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1 Introduction 

Structural magnetic resonance imaging (sMRI) studies have frequently demonstrated that 

neuroanatomical abnormalities are already present at the point that first-episode of psychosis (FEP) is 

identified (Dazzan et al. 2012; Olabi et al. 2011). The initial phase of psychotic illness may represent a 

particularly vulnerable time for progression of neuroanatomical abnormalities (Cahn et al. 2002; 

Andreasen et al. 2011) with suggestions of a potential plateau effect on progression of grey matter 

(GM) deficits across the brain in longitudinal studies of more established schizophrenia (Hulshoff Pol 

and Kahn, 2008; van Haren et al. 2012). The most consistent neuroanatomical changes seen in 

longitudinal studies of FEP relate to progressive lateral ventricular (LV) enlargement (Kempton et al. 

2010; Olabi et al. 2011), and reduction in total GM volume (Olabi et al. 2011; Gutierrez-Galve et al. 

2014). 

 

Progressive morphometric abnormalities such as reduction in deep GM volume and cortical thinning 

in the initial years after the onset of psychotic illness may be inherent to the pathogenesis of 

psychosis and/or related to other factors including cumulative antipsychotic medication usage (Ho et 

al. 2011; Vita et al. 2012), genetic susceptibility (Andreassen et al. 2013; Vazquez-Bourgon et al. 2016) 

and cannabis use (Rais et al. 2008). In contrast to the ventricular and whole-brain cortical GM 

findings, reports of progressive change in subcortical volumes and regional cortical thickness have 

been inconsistent (see Table 1 for a summary of longitudinal studies to-date). A meta-analysis of 

longitudinal MRI studies of first episode schizophrenia patients showed a significant pattern of 

progressive GM tissue loss in the frontal, temporal, parietal lobes and in the Heschl’s gyrus relative to 

healthy controls (HCs) (Vita et al. 2012). Additionally, several other studies have demonstrated 

increased global cortical thinning, particularly pronounced in the frontal cortex (Roiz-Santianez et al. 

2014; Guo et al. 2015) with significant tissue loss in the frontal, temporal and parietal cortices of FEP 

patients compared to HCs over time (de Castro-Manglano et al. 2011). However, this remains an 

inconsistent finding with other studies demonstrating no such changes (Dickey et al. 2004; Haukvik et 

al. 2016). 

These inconsistencies regarding neuroanatomical progression after FEP may be due to embedded 

study heterogeneities of a clinical (including variable clinical severity, antipsychotic medication use 

and follow-up periods) and methodological (including different image acquisition and analysis 

techniques) nature.  

The current, naturalistic, longitudinal study aims to overcome these issues in order to determine 

whether there were progressive volumetric changes in the cortico-subcortical regions and ventricles 



3 
 
 

over a 3-year follow-up period in FEP patients who underwent MRI scanning very shortly after 

presentation to mental health services. It also aims to ascertain whether any neuroanatomical 

changes were related to particular clinical variables including symptom severity, cumulative dose of 

antipsychotic medications and level of functioning. We hypothesised that, compared with HCs, 

individuals with FEP would demonstrate greater ventricular enlargement, increased cortical thinning 

and reduction in the volume of subcortical GM structures over time. We also hypothesised that 

progressive changes would be associated with measures of poorer outcome including decreased 

functioning, more negative symptoms and greater use of antipsychotic medication in patients. 

 

2 Methods 

2.1 Study design and setting 

Participants were included if they had previously participated in the initial phase of this study (Scanlon 

et al. 2014) and had no contraindications to MRI procedures. Exclusion criteria for all participants 

included a history of neurological disorders, intellectual disability, life-time substance dependency (as 

defined by DSM-IV-TR), a history of head injury resulting in loss of consciousness for over 5 minutes 

and oral steroid use in the past 3 months. HCs were excluded if they had a personal or family history 

of any psychotic illness. Written informed consent was provided by all participants at both time-points 

and ethical approval was obtained from the National University of Ireland Galway and Galway 

University Hospitals Research Ethics Committees. 

 

2.2 Participants  

Participants were recruited from the Galway University Hospital and the Mental Health Services 

within the West of Ireland. The original baseline sample comprised 46 patients presenting with FEP 

(defined as having at least one psychotic symptom) and 46 controls (Scanlon et al. 2014). Patients 

underwent MRI scanning as soon as feasible after presentation and within 8 weeks of commencing 

antipsychotic medication (the median duration of treatment was 14 days).  Re-recruitment of all 

original participants was attempted.  Five patients from the original patient cohort were un-

contactable and 13 refused to participate. Two healthy volunteers were later excluded as imaging 

data was acquired on a different MRI scanner, while others within this cohort were un-contactable 

(n=4) or declined our invitation to participate (n=12). Thus, at follow-up the final successful re-

recruitment rate was 61%, with 28 FEP individuals and 28 HCs re-recruited to the current longitudinal 

study. There was no significant difference in age, gender, age of illness onset and daily medication 
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dose prescribed at baseline in patients from the original cohort who were successfully re-recruited at 

follow-up (n=28) compared to those not re-recruited (n=18).  

 

2.3 Clinical assessment 

The baseline clinical assessments were described previously in detail (Scanlon et al. 2014) and were 

repeated at follow-up. Briefly, the Structured Clinical Interview (SCID) for DSM-IV Research Version 

(First et al. 2002) was repeated to establish updated diagnostic status given its potential variation 

(Fusar-Poli et al. 2016). As previously (Kenney et al. 2015), schizophrenia, schizoaffective disorder, 

psychotic disorder not otherwise specified (NOS), substance induced psychosis and delusional 

disorder were defined as non-affective types of psychoses (n=16) whereas bipolar I disorder and 

major depressive disorder were defined as affective types of psychoses (n=12) for further subcategory 

analyses in patients. Ratings of symptomatology and functioning were carried out using the Positive 

and Negative Syndrome Scale (PANSS: 0–6 scale) (Kay et al. 1987) and the Global Assessment of 

Functioning score (GAF) (Hall, 1995) respectively. HCs were also re-screened for the presence of 

psychotic illness using the SCID-NP (non-patient) edition (First et al. 2002). Total antipsychotic 

medication administered during the follow-up period was converted to chlorpromazine (CPZ) 

equivalents (Taylor et al. 2007; Woods, 2003) from detailed clinical interviews and review of clinical 

notes. Similarly, information on cannabis use was collected from clinical interviews and supplemented 

by a review of clinical notes and categorised via binary coding based on the adapted criteria of the 

Centre for Addiction and Mental Health (Boak et al. 2017) for either heavy use (≥ 12 times on a 

lifetime basis and at least once during the past year) or none/minimal use (0-11 times on a lifetime 

basis and none during the past year).  

 

2.4 MRI data acquisition and processing 

Identical MRI data acquisition protocols, on the same 1.5 Tesla Siemens Magnetom Symphony 

scanner (Erlangen, Germany), and identical image pre-processing approaches with non-parametric 

non-uniform intensity normalisation (N3) (Scanlon et al. 2015) were implemented at follow-up as at 

baseline. The longitudinal FreeSurfer processing pipeline (v.5.3.0, Reuter et al. 2012) was employed 

for segmentation of subcortical structures, ventricles and to examine the progression of cortical 

thickness changes over time. Detailed descriptions of the MRI image acquisition and processing 

protocols are provided in the supplementary material. 

 

 

 



5 
 
 

2.5 Statistical analyses 

Statistical analyses were performed with the Statistical Package for Social Sciences (SPSS, v.24.0) and 

the FreeSurfer statistical tools (QDEC®).  

The Kolmogorov-Smirnov test was used to examine the distribution of data for normality. Clinical and 

demographic differences between groups over time were assessed using chi-square or independent t-

test. Paired t-tests were used to assess longitudinal changes in clinical symptom and functionality 

scores within FEP individuals. The bilateral FreeSurfer segmented brain volumes of deep grey matter 

structures (i.e., caudate, putamen, globus pallidus, nucleus accumbens, thalamus, hippocampus, 

amygdala) and lateral ventricles were summed. Furthermore, changes in the third ventricle, total grey 

and white matter were investigated. In total, 11 regional volumes were examined, together with the 

manually segmented hippocampal volumes and are referred to as the region-of-interest (ROI).  

 

FreeSurfer automatically segments the brain based on a subject‐independent probabilistic atlas to 

provide subject‐specific measured values of both cortical and subcortical structures. However, this 

probabilistic atlas was created from a manually labelled training set which was mapped into Talairach 

space in which all the subjects’ images are registered to during the process of segmentation (Fischl 

et al. 2004). In an explorative cortical analysis where findings may span over portions of several atlas-

defined regions, this approach becomes less reliable at localising changes within specific lobular 

subregions (DeLisi, 2008). Thus, an analyses approach that examines thickness change at each vertex 

of the cortical surface is considered more appropriate for our explorative cortical analyses. 

The QDEC (Query, Design, Estimate, Contrast) is a single-binary application included in the FreeSurfer 

distribution which uses a vertex-wise approach to perform group averaging and inference on cortical 

morphometric data. Following the FreeSurfer recommendations 

(http://surfer.nmr.mgh.harvard.edu/) for a robust measure of cortical thickness change with 

increased statistical power, we used the vertex-wise linear regressions in the QDEC interface 

[longitudinal two-stage model (Reuter et al. 

2012;https://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalTwoStageModel)] for our hypothesis-

free investigation of the entire cortical mantle. However, we did not apply the vertex-wise approach 

for the investigations in relation to the subcortical and ventricular volumes because volumetric 

segmentation of this structures are not prone to the limitation described above, hence, a repeated-

measures ANCOVA was employed in our analyses relating to the a priori hypotheses.  

 

https://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalTwoStageModel
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2.6 Subcortical and ventricular volume analyses 

Repeated-measures analysis of co-variance (ANCOVA) with Greenhouse-Geisser corrections was used 

to investigate differences in the progression of regional morphometric abnormalities over the 3-year 

follow-up period. In each general linear model, the dependent measures were MRI volumes and the 

independent measure was group (FEP vs. HC) or (affective vs non-affective) in a patient subgroup 

comparison. The within-subject factor was time (baseline vs. follow-up) with hemisphere (left vs. 

right) added for bilateral structures. Given the potential of age, gender and intracranial volume (ICV) 

to confound results in brain morphometric investigations (Barnes et al. 2010), all analyses included 

these covariates. Where there were significant findings, further post-hoc within-group analyses of 

variances were conducted to identify the direction of lateralised effects. To better quantify the 

significant findings, effect sizes were calculated from the adjusted percent volume differences at 

baseline and follow-up for each region of interest (ROI). Given the relatively small sample size, 

Hedges’ g was adopted (Hedges and Olkin, 1985) for unbiased effect sizes (Calin-Jageman, 2018) (See 

Table 2 Legend). The adjusted (for age, gender and ICV) percent volume difference (pvd) of each ROI 

was computed as:  

pvd = 100 x [(adjusted vol. at follow-up – adjusted vol. at baseline)/adjusted vol. at baseline] eqn (1) 

 

2.7 Cortical thickness analyses 

In QDEC®, global longitudinal vertex-wise linear regressions were conducted to determine the effect 

of diagnosis on the dependent variable of symmetrised percent thickness change (spc) (% per year) 

across the cortical mantle while controlling for age at baseline. Scan interval was not included in the 

rate of change model as it was already accounted for in the calculation of the dependent variable. 

Furthermore, spc does not depend on intracranial volume, and is less dependent on baseline values 

than measures such as percent change (Berry and Ayers, 2001). For the group effect of diagnosis on 

progressive cortical thickness change, participants were contrasted as FEP patients and HCs. The 

Monte Carlo null-z strategy which employs 10000 vertex-wise iterations was implemented (Hagler et 

al. 2006), with an initial cluster‐forming threshold of p<0.05 for multiple comparisons to reduce the 

probability of type I errors. The identified clusters were extracted and averaged for further analyses. 

We conducted independent ANCOVAs to compute group (FEP vs HCs) and subgroup (affective vs non-

affective vs HCs) comparisons over the extracted ROI cortical thickness of change measure (spc).  

 

2.8 Correlation analyses 

For brain regions demonstrating significant progressive volume and rates of cortical thickness change 

over time, partial correlations controlling for age, gender and ICV (only in the case of volume) were 
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used to determine the strength of potential associations between percent volume/rate of thickness 

change in ROI and change (Time2 - Time1) in clinical or functional variables. A two-tailed α level of 0.05 

was used for statistical testing. Given that brain structures are not independent (Haukvik et al. 2016) 

and our study was being driven by a priori hypotheses of progressive brain change, we did not apply a 

Bonferroni correction for these group analyses, as per similar previous studies (Ayesa-Arriola et al. 

2013; Roiz-Santiánez et al. 2014).  

3 Results 

3.1 Clinico-demographic characteristics 

Demographic and clinical data are presented in Table 3. It proved more challenging to re-recruit 

younger controls from the original sample, and individuals with FEP were significantly younger than 

HCs in this longitudinal phase of the study (t (54) = -2.07, p = 0.04). They had also engaged in less years 

of education (t (54) = -2.37, p = 0.02). There were no differences between the groups in gender 

distribution or time between scans. Formal SCID diagnoses of the patients at follow up were: 

schizophrenia (n=8), bipolar I disorder (n=9), major depressive disorder (n=3), schizoaffective disorder 

(n=3), psychotic disorder not otherwise specified (NOS) (n=3), delusional disorder (n=1) and substance 

induced psychotic disorder (n=1). At baseline, 24 patients were taking second-generation 

antipsychotic (SGA) medication, 1 was taking a first-generation antipsychotic (FGA) medication and 3 

participants were not taking antipsychotic medication. At follow-up, 16 individuals were treated with 

SGAs comprising olanzapine (n=6), aripiprazole (n=5), risperidone (n=3), clozapine (n=2), quetiapine 

(n=2), amisulpride (n=1) and no patients were treated with a FGA medication. Three individuals were 

treated with more than one SGA. In addition to a SGA, 7 patients were prescribed antidepressants 

and 4 patients were prescribed mood stabilisers. Nine patients were on no psychotropic medications 

at follow-up. Within the patient group, there were significant reductions in positive (t(27) = 5.41, 

p<0.001) and general psychopathology (t(27) =3.89, p<0.001) subscale symptoms of the PANSS 

between baseline and follow-up, with a reduction in negative symptoms also demonstrated, that did 

not reach statistical significance (t(27) =1.92, p=0.07). GAF scores increased significantly (t(27) = -7.87, 

p<0.001) between baseline and follow-up assessments (Table 3). 

 

3.2 Group comparison of progressive subcortical and ventricular changes over time 

As demonstrated in Table 2 and Figure 1, significant group x time interactions were found, indicating 

progressively greater volume reduction of the caudate [F(1,51)=5.86, p=0.02, Hedges’ g=0.66], 

putamen [F(1,51)=6.06, p=0.02, g=0.67] and thalamus [F(1,51)=6.99, p=0.01, g=0.72] in FEP patients 

compared with HCs. There was also a trend towards significance for increased LV volume over time in 
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patients [F(1,51)=3.37, p=0.07, g=0.50]. A significant effect of group x time x laterality [F(1,51)=4.38, 

p=0.04, g=0.57] was demonstrated for LV enlargement in patients compared to controls. Post-hoc 

analysis demonstrated significant right LV enlargement over time in patients compared to controls 

[F(1,51)=4.03, p=0.05)] which was not significant for left LV enlargement [F(1,51)=2.66, p=0.11)]. 

Further patient subgroup comparisons (affective versus non-affective) for longitudinal changes 

showed no significant volume differences (see Table S4) in subcortical and ventricular findings, 

however, we remain potentially underpowered to detect such a difference. 

Given the potential effects of covariates which differ between groups (Miller and Chapman, 2001), we 

also ran a number of confirmatory analyses, showing that these findings were essentially unaltered 

when age was removed as a covariate and when scan interval time was added as a covariate in all 

analyses, indicating that our results are unlikely to be driven by these factors. There were no 

progressive volume deficits identified in medial temporal lobe structures, including the hippocampus 

which was manually segmented as previously (Akudjedu et al. 2018). 

 

3.3 Group comparison of rates of progressive cortical brain change overtime 

Increased rates of progressive cortical thinning were observed in FEP patients relative to HCs, mostly 

in the left frontal and temporal regions. Specifically, significant clusters were observed in the regions 

of the left lateral orbitofrontal cortex, superiorparietal, lingual, and superiortemporal gyrus, the banks 

of the superior temporal sulcus, fusiform gyrus and the bilateral superiorfrontal gyrus (Fig. S1 and 

Table S2, all uncorrected, p<0.05). There were no regions of cortical thickening over time in patients 

compared with controls. After correction for multiple comparisons, a cluster of progressive cortical 

thinning was observed [Fig. 2, all corrected p<0.05] in FEP patients at the left lateral orbitofrontal 

cortex extending into aspects of the left pars orbitalis, pars triangularis, rostral middle frontal gyrus 

and frontal pole.  A significantly reduced spc [F(1,52)=5.11, p=0.03)] in individuals with FEP relative to 

HCs, with a mean difference of 0.84% [95% CI (0.10, 1.59)] (Fig. S2A) over the 3-year period was 

demonstrated for this left lateral orbitofrontal region (LLOFR). On patient subgroup analysis, there 

was a trend towards significance for progressive thinning [F(2,51)=2.87, p=0.07)] in the LLOFR. 

Compared to controls, there was a significant mean regional thinning difference of 1.01% [95% CI 

(0.15, 1.86), p=0.02] in the non-affective subgroup and a non-significant thinning of 0.58%/year [95% 

CI (-0.42, 1.58), p=0.25] in the affective subgroup (Fig. S2B). Further pairwise comparisons showed no 

significant mean difference [0.43%, 95 CI (-0.63, 1.48), p=0.42] in cortical thickness of this ROI 

between the affective and non-affective subgroups (Fig. S2B). The main group differences remained 

significant (Fig. S3) when these analyses were repeated using a cluster‐forming threshold of <0.01.  
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3.4 Association of progressive neuroanatomical changes with change in clinical and functional 
variables 

Table S3 displays the partial correlation coefficients of clinical and functional measures assessed with 

and change in volume of the regions-of-interest and spc of the LLOFR in FEP patients. A greater 

reduction of putamen (r=0.49, p=0.01; Fig. S4A) and globus pallidum volume (r=0.44, p=0.03) was 

associated with lower cumulative antipsychotic medication over the 3-year follow-up period. 

Increased right LV (r=0.43, p=0.03), total LV (r=0.41, p=0.04; Fig. S4B) and 3rd ventricular (r=0.55, 

p=0.004) volume over time was associated with worsening negative symptoms on the PANSS. 

Additionally, increased right LV (r=-0.43, p=0.03), total LV (r=0.41, p=0.04; Fig. S4C) and 3rd ventricular 

(r=-0.49, p=0.01) volume over time was associated with reduced GAF scores. A moderate correlation 

between antipsychotic medication use and total GM loss over time was also found (r=-0.45, p=0.02). 

Furthermore, the ventricular enlargement over time was associated with thalamic and striatal 

reduction but not with cortical thinning (Table S3 and Fig.S5). Cortical thinning in the LLOFR was not 

associated with changes in clinical or functional measures over time. 

 

4 Discussion 

Our results indicate that there is regionally specific progression of neuroanatomical deficits amongst 

patients in the years after their first-episode of psychosis. These deficits are characterised by a 

relatively greater volume reduction in the dorsal striatal and thalamic regions, by right lateral 

ventricular enlargement and by a greater progressive rate for cortical thinning of the LLOFR in FEP 

patients relative to HCs. In contrast, there was relative preservation of other regions, and in particular 

of the medial temporal lobe structures. Additionally, the progressive changes in LV volume were 

associated with indices of poorer outcome amongst patients, as evidenced by worsening negative 

symptoms and functioning scores over 3-years.  

 

4.1 Progressive subcortical and ventricular changes 

Striatal volume reductions over time have been reported in some previous studies of FEP patients 

(Theberge et al. 2007; Boonstra et al. 2011) and at-risk-mental state (ARMS) patients who were 

treatment naive (Smieskova at al. 2013). However, other studies have reported increased putaminal 

and caudate volume (Massana et al. 2005; Glenthoj et al. 2007; Roiz-Santiánez et al. 2014) or no 

significant volumetric differences between FEP patients and HCs (Lang et al. 2001; Haukvik et al. 

2016) (see Table 1). Long exposure to antipsychotic medications has also been linked to increased 

striatal volume (Okugawa et al. 2007; van Haren et al. 2007). Other longitudinal studies examining 

treatment naïve ARMS patients have reported reduced striatal volumes compared to those treated 
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with antipsychotic medication (Smieskova at al. 2013; Katagiri et al. 2019). Thus, the use of 

antipsychotic medication in some cohorts may be obscuring basal ganglia reduction which is more 

readily detected in medication naïve sample or in those with minimal medication exposure, as in this 

study. Here, patients were minimally medicated (<3 weeks) prior to their baseline scan, and only 57% 

were treated with SGAs at the time of follow-up MRI scan (none with FGAs). In further support of this 

interpretation, high cumulative antipsychotic medication during the interscan period was correlated 

with increased putaminal and pallidal volumes over time.  

 

The progressive thalamic volume reduction observed in this study is consistent with some longitudinal 

studies of FEP (Theberge et al. 2007; Andreasen et al. 2011) and established psychosis (van Haren et 

al. 2007; Cobia et al. 2017). Moreover, reduced thalamic volume has also been observed over time in 

ARMS patients (Harrisberger et al. 2016) and in those at high genetic liability for schizophrenia (Lawrie 

et al. 2001; McDonald et al. 2004). Others have reported increased thalamic volume after a short 

period of antipsychotic treatment (Deng et al. 2009; Dazzan et al. 2005) and no significant thalamic 

changes were observed in an adolescent cohort after a 3-year follow-up (de Castro-Manglano et al. 

2011). In the current study, progressive thalamic volume reductions were not associated with any 

measurements of clinical outcome; however, other measurements of functional and cognitive 

performance were not assessed. 

 

While total LV change is not statistically significant in this study, a pattern of progressive increase of 

right LV volume over time with medium effect size in FEP patients compared to controls is consistent 

with a number of previous longitudinal studies (Cahn et al. 2002; Andreasen et al. 2011; Suárez-Pinilla 

et al. 2015). However, other studies failed to demonstrate significant LV enlargement over time (Puri 

et al. 2001; Nakamura et al. 2007; Boonstra et al. 2011) potentially due to its highly variable structure. 

Our findings further indicate that the neuroprogressive process of LVs in poor clinical outcome 

patients, possibly relates to the observed regionally specific shrinkage of adjacent (thalamus and 

caudate) and remote (putamen) subcortical GM structures over time, considering the significant 

association between LVs and these subcortical structures. These findings are consistent with Gaser 

and colleagues (2004) who reported similar associations between ventricular enlargement and 

volume reductions of the thalamus, striatum and the superior temporal cortex in a schizophrenia 

cohort. Thus, these associations suggest that such volumetric progression could potentially be viewed 

as a biomarker of poor outcome in the illness. Additionally, LV enlargement over time has previously 

been associated with poorer clinical outcomes in a number of previous studies (Lieberman et al. 2001; 

Saijo et al. 2008) however, this is not a consistent finding (Cahn et al. 2002; Andreasen et al. 2011). 
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4.2 Progressive cortical changes 

Cortical thinning was identified most prominently in the left prefrontal region of the brain after the 

first 3-years of FEP. With this finding consistent with other studies in FEP patients (Andreasen et al. 

2011; Buchy et al. 2017), ARMS patients (Cannon et al. 2015) and in individuals with established 

schizophrenia (van Haren et al. 2011; Cobia et al. 2012). Of note, cortical thinning was present in this 

broad and typical sample of patients after their FEP covering a range of psychotic diagnoses and with 

variable clinical outcomes with a substantial proportion of the cohort not taking antipsychotic 

medication at follow-up. Indeed, we found similar rates of cortical thinning in affective and non-

affective psychosis. In contrast, no significant cortical thinning in some other heterogenous FEP 

samples were detected (Haukvik et al. 2016; Palaniyappan et al. 2019), however this inconsistency 

may be related to a relatively short follow-up period (1 year, Haukvik et al. 2016) or small sample size 

(n=18, Palaniyappan et al. 2019) in these studies. 

Progression of cortical deficits in the years after FEP is considered a major neurobiological trait of 

psychotic illness (Cobia et al. 2012); however, the specific mechanisms underlying progressive loss of 

frontal lobe thickness still remain unclear. Some evidence suggests neuropil pruning as a potential 

cause of progressive reduction of grey matter in schizophrenia (Selemon and Goldman-Rakic, 1999) 

resulting in a distributed cortical reorganisation mostly leading to synaptic dysfunction in response to 

psychosis (Palaniyappan et al. 2018). Thus, our reported pattern of progressive change may suggest 

an active but inefficient cortical reorganisation which is likely initiated from the left prefrontal cortex 

in the early years after FEP with further progression to other cortices across the entire course of 

illness (van Haren et al. 2011).  

 

4.3 Associations of progressive neuroanatomical change 

Although the identified volume reduction of subcortical structures were not significantly associated 

with cortical deficits and LV enlargement in the same FEP patients, the observed changes in these 

structures potentially indicate an early emergence of an aberrant functional coupling in 

neuroanatomy after FEP (Steullet, 2019), with a diffusion imaging study observing microstructural 

alterations in the mediodorsal and pulvinar regions of the thalamus, that directly connected to the 

orbitofrontal, latero-temporal cortices and basal ganglia (Cho et al. 2019). Furthermore, the observed 

poor association of cortical deficits with volume reduction in the dorsal striatum may be related to a 

subregional striatal response to antipsychotic medication (Massana et al. 2005; Roiz-Santiánez et al. 

2014). Additionally, no association was noted between cumulative antipsychotic medication and 
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cortical thinning of the LLOFR, which is consistent with studies in both FEP (Gutiérrez-Galve et al. 

2015) and in established schizophrenia (Cobia et al. 2012), suggesting that regional cortical thinning is 

an inherent feature of progressive psychotic illness (Nesvag et al. 2008) and may reflect an underlying 

neuropathophysiological process associated with psychosis onset.   

 

4.4 Anatomically preserved regions  

There was relative anatomical preservation of medial temporal lobe volume and global brain tissues 

observed in this study, a finding concordant with some other studies (Schaufelberger et al. 2011; 

Wood et al. 2001; Asami et al. 2012). These may be a potential characteristic feature of the initial 

stages of psychosis (Zipursky et al. 2004). While the FreeSurfer-derived hippocampal volumes were 

larger than manually-segmented volumes, comparable case-control differences were found with both 

approaches, indicating that this finding does not relate to methodological bias. Interestingly, there 

was a moderate correlation at a statistical trend level between progressive volumetric deficit of 

manually segmented hippocampal volume and poorer clinical outcome, which was not evident in the 

larger FreeSurfer segmented structure. This may be because the manually segmented hippocampus 

focusses upon the functionally specific hippocampus proper and dentate; whereas FreeSurfer 

segmented hippocampus includes more functionally diverse structures, including variable amounts of 

subiculum and tail (Akudjedu et al. 2018). If confirmed in a larger sample, this would be consistent 

with the study of Lappin and colleagues (2014) that hippocampal volume enlargement after FEP is a 

marker of good clinical outcome. Similarly, total GM volume changes were associated with cumulative 

antipsychotic medication use, consistent with meta-analytical findings (Vita et al. 2015) of a significant 

association between progressive loss of cortical GM volume and cumulative antipsychotic intake.  

 

4.5 Strengths and limitations 

The main strength of the study is its application of a longitudinal design to a cohort of psychotic 

patients who were originally assessed shortly after presentation to the services and with minimal 

antipsychotic exposure. We were also able to employ the same scanner and acquisition sequences, 

without any major soft/hardware upgrades during the study period, and the participants were 

scanned in a random order at each time-point, thus minimising any acquisition bias due to changes in 

scanner characteristics over time, which is known to potentially confound group diagnostic 

differences. We used the longitudinal FreeSurfer pipeline, which has the advantage, compared to 

other analysis approaches, of accounting for inter-subject variability by creating an unbiased subject-

specific anatomical template (Reuter et al. 2010) from the images at both time-points, resulting in 

higher anatomical accuracy in identifying subtle changes over time. Furthermore, the application of a 



13 
 
 

global longitudinal vertex-wise analyses approach, unlike the surface-based approaches which are less 

reliable at localising changes within specific lobular subregions (DeLisi, 2008; Cercignani et al. 2018), 

has enabled a hypothesis-free investigation over the entire cortical mantle. We recruited a broad 

psychosis phenotype for our study, rather than focus on non-affective disorders alone, which is more 

generally representative of FEP patients presenting to the services. Despite the potential increase in 

clinical heterogeneity associated with this approach, we were able to detect regions of sub/cortical 

progression and link these with measures of clinical outcome that were not confined to a non-

affective psychosis category. 

 

The main limitation of the study was the relatively small sample size and consequent risk of type II 

error and lack of generalisability of the results. We did not employ a stringent statistical approach to 

control for multiple comparisons as we sought a balance between type 1 and type 2 errors; none of 

the subcortical findings would survive stringent multiple testing correction, however our major 

findings were hypothesised in the direction found a priori based on current literature. Thus, these 

findings would benefit from replication in a larger sample. Furthermore, after repeating the cortical 

analyses using a cluster‐forming threshold of p<0.01, the main group difference remained significant 

(Fig. S3). Due to the limited data availability (functional measures but no childhood measures, 

cognition or physiological metrics), we were not able to assess in detail the contribution of other 

medications (e.g. mood stabilisers) and environmental exposures (e.g. childhood trauma, cannabis 

use) on the neuroanatomical measures acquired.  

4.6 Conclusion 

In conclusion, this study demonstrated the existence of localised progressive prefrontal cortical 

thinning, volume deficits in the dorsal striatum and thalamus, and right lateral ventricular 

enlargement over a 3-year period after patients first presented with psychotic illness. Taken together, 

these may be indicative of a progressive disturbance in the structural integrity of a subnetwork of the 

associative/cognitive component of the cortico-striato-thalamo-cortical circuitry involving the lateral 

orbitofrontal regions of the prefrontal cortex. This finding lends weight to the evidence that there is 

early regional neuroanatomical progression after FEP and thus such knowledge could potentially 

contribute to the identification of imaging biomarkers for psychosis which would be particularly 

beneficial in the critical early stages of the disorder. Future studies should also focus on 

comprehensively elucidating the functional consequences of anatomical progression by incorporating 

multimodal imaging and cognitive/functional measures in large longitudinal studies with multiple 

assessment points. 
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