41 54929 1631 
42 5545 1636 
43 15351 1637 
44 9630 1638 
45 30683 1640 
46 51140 1641 
47 56463 1645 
48 203 1646 
49 23358 1650 
50 24019 1650 
51 156 1651 
52 57455 1652 
53 16806 1653 
54 8889 1655 
55 14350 1656 
56 25010 1656 
57 40528 1657 
58 36118 1659 
59 21266 1659 
60 12593 1661 
61 13558 1662 
62 13763 1664 
63 3806 1665 
64 40202 1668 
65 27419 1670 
66 39759 1672 
67 28831 1672 
68 31568 1674 
69 39085 1677 
70 9969 1680 
71 28104 1680 
72 i 11238 1681 
73 131918 1684 
74 6265 1684 
75 31216 1685 
76 10219 1686 

Rank Sced Qua'y 
hicasure 

77 51461 1688 
78 44480 1690 
79 39680 1090 
80 38868 1693 
81 
82 

39280 
30247 

1693 
1693_ 

83 2254 1699 
84 33201 1701 
85 

. 
39398 1701 

86 1 24089 170'. '. 
-- 87 1 51148 1703 

88 1 22315 1704 
89 1 46075 1703 
90 58637 1708 
91 24912 1708 
92 41205 1709 
93 12119 17 121 
94 1 31013 1713 
95 157452 1713 
96 110422 17161 
97 55102 1719 
98 127540 1 r. 0 
99 116260 1722 
100 126112 1724 
101 46819 1728 
102 3696 1731 
103 52215 1734 
104 54093 1734 
105 155338 1737 
106- 1 608 1746 
I 07 147343 1747 
_ 108 35372 1737 
log 25920 IWA 
110 24540 1781 
111 51252 1790 
112 29(r. 6 1792 
113 1120 1823 
114 55655 , 1832 

j 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

TABLE APP3.5: KILLINGBECK MLGC (SEED VALUES 1.60000) 

Rank Seed Quality Rank Measure Secd Quality 
Measure 

1 36120 1447 38 11877 1634 
2 37336 9 1470 39 

. 
15675 1633 

3 49665 1476_ 40 1 48169 1637 
4 42759 1501 41 29306 1640 
5 27780 1503 42 43870 1642 
6 15172 1520 43 50535 1644 
7 24608 1525 44 15387 1644 
8 41083 1536 45 48819 1645 
9 15708 1539 46 56192 1648 
10 54929 1548 47 25536 1651 
11 47710 1552 48 56100 1654 
12 46714 1553 49 9883 1654 
13 50954 1555 50 12410 1655 
14 3702 1564 51 12113 1656 
15 39130 1565 52 2283 1658 
16 23305 1571 53 1 10187 1658 
17 36516 1572 54 1 1715 1659 
18 39757 1577 55 40448 1660 
19 12633 1578 56 5817 1660 
20 141909 1578 57 42339 1661 
21 52300 1583 58 43129 1662 
22 6382 1596 59 35944 1663 
23 57000 1600_ 60 57891 1 664 
24 2133 1605 61 26227 r-1665 
25 50358 1606 62 17022 1666 
26 27017 1617 63 28428 1667 
27 56705 1619 64 11009 1667 
28 

. 
23266 1622 65 48380 1669 

29 131678 1623 66 31528 1672 
30 37296 1627 67 17041 1675 
31 43342 1627 68 29116 1675 
32 58949 1628 69 36394 1677 
33 11232 _ 1629 70 - 20634 1678 
34 44302 1631 71 48214 167 9 
35 56740 1631 72 43764 1 1681 
36 51066 1631 73 9816 1683 
37 , 42320 1 1633 74 

ý40021 1 1684 

Ruk Sccd Q03"ty 
hicasure 

73 
76 

33506 
19346 

1683 
1686 

77 42684 1688 
78 20300 1689 
79 
80 

18845 
53217 

1691 
1693 

8t 50523 1693 
82 963 

_1696 83 1 48204 1699 1 
84 18499 1700 
85 16031 1700 
86 11463 1700 
87 49098 

----1701 88 51044 1704 
89 41093 1706 
90 44806 1707 
91 138051 1707 
92 497921 

_ 
1709 

93 36908 1 
_17_10 94 22077 1 1727 

95 59445 1 1729 
96 34359 1731 
97 6960 1732 
9 8 10664 2 1733 
99 19053 1733 
100 16563 1 1735 
101 13110 1742 
102 50476 1745 
103 3978 1748 
104 30107 1749 
103 37214 1753 
106 59788 1764 
107 
108 

8578 
34172 

1765 
1777 

109 21773 1812 
110 54058 , 1820 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

TABLE APP3.6: MLCG WITH A MODULUS OF 262139 (WHOLE CYCLE) 

Modulus: 262139 Multiplier: 92717 

Ranking Seed 
' Quality 
Measure 

1 119066 1376.3 
2 170849 1459.7 
3 56892 1463.3 
4 147654 1467.4 
5 42402 1471.6 
6 84468 1484.1 
7 217753 1484.5 
8 106371 1486.3 

10 
99 
0 

209964 
258626 

1494.9 
1495.3 

111 I 143803 1500.3 
12 138240 1501.8 
1 13 40669 1502.3 
1 14 148251 1503.9 
1 15 147949 1516.1 
1 16 216969 1516.3 
17 86266 1520.0 
18 154668 1527.3 
19 29005 1530.7 
20 137358 1535.2 
21 17328 1537.0 
22 44587 1544.7 
23 125678 1549.9 
24 53004 1551.3 
25 103857 1559.0 
26 99094 1566.2 
27 107654 1566.6 
28 
29 

169105 
250622 

1570.0 
1570.2 

30 55171 1572.7 
31 133489 1574.9 
32 2051 1578.0 
33 249427 1578.4 

Ranking Seed 
I Quality 
Measure 

34 234950 1381.6 
35 163070 1582.4 
36 180914 1582.4 
37 100641 1589,6 
38 128940 1591.1 
39 223632 1593.3 
40 80374 1605.6 
41 68508 1606.7 
42 178963 1609.9 
43 183382 1610.4 
44 43499 1613.5 
45 30903 1615.4 
46 23226 1615.4 
47 187765 . 1615.8 
48 67299 1617.2 
49 79783 1618.9 
50 96778 1622.5 
51 55974 1623.7 
52 14103 1623.8 
53 189877 1625.7 
54 24434 1626.3 
55 221042 1628.5 
56 61520 1630.3 
57 148817 1631.4 
58 983 1631.5 
59 227010 1633. 
60 243615 1634.2 
61 222804 1637.6 
62 738 74 1637.9 
63 15028S 1641.0 
64 205441 1642.1 
65 _ 124398 1644.4 
66 3088 1645.2] 

Ranking Seed 
, Quality 
Measure 

67 260083 1646.9 
68 44540 

_1647.5 69 43221 1649,8 
70 74323 1635.4 
71 197469 1657.7 
72 104313 1658.0 
73 21890 163 8.4 
74 79301 1658.6 
75 10863 1662.6 
76 45500 1666.2 
77 226048 1666.9 
78 102309 1677.8 
79 220199 1684.6 
80 239418 1690.4 
81 247872 1693.2 
82 32191 16963 
83 167173 1697A 
84 12979 1698.9 
85 37406 1706.2 
86 262016 1710 .9 
87 39391 1712.6 
88 114414 1713.8 
89 184068 1730.1 
90 67409 1738.3 
91 111470 1741.4 
92 38820 1750.2 
93 106940 1753.7 
94 159011 1755.1 
95 244914 1773.1 
96 215741 1791.7 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

TABLE APP3.7: MLCG WITH A MODULUS OF 524287 (WHOLE CYCLE) 

Modulus: 524287 Multiplier: 283741 

Ranking Seed Quality 
Measure 

99311 1436.5 
2 345709 1440.0 
3 217571 1453.3 
4 136932 1456.4 
5 167278 1462 6 
6 106693 1469.4 
7 419174 1473.1 
8 401173 1477.1 
9 22131 14RO. 2 
10 238092 1480.8 
11 230751 1481.1 
12 278551 1485.2 
13 
14 

475842 
276519 

1486.3 
1486.9 

15 175135 1490.8 
16 9776 1490.8 
17 499915 1492.7 
18 286079 1493.6 
19 364519 1496.6 
20 332820 1498.1 
21 473595 1499.5 
22 475035 1499.7 
23 160583 1500.9 
24 192867 1501.3 
25 456713 1502.2 
26 282544 1503.4 
27 280699 1505.3 
28 76202 1507.1 
29 35452 1508.2 
30 66947 1511.3 
31 _ 461624 1512.1 
2 353077 1512.8 

33 462276 1513.8 
34 356439 1515.4 
35 234321 1515.6 
36 521672 1520 .9 
37 288080 1521.0 
38 289990 1522.3 
39 471852 1522.6 
40 1-154036 1 1524.4 

Ranking Seed Quality 
Mcasure 

41 292668 1324.6 
42 435287 1524.9 
43 517588 1526.3 
44 196103 1530.3 
45 196517 1532.9 
46 436807 1533.3 
47 116885 1534.5 
48 264928 1535.7 
49 300164 1536.0 
50 279758 1537.8 
51 99304 1538.1 
52 103985 1538.3 
53 385192 1540.0 
54 250761 1546.2 
55 484202 1547.1 
56 235383 1547.5 
57 220816 1548.4 
58 462051 1549.4 
59 196988 1550.5 
60 356425 1550.7 
61 297530 1551.1 
62 110717 1551.5 
63 386100 1552.6 
64 398340 1552.7 
65 69135 1556.0 
66 225128 1558.0 
67 454916 1558.6 
68 426163 1560.6 
69 501041 1561.9 
70 217525 1562.5 
71 126688 1562.7 
72 412319 1563.5 
73 504437 1 W. 6 
74 378899 1567.9 

_75 
170943 1571.0 

76 28427 1572.5 
77 435932 1574.2 
78 328998 1577.6 
79 409TS- 1578.4 

_80 
351138 1578.4] 

fUnking .a SCIA Quality 
MCOUre, 

81 170240 13803 
82 280628 1382.2 
83 337692 1382.2 
84 301490 1 R7.7 

85 336038. J583.2 
86 439829 1584.2 
87 193327 1585.6 
88 510474 1 -9 
89 5 19 3 02 1586.2 
90 371550 1388.3 
91 73532 1588.6 
92 144809 1 589.0 

93 383309 1389.4 
94 250100 1591.9 
95 259860 1594.1 
96 426797 1 599.6 
97 488231 1599.7 
98 286993 1599.8 
99 174474 1600.8 
100 514065 1600.8 
101 33972 1601.3 
102 293836 1602.4 
103 98228 1602.8 
104 247217 1603.2 
105 379676 1001.3 
106 487023 1607.2 
107 195830 1607.7 
108 411354 1608.4 
109 382854 1610.2 
110 101031 1612.3 
111 331385 1614.3 
112 140070 1614.7 
113 265893 1616.4 
114 518481 1619.2 
115 42433 1619.3 
116 20840 1620A 
117 231703 1620.2 
118 56963 162.2.7 
119 58865 1623.8 
120 457841 1611.9 
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Evaluation of Alternative Discrete Event Simulation Experimental Methods 

Table APP3.7 (Continued): MLCG with a Modulus of 524287 (wholc cyc1c) 

Modulus: 524287 Multiplier: 283741 

Ranking Seed Quality 
Measure 

121 47498 1628.0 
122 190090 1631.2 
123 378416 1633.4 
124 65565 1633.5 
125 89346 1636.1 
126 465538 1637.7 
127 435125 1637.9 
128 55726 1638.3 
129 482327 1639.9 
130 222227 1640.4 
131 366651 1640.8 
132 45834 1642.0 
133 179504 1643.7 
134 435076 1645.7 
135 25247 1646.1 
136 86890 16 A 4.2 
137 329191 1647.5 
138 347771 1648.1 
139 384855 1648.7 
140 424722 1649.2 
141 393803 1650.6 
142 255452 1651.0 
143 437397 1651.1 
144 39633 1653.6 
145 3003 1656.8 
146 91433 1658.5 
147 6369 1658.6 
148 204144 1659.6 
149 171262 1661.8 
150 13 1665.9 

Ranking Seed Quality 
Nicasurc 

151 247408 1669.6 
152 472285 1672.5 
153 500530 1672.5 
154 257712 1674.4 
155 313015 1676.0 
156 261072 1679.8 
157 291695 1685.7 
158 308204 1690.8 
159 409192 1692.2 
160 191983 1693,9 
161 16978 2 1694.9 
162 44091 1695.1 
163 97276 1705.7 
164 16030 1707.3 
165 70473 1709.8 
166 236114 1714.3 
167 62047 1716.4 
168 103989 1717.6 
169 498632 1721.3 
170 460243 1725.3 
171 36026 1725.5 
172 506562 1726.1 
173 140365 1729.1 
174 478239 1730.9 
175 283129 1737.0 
176 421938 1744.0 
177 16036 1745.8 
178 162905 1746.6 
179 96755_ 1752.7 
180 

. 
471525 

Ranking .a secd (Nality 
hicasure 

181 239136 1761.9 
182 

ý 
447323 

__ 
1_762.7 

183 322937 1765 "o 
184 134887 1774.6 
183 302185 1804.1 
186 114415 1811.5 
187 1 97844 1822.1 
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TABLE APP3.8: DESCRIPTIVE SAMPLING: FISHMAN AND MOORE MLGC 
(SEED VALUES 1-60000) 

Rank Seed 
Quality 

Measure 
1 46433 1231 
2 11964 1232 
3 5084 1241 
4 1351 1253 
5 7473 1258 
6 22130 1260 
7 31035 1269 
8 19786 1270 
9 32497 1277 
10 53515 1277 
11 5439 1278 
12 45106 1280 
13 50740 1283 
14 35261 1286 
15 48983 1290 
16 54944 1292 
17 38394 1294 
18 3047 1307 
19 18602 1309 
20 49342 1311 
21 54926 1314 
22 26262 1316 
23 15956 1322 
24 25751 1322 
25 3133 1324 
26 57254 1326 
27 26807 1327 
28 45159 1329 
29 48591 1330 
30 28353 1331 
31 7275 1331 
32 1123 1334 
33 36412 1336 
34 49581 1337 
35 22024 1339 
36 1 39021 1339 
37 24500 1339 
38 43528 1340 
39 17081 1342 
40 202437 1342 

Rank Seed 
Quality 

Measure 
41 9693 1343 
42 18350 1345 
43 9350 1345 
44 28814 1346 
45 17621 1349 
46 38051 1349 
47 21702 1350 
48 34917 1350 
49 7736 1350 
50 54706 1350 
51 565 1352 
52 26735 1352 
53 35459 1352 
54 13805 1354 
55 59108 1356 
56 20285 1357 
57 23508 1357 
58 37631 1357 
59 52757 1357 
60 8215 1360 
61 6890 1361 
62 30049 1362 
63 10652 1364 

64 15641 1364 
65 2068 1364 
66 47834 1364 
67 42627 1365 
68 10993 1366 
69 88 1368 
70 8282 1368 
71 10680 1369 

72 46910 1369 
73 25929 1370 
74 44876 1371 
5 

76 
77 
78 

45525 
11130 
37325 

_L1_3 
03 

1371 
1373 
1373 
1375 

79 _ 23047 16 
80 44937 1376 

__Rank 
Sood 

Quality 
Moasure 

_ 81 63920 1378 

_82____ 
1 54811 1380 

--83- 
33263 1382 

84 13625 1383 
85 

-10ý125- 
1384 

_86___ 
24098 1385, 

87 2190 1385 
88 20176 1385 

--89-, 
41160 1386 

-90 
32714 1387 

91 30213 1387 
92 30526 1309 
93 30644 1389 

-94 
27057 1390 

95 51811 1390 
96 10879 1390 

97 26004 1390 
98 43045 1390 
99 35679 1390 
100 57948 1391 

101 53557 1391 
102 25461 1392 
103 39999 1392 

105 
19496 
44044 

1394 
1396 

106 40869 1397 
107 58884 1399 
108 44491 1399 
109 29737 1402 
110 1081 1402 

-111 
4809 1402 

112 1818 1404 
113 21500 1405 
114 '10111 1406 
115 10288 1407 
116 57765 1408 
117 28840 1408 
118 24574 1409 
119 3851 1409 

12726_1 1409 
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TABLE APP3.9: DESCRIPTIVE SAMPLING: L'ECUYER MLGC 
(SEED VALUES 1-60000) 

Rank Seed 
Quality 

Measure 
1 43503 1221 
2 39710 1246 
3 3745 AQ 1249 
4 52580 1250 
5 19743 1250 
6 14228 1254 
7 25227 1270 
8 50040 1272 
9 4142 1272 
10 8282 1273 
11 10732 1276 
12 41658 1282 
13 30017 1283 
14 31816 1288 
15 35213 1301 
16 18514 1306 
17 23033 1308 
18 36088 1310 
19 23563 1311 
20 14243 1312 
21 42069 1315 
22 1 41047 1316 
23 30192 1318 
24 5531 1318 
25 5889 1319 
26 50811 1319 
27 42662 1321 
28 50866 1323 
29 5807 1323 
30 8486 1324 
31 19426 1325 
32 54996 1326 
33 55831 1328 
34 41737 1329 
35 24401 1 1330 
36 28047 1 1330 
37 3124 1331 
38 10578 1336 
39 7179 1337 
40 26691 L 1337 

Rank Seed 
Quality 

Measure 
41 21214 1337 
42 19712 1337 
43 5293 1341 
44 9615 1342 
45 31649 1342 
46 56023 1343 
47 42361 1343 
48 45334 1343 
49 27961 1345 
50 21437 1345 
51 5201 1347 
52 12485 1348 
53 58632 1349 
54 9284 1350 
55 45829 1351 
56 48998 1351 
57 7378 1354 
58 43292 1354 
59 23350 1354 
60 29137 1354 
61 8039 1355 
62 1335 1356 
63 55527 1357 
64 11627 1358 
65 6498 1358 
66 6885 1359 
67 35709 1361 
68 31687 1362 
69 47652 ! 1362 
70 39310 1362 
71 33674 1363 
72 7420 1364 

_73 
53395 1369 

74 58328 1370 

_75 
31486 1371 

76 5755 1372 
77 541_81 1373 
78 20517 1373 

_79 
42356 1373 

80 L- 56-907 I_ 1374 

q 

Rank Seed 
Quality 

moasure 
81 16949 1374 
82 

-1 
1373 1374 

83 33204 137 4 
84 35370 1375 
85 47840 1377 
86 43810 1378 
87 6411 1378 
88 10815 1380 
89 57571 1302 
90 51600 1382 
91 1639 1383 
92 48513 1384 
93 1313 13SO 
94 42248 1387 
95 51502 1387 
96 19522 1387 
97 22865 1388 
98 35537 1388 
99 7744 1388 
100 22650 13no 89 
101 43394 1391 
102 _ 26503 1391 
103 5868 1392 
104 39393 1392 
105 26268 1393 
106 33158 1393 
107 58554 1394 
108 27471 1394 
109 3217 1395 
110 39509 1395 
Ill 27333 1396 
112 52273 1397 

113 5617 1397 
114 49484 1398 
115 19867 1398 
116 35127 1398 
117 25473 1399 
118 644 1399 
119 45238 1399 

L120 20851 1 
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TABLE APP3.1 0: DESCRIPTIVE SAMPLING: KILLINGBECK MLCG 
(SEED VALUES 1-60000) 

Rank Seed 
Quality 

Measure 
1 23599 1172 
2 17971 1239 
3 4690 1247 
4 8396 1261 
5 3601 1263 
6 31493 1264 
7 44010 1285 
8 22646 1289 
9 59824 1293 
10 50199 1296 
11 15690 1296 
12 50586 1296 
13 46160 1309 
14 46905 1310 
15 43253 1311 
16 44746 1314 
17 39179 1320 
18 20912 1321 
19 1266 1321 
20 40610 1325 
21 32261 1327 
22 16756 1327 
23 41522 1327 
24 27209 1330 
25 15037 1337 
26 11834 1339 
27 6202 1339 
28 38640 1342 
29 9 7952 1344 
30 0 22384 1345 
31 26194 1345 
32 124153 1348 
33 36046 1350 
34 39892 1350 
35 40663 1351 
36 20558 1351 
37 686 1351 
38 56232 1353 
39 3311 1353 
40 47341 

Rank Seed 
Quality 

Measure 
41 21214 1337 
42 19712 1337 
43 5293 1341 
44 9615 1342 
45 31649 1342 
46 56023 1343 
47 42361 1343 
48 45334 1343 
49 27961 1345 
50 21437 1345 
51 5201 1347 
52 12485 1348 
53 58632 1349 
54 9284 1350 
55 45829 1351 
56 48998 1351 
57 7378 1354 
58 43292 1354 
59 23350 1354 
60 29137 1354 
61 8039 1355 
62 1335 1356 
63 55527 1357 
64 11627 1358 
65 6498 1358 
66 6885 1359 
67 35709 1361 
68 31687 1362 
69 47652 1362 
70 39310 1362 
71 33674 1363 
72 7420 1364 
73 53395 1369 

_74 
58328 1370 

75 
76 

31486 
5755 

1371 
1372 

- 
77 54181 1373 
78 20517 1373 
79 42356 1373 
80 E691=07 ý1 374 

Rank Sood 
Quality 

Measuro 
81 35333 13M 
82 25325 1357 
83 13228 1357 
84 48973 1358 
85 38971 

- . 
1358 

66 46965 1358 
87 29798 1360 
88 8245 1360 
89 

--- 
5294 1 1365 

90 57089 1365 
91 10790 1365 
92 54778 1368 
93 35383 1369 
94 56848 1371 
95 48047 1374 
96 15980 1374 
97 56794 1374 
98 37749 1375 
99 49517 1376 
100 25518 1376 
101 10312 1377 
102 24318 1377 
103 225 1377 
104 20065 1379 
105 28112 1380 
106 46912 1380 
107 3673 1381 
108 50680 1382 
109 58821 1383 
110 37118 1383 
111 56378 1384 
112 24562 1384 
113 57356 1385 
114 18237 1385 
115 40915 1386 
116 260 1388 
117 47878 1393 
118 4483 1393 
119 40 1393 
120 39247 1395 
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TABLE APP3.1 1: DESCRIPTIVE SAMPLING: OFLYING" MLGC 
(SEED VALUES 1-60000) 

Rank Seed 
Quality 

Measure 
1 33314 1119 
2 1387 1155 
3_1 12794 1237 
4 19752 1265 
5 14745 1277 
- 6 36255 1279 
7 33674 1288 
8 44870 1291 
9 30254 1296 
10 4365 1298 
11 52212 1301 
12 1952 1304 
13 2558 1309 
14 14628 1309 
15 8655 1311 
16 42155 1311 
17 

_1 
24876 1315 

18 31126 1317 
19 25761 1317 
20 30813 1320 
21 34990 1321 
22 31472 1322 
23 43366 1323 
24 25074 1325 
25 9334 1326 
26 22559 1329 
27 58461 1330 
28 8856 1334 
29 58050 1337 
30 15843 1337 
31 26224 1337 
32 20655 1337 
33 18153 1339 
34 59893 1340 
35 51488 1340 
36 12225 1340 
37 21119 1349 
38 13118 1350 
39 24366 1350 
40 5254 135 

Rank Seed 
Quality 

Measure 
41 5103 1353 
42 39886 1355 
43 23851 1356 
44 29490 1358 
45 44378 1359 
46 56315 1360 
47 4349 1360 
48 26330 1360 
49 40010 1361 
50 20041 1362 
51 34077 1362 
52 20121 1363 
53 4657 1364 
54 52747 1366 
55 51028 1367 
56 629 1368 
57 13471 1371 
58 50236 1372 
59 58193 1372 
60 50176 1373 
61 26020 1373 
62 31508 1373 
63 34863 1373 
64 27261 1374 
65 41684 1374 
66 33554 1374 
67 30953 1374 
68 53808 1375 
69 12232 1375 
70 15816 1375 
71 4324 1377 
72 43818 1377 
73 15029 1377 
74 23318 1378 

_75 
24137 1380 

76 _ 49152 1380 
77 14961 1381 
78 17278 1381 
79 21 ý76 1 1381 
80 2 42286 1382 

Rank Seed 
Quality 

measure 
81 59190 1382 
82 1321 

- _1382 83 42188 1382 
84 8594 138 3 
85 31050 

_1383 86 48514 1383 
87 31129 1384 

88 10228 13 84 
89 4766 
90 36554 1384 
91 44426 1337 
92 10656 1388 

93 2416 1308 
94 14898 1388 
95 18394 1389 
96 42227 1390 
97 58039 1390 
98 21645 1391 
99 14227 1391 
100 48537 1391 
101 26047 1391 
102 42090 1392 
103 42706 1393 
104 31594 1394 
105 66ý2 1395 
106 58851 1396 
107 9416 1397 
108 17950 1398 
109 46088 1398 
110 11700 1398 
ill 27152 1401 
112 28332 1402 
113 150223 _1402 114 1 13888 1402 
lis 26962 lZ4 
116 38552 1406 
117 6905 1406 
11 34189 1407 
119 23273 1408 
120 39585 1 1409 
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TABLE APP3.12: DESCRIPTIVE SAMPLING: LEWIS MLGC 
(SEED VALUES 1-60000) 

Rank Seed 
Quality 

Measure Rank Seed 
Quality 

Measure Rank Seed 
Quality 

Measure 
1 17716 1172 41 15118 1354 81 27754 1389 
2 50567 1223 42 40209 1354 82 48366 1389 
3 37635 1258 43 29709 1355 83 16115 1390 
4 38236 1265 44 20587 1356 84 50331 1390 
5 48660 1272 45 35634 1358 85 

- 
9655 1391 

6 14877 1284 46 31757 1359 86 2379 1391 
7 22992 1297 47 5832 1361 87 _ 41191 1392 
8 21708 1300 48 34238 1361 88 10151 1392 
9 51255 1307 49 34057 1364 89 43679 1392 
10 31632 1307 50 24126 1365 90 10327 1393 
11 45702 1307 51 59039 1366 91 35473 1393 
1 2884 1308 52 45244 1367 92 10%8 1394 
13 32295 1312 53 59007 1-367 93 34010 1394 
14 15449 1316 54 53814 1370 94 15098 1395 
15 21263 1323 55 26620 1370 95 28652 1395 
16 30602 1326 56 29529 1370 96 43665 1396 
17 51185 1328 57 1782 1371 97 9141 1397 
18 18690 1329 58 53553 1372 98 23639 1398 
19 18278 11329 59 43514 1372 99 3985 1398 
20 46710 1329 60 31054 1372 100 32881 1401 
21 33302 1329 61 36268 1374 101 

1 

45732 1402 
22 12236 1331 62 55715 1375 102 52612 1402 
23 47057 1332 63 42375 1375 103 23019 1402 
2 30459 1333 64 1694 1377 104 14252 1403 
25 59279 1334 65 871 1377 105 14724 1403 
26 50989 1335 66 42302 1378 106 15670 1404 
27 22196 1339 67 49439 1379 107 50868 1404 
28 47136 1340 68 46293 1380 108 14116 1405 
29 54756 1341 69 11945 1380 109 37171 1406 
30 12644 1344 70 982 1381 110 23411 1406 
31 26789 1345 71 40049 1382 111 56442 1407 
32 45206 1348 72 51688 1382 112 2540 1413 
33 53508 1349 73 3734 1383 113 3598 1413 
34 14747 1349 74 29142 1383 114 45602 1414 
35 12006 1351 75 37154 1383 115 49344 1415 
36 6015 1352 76 36081 1385 116 -17303 1415 
37 1298 1353 77 36211 1385 6531 1416 
38 57975 1353 

_78 
5W20 1386 118 36389 

, 
1416 

39 54776 1354 79 7172 119 41023 1416- 
42999 1'1. '; A 10959 120 7889 1417 
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APPENDIX 4: DETERMINING THE MISSING SEED IN FLYING 

A count of sccds for the MLCG referred to as Flying, %vhcn an offsct or additivc 

constant of 1 is used, indicated that there was one missing sccd. The progmm 
MISSING (see Appendix 1) detected that there was a missing sccd. Thc missing sccd is 

1395119659. The seed has a cycle of 1; that is the seed gcncratcs itscif, 
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APPENDIX 5: STATISTICAL TERMINOLOGY USED 

In this thesis the following convention of terminology has been used. 

Sample 

The sample is the set of sample values that are to be investigated. 

Sample Values 

The sample value is the value actually measured. In the study of how to 
provide a representative sample of 1000 random negative exponential deviates 

for a simulation run, our original sample is the sample of 1000 negative 
exponential deviates created from the random source being evaluated. A 

sample value is an individual negative exponential deviate. 

A simple example to illustrate the use of the terminology would be if the 
investigation were into the relationship between weight and height, the sample 
values would be the pairs of measurements of height and weight of the 
individual included in the study. The sample would be the whole set of sample 
values. It is assumed not everyone has been measured and only a relatively 
small number have been measured. 

Test Variable 

The test value is the value of the variable created from the sample value or 
values that relates to the property being studied. In our evaluation of random 
numbers it was the sample values themselves and sets of test values created 
by summing a number of sequential values. There were in fact In this case ten 
sets of test variables created from the one set of samples. 
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In the example of weight and height the test variable chosen could well be the 

correlation coefficient (R). In this case the sot of samples values will be 

reduced to a single vaHable. 

Test Statistic 

In order to examine the test variable statistically It may well be necessary to 

perform another transformation, this time transforming the test variable Into the 
test statistic. In our case there was a conversion Into Xý: 

2 (O. 1)2 

Where 

The summation is over a set of ranges or cells that will contain all the 

values of the test vadable. 
E Is the expect number of times the test variable will fall Into a range or 

cell 
0 Is the observed number of times the test variable falls Into a range 

or cell. 

An approximation of the distribution of )? Is known. 

In the case of the correlation coefficient r, the following conversion Is often 

made to t, 

r4N= 2 
r- 

vl-; 
T 

Whcrc N is the numbcr of sampIcs 

This test statistic Is distributed as Student's t with N-2 degrees of freedom. 
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APPENDIX 6: OBTAINING A SOURCE OF RANDOM NUMBERS 

AP6.1 The First Attempt 

To obtain a set of real random numbers, four files of 10 Megabyte of random 
bytes were downloaded from the web site, Random. org (Heahr 1999). These 

were named on the web site as, 01OMegs. 10, mIOMegs. 2", "IO. Megs. 3" and 
"IO. Megs. 4". The files are streams of random bits created as previously 
described, from an unused radio frequency. 

The first attempt to read the files was using a FORTRAN program *READRAN' 

version 1. 

FORTRAN allows three Integer sizes, with 1,2 and 4 bytes used respectively, 
to hold the number. In an attempt to generate as many random numbers from 

the stream of random bits, the first attempt was to read using an integer defined 

by only two bytes. In this version of the program, two consecutive bytes were 

read to create each random number. 

To enable more random numbers to be created the file could be read again 

after first pass by Ignoring the first byte in the file. Thus Is called a *nudge" In 

the program. Thus without a 'nudge*, the first Integer was bytes I and 2, the 

second 3 and 4 and so on. If a nudge Is Invoked, the first Integer Is formed from 

bytes 2 and 3, the second 4 and 5 and so on. By using a nudge the number of 
Integers able to be read from the files was 41,943,036. 

The values taken by the Integer variable created by reading from the file (note 

that the compiler does not normally allow the value . 32768 (or -215) to be 

available for use) were from -32768 to 32767 (or 21%1). 
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The random variable was calculated by adding 32769 and then dividing by 

65537. This gave a floating-point variable lying between 0 and I- 

To test the method of extraction and the conversion, the random variables 

produced from each pass were counted Into 100 equally spaced cells between 

0 and 1. To test the even spread of numbers, a Chi-Square test was applied. 
The results are shown In Table AP6.1. 

Each pass of the files gave values that were acceptable, but the worst was 

acceptable only at 5.01%. However when the data was considered as one total 

set it was only acceptable at 0.95%. This is shown In the small table where the 

)? values are calculated at the foot of Table AP6. I. This was considered 
unacceptable. 

AP6.2 The Second Aftempt 

In an attempt to resolve the problem, the number of meaningful decimal places 

of the random number was increased so they could be more accurately 

assigned to one of the 100 cells. To achieve this the Integer size was Increased 

to 4 bytes. 

The computer program was amended to read four bytes from the file for each 

integer. This meant only half the number of Integers could be read by one pass 

of the file. However the file may be Onudged* three times, thus enabling the file 

to be read a total of four times rather than twice. 

On the first pass, bytes 1,2,3 and 4 made the first integer, 5,6,7 and 8 the 

second and so on. For the second pass after a *nudge"t bytes 2,3,4 and 5 

made the first integer, and 6,7,8 and 9 made the second. The third run was 

made after two 'nudges ", bytes 3,4,5 and 6 made the first Integer and 7,8,9 and 
10 made the second and the fourth pass was made after three anudges", with 
4,5,6 and 7 being the first Integer and 8,9,10 and 11 being the second. 
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In this second version, the values taken by the Integer variable by reading from 

the file (note that the compiler does not allow the value -2147483648 (or -231) 
to be available for normal use) were from -2147483648 to 2147483647 (or 231- 

1). 

The random variable was calculated by adding 2.147483649xiog and then 

dividing by: 4.294967297xi0g. The calculation was performed in double 

precision floating point. This gave a double precision variable lying between 0 

and 1. 

The number of random vadables able to be created from the four files dropped 

from 41,943,036 to 41,943,028, a very small decrease of 8. 

The method of extraction and the conversion was again tested by the random 

variables produced from each pass being counted Into 100 equally spaced cells 
between 0 and 1. A Chi-Square test was applied. 

The results are shown in Table AP6.2. 

The results are acceptable all the individual sets are acceptable at the level of 
7.5% and the whole is acceptable at 11%. This method was used to produce 

the real random number used In the testing and calibration of the test and 

evaluation of real random numbers as source of randomness. 

Program "READRAN Version 2' is given In Appendix 1. 

AJ Wam Page 294 



Evaluation of Alternative Discrete Event Simulation Experimental Methods 

Table APP6.1: Results of Test Using READRAN Version I 

(Note each row represents one of the 100 cells). 

Couna 

lomegs. 1 I Omcgs. 2 lOrneRs. 3 I Omegi 4 Total 

PASSI Pass2 Passl Pass2 PASSI Pa3s2 PASSI PA3%2 Counti Chi Sq 

52361 52386 32964 32188 32535 32393 32351 32874 
_420272 

1.6989 
52965 52209 52142 32733 32665 32765, 52620 52485 42094 3,1731 
51921 52116 52426 52560 32188 32326 52315 52280 418332 2.876.3 
52093 52174 51920 52493 52254 32779 327&1 52M 419336 Q0212 
52518 52391 52320 32580 32314 52782 52.1.78 _ 52216 419599 0.008 
52570 52702 52731 52335 1 52534 . 1; 24 161 5 52633 52058 420228 1,5169 
52606 52332 52268 52.298 1 52312 52379 52275 32509 418979 0,4857 
52300 52541 52268 52607 52359 52013 52525 32307 419120 0.2.219 7 
52197 52407 52554 52332 52366 527,19 52215 52094 418894 0,6839 
52595 52452 52512 52329 52208 

- 
52279 

_32508 _5,2,12 
1_ 4.19004_ 

_0.4334 
52503 52111 52351 52321 3iiý ýiiý6 32420 524 15 419211 

__ 
0. 

_I_l 
47 

52603 52358 52524 52292 52280 52135 32139 _ 52381 1 4187M 1,2303 
52625 52193 52972 52316 

_32740 
5-1747 52156 52096 4' 204-15 2.4545 

53076 52395 52654 52937 52370 52310 '15 52U 52754 4A'0321 
-2.. 

8-30) 
52370 52759 52264 52316 52590 32252 32325 32061 418937 0.5803 

52515 52706 52380 52600 52424 32378 52291 52634 419tr., H 0,5904 
52456 52596 52816 52840 52202 32293 32263 

, 
32300 419768 0,217 19 

52429 52377 52658 32337 52246 52523 32342 32608 4195"" A. 100 0.0. 

52294 52487 52145 52914 52477 32814 _ 32176 _ 522142 419349 0.0336 

52381 32435 52169 52309 32468 52735 52771 52150 419417 0.0004 

52192 52207 52289 52264 52373 52077 52417 3,2081 417900-1 5.3838 

52258 52579 52591 52033 52619 52361 M! 4 32. 52425 419'. 1,198__I 
- - - __ 

0.0.118 

52413 52646 52166 52710 52026 52533 $2451 52205 4i g i 76 T 0.1616 
52415 52338 52311 52397 52999 5259.1 52370 52347 419771 0.2767 

52708 52487 32673 52295 V63 3ý 52410 52390 52468 '10194 4'- 1.3903 

52321 52159 52653 52676_ 32241 52286 32737 32653 419"r. 6 0.2084 

51969 52201 52618 52496 
. 
52214 52265 52062 52332 418737 1.0ý.! 0 

52616 52735 52370 32795 52311 52588 321143 52482 420040 0,8861 
52566 52769 32148 32351 52231 521M 32338 52360 418790 0.9777 r7 
52670 32191 52323 52793 52793 32347 52298 322196 41(Y)13 0,355.1 
52434 132442 52541 52471 ý2335 52299 52533 W99 41(Xi%4 0.11 Ir. 
52024 52113 52740 52318 52390 52179 $2302 SWO 418516 1 . ', ')3 3 

52479 32785 52381 52331 52901 51988 52903 L2. ýI 6 420184 1.3542 
52193 52491 52690 51883 52050 52400 52371 SI&W 417()82__ 

_. 
S, (X)1_4 

52239 52505 52064 32459 32240 52481 5.1653 52462 419103 02355 
52351 52504 52410 52594 32413 52648 32.111 L1.616 419747 01390 
52153 52017 32329 52517 3 2' . 1.16 32318 _ 52319 .. L24 13 418-193 2,01M9 
52219 32347 52364 52702 52809 52823 5.1.773 5'. '419__ 42 t96 1 2.7075 

, 52204 , 32537 52449 52544 1 52419 , 52436 
, 

32621 -1,2013 
419=5 1 0.1005 
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Table APP6.11: Results of Test Using READRAN Version I (Continued) 

(Note each row represents one of the 100 cells). 

Counts 
I Ornegs, I 10megs. 2 

- -I 
Orn gs. 3 I Omcgs ToIAI 

Passl 
- 

Pass2 PAW Pass2 Pa3sl PASS2 Pasil I PasO Counts Chi S(l 

52151 52640 51996 32780 32647 52558 32639 32324 419735 0.2213 

52488 52650 52664 52370 
__M95 

52494 52385 52349 420394 2,2140 

52773 52285 52425 52383 32743 32204 523(r. 32469 419784 '1982 Q& 
5. ) D05 52414 '1649 516 52345 522118 $2727 52581 52 1199 419438 0.0001 
52463 52509 52179 52670 53018 32470 325061 53067 420881 3.0172 
52416 52146 52322 52486 32418 52316 52594 5,1603 419303 Q0387 
52347 52879 52605 52046 52566 32618 32796 52113 419972 OOM 
52520 52565 52711 52362 32164 52607 32394 32894 420417 2.3209 
52152 52332 52704 52362 32104 52624 32498 52069 418945 0.8169 
550 2220 52923 52771 52364 52333 52661 52837 321863 4210974 3.6811 
5 5 23 8 00- 52339 52757 52919 52721 52376 52500 52616 4,10808 4.3249 

_ 52858 52665 52655 52209 1 31898 32505 52875_ 32648 420313 Itt374 
52614 52303 52397 52145 52299 52311 52931 52749 419770 0.2750 
52378 52138 52168 52706 32261 52163 52711 52731 419,156 0.0725 
52349 52238 52619 52714 52266 52370 32517 "M 419361 0.0115 

52241 52829 52784 52267 52612 52499 52450 52624 420306 1.8281 

52651 52518 52713 52463 32697 52641 52399 52338 420640 3.4886 
52805 52438 52975 52706 52278 52913 52361 52423 420901 ',. I SO 

52467 52149 52323 52367 51873 32487 52636 _ "I 1 325 A 418823 OA795 

52955 52331 52001 52407 52282 52281 52310 5, "267 418834 O. M79 

52753 52033 52915 52423 52206 521.0 52480 32691 11 4196ý 0.0866 

52304 152461 52547 51935 , 52267 52611 52705 52701 419331 0.0214 1 
52460 524D6 51993 52169 52633 52562 52355 

, 
312164i 418744 1.1232 

52603 52600 52600 52594 52831 52414 52678 523912 
_41.070. 

IMM 

52344 52454 52531 52286 52480 51958 52477 31328 41883K 0,7910 

52629 52222 52622 51971 
_52464 

32430 51958 
_52627 

4189'20 Q6210 

52664 52374 52217 52701 32404 52734 
-52.1-5-9-- 

52736 420189 1.37. " 

52188 52658 52144 52337 52610 52531 52294 32019 418781 1.0053 
52972 52932 52713 52128 52569 32683 52330 52345 4205(r. 3.21712 
52281 52233 52171 52544 52147 52243 52072 $2724 4M17 2.4483 

52204 52540 52491 51973 52205 52,10-1 52145 52038 417800 6,3373 

52522 52766 _ 52643 52499 52506 52164 52136 5-2M 419618 0,0831) 
32308 52659 52097 52830 52800 32754 52009 52287 419744 0.2.14 5 

52122 52284 52331 52166 52691 1 5286.1 1 
SA004 ý24ý18 41191.00 0.2602 

52319 52159 52623 52355 2459 5& 

A. 5 31 32 52617 419360 0.0118 

, 51967 52565 52205 , 32937 52599 32170 152034 1 MIM2 419159 0 1756_ 
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Tabic APP6.1: Results of Test Using READRAN Version 1 (Continued) 

(Note each row represents one of the 100 cells). 

Counts 
I Ornegs. I lorn gs. 2 IOM gs. 3 IOM gs. 4 To tal 

Passl I Pass2 Passl 
- 

Pass2 PAS31 Pass2 Passl PASS2 Counts Chi 

52428 52860 52535 32318 52246 52739 52743 52691__ 420560 3,0424 
52482 52466 52310 52503 52177 32217 32417 32333 1 418905 0.6380 
52851 52336 52347, 52306 52349 52351 52496 52515 

_419531 
0.0347 

52714 52219 52308 53020 52316 52583 52281 32598 4210039 0.8832 
52212 52551 52485 32099 52614 52991 52320 5.1603 419875 0.4714 
52335 52746 52156 52350 52118 52176 52431 52228_ 418540 1,8900 

52633 52274 52772 52246 52809 52533 52132 52317 1 9716 
-4 

0.19-15 
52837 52141 52486 52352 52325 52366 52433 32442 _ 4 19384 0.0051 
52296 52117 52395 52368 52592 52187 52413 32489 18857 4 0.17838 
52651 52171 52271 52633 52471 52205 52237 52681 _ 4 1 9320 0.0290 

' - 52144 52741 52287 52204 H3ýý 
_52.479 

_ 74ý . . 419298 61414 
52311, 52238 52636 52389 52147 32995 523131 52306 419335 0.0217 
527551 52401 52080 52696 52470 51997 32404 32501 419304___ 

__. 
0,0381 

52346 52245 52496 _ 52199 
, 
52242 51986 52506 52337 

. 
418357 1.8186 

52206 52508 52212 52192 1 52573 52280 51936 52268 1418175 3.737.1 
51999 52706 51977 52466 52373 52102 32069 

_52452 
418144 3.9-15,21 

52376 f52554 52601 52853 52535 52072 52643 52303 4IV)37 0.611,10 
52197 151933 52318 52263 52343 52220 52432 52406 4181 E2 4.1439 
52573 152393 52226 52329 , 52650 52233 52273 52041 418718 1.21099 
52257 52186 51829 51936 52621 52245 52725 52941 418740 1.1363 
52042 52279 521342 52349 52389 520S9 

, 52458 5 22162 418210 3.5507 

52909 , 52553 51965 52144 52235 52266 32269 51847 4 18189 3,6799 

52674 52701 52121 152391 [52512 52013 52.161 52370 4 192 43 0.0837 

52300 52391 52274 52769 152484 52620 52785 32301 419'r. 4- , 0,5810 

52477 

152330 

52624 51925 152417_ L52689 , 52567 52147 419196 1 0.1310 

Calculation Qf 

Sample Size 
Chi. Sq. Value 
Prob. of 
Chi-Sq. Value 

AJ Wam 

lom gs. 1 I Gmegs 2 1 om gs 3 10meRs 4 

PASSI Pass2 Pass 1 P8352 paill Pas%2 Paul llat%2 Toul 
5242880 5242879 5242980 5242979 3242880 5242979 $242990 5242979 41943036 
112.351 95.180 123.210 120,434 97.705 118131 L95.603 114,502 134,907 

16.930]/* 39.00*/o 5.016, '. 7.05% 
1 

51.790, o 8.494, o 

1 
STU% 

1_11661a 
1 

0.9316 

1 
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APPENDIX 7 TABLES OF REJECTION RATES 

Calculated 
R Expect d Values 

Number of 
Sequential 
Samples 

Number 
of Cells 

k 

Critical 
CHI- 

Square 
Value 

Number of 
Samples 
Rejected 

Measured 
Rejection 

Rate 

ange 
of Measured 
Rejection 
Rate 

Number 
of 

Samples 
Rejected 

Rate of 
Rejection 

1 200 232.91 2026 5.07% 4.73% 5.40% 2000 5.00% 

2 100 123.23 1956 4.89% 4.56% 5.22% 2000 5.00% 

3 66 84.82 2025 5.06% 4.72% 5.40% 2000 5.00% 

4 50 66.34 2144 5.36% 5.01% 5.71% 2000 5.00% 

5 40 54.57 2017 5.04% 4.71% 5.38% 2000 5.00% 

6 33 46.19 2074 5.19% 4.84% 5.53% 2000 5.00% 

7 28 40.11 1972 4.93% 4.60% 5.26% 2000 5.00% 

8 25 36.42 1888 4.72% 4.39% 5.05% 2000 5.00% 

9 22 32.67 2015 5.04% 4.70% 5.37% 2000 5.00% 

10 20 30.14 1944 4.86% 4.53% 5.19% 2000 5.00% 

Table APP7.1: Measured Rate of Rejection with 5% "Confidence" Level 

Exp cted 
Number of 
Sequential 
Samples 

Number 
of Cells 

k 

Critical 
CHI- 

Square 
Value 

Number of 
Samples 
Rejected 

I 

Measured 
Rejection 

Rate 

Calculated Range 
of Measured 

Rejection 
Rate 

Number 
of 

Samples 
Rejected 

Rate of 
Rejectio 

1 200 248.33 422 1.06% 0.90% 1.21% 400 1.00% 

2 100 134.64 421 1.05% 0.90% 1.21% 400 1.00% 

3 66 94.42 448 1.12% 0.96% 1.28% 400 1.00% 

4 50 74.92 419 1.05% 0.89% 1.20% 400 1.00% 

5 40 62.43 404 1.01% 0.86% 1.16% 400 1.00% 

6 33 53.49 453 1.13% 0.97% 1.30% 400 1.00% 

7 28 46.96 422 1.06% 0.90% 1.21% 400 1.00% 

8 25 42.98 427 1.07% 0.91% 1.23% 400 1.00% 

9 22 38.93 417 1.04% 0.89% 1.20% 400 1.00% 

20 36.19 402 1.01% 0.85% 6% 400 
-1 

2ý 

Table APP7.2: Measured Rate of Rejection with 1% "Confidence" Level 
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l d l Expected Values 
Number of 
Sequential 
Samples 

Number 
of Cells 

k 

Critical 
CHI- 

Square 
Value 

Number of 
Samples 
Rejected 

Measured 
Rejection 

Rate 

cu ate Ca 
Range 
of Measured 
Rejection 
Rate 

Number 
of 

Samples 
Rejected 

Rate of 
Rejection 

1 200 254.13 215 0.54% 0.42% 0.65% 200 0.50% 

2 100 138.99 218 0.55% 0.43% 0.66% 200 0.50% 

3 66 98.10 222 0.56% 0.44% 0.67% 200 0.50% 

4 50 78.23 221 0.55% 0.44% 0.67% 200 0.50% 

5 40 65.48 221 0.55% 0.44% 0.67% 200 0.50% 

6 33 56.33 247 0.62% 0.50% 0.74% 200 0.50% 

7 28 49.65 228 0.57% 0.45% 0.69% 200 0.50% 

8 25 45.56 255 0.64% 0.51% 0.76% 200 0.50% 

9 22 41.40 221 0.55% 1 0.44% 0.67% 200 0.50% 

10 20 38.58 207 0.52% 1 0.41% 0.63% 200 0.50% 

Table APP7.3: Measured Rate of Rejection with 0.5% mConfidence" Level 

l d Expected Values 
Number of 
Sequential 
Samples 

I 

Number 
of Cells 

k 

Critical 
CHI- 

Square 
Value 

Number of 
Samples 
Rejected 

Measured 
Rejection 

Rate 

Calcu ate 
Range 
of Measured 
Rejection 
Rate 

Number 
of 

Samples 
Rejected 

Rate of 
Rejection 

1 200 266.39 44 0.11% 0.06% 0.16% 40 0.10% 

2 100 148.23 45 0.11% 0.06% 0.16% 40 0.10% 

3 66 105.99 47 0.12% 0.06% 0.17% 40 0.10% 

4 50 85.35 47 0.12% 0.06% 0.17% 40 0.10% 

5 40 72.06 43 0.11% 0.06% 0.16% 40 0.10% 

6 33 62.49 52 0.13% 0.07% 0.19% 40 0.10% 

7 28 55.48 50 0.13% 0.07% 0.18% 40 0.10% 

8 25 51.18 52 0.13% 0.07% 0.19% 40 0.10% 

9 22 46.80 39 0.10% 0.05% 0.15% 40 0.10% 

10 20 43.82 43 0.11% 0.06% 0.16% 40 0.10% 

Table APP7.4: Measured Rate of Rejection with 0.1 % "Confidence' Level 
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APPENDIX 8: TEST TO FAIL MANY RANDOM NUMBER GENERATORS 

The development of tests that RNGs will fail is not difficult. A simple example 
that all generators of the form : 

Xn 7- F[ Xn-1, Xn-2, 
....... 9 

Xn-kl 

will fail can be created based on the fact that such generators always create the 

same value of X,, from the vector of X, where i varies from n-k to n-1 - 

If it is considered that an attempt is to be made to plot the process in two 
dimensions, it is convenient to establish a transformation of the vector X, into a 

single number. The method in the test is to select at random a vector X, with 1 

taken as 1 to k. This is given the number 1. This will create a valueXk+lthis 
creates another vector X, with i as 2 to k+1, this is given the value 2. Any 
duplicate vectors created are not renumbered but the next sequence number is 

given to the next unassigned vector. If no more vectors are being created to 

assign numbers but all vectors have not been assigned numbers, a vector not 

yet assigned is selected and the process continues with that vector. This 

continues until all vectors have a transformation number. Obviously this cannot 
be done in practice as there will never be enough time except for when k is 1 

but it can form a mind experiment. 

This can also be done (as a mind experiment) with a sequence of true random 

numbers. 

The test is now applied by selecting another X, vector and generating a 
sequence of vectors as in the normal process of producing random numbers. 
The vectors are transformed to the number given them in the calibration. A plot 
is formed of the nth number against the n+1 number. The real random numbers 
will create a random pattern. Any RNG of the above form will produce a set of 
points lying on a straight line. If the random number generator requires at 
certain intervals a number of random numbers to be skipped the points will lie 

on two lines. The different patterns created by the RNG and the real random 
numbers can easily be seen to be significantly different. 
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