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Abstract 1 

To bring modernisation in low carbon economy, the latent heat storage (LHS) systems are 2 

crucial for sustainable future of smart energy generation and management systems for 3 

renewable sources. This article provides in–depth numerical analyses of 3-dimensional 4 

computational models incorporating coupled thermal enhancement techniques for identifying 5 

optimal solution to guarantee higher charging rate, higher total enthalpy and better thermal 6 

distribution of LHS system. Paraffin is selected as phase change material (PCM), graphene 7 

nano-platelets (GNP) as nano-additives and longitudinal, circular and wire-wound fins as 8 

extended surfaces in vertical shell-and-tube configurations. Based on numerical analyses, 9 

the extended surfaces have registered better thermal distributions and charging rates as 10 

compared to nano-PCMs. The geometrical orientation of extended surfaces and volume 11 

concentration of nano-additives have significant influence on melt front movement, natural 12 

convection and heat transfer performance. The peak values of heat fluxes are significantly 13 

increased from 2.25 kW/m2 for paraffin without thermal enhancement to 35.86, 47.23 and 14 

88.13 kW/m2 for nano-PCM with 1% GNP in circular, longitudinal and wire-wound fins 15 

configurations. Hence, the charging duration for capturing 11.09 MJ is significantly reduced 16 

to mere 1.02 h for wire-wound fins configuration as compared to 23.5 h for paraffin without 17 

thermal enhancement. Likewise, the charging rate of wire-wound fins configuration is 18 

20.95%, 35.96% and 89.94% higher than circular fins, longitudinal fins and nano-PCMs 19 

without extended surfaces, respectively. Moreover, the increase in volume concentration 20 

from 1% to 5% has adverse implications on accumulative enthalpy, natural convection and 21 

charging rate. Therefore, the novel design of coupled enhancement with wire-wound fins 22 

configuration and nano-PCM with 1% GNP are established as optimum solution for potential 23 

wide-ranging practical utilisations of LHS system.   24 

Keywords 25 

Thermal energy storage (TES); Latent heat storage (LHS); Graphene nano-platelets; Nano-26 

PCM; Coupled thermal enhancement; Shell-and-tube heat exchanger 27 
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Nomenclature 

𝐶 mushy zone constant 𝜇 dynamic viscosity (kg/m.s) 

𝐶𝑝 specific heat capacity (kJ/kg.K) 𝛷𝑉𝐶 volume concentration of nano-particles 

𝑑 diameter (m) 𝛽 thermal expansion coefficient (1/K) 

𝑓 liquid fraction  𝜌 density (kg/m3) 

g⃗  gravitational acceleration (m/s2) Subscripts 

𝐻 total enthalpy (kJ) 𝐿 liquefied phase  

𝑘 thermal conductivity (W/m.K) 𝑆 solidified phase  

𝑘𝐵 Boltzmann constant 𝑁𝑃 nano-particles 

𝐿 latent heat capacity (kJ/kg) 𝑃𝐶𝑀 base paraffin 

𝑀𝑊 molecular weight 𝑁𝑃𝐶𝑀 nano-PCM 

𝑁𝐴 Avogadro number 𝑅𝐸𝐹 reference 

𝑃 pressure (N/m2) Acronyms 

𝑞 heat source term (W/m3) GNP graphene nano-platelets 

𝑇 temperature (oC) HTF heat transfer fluid 

𝑡 time (s) LHS latent heat storage 

𝑉 volume (m3) Nu Nusselt number 

𝑉⃗  velocity (m/s) PCM phase change material 

𝑤 weight (kg) VC volume concentration 

Greek   

𝛼 small constant value   

 28 

1. Introduction 29 

Fossil fuels have served the mankind for decades as primary energy sources. However, the 30 

continued increase in global economic growth and societal expansions seek provisions for 31 

additional energy. An over-reliance on fossil fuels to meet energy demands will pose serious 32 

threats to sustainable future due to their rapidly depleting resources, inconsistent prices and 33 

hazardous environmental implications. Technological developments for renewable sources 34 

are crucial to alleviate the dependency on fossil fuels and ensure energy security [1-3]. 35 

However, the intermittent characteristics of renewable sources are undesirable and 36 

detrimental to wide-ranging usefulness and effectiveness of renewable technologies. Energy 37 

storage systems are regarded as pivotal in augmenting the usability of renewable sources. 38 

Latent heat storage (LHS) systems are recognised as promising technologies due to their 39 

higher energy density, isothermal energy storage, phase change materials (PCM) availability 40 
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at wide range of temperatures, longer thermo-physical stability and lower vapour pressure 41 

[4, 5]. However, the main downsides are their unconvincing energy storage and retrieval 42 

rates due to poor thermal conductive nature of PCMs. In last decade, a significant body 43 

research is published on investigating thermal enhancement techniques to include: 44 

geometrical orientation with extended surfaces, dispersion of nano-additives, inclusion of 45 

metal matrices and encapsulations [6-8]. 46 

Shell-and-tube configurations are favoured due to their promising heat transfer performance 47 

and smoother integration to wider applications. In previous literature, the extended surfaces 48 

dimensions, types and numbers are extensively investigated for optimal thermal 49 

enhancement. Niyas et al. [9] conducted 3-dimensional numerical simulations on horizontal 50 

shell-and-tube with 0 – 6 longitudinal fins per tube. It was construed that the optimised 51 

configuration of 25 tubes with 4 – fins per tube can charge and discharge 16.94 MJ and 52 

15.29 MJ in 2.28 h and 2.63 h, respectively. Joybari et al. [10] conducted 2-dimensional 53 

numerical analyses on charging/discharging rates of paraffin in horizontal tube-in-shell with 54 

longitudinal fins ranging from 0 – 8. It was reported that with an increase in fins number from 55 

0 – 8, the charging/discharging durations were decreased by 54.67% and 85.48%, 56 

respectively. It was also reported that fins length and orientation are influential factors on 57 

heat transfer performance. Khan et al. [11] performed 2-dimensional numerical simulations 58 

to investigate the influence of number of tube passes, geometrical dimensions, positioning 59 

and construction materials of longitudinal fins on thermal storage capacity and phase 60 

transition rates in vertical shell-and-tube configuration. It was reported that conduction heat 61 

transfer improved with an increase in tube passes from 9 – 21. Likewise, the fins length was 62 

reported as more influential than the thickness, and the copper and aluminium as 63 

construction materials had demonstrated higher phase transition rates as compared to steel 64 

and cast iron. Furthermore, Khan and Khan. [12, 13] conducted experimental investigations 65 

on charging/discharging cycles of paraffin in the optimised novel design of shell-and-tube 66 

with 21 – tube passes and 76 – longitudinal fins. It was reported that the total enthalpy of 67 

14.36 MJ and 12.09 MJ were charged/discharged in mere 3.12 h and 1.5 h, respectively. It 68 

was also reported that natural convection has significant impact on charging cycles and 69 

minimal influence on conduction dominant discharging cycles. Similar importance of natural 70 

convection influence on thermal distribution and phase transition rates are highlighted in [14, 71 

15].  72 

Lohrasbi et al. [16] performed 2-dimensional numerical optimisation procedure on phase 73 

transition rate and energy storage capacity of shell-and-tube with circular, longitudinal and v-74 

shaped fins. It was reported that as compared to no-fins configuration, the extended 75 

surfaces improved thermal penetrations and resulted in 3.55, 3.26 and 4.28 times higher 76 

phase transition rates, respectively. Caron-Soupart et al. [17] reported that the longitudinal 77 

and circular fins reduced the thermal storage density from 49.2 kWh/m3 for tube with no-fins 78 

to 46.5 kWh/m3 and 45.9 kWh/m3, respectively. In addition to longitudinal and circular fins, 79 

the other extended surfaces include helical and spiral fins [18, 19], branched and snowflake 80 

fins [20, 21], compact and plate fins [22, 23], and pin fins [24, 25]. In terms of design 81 

effectiveness, the type and orientations of extended surfaces in container are crucially 82 

influential for thermal reach and natural convection. Khan and Khan [26] reported that the 83 

charging effectiveness for vertical orientation of longitudinal fins was higher than horizontal 84 

orientation of longitudinal fins, compact fins and transversal squared fins. It can be construed 85 
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from literature that extended surfaces have significant potential for thermal enhancement, 86 

however it can simultaneously increase the overall weight of LHS system.  87 

Inclusion of nano-additives, with their minimal increase in overall weight, is another 88 

thoroughly researched technique for thermal enhancement of LHS systems. Nano-additives 89 

are grouped into: i) metal nano-particles and ii) carbon allotropes. Said and Hassan [27] 90 

incorporated Cu, Al2O3 and CuO based nano-additives in paraffin with 1% and 5% volume 91 

concentrations to examine the thermal enhancement in rectangular heat exchanger coupled 92 

with air-conditioning system. It was reported that the coefficient of performance and power 93 

saving of the air-conditioning system improved with dispersion of nano-particles. Cu based 94 

nano-PCM illustrated higher power saving of 7.41% as compared to 7.28% and 7.35% by 95 

Al2O3 and CuO based nano-PCMs. Ebadi et al. [28] reported that inclusion of higher 96 

concentration of CuO would not guarantee proportional enhancement in charging rates. 97 

Golestaneh et al. [29] reported that the inclusion of even small weight concentration of Al2O3, 98 

Fe2O3, SiO2 and ZnO based nano-particles had significantly reduced the total enthalpy of 99 

nano-PCMs.  100 

Khan and Khan [30] conducted numerical and experimental investigations on Al2O3, AlN and 101 

GNP nano-additives with paraffin in shell-and-tube configuration. It was reported that as 102 

compared to base paraffin, the charging rates were augmented by 28.01%, 36.47% and 103 

44.57%, and the discharging rates were improved by 14.63%, 34.95% and 41.46%, 104 

respectively. It was also reported that with an increase in volume concentrations from 1% – 105 

5%, the overall enthalpy reduced from 4.75% – 20.58%, 4.46% – 19.64% and 0.55% – 106 

2.88%, as compared to base paraffin. Hence, the GNP based nano-PCMs were 107 

recommended due to their higher thermal enhancement and minimal reduction in overall 108 

enthalpy. Warzoha and Fleische [31] evaluated the charging/discharging performance 109 

enhancement of paraffin by incorporating Al, TiO2, MWCNT and GNP nano-particles with 20 110 

vol.%. It was reported that the total melting and solidification duration was significantly 111 

reduced from 1.9 h for base paraffin to 1.58 h, 1.67 h, 1.38 h and 1.33 h for respective nano-112 

PCM. Tang et al. [32] synthesised and evaluated the Al2O3 and GNP based nano-PCMs. It 113 

was reported that with an increase in weight concentration from 4% – 12%, the respective 114 

thermal conductivity was significantly augmented from 0.28 – 0.39 W/m.K and 0.32 – 0.45 115 

W/m.K, as compared to 0.20 W/m.K for base material (MA/HDPE). It was noticed that 116 

thermal enhancement would not respond linearly to increasing volume concentration of 117 

nano-additives. Yuan et al. [33] reported that the latent enthalpy reduced from 166.5 – 118 

140.53 kJ/kg and 167.47 – 132.95 kJ/kg for GNP and EG based nano-PCMs as the weight 119 

concentrations increased from 1% – 8%, respectively. Yu et al. [34] evaluated the thermal 120 

enhancement in paraffin with inclusion of carbon allotropes including: MWCNT, CNF and 121 

GNP. It was reported that GNP based nano-PCM had outperformed other allotropes by 122 

demonstrating significantly higher thermal conductivity and relatively moderate increase in 123 

dynamic viscosity. It can be deduced from literature that carbon allotropes have 124 

demonstrated higher potential for thermal enhancement as compared to metal nano-125 

particles. In addition, the smaller density of carbon allotropes ensures longer thermo-126 

physical stability, excellent dispersion and insignificant sedimentation and agglomeration 127 

issues, which are common downsides of metal nano-particles. Moreover, the identification of 128 

optimal concentration of carbon allotropes are crucial due to simultaneous escalation in 129 

dynamic viscosity which bears adverse impacts on natural convection and thermal 130 

distribution.  131 
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In order to complement the advantages and diminish the downsides of extended surfaces 132 

and nano-additives, the coupled enhancement techniques have higher potentials for further 133 

upgrading the thermo-physical performance. Mahdi et al. [35] reported that solidification 134 

duration of paraffin in horizontal shell-and-tube with longitudinal fins and Al2O3 nano-135 

additives was reduced by 30.2% as compared to 1.8% reduction by Al2O3 without 136 

longitudinal fins. Singh et al. [36, 37] reported that the charging and discharging rates of d-137 

mannitol were augmented from 47% – 68% and 26% – 49% with inclusion of 5 vol.% of GNP 138 

in vertical shell-and-tube with circular fins configuration. Sheikholeslami et al. [38] conducted 139 

numerical analyses on coupled enhancement with longitudinal fins and CuO nano-particles. 140 

It was reported that the discharging rate for coupled enhancement scenario was higher as 141 

compared to fins without nano-additives. On the contrary, Parsazadeh and Duan [39] 142 

reported that the inclusion of 4 vol.% of Al2O3 with longitudinal fins in vertical shell-and-tube 143 

had produced rather weaker charging rate as compared to longitudinal fins without Al2O3.  144 

It is deduced that the literature lacks a) the design and analyses of novel geometrical 145 

configuration of extended surfaces which could develop on the strengths of longitudinal and 146 

circular fins and reduce their limitations, b) the detailed transient numerical analyses of novel 147 

geometrical configuration in 3-dimensional rather than 2-dimensional computational domain, 148 

c) the comprehensive thermo-physical performance evaluations of nano-PCMs in novel 149 

designed shell-and-tube rather than merely focusing on the synthesis, and d) the 150 

comparative analyses of coupled enhancement techniques with varied extended surfaces 151 

and nano-PCMs with varied volume concentrations. This article is focused on addressing the 152 

above-mentioned literature gaps by conducting transient numerical simulations on 3-153 

dimensional computational domains of shell-and-tube with varied extended surfaces and 154 

nano-additives with varied volume concentrations. The novel design configuration of shell-155 

and-tube with wire-wound fins is proposed and evaluated with and without nano-additives, 156 

which is neither considered in our previous publications nor reported elsewhere in literature. 157 

The coupled thermal enhancement with varied extended surfaces and nano-additives 158 

contribute to fourteen scenarios. Numerical analyses help in thermo-physical evaluations of 159 

these scenarios through phase transition rates, overall enthalpy accumulation, temperature 160 

distribution, melt front propagation and heat transfer characterisation, which is 161 

unprecedented. 162 



7 
 

2. Numerical Model 163 

2.1. Physical model and computational domains 164 

This article is focused to provide an optimal design solution for an efficient and responsive 165 

LHS system comprising novel geometrical orientations of extended surfaces in shell-and-166 

tube heat exchanger and nano-additives enhanced thermal storage material. The 167 

geometrical configuration of multi-tube passes in shell container along with varied extended 168 

surfaces such as longitudinal, circular and wire-wound fins are illustrated in Fig. 1. The 169 

purpose of conducting 3-dimensional numerical investigations on varied extended surfaces 170 

configurations are to identify a novel design solution which can guarantee better temperature 171 

distribution, higher heat transfer performance, higher charging rates and maintain higher 172 

total enthalpy.  173 

The vertical shell container is made of copper with outer diameter and thickness of 450 mm 174 

and 1 mm, respectively. It can be noticed that each geometrical configuration consists of 175 

seven tube passes with extended surfaces in shell container which enables the formation of 176 

symmetrical computational domains, as shown in Fig. 1. In order to conduct comparative 177 

analyses, the thickness, length and volume occupied by extended surfaces in computational 178 

domains are constrained to 1 mm, 50.8 mm and 93.5 ml, respectively. The tube and 179 

extended surfaces are made of copper. Paraffin (RT44HC) is selected as PCM due to its 180 

higher latent heat capacity, good thermo-physical reliability and excellent compatibility with 181 

metals [5]. Graphene nano-platelets are chosen as nano-additives due to their higher 182 

thermal conductivity, lower density and desirable long-term suspension behaviour in base 183 

paraffin [30]. Thermo-physical characteristics of paraffin, copper and graphene are listed in 184 

Table 1. Moreover, water is utilised as heat transfer fluid (HTF) to circulate in multi-tube 185 

passes and charge nano-PCM in shell container.  186 

Table 2 provides the list of coupled thermal performance enhancement cases including tube 187 

configurations with and without extended surfaces, paraffin with and without nano-additives 188 

and their respective packing factors. Therefore, this article provides comprehensive thermal 189 

performance evaluations by conducting transient numerical investigations on charging cycles 190 

of all fourteen cases.  191 

Table 1  
Thermo-physical characteristics of base paraffin, copper and graphene [40, 41] 

 Paraffin (RT44HC) Copper Graphene 

Density (kg/m3) 800 (s), 700 (l) 8920 400 

Thermal conductivity (W/m.K) 0.2 400 3000 

Specific heat capacity (J/kg.K) 2000 380 643 

Latent heat capacity (J/kg) 255000 - - 

Phase transition temperature (oC) 41-44 - - 

 192 
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(c) 

Fig. 1 Shell-and-tube heat exchanger with multi-tube passes and varied extended surfaces 193 
orientations: (a) longitudinal fins, (b) circular fins and (c) wire-wound fins. 194 
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Table 2 
List of coupled thermal performance enhancement cases and their respective packing factor 

Case 
No. 

Tube configuration Thermal storage material Packing factor 

𝜑𝑃.𝐹 =
𝑉𝑃𝐶𝑀

𝑉𝑆

 
Paraffin Nano-PCM 

1% VC 2.5% VC 3% VC 5% VC 

1 Plain (no-fins) ✓     1 
2 Plain (no-fins)    ✓   0.975 
3 Longitudinal fins ✓     0.975 
4 Longitudinal fins  ✓    0.965 
5 Longitudinal fins    ✓  0.945 
6 Longitudinal fins     ✓ 0.925 
7 Circular fins ✓     0.975 
8 Circular fins  ✓    0.965 
9 Circular fins    ✓  0.945 
10 Circular fins     ✓ 0.925 
11 Wire-wound fins ✓     0.975 
12 Wire-wound fins  ✓    0.965 
13 Wire-wound fins    ✓  0.945 
14 Wire-wound fins     ✓ 0.925 

2.2. Governing equations 195 

The following assumptions are considered to reduce the computational complexity of 3-196 

dimensional transient numerical simulations of coupled thermal performance enhancement 197 

cases:  198 

a) Due to geometrical symmetry of computational domains in shell container, the heat 199 

transfer from outer boundary of computational domains are neglected. 200 

b) Temperature variations of HTF in computational domain are negligible and hence, 201 

constant inlet wall temperature is assigned for all charging cycles.  202 

c) The volumetric expansion and shrinkage of nano-PCM associated with phase change 203 

are neglected.  204 

d) Boussineq approximation is valid for computing buoyancy driven natural convection.  205 

A numerical model is developed by considering the above assumptions and the governing 206 

equations for mass, momentum and energy conservations, as given below:  207 

Mass conservation: 208 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑉⃗ ) = 0 (1) 

Momentum conservation: 209 

𝜕(𝜌𝑉⃗ )

𝜕𝑡
+ 𝜌𝑉⃗ . (∇. 𝑉⃗ ) = −∇𝑃 + 𝜇∇2. 𝑉⃗ + 𝜌𝛽g⃗ (𝑇 − 𝑇𝑅𝐸𝐹) +

𝐶(1 − 𝑓)2

(𝑓3 + 𝛼)
𝑉⃗  (2) 

Energy conservation: 210 

𝜕(𝜌𝐻)

𝜕𝑡
+ ∇. (𝜌𝐻. 𝑉⃗ ) = ∇. (

𝑘

𝜌𝐶𝑃
∇𝐻) + 𝑞 (3) 

In order to model the phase transition between solid–mushy–liquid, the enthalpy–porosity 211 

technique is implemented. Boussineq approximation is included in momentum conservation 212 

equation to account for buoyancy driven upward movement of lower density molecules with 213 

respect to increasing temperature [42]. Due to transient variations in the density of nano-214 
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PCM with temperature, the instantaneous natural convection response to melting process is 215 

of significant importance. Moreover, the momentum sink term account for mushy zone 216 

porosity, which is derived from Darcy law for porous medium [43]. The phase transition 217 

between solid–mushy–liquid cause variations in the velocity of nano-PCM. Therefore, a 218 

morphological constant 𝐶 is introduced to control the damping effects in mushy zone, with 219 

desirable value ranging from 105 − 106. In this article, the numerical simulation of nano-220 

PCMs with 𝐶 = 106 have produced matching results with experimental results in [30]. 221 

Similarly, 𝛼 is a small computational constant (𝛼 = 10−3) which is employed to avoid division 222 

by zero. During phase transition, the liquid fraction 𝑓 ranges between 0 (solid) – 1 (liquid) 223 

and is defined as the function of temperature:  224 

𝑓 = {

0                            𝑇 < 𝑇𝑆

𝑇 − 𝑇𝑆

𝑇𝐿 − 𝑇𝑆
             𝑇𝑆  ≤ 𝑇 ≤ 𝑇𝐿

1                            𝑇 > 𝑇𝐿

 (4) 

In energy conservation equation, the total enthalpy is the summation of reference enthalpy, 225 

sensible enthalpy and latent enthalpy, as follow:  226 

𝐻 = ℎ𝑅𝐸𝐹 + ∫ 𝐶𝑃𝑑𝑇
𝑇

𝑇𝑅𝐸𝐹

+ 𝑓𝐿 (5) 

The coupled thermal performance enhancement involve both extended surfaces and nano-227 

additives enhanced paraffin or nano-PCM. Table 1 provides thermo-physical characteristics 228 

of paraffin as base material and graphene as nano-additives. In order to estimate the 229 

variations in thermo-physical characteristics of nano-PCM, the following relations for mixture 230 

of two components are implemented [44]:  231 

 𝜌𝑁𝑃𝐶𝑀 = (1 − 𝛷𝑉𝐶)𝜌𝑃𝐶𝑀 + 𝛷𝑉𝐶𝜌𝑁𝑃 (6) 

𝐿𝑁𝑃𝐶𝑀 =
(1 − 𝛷𝑉𝐶)𝜌𝑃𝐶𝑀𝐿𝑃𝐶𝑀

𝜌𝑁𝑃𝐶𝑀
 (7) 

𝐶𝑃,𝑁𝑃𝐶𝑀 =
(1 − 𝛷𝑉𝐶)𝜌𝑃𝐶𝑀𝐶𝑃,𝑃𝐶𝑀 + 𝛷𝑉𝐶𝜌𝑁𝑃𝐶𝑃,𝑁𝑃

𝜌𝑁𝑃𝐶𝑀
 (8) 

𝛽𝑁𝑃𝐶𝑀 =
(1 − 𝛷𝑉𝐶)𝜌𝑃𝐶𝑀𝛽𝑃𝐶𝑀 + 𝛷𝑉𝐶𝜌𝑁𝑃𝛽𝑁𝑃

𝜌𝑁𝑃𝐶𝑀
 (9) 

Moreover, the transient variations in dynamic viscosity of nano-PCM with respect to 232 

operating temperature, volume concentration and particle size of nano-additives are 233 

evaluated by employing the semi-empirical correlation proposed by Corcione [45], as given 234 

below:  235 

𝜇𝑁𝑃𝐶𝑀 =
𝜇𝑃𝐶𝑀

1 − 34.87(𝑑𝑁𝑃 𝑑𝑃𝐶𝑀⁄ )−0.3𝛷𝑉𝐶
1.03 (10) 

where 𝑑𝑁𝑃 represents the diameter of graphene nano-platelets, which is equal to 6 nm [30, 236 

41]. Similarly, the equivalent diameter 𝑑𝑃𝐶𝑀 and dynamic viscosity 𝜇𝑃𝐶𝑀 of base paraffin are 237 

determined from following relations [45, 46]:  238 
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𝑑𝑃𝐶𝑀 = 0.1 (
6𝑀𝑊

𝜋𝑁𝐴𝜌𝑃𝐶𝑀,𝑂
)

0.333

 (11) 

𝜇𝑃𝐶𝑀 = 0.001𝑒𝑥𝑝 (−4.25 +
1790

𝑇
) 

(12) 

Moreover, the transient modifications in effective thermal conductivity of nano-PCM with 239 

respect to operating temperature, volume concentration and particle size of graphene nano-240 

platelets are determined by implementing the empirical correlations proposed by Vajjha and 241 

Das [47], as follow: 242 

𝑘𝑁𝑃𝐶𝑀 =
𝑘𝑁𝑃 + 2𝑘𝑃𝐶𝑀 − 2(𝑘𝑃𝐶𝑀 − 𝑘𝑁𝑃)𝛷𝑉𝐶

𝑘𝑁𝑃 + 2𝑘𝑃𝐶𝑀 + (𝑘𝑃𝐶𝑀 − 𝑘𝑁𝑃)𝛷𝑉𝐶
𝑘𝑃𝐶𝑀

+ 5 × 104𝜁𝜌𝑃𝐶𝑀𝛷𝑉𝐶𝐶𝑃,𝑃𝐶𝑀√
𝜅𝐵𝑇

𝜌𝑁𝑃𝑑𝑁𝑃
𝑓(𝑇,𝛷𝑉𝐶) 

(13) 

𝑓(𝑇,𝛷𝑉𝐶) = (2.8217 × 10−2𝛷𝑉𝐶 + 3.917 × 10−3) (
𝑇𝑁𝑃𝐶𝑀

𝑇𝑅𝐸𝐹
) + (−3.0669 × 10−2𝛷𝑉𝐶

− 3.91123 × 10−3) 

(14) 

where 𝑓(𝑇,𝛷𝑉𝐶) is the correction factor, which accounts for Brownian motion of graphene 243 

nano-platelets in liquid paraffin. Thermo-physical characteristics of nano-PCMs with varied 244 

volume concentrations of 1%, 3% and 5% are derived from Eq. (6) – Eq. (14), as shown in 245 

Table 3. 246 

Table 3 
Thermo-physical properties of nano-PCM with varied volume concentration in solid and liquid phases  

Nano-PCM 

1% VC 3% VC 5% VC 

Solid Liquid Solid Liquid Solid Liquid 

Density (kg/m3) 796.00 697.00 788.00 691.00 780.00 685.00 

Specific heat capacity (J/kg. K) 1993.18 1992.21 1979.34 1976.43 1965.21 1960.38 

Latent heat capacity (J/kg) 253.72×10
3
  253.54×10

3
 251.12×10

3
 250.57×10

3
 248.46×10

3
 247.55×10

3
 

Thermal expansion coefficient (1/K) 298.61×10
-6

  298.41×10
-6

 295.79×10
-6

 295.20×10
-6

 292.91×10
-6

 291.93×10
-6

 

Dynamic viscosity (kg/m.s) 7.04×10
-3

 2.89×10
-3

 8.91×10
-3

 3.66×10
-3

 12.2×10
-3

 5.02×10
-3

 

Thermal conductivity (W/m.K) 0.276 0.484 0.281 0.498 0.291 0.523 

* Solid and liquid represent thermo-properties of nano-PCM at 20 oC and 70 oC, respectively.  

2.3. Initial and boundary conditions 247 

During charging cycle, the heat transfer occurs between high temperature water circulating 248 

in multi-tube passes and low temperature nano-PCM in shell container. As the charging 249 

cycle progresses, the nano-PCM accumulates thermal energy and consequently, it 250 

undergoes phase transition from solid–mushy–liquid. To simulate the charging cycle, the 251 

volume of nano-PCM in computational domain (see Fig. 1) is set to an initial temperature of 252 

10 oC which assures the initial solid state. Likewise, the inside face of tube in computational 253 

domain is set to constant inlet temperature of 62 oC, which mimics the high temperature 254 
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water from solar collector [13]. The charging cycle concludes once the entire mass of nano-255 

PCM undergoes phase transition to liquid state.  256 

2.4. Numerical simulation technique 257 

Finite volume method is adopted to discretise the governing equations for nano-PCMs in 3–258 

dimensional computational domains shown in Fig. 1. The transient charging cycles are 259 

solved using sequential pressure–based solution algorithm. To achieve the pressure–260 

velocity coupling in momentum conservation equation (Eq. 2), the higher order pressure–261 

implicit with splitting of operators (PISO) algorithm is employed. The spatial discretisation of 262 

gradients and derivatives are obtained from Green-Gauss node based method. Pressure 263 

staggering option (PRESTO) scheme is employed for natural convection. Moreover, the 264 

second order upwind scheme is implemented for spatial discretisation of convective terms in 265 

momentum and energy conservation equations. The solution controls with under-relaxation 266 

factors for pressure, momentum and energy are set to 0.3, 0.7 and 1, respectively [48]. The 267 

convergence conditions for continuity, velocity and energy equations are monitored with 268 

residual criteria programmed at 10
-6

, respectively. Furthermore, the stable computational 269 

solutions for transient charging cycles are achieved by implementing first order implicit 270 

formulation with fixed time stepping iterative advancement approach.  271 

2.5. Time step and grid independency tests 272 

The precision and reliability of numerical simulations for various computational domains are 273 

established by investigating time step and grid resolution independencies. Three varied time 274 

steps of 0.1, 0.5 and 1 s and three grid resolutions with maximum element size of 0.5, 0.75 275 

and 1 mm for all computational domains including tube with no-fins, longitudinal fins, circular 276 

fins and wire-wound fins configurations are simulated. Table 4 provides the liquid fraction of 277 

paraffin subjected to charging cycle for 1 h for all abovementioned scenarios and the percent 278 

errors are also computed. In case of grid independency tests, the time step of 1 s is selected 279 

for simulation. The grid resolution independency for all scenarios are established with mesh 280 

sizes of 5.35×10
7
, 3.70×10

7
, 2.35×10

7
 and 8.08×10

7
, respectively. Similarly, in case of time 281 

step independency, the established mesh sizes are simulated with varied time steps. It is 282 

evident that the liquid fraction for all scenarios are almost identical with percent error ranging 283 

between 0.01% – 0.57%. Therefore, the time step of 1 s is selected to help reduce the 284 

computational cost.  285 

2.6. Experimental validation  286 

In order to establish the accuracy and robustness of numerical simulations, the transient 287 

temperature results are compared with the experimental results for paraffin in longitudinal 288 

fins orientation [13] and nano-PCM in shell-and-tube heat exchanger [30], as presented in 289 

Fig. 2. In both cases, the numerical simulations are performed for computational domains by 290 

taking into consideration the geometrical configurations and dimensions, initial and boundary 291 

conditions and material properties as reported in [13, 30]. It is evident that the numerical and 292 

experimental temperature curves are in good agreement. The mean absolute percentage 293 

errors for paraffin in longitudinal fins orientation and nano-PCM in shell-and-tube heat 294 

exchanger are 2.35% and 2.67%, respectively.  295 
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Table 4 
Time step and grid resolution independency tests for computational domain of tube with no-fins, 
longitudinal fins, circular fins and wire-wound fins. 

Tube 
configuration 

Max element 
size (mm) 

Mesh 
size 

Liquid fraction 
after 1 hr 

Percent 
error 

Time 
steps 

Liquid fraction 
after 1 hr 

Percent 
error 

Plain tube 
(no-fins)  

1 4.19x106 0.1351 10.20 0.1 s 0.1219 0.57 

0.75 9.09x106 0.1243 1.39 0.5 s 0.1224 0.16 

0.5 5.35x107 0.1226 - 1 s 0.1226 - 

Tube with 
longitudinal 
fins  

1 4.10x106 0.7678 4.75 0.1 s 0.7326 0.05 

0.75 9.60x106 0.7433 1.41 0.5 s 0.7329 0.01 

0.5 3.70x107 0.7330 - 1 s 0.7330 - 

Tube with 
circular fins  

1 3.76x106 0.9122 4.08 0.1 s 0.8755 0.10 

0.75 8.15x106 0.8856 1.05 0.5 s 0.8757 0.08 

0.5 2.35x107 0.8764 - 1 s 0.8764 - 

Tube with 
Wire-wound 
fins  

1 3.55x107 0.9823 1.22 0.1 s 0.9695 0.10 

0.75 8.08x107 0.9705 - 0.5 s 0.9698 0.07 

0.5 2.73x108 0.9700 0.05 1 s 0.9705 - 

 296 

Fig. 2 Numerical model validations with experimental results for paraffin in longitudinal fins and nano-297 
PCM in shell-and-tube heat exchanger. 298 

3. Results and Discussion  299 

In order to evaluate the couple thermal performance enhancement cases listed in Table 2, 300 

the charging cycle of paraffin in plain tube orientation (case 1) is selected as standard for 301 

comparison. Likewise, the influence of various geometrical configurations with nano-PCMs 302 

on charging cycles are analysed from transient variations in temperature, liquid fraction, total 303 

enthalpy, heat flux and heat transfer coefficient, velocity and Nusselt number (Nu).  304 

In case of charging cycles, the temperature gradient between water in tube and nano-PCM 305 

in shell container actuates heat transfer. In initial stages, the heat transfer rate is higher and 306 

the sensible enthalpy is rapidly captured by nano-PCM. In consequence, the temperature of 307 

nano-PCM increases until the phase transition temperature is reached (10 oC – 41 oC). At 308 

this point, the sensible energy storage capacity of nano-PCM is achieved. In next stages, the 309 

heat transfer rate reduces to certain level and is followed by gradual decline while capturing 310 

the latent enthalpy at almost isothermal temperature (41 oC – 44 oC). In the course of latent 311 
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enthalpy storage, the phase transition from solid–mushy–liquid shapes up. Upon completion 312 

of latent heat capacity, the liquid nano-PCM undergoes rapid increase in temperature until it 313 

reaches the inlet temperature of water. In these final stages, the sensible enthalpy of nano-314 

PCM in liquid phase is stored as the temperature increases from 44 oC – 62 oC.  315 

The impact of various geometrical configurations with and without nano-additives on thermal 316 

performance of LHS system are illustrated and discussed in the following sections.  317 

3.1. Plain tube configuration – Case 1 318 

In case 1, the thermal storage material is paraffin without graphene nano-platelets and 319 

geometrical configuration is comprised of tube without extended surfaces. Fig. 3 illustrates 320 

the temperature, liquid fraction and enthalpy contours at various time intervals during the 321 

course of charging cycle. In Fig. 3, the top row represents the temperature contours in entire 322 

computational domain and the bottom row illustrates the cross-section of computational 323 

domain with temperature contours on the left side and liquid fraction and enthalpy on the 324 

right side. Likewise, Fig. 4 illustrates the transient behaviour of paraffin by including the 325 

temperature, liquid fraction, velocity, total enthalpy, heat flux, heat transfer coefficient and Nu 326 

plots. 327 

It can be observed that during initial stages, the higher temperature gradient results in rapid 328 

escalation of heat flux to its peak value of 2.257 kW/m2. In these earlier stages, conduction 329 

is the dominant mode of heat transfer. Temperature contours illustrates that temperature of 330 

paraffin in close proximity to the heated wall of tube is increased. However, the regions at 331 

slight distance are still at low energy state which can depict the poor thermal propagation in 332 

low thermal conductive solid paraffins. Due to higher heat flux between heated wall of tube 333 

and the adjacent paraffin, the sensible and latent portions of enthalpy are rapidly absorbed 334 

and therefore, it experiences phase transition from solid–mushy–liquid. With an increase in 335 

liquid paraffin around the heated wall of tube, the buoyancy driven natural convection causes 336 

the upward rise of higher temperature and lower density liquid paraffin. Mean velocity and 337 

Nu of liquid paraffin surge to their peak values of 0.247 mm/s and 5.947, respectively. In 338 

next stages, the accumulation of higher temperature liquid paraffin in upper region of shell 339 

container increases and results in higher charging rate as compared to lower region. Heat 340 

flux remains steady with linear increase in enthalpy curve. As these stages progress, the 341 

natural convection intensifies, which results in further accumulation of liquid paraffin in top 342 

region. In final stages, the congestion and weaker mobility of liquid paraffin in top region 343 

result in linear and gradual decline in heat flux and mean velocity. Due to which, the liquid 344 

fraction, enthalpy and mean temperature curves illustrate a slower and logarithmic growth. 345 

Hence, the total charging time required for paraffin in case 1 is 26 h.  346 
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  347 

Fig. 3 Temperature, liquid fraction and enthalpy contours of paraffin in shell-and-tube without 348 
extended surfaces orientation while charging at constant inlet temperature of 62 oC.  349 

 
(a) 

 
(b) 

Fig. 4 Transient behaviour of paraffin during the course of charging cycle in shell-and-tube without 350 
extended surfaces. 351 
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3.2. Plain tube with nano-PCM configuration – Case 2 352 

In case 2, the thermal storage material is nano-PCM with 2.5% volume concentration of 353 

graphene nano-platelets, as shown in Table 2. The packing factor of case 2 is 0.975, which 354 

is similar to case 3, 7 and 11. Hence, it ensures better comparisons between various thermal 355 

performance enhancement techniques. Fig. 5 (a) illustrates the temperature, liquid fraction 356 

and enthalpy contours and Fig. 6 (a) and (b) represent the transient responses to charging 357 

cycle.  358 

The inclusion of high thermal conductive graphene nano-platelets supplements the effective 359 

thermal conductivity and surface area for heat transfer. It is evident from temperature and 360 

enthalpy contours that thermal propagation in case 2 is relatively improved as compared to 361 

case 1. Due to augmented effective thermal conductivity, the heat flux of nano-PCM reaches 362 

its peak value of 3.184 kW/m2. In addition, the natural convection is slightly improved with 363 

peak value for mean velocity reaches to 0.259 mm/s. The reasons for slight enhancement in 364 

natural convection is that with inclusion of graphene nano-platelets, the effective dynamic 365 

viscosity also increases which curtails the buoyancy driven upward movement of nano-PCM. 366 

Despite that, the enhancements in temperature propagations and rates of enthalpy capture 367 

and phase transition are significant. For instance, the total charging time required for case 2 368 

is 13.75 h, which is reduced by 47.12% as compared to case 1. 369 

3.3. Longitudinal fins configuration – Case 3 370 

In case 3, the computational domain comprises of paraffin as thermal storage material and 371 

tube with longitudinal fins as geometrical configuration for heat transfer. For similar packing 372 

factor, the thermal performance enhancement induced by graphene nano-platelets in case 2 373 

and longitudinal fins in case 3 can be compared. During charging cycle, the thermal contours 374 

of paraffin in longitudinal fins configuration are illustrated in Fig. 5 (b) and the transient 375 

variations in Fig. 6 (c) and (d), respectively.  376 

As demonstrated in Fig. 5 (b), the inclusion of longitudinal fins significantly enhances the 377 

radial thermal distribution and extends the thermal reach towards the shell boundary. The 378 

surface area for heat transfer is augmented by longitudinal fins and therefore, the peak heat 379 

flux of 39 kW/m2 is generated. Hence, the accumulative enthalpy capture and phase 380 

transition rate for paraffin in regions closer to heated walls of tube with longitudinal fins are 381 

boosted. Moreover, the longitudinal fins orientation in computational domain promotes the 382 

buoyancy driven upward movement of higher temperature liquid paraffin. Due to higher 383 

natural convection, the peak values for mean velocity and Nu are escalated to 1.13 mm/s 384 

and 131.8, respectively. Therefore, the total charging time for paraffin in longitudinal fins 385 

orientation is shortened to 2.16 h. In other words, the charging rate is significantly improved 386 

by 91.67% and 84.24% as compared to case 1 and case 2, respectively.  387 

3.4. Circular fins configuration – Case 7 388 

In this case, the thermal performance enhancement of paraffin in circular fins configuration 389 

are evaluated by conducting the charging cycle at constant inlet temperature. Fig. 5 (c) 390 

illustrates the thermal contours and Fig. 6 (d) and (e) represent the transient responses of 391 

paraffin to charging cycle in circular fins configuration.  392 
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It can be noticed from temperature contours that the radial and vertical thermal distributions 393 

are significantly improved with inclusion of circular fins as compared to case 1–3. Although 394 

the length and thickness constraints of extended surfaces are applied, the thermal energy 395 

propagation towards the distant regions closer to shell boundary is apparently better than 396 

longitudinal fins. Hence, at earlier stages, the conduction dominant heat transfer enables the 397 

rapid capturing of thermal enthalpy. However, in next stages, the buoyancy driven natural 398 

convection is weakened by circular fins as it obstructs the upward movement of liquid 399 

paraffin. As a result, the peak values for heat flux, mean velocity and Nu merely reach to 400 

31.11 kW/m2, 0.842 mm/s and 39.32, respectively. Therefore, it can be deduced that 401 

conduction is the dominant mode of heat transfer in circular fins configuration. Whereas, the 402 

natural convection is significantly weaker as compared to longitudinal fins configuration. 403 

Despite the weaker natural convection, the total charging time required for paraffin in circular 404 

fins configuration is reduced to 1.75 h. Hence, the charging rate is significantly enhanced by 405 

93.27%, 87.27% and 18.98% as compared to case 1–3, respectively. 406 

3.5. Wire-wound fins configuration – Case 11 407 

Thermal performance enhancement of paraffin in tube with wire-wound fins configuration are 408 

evaluated by numerical simulation of charging cycle. This novel geometrical configuration of 409 

tube with wire-wound fins is formulated to counter the limitations incurred in longitudinal and 410 

circular fins configurations. The length, thickness and occupied volume of wire-wound fins 411 

configuration conform to the specified constraints. Hence, it results in similar packing factor 412 

as compared to case 2, 3 and 7, as shown in Table 2. However, even for similar packing 413 

factor, the wire-wound fins configuration has generated significantly higher effective heat 414 

transfer area. For instance, the effective surface area for wire-wound fins is 85.05% and 415 

83.57% higher as compared to longitudinal and circular fins configurations. Thermal 416 

contours and transient responses to charging cycle are illustrated in Fig. 5 (d) and Fig. 6 (g) 417 

and (h), respectively.  418 

Temperature contours demonstrate that the wire-wound configuration has relatively better 419 

radial and vertical thermal distribution as compared to tube without fins, with longitudinal fins 420 

and circular fins. The reason behind is the higher effective heat transfer area and the 421 

proximity of wire-wound fins to paraffin in both radial and vertical directions. As a result, the 422 

peak heat flux reaches to 82.93 kW/m2 which is significantly higher as compared to earlier 423 

cases. Moreover, this novel compact design of wire-wound fins supports and strengthens the 424 

buoyancy driven natural convection. Due to which, the peak values for mean velocity and Nu 425 

are escalated to 1.427 mm/s and 197.2, respectively. Furthermore, the mean temperature, 426 

enthalpy capture and liquid fraction curves illustrate a steeper increase, which is followed by 427 

a gradual logarithmic increase in later stages of the charging cycle. It is construed that both 428 

conduction and natural convection are dominant modes of heat transfer in wire-wound fins 429 

configuration. Hence, the total charging time is lessened to mere 1.38 h. In other words, the 430 

charging rate for wire-wound fins configuration is 94.68%, 89.94%, 35.96% and 20.95% 431 

higher as compared to tube without fins, graphene nano-platelets enhanced paraffin in tube 432 

without fins, longitudinal fins and circular fins configurations, respectively. 433 
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(d) 

Fig. 5 Temperature, liquid fraction and enthalpy contours of (a) nano-PCM in shell-and-tube without 434 
extended surfaces (case 2), (b) paraffin in shell-and-tube with longitudinal fins (case 3), (c) paraffin in 435 
shell-and-tube with circular fins (case 7) and (d) paraffin in shell-and-tube with wire-wound fins (case 436 
11) while charging at constant inlet temperature of 62 oC. 437 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 6 Transient behaviour of (a-b) nano-PCM in shell-and-tube without extended surfaces (case 2), 438 
(c-d) paraffin in shell-and-tube with longitudinal fins (case 3), (e-f) paraffin in shell-and-tube with 439 
circular fins (case 7) and (g-h) paraffin in shell-and-tube with wire-wound fins (case 11) during the 440 
course of charging cycle. 441 
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3.6. Coupled heat transfer enhancement 442 

In this section, the influence of coupled thermal performance enhancement with three 443 

volume concentrations of graphene nano-platelets and extended surfaces are analysed and 444 

compared to identify an optimal design solution for LHS systems. As listed in Table 2, the 445 

nano-PCMs with longitudinal fins in case 4–6, with circular fins in case 8–10 and with wire-446 

wound fins in case 12–14 are evaluated by numerical simulations of charging cycles. The 447 

nano-PCMs with three varied volume concentrations i.e. 1%, 3% and 5% and their 448 

respective packing factors of 0.965, 0.945 and 0.925 are investigated. 449 

Temperature, enthalpy and liquid fraction contours for coupled enhancement scenarios, 450 

while charging at constant inlet temperature of 62 oC for 0.5 h, are illustrated in Fig. 7. 451 

Similarly, the transient responses of liquid fraction and heat flux to charging cycles are 452 

illustrated in Fig. 8. The effective thermal conductivity of nano-PCMs are augmented with 453 

inclusion of graphene nano-platelets. As a result, the heat fluxes for all scenarios in 454 

conduction dominant earlier stages are improved with increasing volume concentrations. For 455 

instance, the maximum heat fluxes for longitudinal fins are increased from 39 kW/m2 for 456 

paraffin to 47.23 kW/m2, 47.26 kW/m2 and 47.69 kW/m2 for nano-PCMs with 1%, 3% and 5% 457 

volume concentrations, respectively. Likewise, the peak heat fluxes for circular and wire-458 

wound fins are observed to increase from 31.11 kW/m2 to 35.86, 35.90, 35.97 kW/m2 and 459 

from 82.93 kW/m2 to 88.13, 88.74 and 89.21 kW/m2, respectively. In consequence, the 460 

thermal energy in conduction dominant earlier stages are rapidly captured.  461 

In subsequent stages, the buoyancy driven natural convection influences the upward rise of 462 

liquid nano-PCMs. However, the impacts of natural convection on thermal propagations and 463 

charging rates are compromised by augmented dynamic viscosity of nano-PCMs. Due to 464 

which, the overall heat flux, mean velocity and Nu for nano-PCMs with increasing volume 465 

concentrations have registered decreasing trends for all extended surfaces. For instance, in 466 

case of longitudinal fins, the peak values for mean velocity and Nu for nano-PCMs are 467 

decreased from 1.48 mm/s to 1.33 mm/s and 93.20 to 88.35 with an increase in volume 468 

concentration from 1% to 5%, respectively. In case of circular fins, the peak values for mean 469 

velocity and Nu for nano-PCMs are reduced from 0.96 mm/s to 0.70 mm/s and 28.33 to 470 

26.71, respectively. Likewise, in case of wire-wound fins, the peak values for mean velocity 471 

and Nu for nano-PCMs are declined from 1.64 mm/s to 1.40 mm/s and 144.30 to 132.80, 472 

respectively. Hence, the predominant augmentation in dynamic viscosity with increasing 473 

volume concentrations can overweight the enhancement in effective thermal conductivity 474 

and can potentially decelerate the melting process in these later stages of charging cycle. 475 

Similar findings from both numerical and experimental studies are reported in previous 476 

literature [49-52]. 477 

In spite of weaker natural convection, the overall heat fluxes for nano-PCMs are relatively 478 

higher as compared to paraffin without nano-additives, as presented in Fig. 8. In final 479 

stages, the complexities of liquid congestions and weaker mobility are subdued by higher 480 

heat fluxes of nano-PCMs, which results in rapid transport of thermal energy to bottom 481 

region of shell container.  482 

Hence, the overall charging times for coupled enhancement scenarios are significantly 483 

reduced, as presented in Fig. 9. In comparison to paraffin in plain tube configuration (case 484 

1), the total charging times for nano-PCMs with 1% graphene nano-platelets in longitudinal, 485 



22 
 

circular and wire-wound fins configurations are significantly reduced by 94.17%, 94.87% and 486 

96.08%, respectively. Likewise, by substituting paraffin with nano-PCMs with 1% graphene 487 

nano-platelets, the total charging durations for longitudinal, circular and wire-wound fins 488 

configurations can be further reduced by 32.44%, 24% and 26.09%, respectively. However, 489 

with an increase in volume concentrations, the overall charging durations have either 490 

remained similar for circular and wire-wound fins configurations or have increased for 491 

longitudinal fins configuration, as shown in Fig. 9. Similarly, the temperature and enthalpy 492 

contours of nano-PCMs in longitudinal, circular and wire-wound fins configurations have 493 

demonstrated insignificant variations with increasing volume concentrations, as illustrated in 494 

Fig. 7. The reasons behind are the disadvantages associated with increasing dynamic 495 

viscosity in terms of weakened thermal propagation and natural convection. 496 

As provided in Table 2, the packing factor values decrease with inclusion of extended 497 

surfaces and nano-additives. In consequence, the total volume available for pure paraffin in 498 

shell container is compromise. Therefore, the total enthalpy for paraffin with extended 499 

surfaces configurations are reduced to 11.28 MJ as compared to 11.52 MJ for paraffin in 500 

plain tube configuration (case 1). Similarly, the total enthalpy for extended surfaces are 501 

further reduced by inclusion of graphene nano-platelets with 1%, 3% and 5% volume 502 

concentrations to 11.09 MJ, 10.72 MJ and 10.38 MJ, respectively.  503 

Moreover, the potential costs associated with inclusion of graphene nano-platelets is another 504 

fundamental factor in establishing the optimal volume concentration [53]. Table 5 provides 505 

the cost estimations for paraffin and nano-PCMs with varied volume concentrations for shell-506 

and-tube with extended surfaces configurations (case 3 – 14). As compared to paraffin, the 507 

total price for nano-PCMs with 1%, 3% and 5% volume concentrations are increased by 508 

21.84%, 71.85% and 123.97%, respectively. Hence, in addition to increasing dynamic 509 

viscosity and reducing total enthalpy, the significant increase in total price of nano-PCMs 510 

persuade to recommend nano-PCMs with 1% volume concentration. 511 

To conclude, the coupled enhancement scenarios have significantly shortened the overall 512 

charging duration at minimal expense of total enthalpy. Amongst the three extended 513 

surfaces configurations, the novel design of wire-wound fins configuration has demonstrated 514 

relatively higher charging rates, higher heat fluxes and better thermal distributions for both 515 

paraffin and nano-PCM. Therefore, the wire-wound fins configurations with paraffin in case 516 

11 and with nano-PCM in case 12 are recommended for utilisation in large-scale domestic 517 

and commercial applications.  518 

 519 
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(c) 

Fig. 7 Temperature contours, liquid fractions and enthalpy behaviour of paraffin and nano-PCMs with 520 
three varied volume concentrations in (a) longitudinal, (b) circular and (c) wire-wound fins 521 
configurations while charging for 0.5 h at constant inlet temperature of 62 oC.  522 
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(a) 

 

(b) 

 

(c) 

Fig. 8 Liquid fraction and heat flux response to charging cycles of paraffin and nano-PCMs with three 523 
varied volume concentrations in: (a) longitudinal, (b) circular and (c) wire-wound fins configurations. 524 
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 525 

Fig. 9 Total charging duration of paraffin and nano-PCMs with varied volume concentrations in 526 
longitudinal, circular and wire-wound fins configurations. 527 

Table 5 
Cost evaluation for nano-PCMs with varied volume concentrations 

PCM in extended surfaces 
configurations 

Weight of 
paraffin (kg) 

Price of 
paraffin (€) * 

Weight of 
GNP (kg) *** 

Price of 
GNP (€) ** 

Total price of 
nano-PCM (€) 

Percentage 
increase (%) 

Paraffin  35.21 502.05 - - 502.05 - 

Nano-PCM with 1% GNP 34.01 484.98 0.20 126.72 611.70 21.84 

Nano-PCM with 3% GNP 33.29 474.77 0.61 387.99 862.77 71.85 

Nano-PCM with 5% GNP 32.55 464.14 1.03 660.27 1124.41 123.97 

* Price of paraffin (RT44HC) = 14.26 €/kg [40] 

** Price of GNP = 639.00 €/kg [41] 

*** 𝑤𝑁𝑃 = (
𝛷𝑉𝐶

100−𝛷𝑉𝐶
) (𝜌𝑁𝑃𝑉𝑁𝑃𝐶𝑀) 

 528 

4. Conclusions 529 

This article is focused on 3-dimensional transient numerical simulations of coupled thermal 530 

performance enhancement by including graphene based nano-PCMs and three extended 531 

surfaces based shell-and-tube configurations for LHS applications. The extended surfaces 532 

include longitudinal, circular and wire-wound fins and the varied volume concentrations of 533 

graphene nano-platelets are chosen as 1%, 3% and 5%. In total, fourteen coupled 534 

enhancement cases are investigated to identify the optimal thermal performance scenario 535 

with higher charging rate, total enthalpy and better thermal distribution in shell container. 536 

Based on numerical simulation of charging cycles, the following conclusions are derived: 537 

• Thermal distributions and phase transition rates of paraffin for extended surfaces are 538 

relatively higher as compared to graphene based nano-PCMs. Moreover, the heat 539 

fluxes, heat transfer coefficients and Nu for extended surfaces are higher due their 540 

extended thermal reach and higher heat transfer area as compared to nano-PCMs. 541 

For instance, the total charging duration is reduced from 26 h for pure paraffin in shell-542 

and-tube without extended surfaces (case 1) to 13.75 h for graphene nano-platelets 543 
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enhanced paraffin in shell-and-tube without extended surfaces (case 2). Whereas, the 544 

total charging duration for paraffin is significantly shortened to 2.16 h, 1.75 h and 1.38 545 

h for longitudinal (case 3), circular (case 7) and wire-wound (case 11) fins. 546 

• Natural convection is crucial for melt front propagation, thermal distribution and 547 

charging rate of LHS system. It is noticed that with inclusion of graphene nano-548 

platelets, the effective thermal conductivity and dynamic viscosity of paraffin are 549 

significantly improved. Hence, the influence of increment in thermal conductivity on 550 

buoyancy driven natural convection is moderated with escalation in dynamic viscosity. 551 

Likewise, the geometrical orientations of extended surfaces are significantly influential 552 

for thermal distribution and melt front propagation. For instance, the circular fins 553 

orientation restricts the upward rise of liquefied paraffin, whereas the longitudinal and 554 

wire-wound fins orientations supplements the buoyancy driven upward movement. 555 

Hence, the Nu for circular fins orientation peaks to 39.32, whereas it peaks to 131.8 556 

and 197.2 for longitudinal and wire-wound fins configurations.  557 

• Thermal performance of extended surfaces are further enhanced with nano-PCMs. 558 

Heat fluxes and charging rates are significantly improved with inclusion of 1% volume 559 

concentration of graphene nano-platelets. For instance, the heat fluxes are increased 560 

from 39 – 47.23 kW/m2 for longitudinal fins, 31.11 – 35.86 kW/m2 for circular fins and 561 

82.93 – 88.13 kW/m2 for wire-wound fins configurations. In consequence, the total 562 

charging durations are further reduced from 2.16 – 1.52 h, 1.75 – 1.33 h and 1.38 – 563 

1.02 h for longitudinal, circular and wire-wound fins configurations, respectively. 564 

• Higher volume concentrations have adverse impacts on total enthalpy, natural 565 

convection and melt front propagation. Total enthalpy is reduced from 11.28 MJ for 566 

paraffin with extended surfaces to 10.38 MJ for nano-PCM with 5% volume 567 

concentration. Likewise, due to weaker natural convection with increasing dynamic 568 

viscosity, the overall charging durations are either similar or increased with increasing 569 

volume concentrations from 1% to 5%. In order to acquire higher charging rates at 570 

minimal expense of total enthalpy and economic cost, the nano-PCM with 1% volume 571 

concentration is recommended for shell-and-tube with extended surfaces.  572 

• The novel design of wire-wound fins configuration has illustrated relatively higher 573 

charging rate, better thermal distribution and insignificant reduction in total enthalpy. In 574 

case of pure paraffin in wire-wound fins configuration (case 11), the total enthalpy of 575 

11.28 MJ is captured in mere 1.38 h as compared to 24.5 h for paraffin in shell-and-576 

tube without extended surfaces (case 1). In order to compare with other extended 577 

surfaces, the charging rate for equal amount of thermal enthalpy (11.28 MJ) in wire-578 

wound fins configuration is 35.96% and 20.95% higher than longitudinal and circular 579 

fins configurations. Moreover, the coupled thermal enhancement with nano-PCM in 580 

wire-wound fins configuration has presented significantly higher charging performance 581 

of capturing 11.09 MJ in as little as 1.02 h. Hence, the coupled enhancement scenario 582 

of wire-wound fins configuration with both paraffin and nano-PCM are recommended 583 

for wider practical applications. This proposed design LHS system with its longer 584 

service life, minimal maintenance and adaptable scalability will bring significant 585 

enhancements to energy security, energy system efficiencies and reliabilities.  586 
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