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Abstract 

 

Time series forecasting has an extensive trajectory record in the fields of business, economics, energy, 

population dynamics, tourism, etc. where factor models, neural network models, Bayesian models are 

exceedingly applied for effective prediction. It has been exemplified in numerous forecasting surveys 

that finding an individual forecasting model to achieve the best performances for all potential 

situations is inadequate. Moreover, modern research endeavour has focused on a deeper 

understanding of the grounds. Rather than aim for designing a single superior model, it focused on the 

forecasting methods that are effective under certain situations. For instance, due to the qualitative 

nature of forecasting, a business can come up with diverse scenarios depending on the interpretation 

of data. Therefore, the organizations never rely on any individual forecasting model solely, rather 

focused on sets of individual models to attain the best possible knowledge of the future.  

The time series forecasting model has a great impact in terms of prediction. Many forecasting models 

related to fuzzy time series were proposed in the past decades. These models were widely applied to 

various problem domains, especially in dealing with forecasting problems where historical data are 

linguistic values. A hybrid forecasting method can be effective to improve forecast accuracy by 

merging sets of the individual forecasting models. Numerous hybrid forecasting models have been 

proposed last couple of years that combined fuzzy time series with the evolutionary algorithms, but 

the performance of the models is not quite satisfactory. In this research, a novel hybrid fuzzy time 

series forecasting model is proposed that used the historical data as the universe of discourse and the 

automatic clustering algorithm to cluster the universe of discourse by adjusting the clusters into 

intervals. Furthermore, the particle swarm optimization algorithm is also examined to improve 

forecasted accuracy. The proposed method is considered to forecast student enrolment of the 

University of Alabama. The model achieves a significant improvement in forecast accuracy as 

compared to state-of-the-art hybrid fuzzy time series forecasting models. 

It is obvious from the literature that no forecasting technique is appropriate for all situations. There is 

substantial evidence to demonstrate that combining individual forecasts produces gains in forecasting 

accuracy. The addition of quantitative forecasts to qualitative forecasts may reduce forecast accuracy. 

Individual forecasts are combined based on either the simple arithmetic average method or an 

artificial neural network. Research has not yet revealed the conditions for the optimal forecast 

combinations. This thesis provides a few contributions to enhance the existing combination model. A 

set of Individual forecasting models is used to form a novel combination forecasting model based on 

the characteristics of resulting forecasts.  
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All methods derived in this thesis are thoroughly tested on several standard datasets. The related 

characteristics of the resulting forecasts are observed to have different error decompositions both for 

hybrid and combination forecasting model. Advanced combination structures are investigated to take 

advantage of the knowledge of the forecast generation processes.  
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1 Introduction 
 

Forecasting describes a broad research area concerned with estimation of future events and 

is important for the organization to plan or adopt the necessary policies. Forecasting can 

assist to make a better development and decision-making in the country. It can be found in a 

wide variety of sectors like stock returns, finance analysis, weather news, currency 

exchange, GDP estimation, tourism demand, etc. Forecasting studies have had a half a 

century history. Several review articles on forecasting have been published over the last few 

decade. Forecasting models can be broadly divided into following categories: (i) time-series 

models (ii) AI models, such as neural networks, fuzzy time-series theory, grey theory, and 

expert systems (Kayacan et al., 2010). Time series forecasting has been a very active 

research area since 1950’s, and a variety of forecasting approaches have been introduced in 

the scientific literature and were used in many practical applications. Nonlinear statistical 

time series models have been proposed with the aim to improve the forecasting performance 

of nonlinear systems. These include bilinear model, threshold autoregressive model (TAR), 

smoothing transitions autoregressive model (STAR), autoregressive conditional 

heteroscedastic model (ARCH) and generalized autoregressive conditional heteroscedastic 

model (GARCH). These models are known as the second generation of time series models 

(Chen, 1996).  

 

Various forecasting techniques are available in the literature. All the methods fall into one of 

two overarching approaches: qualitative and quantitative. Quantitative models assume 

adequate knowledge of an underlying process and are often experts’ judgements. Hyndman 

and Koehler (Hyndman and Koehler, 2006) stated that, every forecasting method is disparate 

in terms of accuracy, scope, time horizon and cost. The preference of the forecasting model 

is the key issue that influences on the forecasting accuracy. Moreover, the individual 

forecasting model is not quite enough under certain situations for the accuracy of prediction. 

Despite the consensus on the need to develop more accurate forecasts and the recognition of 

their corresponding benefits, there is no one model that stands out best in terms of 

forecasting accuracy (Song and Chissom, 1993b). A hybrid forecasting approaches have 

been proposed by many researchers to improve the forecasting accuracy to outperform 

individual forecasting approaches (Huang and Jane, 2009). Evolutionary and optimization 

algorithm in hybrid model could be a good practice to maintain the higher rate of accuracy 

in prediction. The time series forecasting model, and other models have been combined to 

improve the forecasting performance of the time series model. 

 

http://www.investopedia.com/terms/q/quantitativeanalysis.asp
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Due to the uncertainty of relying on a single forecasting model, the combination forecasting 

models have been immensely used to improve the forecasting performance in various 

sectors. Forecasting literature suggests that, combinations of model are generally found to 

outperform the specific models being combined, independently of the time horizon 

considered (Coshall and Charlesworth, 2011). Moreover, the combination of multiple single 

forecast model provides the best performance in terms of forecasting (Hua et al., 2007, 

Wong et al., 2007). To avoid the difficulty and risk for model selection, combining 

forecasting would be another major motivation. In 2003, Zhang stated that the final selected 

model is not necessarily the best for future uses due to many potential influencing factors 

such as sampling variation, model uncertainty and structure change. Model selection can be 

at ease by combining several forecasting models (Stock and Watson, 2004). Bates and 

Granger (Bates and Granger, 1969) suggested that the combination of models that contain 

independent information is most likely to improve forecast accuracy. Shen and Huang 

(2008) performed the forecast by combining the methods like simple average, variance-

covariance and mean squared forecast error methods with multiple-step-ahead forecasting 

horizons and seven single forecasting techniques (autoregressive distributed lag model, error 

correction model, maximum likelihood error correction model, vector autoregressive model, 

time-varying parameter model, seasonal naïve model and seasonal autoregressive integrated 

moving average model). Most of the combination forecasting methods described above are 

based on the linear combination, but there are some situations when the forecasting problem 

can be nonlinear. For this nonlinear relationship between inputs and outputs, linear models 

may provide only an approximate forecast, while nonlinear combination methods may 

provide more accurate forecasting.  

1.1 Aims  

The research work aims to develop a more accurate and effective forecasting model by 

comparison to the current forecasting models with the purpose of achieving better 

performance. Therefore, the research approach followed by involving five main steps 1) To 

understand the existing individual, hybrid, and combination forecasting models along with 

their application in different domains, 2) To identify the key issues that can improve the 

performance and accuracy of the forecasting model, 3)  To design and implement a new 

hybrid forecasting model that can be evaluated through performance measurement methods, 

4) To investigate a set of individual forecasting models and ponder how the models can be 

extended and combined with the essential features to attain better accuracy. The 

performance of the forecasting model can be compared in terms of the local machine to a 

parallel processing environment. 
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1.2 Objectives 

The objectives of this study are- 

1. To analyse the forecasting models in terms of time series and artificial intelligence. 

To comprehend the existing individual forecasting models (ARIMA, SARIMA, 

SVR, RBF, and ANN, etc.), hybrid forecasting models (ARIMA and ANN, GA and 

SARIMA, etc.) and the combination forecasting models (simple average, trimmed 

mean, winsorized mean, median, etc.) in terms of prediction (Song and Chissom, 

1993b). 

2. To develop an effective hybrid forecasting model using fuzzy time series and 

particle swarm intelligence that can accurately predict the future observations with 

higher accuracy rate compared to state-of-the art models. 

A hybrid forecasting model has proposed and the following step by step processes 

are maintained: 

 Construct a hybrid forecasting model with fuzzy time series, particle swarm 

optimization and clustering technique. 

 Implement the hybrid forecasting model using a MATLAB simulator with 

practical datasets. 

 Train and validate the proposed model. 

 Test the hybrid model with appropriate datasets. 

 Forecast error analysis based on error measurement techniques and compare 

the result with state-of-the art individual or hybrid forecasting models. 

3. To propose a combination forecasting model by combining the weights of different 

individual forecasting models with a data mining algorithm that can select specific 

model weights from the entire individual model. 

A combination forecasting model is proposed and the following step by step 

processes are maintained: 

 Establish the combination forecasting model with ARIMA, ANN, RBF, 

ANFIS, and Naïve Bias models. 

 Implement the combination forecasting model using a MATLAB simulator 

with practical datasets. 

 Train, validate and test each individual model that applied in the proposed 

combination forecasting model. 

 Linear and nonlinear forecast combination methods applied to get suitable 

combination results. 
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 Forecast error analysis based on error measurement techniques and compare 

the result with state-of-the art combination forecasting models. 

4. To evaluate the performance of the proposed model with real-life datasets. 

5. To evaluate the performance of the proposed forecasting model in a local machine.  

1.3 Outline of the whole report 

The background knowledge and structure of the thesis are relevant in three different areas: 

time series forecasting, hybrid forecasting method, and forecast combination method. In 

Chapter 2, the preliminary information will be extended, providing a literature review and 

discuss the most significant impacts and algorithms for each of the areas. Chapter 3 mainly 

focused on time series forecasting methods that currently used in different domains. This 

chapter also investigates the question of how effectively fuzzy time series forecasting 

methods perform in empirical studies along with the goal to assess the benefit of applying 

complex forecasting algorithm that usually needs to be identified and fitted by experts. In the 

same context, a hybrid forecasting model using automatic clustering technique and particle 

swarm optimization is described and compared the results to state-of-the-art forecasting 

models. The performance of the proposed method has been extensively verified using 

publicly available datasets to make the results comparable to state-of-the-art methods 

available in current literature. It also provided a thorough investigation of prospects to 

enhance forecast accuracy. Chapter 4 concludes by summarising the results and findings of 

the project and an outlook on future work ends the thesis. 
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Literature Review 
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2 Literature Review 

2.1 Forecasting 

Forecasting is the process of constructing a prediction of future events and occurrences 

based on present and past data sets, trends, scenarios, etc. and is the key element in various 

sectors of the world. Short-range and long-range planning are essential in terms of future 

prediction. A forecast is opposed to a prediction as it is based on previous data, whereas 

prediction is based on instinct or guess. For instance, the late afternoon news broadcasts the 

weather forecast, not the weather prediction.  Forecasting also refers to formal statistical 

methods like time series and is based on noticeable, observable data and trends. There are 

different one-off spread factors and seasonal factors are crucial for getting an accurate 

forecasts (Bowerman and O'Connell, 1993). 

2.1.1 Characteristics of a Good Forecast  

There are a few attributes that are beneficial to determine a decent forecast: 

• Accuracy —accuracy should be maintained in real-time that the analogy can be yielded 

to alternative forecasts. 

• Reliability —good forecast can be obtained from the forecast method if the degree of 

confidence of the user can be established. 

• Timeliness —a certain amount of period is required to respond to the forecast so the 

forecasting horizon must permit for the period necessary to make alterations. 

• Easy to use and understanding —forecasting process should be easy for the user to utilize 

it efficiently and should be confident and comfortable working with it. 

• Cost-effectivity —the cost of getting the forecast should not outweigh the advantages 

attained from the forecast. 

2.1.2 Number of Assumptions in Forecasting 

Forecasting is centred on several assumptions characterized below: 

• The history will replicate itself. In other words, what has occurred in the earlier period 

will take place again in the future. 

• As the forecast limit reduces, forecast accuracy increases. For instance, a forecast for 

tomorrow will be more accurate than a forecast for next month; a forecast for next 

month will be more accurate than a forecast for next year, and a forecast for next year 

will be more accurate than a forecast for ten years in the future. 

• Aggregate forecast is more accurate than forecasting individual items. This means that a 

company will be able to forecast total demand over its entire spectrum of products more 
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accurately than it will be able to forecast individual stock-keeping units. For example, 

General Motors can more accurately forecast the total number of cars needed for next 

year than the total number of white Chevrolet Impalas with a certain option package 

(Stock and Watson, 2002). 

• Forecasts are infrequently accurate and almost never totally accurate, although some are 

very close. Therefore, it is sensible to offer a forecast “range.” If one were to forecast 

demand of 100,000 units for the next month, it is extremely unlikely that demand would 

equal exactly 100,000. However, a forecast of 90,000 to 110,000 would provide a much 

larger target for planning (Stock and Watson, 2006). 

2.1.3 Forecasting Applications 

Forecasting elements have the following applications: 

• Forecasting utilization rates for credit cards: build a model based on historical data and 

use the model to score a current credit card portfolio to determine utilization rates. 

• Model loss rates of a group of home equity lines of credit as a function of time. 

• An independent system operator, organized for monitoring the electrical grid, has a need 

to predict electrical usage – the volatility of the daily usage can be thought of as a blend 

of day-ahead-market volatility and monthly volatility, where the month can be one or 

more months forward.(Skamarock and Klemp, 2008) 

2.1.4 Forecasting Approaches  

Two types of forecasting methodologies exist, these are qualitative and quantitative method. 

(Stock and Watson, 2002)  

2.1.4.1 Qualitative Models 

Qualitative forecasting methods have the following properties: 

• Used when the situation is vague & little data exist 

• New products and new technology 

• Involves intuition, experience 

• ex., Forecasting sales to a new market 

• Qualitative methods include Delphi technique, Nominal Group technique, executive 

opinions, market research 

2.1.4.2 Quantitative Models 

Quantitative forecasting methods have the following properties: 

• Used when the situation is ‘stable’ & historical data exist 

• Existing products and current technology 
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• Heavy use of mathematical techniques 

• ex., Forecasting sales of a mature product 

2.1.5 Autoregressive Integrated Moving Average (ARIMA) Model 

The autoregressive–moving-average (ARMA) models can only be used for stationary time 

series data. However, in practice many time series such as those related to socio- economic 

and business show non-stationary behaviour. Time series, which contain trend and seasonal 

patterns, are also non-stationary in nature. Thus, from application viewpoint ARMA models 

are inadequate to properly describe non-stationary time series, which are frequently 

encountered in practice. For this reason, the ARIMA model is proposed, which is a 

generalization of an ARMA model to include the case of non-stationary as well. 

In ARIMA models a non-stationary time series is made stationary by applying finite 

differencing of the data points. The mathematical formulation of the ARIMA(p,d,q) model 

using lag polynomials is given below (Zhang, 2003): 

φ(L)(1-L) d yt
    = θ(L)εt

 , i.e. 

                            ( ∑ 𝜑
𝑝
𝑖=1 i L

i yt ) (1- L)dyt = (1 +  ∑ 𝜑
𝑝
𝑗=1 j L

j ) εt         (2 .1)    

• Here, p, d and q are integers greater than or equal to zero and refer to the order of 

the autoregressive, integrated and moving average parts of the model, respectively. 

• The integer d controls the level of differencing. Generally, d = 1 is enough in most 

cases. When d = 0, then it reduces to an ARMA(p,q) model.  

• L is the lag operator, the φi are the parameters of the autoregressive part of the 

model, φj are the parameters of the moving average part and are the error terms. The 

error terms are generally assumed to be independent that the variables distributed 

identically are sampled based on a normal distribution using zero mean. 

• An ARIMA(p,0,0) is nothing but the AR(p) model and ARIMA (0,0, q) is the 

MA(q) model. 

• ARIMA (0,1,0), i.e. yt = yt-1 + εt is a special one and known as the Random Walk 

(RW) model. It is widely used for non-stationary data, like economic and stock price 

series.  

A useful generalization of ARIMA models is the Autoregressive Fractionally Integrated 

Moving Average (ARFIMA) model, which allows non-integer values of the differencing 

parameter d. ARFIMA has useful application in modelling time series with long memory. 

In this model the expansion of the term (1−L) d is to be done by using the general binomial 

theorem. Various contributions have been made by researchers towards the estimation of the 

general ARFIMA parameters. 
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2.1.6 Seasonal Autoregressive Integrated Moving Average (SARIMA) Model 

The ARIMA model is for non-seasonal non-stationary data. Box and Jenkins have 

generalized this model to deal with seasonality. Their proposed model is known as the 

Seasonal ARIMA (SARIMA) model. In this model seasonal difference of applicable order is 

used to remove non-stationarity from the series. A first order seasonal difference is the 

difference between an observation and the corresponding observation from the earlier year 

and is calculated as zt = yt - yt-s. For monthly time series s = 12 and for quarterly time series s 

= 4. This model is generally termed as the SARIMA ( p,d,q)× (P,D,Q)s model. 

The mathematical formulation of a SARIMA( p,d,q)× (P,D,Q)s model in terms of lag 

polynomials is given below (Tseng and Tzeng, 2002): 

Φp(L
s) φp (L)(1-L)d

 (1-Ls)D yt
    = ΘQ (Ls) θq(L)εt

 , i.e. 

                                    Φp(L
s) φp (L)zt

 = ΘQ (Ls) θq(L)εt
                           (2 .2)    

Here zt is the seasonally differenced series, P is the seasonal autoregressive order, Q is the 

seasonal moving average, D is the seasonal difference order, and s is the number of time 

steps for a single seasonal period.  

2.1.7 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) approach has been hinted as an unconventional technique 

to time series forecasting and it achieved enormous recognition in the last few years. The 

basic idea of ANNs was to assemble a model for imitating the intelligence of the human 

brain into a machine. Like the functionality of a human brain, ANNs try to identify 

consistencies and patterns in the input data discover from experience and then deliver 

comprehensive results based on their known preceding knowledge.  

Although the development of ANNs was mainly biologically motivated, but afterwards they 

have been applied in many different areas, especially for forecasting and classification 

purposes. Below the salient features of ANNs has mentioned, which make them quite a 

favourite for time series analysis and forecasting (Al-Alawi and Al-Hinai, 1998). 

First, ANNs are data-driven and self-adaptive in nature. There is no need to specify a certain 

model form or to create any a priori hypothesis about the statistical dissemination of the 

data; the desired model is adaptively established based on the features produced from the 

data. This approach is extremely beneficial for many practical circumstances, where no 

theoretical assistance is available for an appropriate data initiation process. 

Second, ANNs are intrinsically non-linear, which makes them more practical and precise in 

modelling convoluted data patterns, as contradicted to various traditional linear 

methodologies, such as ARIMA methods. There are many occasions, which suggest that 

ANNs made relatively better analysis and forecasting than various linear models. 
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Finally, as suggested by Hornik and Stinchcombe (1989), ANNs are comprehensive 

functional approximators. They have shown that a network can approximate any continuous 

function to any anticipated accuracy. ANNs use parallel processing of the information from 

the data to approximate a huge class of functions with a high degree of accuracy. Further, 

they can deal with a situation, where the input data are erroneous, incomplete, or fuzzy. 

The most widely used ANNs in forecasting problems are multi-layer perceptron’s (MLPs), 

which use a single hidden layer feed-forward network (FNN). The model is characterized by 

a network of three layers, viz. input, hidden and output layer, connected by acyclic links. 

There may be more than one hidden layer. The nodes in numerous layers are also recognized 

as processing elements. The three-layer feed-forward architecture of ANN models can be 

diagrammatically illustrated as below: 

 

Figure 2.1: The three-layer feed forward ANN architecture(Al-Alawi and Al-Hinai, 1998) 

The output of the model is computed using the following mathematical expression: 

yt
    = α0 +  ∑ 𝛼𝑞

𝑗=1 jg (β0j+  ∑ 𝛽𝑝
𝑖=1 j yt- i

  )+ εt ,                                (2.3)    

Here yt (i=1,2, ..., p) are the p inputs and yt is the output. The integers p, q is the number of 

input and hidden nodes, respectively. αj ( j= 0,1,2,...,q) and βij (i =0,1,2,..., p; j 0,1,2,...,q) are 

the connection weights and εt is the random shock; α0 and β0 j are the bias terms. 

2.1.8 Support Vector Regression 

Various stochastic and neural network methods for time series modelling and forecasting has 

been applied last few years. Despite their own strengths and weaknesses, these methods are 

quite successful in forecasting applications. Recently, a new statistical learning theory, viz. 

the Support Vector Regression (SVR) has been receiving increasing attention for 

classification and forecasting. SVR was developed by Vapnik and his co-workers at the 

AT&T Bell laboratories in 1995. Initially SVR’s were designed to represent pattern 
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classification problems, such as optimal character recognition, face identification and text 

classification, etc. But soon they found wide applications in other domains, such as function 

approximation, regression estimation and time series prediction problems (Chapelle and 

Vapnik, 1999). 

 

Vapnik (2002) is based on the Structural Risk Minimization (SRM) principle. The objective 

of SVR is to find a decision rule with the good generalization ability through selecting some 

certain subset of the training data, called support vectors. In this method, an optimal 

separating hyper plane is constructed, after nonlinearly mapping the input space into a 

higher dimensional feature space. Thus, the quality and complexity of SVM solution does 

not depend directly on the input space.  

 

Another important characteristic of SVR is that the training process is equivalent to solving 

a linearly constrained quadratic programming problem. Therefore, contrary to other 

networks’ training, the SVR solution is always unique and globally optimal. However, a 

major disadvantage of SVR is that when the training size is large, it requires an enormous 

amount of computation which increases the time complexity of the solution. Now we are 

going to present a brief mathematical discussion about the SVR concept. 

2.1.9 Hybrid Forecasting Methods 

Hybrid forecasting methods bring together regression, data smoothing, and other methods to 

generate forecasts that can compensate for the weaknesses of individual methods. For 

instance, several forecasting methods are excellent at short-term forecasting, but cannot 

obtain seasonality.  Hybrid forecasting methods involve Vanguard dampened trend, a robust 

hybrid model that instantaneously reveals all trends, cycles, and seasonality in historical data 

and responds with the most accurate exponential smoothing method. Vanguard Dampened 

Trend is available across all Vanguard business forecasting applications (Luxhøj et al., 

1996). 

2.1.10 Forecast combinations 

It seems apparent that no forecasting technique is suitable for all situations. There is 

significant indication to demonstrate that combining individual forecasts produces gains in 

forecasting accuracy. There is also evidence that adding quantitative forecasts to qualitative 

forecasts reduces accuracy. Research has not yet revealed the conditions or methods for the 

best possible combinations of forecasts. Judgmental forecasting usually entails combining 

forecasts from more than one source. Informed forecasting starts with a set of key 
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assumptions and then employs a combination of historical data and expert opinions. 

Involved forecasting seeks the opinions of all those directly affected by the forecast (e.g., the 

sales force would be included in the forecasting process). These techniques generally 

produce higher quality forecasts than can be attained from a single source. 

Combining forecasts offer us a way to compensate for inadequacies in a forecasting 

technique. By selecting complementary methods, the shortcomings of one technique can be 

offset by the advantages of another. Since the publication of the seminal paper on forecast 

combination by Bates and Granger in 1969, research in this area has been active. In general, 

four main reasons for the potential benefits of forecast combinations have been identified:  

• It is implausible to be able to accurately model a actual data generation method in 

only one model. Single models are most likely to be interpretations of a much more 

intricate reality, so various models might be complementary to each other and be 

able to approximate the true process better.  

• Even if a single best model is available, a lot of specialist knowledge is required in 

most cases to discover the appropriate functions and parameters. Forecast 

combinations help to achieve good results without in-depth knowledge about the 

application and without time-consuming, computationally complex fine-tuning of a 

single model.  

• It is not always feasible to consider all the evidence an individual forecast is based 

on into account and establish a superior model, because information may be private, 

unobserved, or provided by a closed source. 

• Individual models may have different speeds to adapt to changes in the data 

generation process. Those changes are difficult to detect in real-time, which is why a 

combination of forecasts with different abilities to adapt might perform well. 

Forecasting combination techniques recommend an alternative approach to single models’ 

forecasts. Bates and Granger (1969) were the first to propose such techniques to improve the 

forecasting accuracy of individual models (Salerno et al., 2007). Over the last three decades, 

these techniques have become highly predominant in the forecasting literature. Numerous 

authors have sketched the reasons behind the prevalence of these techniques. For instance, 

Timmermann (2006) points out that combined forecasts allow to well aggregate all relevant 

information gained in different single model forecasts and they are more robust against a 

misspecification of the data generating process. Brown and Murphy (1996) note that 

combination forecasts are more likely to improve forecasting performance when each single 

model forecast being combined is independent of the other (or uncorrelated). Timmermann 

(2006) also stresses that combination forecasts are particularly useful when structural breaks 
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are present in the data series. Again, each individual model will process differently the 

structural breaks.  

The conclusions that have been reached regarding these combination techniques vary from 

one paper to another. For example, Winkler and Makridakis (1983) generate forecasts for 

1001 economic time series with different types of data and conclude that more complex 

combination methods slightly outperform the simple average method for long term 

forecasting horizons. In the air transportation forecasting literature, Chu (1998) provides 

monthly forecasts of tourist arrivals to Singapore for the year 1988 using a SARIMA and a 

sine wave regression model. He applies a version of the variance covariance method adapted 

for seasonal data. Forecasting performance is evaluated using the MAPE. 

 

He finds that the combined forecast is more accurate than the ones issued from ARIMA and 

sine wave. Shen et al. (2011) use tourist flows from the United Kingdom to seven major 

touristic destinations to point out that unequal weighing schemes outperform the simple 

average method. In contrast, Coshall (2009) reviews tourist departures from the United 

Kingdom to twelve destinations. He concludes that the performance of different combination 

methods depends on the forecasting horizon. In this case, the variance-covariance method 

outperforms simple averaging for one and two years ahead forecasts while the reverse is true 

for three years ahead forecasts. Finally, Wong et al. (2007) study tourist arrivals to Hong 

Kong. They find that forecasting performance depends on the number of single model 

forecasts being combined. Thus, they mention that the best performance is likely to be 

achieved by combining two or three single model forecasts at most. 

2.1.11 Linear Forecast Combination  

The linear combination of forecasts computes a combined forecast �̂�𝑐 as the weighted sum 

of m individual forecasts �̂�1,�̂�2,.., �̂�𝑚 as shown below: 

           �̂�𝑐 = ∑ 𝜔𝑖�̂�𝑖
𝑚
𝑖=1                                                                   (2 .4)    

Weights can be estimated in various ways. One easy and often remarkably robust example is 

the simple average combination with equal weights. A variance-based approach first 

mentioned by Bates and Granger in (1969) and further extended by Newbold and Granger in 

1974 uses the average of the sum of the past squared forecast errors (MSE) over a certain 

period. Granger and Ramanathan (1984) propose the regression method and treat individual 

forecasts as regressors in an ordinary least squares regression including a constant. In a rank-

based approach, according to Bunn (1975), each combination weight is expressed as the 

likelihood that the corresponding forecast is going to outperform the others, based on the 

number of times where it performed best in the past. Gupta and Wilton (1987) additionally 
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consider the relative performance of other models using a matrix with pairwise odd ratios. 

Each element of the matrix represents the probability that the model of the corresponding 

line will outperform the model on the corresponding column. 

2.1.12 Nonlinear Forecast Combination  

Potentially nonlinear relationships among forecasts are not considered in linear forecast 

combination, providing the main argument for usage of nonlinear combination methods. The 

most examined nonlinear methods for forecast combination are backpropagation 

feedforward neural networks, where individual forecasts are input data and the combined 

forecast is obtained as the output. This method was first mentioned by (Shi et al., 1999). 

Fuzzy systems for forecast combination can be found following two different paradigms. 

First, fuzzy systems can be observed as a kind of regime model where two or more different 

forecasting models can be active at one time. Second, the resulting fuzzy system almost 

always outperforms or draws level with the individual forecasts and linear forecast 

combination methods. A self-organizing algorithm based on the Group Method of Data 

Handling (GMDH) technique presented by Xu (2002) was first proposed by Ivakhnenko 

(1970). 

Individual forecasts are taken as an input variable for the combination algorithm, different 

transfer functions, usually polynomials, then create intermediate model candidates for the 

first layer. Iteratively, the best models are selected with an external criterion and used as 

input variables for the next layer, producing more complex model candidates until the best 

model is found. Several authors favour the approach of pooling forecasts before combining 

them. By grouping similar forecasts and subsequently combining the pooled forecasts, 

several issues like increased weight estimation errors because of a high number of forecasts 

to combine can be addressed. Research in this area recently started with clustering forecasts 

based on their recent past’s error variance in and continued with investigations by Riedel 

and Gabrys (2005) on how to extend and modify the clustering criteria in the context of a big 

pool of individual forecasts that have been diversified by different methods. The treelike 

structures of these multi-level and multi-step forecast combinations can be evolved with 

genetic programming, using the quality of the combined predictions on the validation data as 

the fitness function to optimize. 

2.1.13 Forecast Combination Methods 

Simple Average Combination Method 

The SA combination method calculates composite forecasts by taking the arithmetic average 

of individual forecasts. Clemen (1989) conclude that the virtues of this method include 

impartiality, robustness, and a good track record in economic and business forecasting. It is 
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thus a common choice in forecast combination studies and serves as a useful benchmark. 

The method can be expressed as,  

𝑓𝑐𝑡 =  ∑
𝑓𝑖𝑡

𝑛

𝑛
𝑖=1                                                                               (2.5)  

where fct denotes the combined forecast, fit is the ith forecast in time t, and n is the number of 

forecasts to be combined. 

Trimmed Mean Method 

In the trimmed average, individual forecasts are combined with a simple arithmetic mean, 

excluding the worst performing k% of the models. Usually, the value of k is selected from 

the range of 10 to 30. This method is sensible only when n ≥ 3 (Luh and Guo, 1999). 

Winsorized Average Method 

In the Winsorized average, the ith smallest and largest forecasts are selected and set to the        

(i + 1)th smallest and largest forecasts, respectively (Shete et al., 2004). 

Variance–Covariance Method 

Bates and Granger (1969) introduce the VACO method. In the two-model forecast 

combination case, the combined forecasts are given as  

fct = wf1t + (1 – w) w f2t                                                                (2 .6) 

where fct is the combination forecast based on the individual forecasts of f1t and f2t, and w 

and (1-w) are the weights assigned to f1t and f2t respectively. The weight that minimises the 

combined forecast variance is  

          w* = (𝜎22
2  − 𝜎12) + 𝜎22

2 +   𝜎11
2  𝜎22

2  − 2𝜎12                          (2 .7)    

𝜎11
2  and 𝜎22

2  are unconditional individual forecast errors, and T is the sample size. According 

to Fritz et al. (1984), the foregoing formula can be easily extended to include more than two 

individual forecasts, and the weights can be calculated by  

                         Wi = 
[∑ 𝑒𝑗𝑡

2𝑇
𝑡=1 ]

∑ [∑ 𝑒𝑖𝑡
2𝑇

𝑡=1 ]𝑚
𝑗=1 

                                                  (2 .8)    

Granger and Ramanthan Regression Method.  

The regression method developed by Granger and Ramanthan (1984) proceeds by regressing 

actual values on competing for individual forecasts and a constant term, and then employing 

least squares parameter estimates to produce a combination forecast:  

     𝑓𝑐𝑡  =  �̂�0 +  �̂�1𝑓1𝑡+  �̂�2𝑓2𝑡 + ⋯ +  �̂�𝑛𝑓𝑛𝑡                                   (2.9)    

where fct represents a combined forecast based on a linear combination of k individual 

forecasts, fit (i = 1,2,. . .,n), and �̂�𝑖  (i = 0,1,. . .,n) denotes the least squares estimator based 

on observations up to time t-1,  𝑦𝑡−1, that is, the actual values at period t-1. The series of 
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𝑦𝑡−1, is regressed against the individual forecasts, 𝑓𝑖,   𝑡−1. (i = 1,2, . . ., n), and a constant 

term to determine �̂�𝑖 (i = 0,1, . . ., n). 

Discounted Mean Square Forecast Error Method.  

The discounted MSFE method was first proposed by Bates and Granger (1969) for a two-

individual- forecast case and subsequently generalised by Newbold and Granger (1974) for 

an n-individual-forecast combination. The method makes use of the full sample, but weights 

recent observations more heavily (Diebold and Lopez, 1996). The combination of an n-

individual forecasts for period t is given as 

                    𝑓𝑐𝑡 =  ∑ 𝜔𝑖
𝑛
𝑖=1 𝑓𝑖𝑡                                                        (2 .10)    

where fit is the forecast for period t from forecasting method i, wi is the weight assigned to 

individual forecast fit, and n is the number of individual forecasts.  

Shrinkage Method.  

Clemen and Winkler (1986), Diebold and Pauly (1990) employed Bayesian shrinkage 

techniques to allow the incorporation of varying degrees of prior information into the 

estimation of combination weights. In this shrinkage method, the least squares weights and 

arithmetic mean emerge as the two extreme cases for the posterior mean. The actual 

posterior mean combination weights are a matrix-weighted average of those for the two 

extreme cases. The exact location depends on prior precision, which can be estimated from 

the data using an empirical Bayesian procedure. Such procedures, which employ shrinkage 

towards a measure of central tendency (e.g., the arithmetic mean), are increasingly playing a 

role in forecast combinations. 

Although the combination weights are coaxed towards the arithmetic mean, the data are still 

allowed to speak when they have something to say. The shrinkage method computes the 

weights as an average of the recursive ordinary least squares estimator of the weights based 

on the GR method and equal weighting, that is,  

 𝑊𝑖𝑡 =  𝜆�̂�𝑖𝑡 + (1- λ) (1/n)                                                                  (2.11)    

where ^βit is the ith estimated coefficient from a recursive ordinary least squares regression, 

and λ= max{0; 1-k/n(T-1-n)}, where k is a constant that controls the amount of shrinkage 

towards equal weighting and k takes a value between 0 and 1. A larger k corresponds to 

more shrinkage towards equal weighting. 

Time-Varying-Parameter Combination Method with the Kalman Filter.  

This method utilises the Kalman filter algorithm to estimate the coefficients in the combined 

regression, which are assumed to follow a random walk process. It has been used by 

Sessions and Chatterjee (1989), LeSage and Magura (1992), and Stock and Watson (2004). 
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The TVP combination method begins with the GR regression model with time varying 

parameters,  

𝑓𝑐𝑡 =  𝛽0𝑡  + 𝛽1𝑡𝑓1𝑡+ 𝛽2𝑡𝑓2𝑡 + ⋯ + 𝛽𝑘𝑡𝑓𝑘𝑡 +  𝑒𝑡 

                                                    and  𝛽𝑖𝑡 =  𝛽𝑖𝑡−1 + 𝜂𝑖𝑡                 (2 .12)   

where ηit is independent and identically distributed and is uncorrelated with et. The Kalman 

filter approach also facilitates real-time parameter ‘updating’ and can readily handle both 

stationary (e.g., autoregressive moving average) and non-stationary (e.g., integrated 

autoregressive moving average) parameter drifts (Diebold and Lopez, 1996). 

Outperformance Method 

This method was proposed by Bunn (1975). The weights are the probabilities assessed and 

revised in a Bayesian manner. Each individual weight is interpreted as the probability that its 

respective forecast will perform the best (in the smallest absolute error sense) on the next 

occasion. Each probability is estimated as the fraction of occurrences in which its respective 

forecasting model has performed the best in the past. 

Optimal Method 

This pivotal method for combining forecasts was proposed by Bates and Granger (1969). 

The weights are determined to minimize the combined forecast error variance. Diebold and 

Lopez (1996) refer to this method as the “variance-covariance” method since the weights are 

achieved using the covariance matrix of forecast errors. Granger and Ramanathan (1984) 

demonstrated that the method is equivalent to a least squares regression in which the 

constant is suppressed, and the weights are constrained to sum to one. This approach 

involves the covariance matrix of forecast errors to be accurately estimated. In practice, this 

matrix is often not stationary, in which case it is estimated based on a short history of 

forecasts and thus the method becomes an adaptive approach to combining forecasts. 

Optimal (adaptive) with independence assumption 

The covariance matrix of forecast errors is restricted to be diagonal, comprising just the 

individual forecast error variances (Bunn 1985). 

Optimal (adaptive) with restricted weights 

As well as the diagonal restriction, individual weights are restricted not to be outside the 

interval [0,1] (Newbold and Granger 1974). 

Regression 

The combined forecast is obtained via ordinary least squares (OLS) regression with the 

inclusion of a constant (Granger and Ramanathan 1984). 

Regression with restricted weights 
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A least-squares regression with the inclusion of a constant is performed, but the weights are 

constrained to sum to one (Holden et al. 1990). 

2.2 Time Series 

Time series are any univariate or multivariate quantitative data collected over time either by 

private or government agencies. Common uses of time series data include: 1) modelling the 

relationships between various time series; 2) forecasting the underlying behavior of the data; 

and 3) forecasting what effect changes in one variable may have on the future behavior of 

another variable (Chatfield, 2000).  

Time-series are a structured way to represent data. Visually, it's a curve that evolves over 

time. A time-series is a list of dates, each date being an associated with a value (a number). 

For example, the daily sales of a product can be represented as a time-series. Forecasting 

time-series mean that we extend the historical values into the future where measurements are 

not available yet. Forecasting is typically performed to optimize areas such as inventory 

levels, production capacity or staffing levels (Palit and Popovic, 2006). 

There are two main structural variables that define a time-series forecast: 

 The period which represents the aggregation level. The most common periods are 

month, week, and day in the supply chain (for inventory optimization). Call centres 

typically rely on the quarter-hour period (for staffing optimization). 

 The horizon which represents the number of periods ahead that need to be 

forecasted. In supply chain, the horizon is typically equal or greater to the lead time 

(Palit and Popovic, 2006, Timmermann, 2006). 

There are several key notions that we should be cognizant of when explaining time series 

data. These attributes will enlighten how we pre-process the data and select the appropriate 

modelling technique and parameters. Ultimately, the purpose is to simplify the patterns in 

the historical data by removing known sources of variation and making the patterns more 

consistent across the entire datasets. Simpler patterns will generally lead to more accurate 

forecasts.(Skamarock and Klemp, 2008, Song and Chissom, 1993b) 

 Trend: A trend exists when there is a long-term increase or decrease in the data. 

 Seasonality: A seasonal pattern occurs when a time series is affected by seasonal 

factors such as the time of the year or the day of the week. 

 Autocorrelation: Refers to the phenomena whereby values of Y at time t are 

impacted by previous values of Y at t-i. To find the proper lag structure and the 

nature of auto correlated values in your data, use the autocorrelation function plot. 

https://www.lokad.com/lead-time-definition-and-formula
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 Stationary: A time series is said to be stationary if there is no systematic trend, no 

systematic change in variance, and if strictly periodic variations or seasonality do 

not exist 

2.3 Fuzzy Time Series 

Univariate or multivariate quantitative data collected over time in the past decades 

represented a time series. Researchers have made significant progress in dealing with time 

series analysis. Traditional time series methods appeared ineffective in some situations and 

fuzzy time series performed enormously well. Zadeh first proposed the fuzzy set theory 

(Bonissone, 1980, Zadeh, 1976, Dubois, 1980) to deal with uncertainty using linguistic 

terms. Song and Chissom (1993) successfully introduced the fuzzy set concept in time series 

analysis to propose the fuzzy time series. Chen (1996) improved fuzzy time series 

forecasting method by introducing simple arithmetic operations.  

Let U be the universe of discourse, where U = {u1, u2, …., un} A fuzzy set in the universe of 

discourse U can be represented as follows: 

           A= ƒ𝐴( u 1) /u 1  +  ƒ𝐴( u 2) /u 2  +⋯+ ƒ𝐴( u n) /u n                        (2.13)  

where ƒ𝐴 denotes the membership function of the fuzzy set A, ƒ𝐴: U → [0, 1] and ƒ𝐴(ui), 

(1 ⩽ i ⩽ n), denotes the degree of membership of ui in the fuzzy set A and ƒ𝐴(ui) ϵ [0, 1].  

2.4 Forecast Performance Measures  

The accuracy of the forecast is the degree of familiarity of the statement of the quantity of 

that quantity’s genuine value. The actual value generally cannot be measured at the time the 

forecast is produced because the statement concerns the future. For most businesses, more 

accurate forecasts increase their effectiveness to serve the demand while lowering overall 

operational costs. 

To apply a certain model in a real or simulated time series, first the raw data are split up into 

two parts, viz. the Training Set and Test Set. The observations in the training set are used for 

constructing the desired model. Often a small subpart of the training set is kept for validation 

purpose and is known as the Validation Set. Sometimes a pre-processing is done by 

normalizing the data or taking logarithmic or other transforms (Granger and Pesaran, 2004, 

Baldwin and Kain, 2006, Cassar, 2014). Once a model is constructed, it is used for 

generating forecasts. The test set observations are kept for verifying how accurate the fitted 

model performed in forecasting these values. If necessary, an inverse transformation is 

applied on the forecasted values to convert them in original scale.  

http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0135
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0005
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To judge the forecasting accuracy of a model or for evaluating and comparing different 

models, their relative performance on the test dataset is considered. Due to the fundamental 

importance of time series forecasting in many practical situations, proper care should be 

taken while selecting a model. For this reason, various performance measures are proposed 

in literature (Cassar, 2014) to estimate forecast accuracy and to compare different models. 

These are also known as performance metrics (Baldwin and Kain, 2006). Each of these 

measures is a function of the actual and forecasted values of the time series.  

Various Forecast Performance Measures 

The commonly used performance measures and their important properties are listed below:  

2.4.1 Mean Absolute Error (MAE) 

The mean absolute error (MAE) is a quantity used to measure how close forecasts or 

predictions are to the eventual outcomes. The mean absolute error is given by 

MAE = 
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|𝑛

𝑖=1                                                                     (2.14)    

As the name suggests, the mean absolute error is an average of the absolute errors, where 𝑓𝑖   

is the prediction and 𝑦𝑖   the true value. Note that alternative formulations may include 

relative frequencies as weight factors.(Hyndman and Koehler, 2006) 

The properties of MAE are: 

 It measures the average absolute deviation of forecasted values from original ones. 

 It is also termed as the Mean Absolute Deviation (MAD). 

 It shows the magnitude of overall error, occurred due to forecasting. 

 In MAE, the effects of positive and negative errors do not cancel out. 

 MAE does not provide any idea about the direction of errors. 

 For a good forecast, the obtained MAE should be as small as possible. 

 MAE also depends on the scale of measurement and data transformations. 

 Extreme forecast errors are not panelised by MAE. 

2.4.2 Mean Absolute Percentage Error (MAPE) 

The mean absolute percentage error (MAPE), also known as a mean absolute percentage 

deviation (MAPD), is a measure of accuracy of a method for constructing fitted time series 

values in statistics, specifically in trend estimation. It usually expresses accuracy as a 

percentage, and is defined by the formula: 

This measure is given by (Hyndman and Koehler, 2006) 

MAPE = 
1

𝑛
∑ |

𝑒𝑡

𝑦𝑡
| × 100𝑛

𝑡=1                                                               (2 .15)    
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The important features are: 

 This measure represents the percentage of average absolute error occurred. 

 It is independent of the scale of measurement but affected by data transformation. 

 It does not show the direction of error. 

 MAPE does not penalize extreme deviations. 

 In this measure, opposite signed errors do not offset each other. 

2.4.3 Mean Squared Error (MSE) 

The mean squared error (MSE) of an estimator measures the average of the squares of the 

"errors", that is, the difference between the estimator and what is estimated. MSE is a risk 

function, corresponding to the expected value of the squared error loss or quadratic loss. The 

difference occurs because of randomness or because the estimator doesn't account for 

information that could produce a more accurate estimate. 

The mathematical definition of this measure is (Hyndman and Koehler, 2006) 

        MSE = 
1

𝑛
∑  𝑒𝑡

2𝑛
𝑡=1                                                                         (2.16)    

The properties are: 

 It is a measure of the average squared deviation of forecasted values. 

 As here the opposite signed errors do not offset one another, MSE gives an overall 

idea of the error occurred during forecasting. 

 It penalizes extreme errors occurred while forecasting. 

 MSE emphasizes the fact that the total forecast error is in fact much affected by 

large individual errors, i.e. large errors are much expensive than small errors. 

 MSE does not provide any idea about the direction of overall error. 

 MSE is sensitive to the change of scale and data transformations. 

 Although MSE is a good measure of overall forecast error, but it is not as intuitive 

and easily interpretable as the other measures discussed before. 

2.4.4 Sum of Squared Error (SSE) 

The SSE calculates the sum of the squared errors of the prediction function. It is 

mathematically defined as (Hyndman and Koehler, 2006) 

        SSE = 
1

𝑛
∑ (𝑥𝑡 − 𝑥�̂�)

2𝑛
𝑡=1                                                              (2 .17)    

Where 𝑥𝑡 is the actual observation time series and  𝑥�̂� is the forecasted time series. 

The properties of MPE are: 

 It measures the total squared deviation of forecasted observations, from the actual 

values. 

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Risk_function
https://en.wikipedia.org/wiki/Risk_function
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Omitted-variable_bias
https://en.wikipedia.org/wiki/Omitted-variable_bias
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 The properties of SSE are same as those of MSE. 

2.4.5 Root Mean Squared Error (RMSE) 

The square root of the mean of the square of all the error. The use of RMSE is very common 

and it makes an excellent general-purpose error metric for numerical predictions. Compared 

to the similar Mean Absolute Error, RMSE amplifies and severely punishes large errors. It is 

mathematically defined as (Hyndman and Koehler, 2006) 

      RMSE =  √
1

𝑛
 ∑  (𝑦𝑖 − 𝑦𝑖 ̂𝑛

𝑖=1 )2                                                          (2.18)    

The properties of RMSE are: 

 RMSE is nothing but the square root of calculated MSE. 

 All the properties of MSE hold for RMSE as well. 

2.5 Research gap 

From the literature review the following research gaps are identified- 

 Individual Forecasting Method vs. Hybrid Forecasting Method-  

Forecasts are seldom accurate. A lot of individual forecasting model has been 

employed for forecasting purpose in the last couple of decades.  A forecasting 

method that is suitable for one domain might not be appropriate for another domain. 

Therefore, the procedure of picking a finest forecasting method in advance is not 

possible in most cases. Rather than focusing on making forecasting by a single 

method, combining distinct models can be brought into account to establish 

forecasts. Both theoretical and empirical outcomes imply that hybrid methods can be 

an effective and efficient way to improve forecasts. Moreover, hybrid model leads to 

improve the forecasting accuracy and performance. In forecasting research, several 

combining schemes have been recommended. In 2010, Wedding and Cios defined a 

combining methodology based on radial basis function and the Box–Jenkins 

method. Luxhoj (1996) presented a hybrid econometric and an ANN approach for 

sales forecasting. In 1998, Zhang and Hann proposed a model to combine several 

feed-forward neural networks to improve time series forecasting accuracy. 

 Accuracy Effected by Data Interval Length and Forecasting Rules Content- 

There are two main factors affecting the forecast accuracy, these are the length of an 

interval in datasets and the content of forecast rules. The length of the interval is 

required for partitioning the universe of discourse has a significant impact on the 

forecasting results. Huarng (2002) proposed mean-based and distribution-based 

methods to determine the length of interval. Egrioglu et al. (2006) calculated length 
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of intervals in first order and high order models by using single variable constrained 

optimization. Huarng and Yu (2006) proposed a method where the length of the 

interval is not fixed and is exponentially increased with a ratio. Moreover, the 

universe of discourse has been partitioned based on dynamic length of interval 

instead of fixed length interval. Kuo et al. (2009) applied differential evolution 

algorithm to define dynamic interval lengths. Uslu et al. (2009) proposed an 

approach based on weights formed chronologically. Moreover, there are some 

findings in the literature that have applied fuzzy clustering techniques in 

fuzzification stage. In this research, an automatic clustering algorithm is exploited 

for partitioning datasets rather than considering fixed length interval. Furthermore, a 

new hybrid forecast model has been proposed based on the fuzzy time series, 

particle swarm optimization and automatic clustering technique by pondering the 

two aforementioned factors. The role of the model is to obtain the appropriate 

content of the two mentioned factors to enhance forecasts accuracy.  

 Model Selection in Combination Forecasting Model-  

Forecast combination is currently observed as a handy tool in rational forecasting. 

Combine forecasts are expected to be effective when there is uncertainty and for that 

the best forecasting method needs to identify. This may be because of encountering 

a new situation, have a heterogeneous set of time series or expect the future to be 

especially turbulent. Despite a large literature, it was not obvious a priori, which 

method would be more accurate. Meade and Islam (Meade and Islam, 1998) 

compared a selection rule (picking the best-fitting model) against a combined 

forecast. Using seven forecasting methods on 47 data sets, they found that the 

combined forecast was more accurate than the best fitting model for 77% of the 

forecasts. Irrelevant or inadequate models may turn up to have little weight or no 

weight in the combination, and their inadequacy becomes apparent. The question is 

now whether looking at those weights, that are typically obtained through auxiliary 

least-squares based regressions, is informative enough or not. For instance, it can be 

happened that some weights are negative when forecasts are all on the same side of 

the true data points. The hold-out sample may also not be large enough to find 

significant weights. Even a small weight in the forecast combination can be enough 

to establish better forecast performance. Another model selection strategy is related 

to the notion of encompassing. Therefore, a model is selected in the final 

combination if the combination with that model yields more forecast accuracy than a 

combination without that model.  

In this research, decision tree algorithm will be used for appropriate model selection 

to combine the weights of the individual forecasting model. A decision tree of 
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forecast method was developed to illustrate the selection of forecast method; it 

resumes selecting the best forecasting method, according to the time series data 

pattern. Forecast methods decision tree helps to pre-select alternative methods to 

forecast future demand. It is necessary determine the error measure for each one, 

and to choose the one that best fits the data, that is, the one that have the lowest 

forecast error. 

 The issue of weights in combining forecasts-  

A widespread concern with combining forecasts is the question of how-to best 

weight the components, and many scholars have proposed methods for doing so. In 

fact, the simple average (i.e., assigning equal weights to components) was found to 

often provide more accurate forecasts than complex approaches to estimating 

“optimal” combining procedures (Clemen, 1989). Empirical research has repeatedly 

confirmed these findings. The sophisticated methods included combinations based 

on principal components, trimmed mean, optimal least squared estimates, and 

Bayesian shrinkage. The performance of these methods varied over time, across 

target variables, and across time horizons.  

Simple averages of all available forecasts provided more accurate predictions than 

sophisticated combination methods, which relied heavily on historical performance 

for weighing the component forecasts. One reason for the strong performance of 

equal weights is that the accuracy of the component forecasts varies over time and 

strongly depends on external effects. Smith and Wallis (2009) studied this question 

by conducting a Monte Carlo simulation of combinations of two forecasts, and 

reappraising a published study on different combinations of multiple forecasts of US 

output growth and concluded that the simple average will be more accurate than 

estimated “optimal” weights if two conditions are met: (1) the combination is based 

on a large number of individual forecasts and (2) the optimal weights are close to 

equality. The reason is that, in such a situation, each forecast has a small weight, and 

the simple average provides an efficient trade-off against the error that arises from 

the estimation of weights. 
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3 Hybrid Forecasting Model 

3.1 Fuzzy Time Series 

In the past decades, researchers have made some progress in dealing with time series 

analysis. There were some situations where traditional time series methods appeared 

ineffective and fuzzy mathematics worked tremendously better. Zadeh first proposed the 

fuzzy set theory (Bonissone, 1980, Zadeh, 1976, Dubois, 1980) to deal with uncertainty 

using linguistic terms. Song and Chissom (1993) successfully introduced the fuzzy set 

concept in time series analysis to propose the fuzzy time series. Chen (1996) improved fuzzy 

time series forecasting method by introducing simple arithmetic operations.  

Let U be the universe of discourse, where U = {u1, u2, …., un}. A fuzzy set in the universe of 

discourse U can be represented as follows: 

A= ƒ𝐴( u 1) /u 1  +  ƒ𝐴( u 2) /u 2  +⋯+ ƒ𝐴( u n) /u n                         (3 .1) 

where ƒ𝐴 denotes the membership function of the fuzzy set A, ƒ𝐴: U → [0, 1] and ƒ𝐴(ui), 

(1 ⩽ i ⩽ n), denotes the degree of membership of ui in the fuzzy set A and ƒ𝐴(ui) ϵ [0, 1].  

From the literature of Song and Chissom (1993), Chen (2002) and Chen and Chung, 

(2006) the definitions of the fuzzy time series has defined as follows. 

Definition 1 

Let Y(t) (t = 0, 1, 2, 3, …), be the universe of discourse and a subset of real number by which 

fuzzy sets ƒ𝑖(t) are defined. Assume F(t) is a collection of ƒ1(t), ƒ2(t), …, then F(t) is called 

the fuzzy time series definition of Y(t). 

Definition 2 

Assume F(t) and F(t − 1) are fuzzy sets denoted as F(t − 1)→F(t), then the fuzzy logical 

relationships can be expressed as F(t) = F(t − 1) ∘ R(t, t − 1), where “∘” represents an max 

min composition operator and R(t − 1, t) is the fuzzy relationship between F(t − 1) and F(t) . 

Moreover, F(t) said to be occurring by F(t − 1) and F(t − 1), F(t)  refer to the current state 

and the next state of fuzzy time series, respectively. 

Definition 3 

Let R(t − 1, t) be the first order model of F(t). Assume for time t, R(t, t − 1) = R(t − 1, t − 2), 

then F(t) is mentioned as time-invariant fuzzy time series otherwise mentioned as time-

variant fuzzy time series.    

http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0135
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0005
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0135
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0010
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0020
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0020
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Definition 4 

Fuzzy logical relationships can be grouped together according to the same current state of 

the fuzzy logical relationships. Two examples are illustrated as follows: 

 Three first-order Fuzzy logical relationships with the same current state Ai and 

different next state are Ai → Aj, Ai → Ak and Ai → Al, respectively. The first order 

fuzzy logical relationships can be grouped (G r ) together and represented as follows: 

G r :A i → A j ,A k ,A m                                    (3 .2)  

            where r is a group label of the fuzzy relationships. 

 Two third-order fuzzy logical relationships with the same current state 

“Ai, Aj, Ak” are Ai, Aj, Ak → Am and Ai, Aj, Ak → An, respectively. The third order 

fuzzy logical relationships can be grouped (G r ) together and represented as follows: 

G r :A i ,A j , A k→A m , An ,                               (3 .3)  

 where r is a group label of the fuzzy relationships. 

3.2 An automatic clustering algorithm 

In this section, an automatic clustering algorithm, (Chen et al., 2008)  has been mentioned to 

cluster the historical enrolment data of University of Alabama into different length of 

intervals. The steps of the algorithm are described as follows:  

Step 1: Numerical Data has sorted in an ascending sequence of n different numerical data. 

Assume that the set without duplicate data in an ascending data sequence can be shown as 

follows: 

d1 ,  d 2 ,  d3 ,  …,  d i ,  …,  dn .  

From the ascending data sequence, we can calculate the average difference value of the data: 

ave_dif = 
∑ di+1−di

n−1
i=1

n−1
,                                  (3 .4) 

where “ave_dif’ represented the average of the differences between each pair of data in the 

ascending data sequence. 

Step 2: The smallest datum in the ascending data sequence has set into the current cluster. 

Determine the appropriate place for the numerical datum in the ascending data sequence by 

following the current cluster using the value of “ave_dif”. The numerical datum following 

the datum in the current cluster can be put into the current cluster or needs to be put into a 

new cluster are measured based on the following principles: 
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Principle 1: Let, there is only one datum in the current cluster, and it is the first cluster and 

assumes that d2  is the adjacent datum of d 1 , shown as follows: 

                            {d1},  d2 ,  d3 ,  …,  dn .  

If the difference between d 2  and d 1  is less than the average difference (d 2-d 1 ⩽ave_di f ) , 

then set d 2  into the current cluster. Otherwise, generate a new cluster for d2  and determine it 

as the current cluster. 

Principle 2: Let, there is only one datum d j  in the current cluster and it is not the first 

cluster. Assume that dk  is the adjacent datum of d j  and d i  is the largest datum in the cluster, 

which is the antecedent cluster of the current cluster, shown as follows: 

                       {d1 ,  …},  …,  {…,  d i },    , dk ,…,dn .  

If the difference between d k  and d j  is less than the average difference (d k-

d j ⩽ave_di f )  and also less than the difference between d j  and d i  (dk-d j < d j -d i ), then 

set d k  into the current cluster which d j  belongs to. Otherwise, a new cluster needs to be 

generated for dk  and assume the new generated cluster to be the current cluster 

which d k  belongs to.  

Principle 3: Let, there is more than one datum in the current cluster and the current cluster 

is not the first cluster. Let d i  is the largest datum in the current cluster and assume that d j  is 

the adjacent datum next to d i , shown as follows: 

                      {d1 ,  …},  …,  {…},  {…,  d i },  d j ,  …,  dn .  

If the difference between d j  and d k  is less than the average difference (d j -

d i ⩽ave_di f )  and the difference between d j  and d i  is less than the cluster difference (d j -

d i ⩽ clu_di f ) , then set d j  into the current cluster which d i  belongs to. Otherwise, a new 

cluster needs to be generated for d j  and let the new generated cluster that d j  belongs to be 

the current cluster, where “clu_dif” denotes the average difference of the distances between 

every pair of adjacent data in the cluster and the value of clu_dif is calculated as follows: 

clu_dif = 
∑ (Ci+1−Ci )

n−1
i=1

n−1
,                                   (3 .5) 

Step 3: According to the results of Step 2, the contents of these clusters can be adjusted by 

using the following principles: 

Principle 1: If a cluster consists of more than two data, then we retain the smallest datum 

and largest datum and remove the others. 

Principle 2: If a cluster consists of exactly two data, then leave it unchanged. 



30 

 

Principle 3: If a cluster has only one datum d q , then the difference between dq  and 

ave_di f  va lu es  ( i . e .  dq-ave_di f )  and the  summat ion b et ween dq  and  

ave_di f  va lu es  ( i . e.  dq+ave_di f )  set into the cluster and remove d qfrom this cluster. 

In terms of the following situation, the cluster needs to be adjusted again: 

Situation 1: In the first cluster if the situation occurs, then the value of “dq-ave_di f f” 

needs to remove instead of dq  from this cluster. 

Situation 2: In the last cluster if the situation occurs, then the value of “d q+ave_di f” needs 

to be removed instead of d q  from this cluster. 

Situation 3: If the value of “d q-ave_di f” is smaller than the smallest value in its 

antecedent cluster, then undo all the action in Principle 3. 

Step 4: The clustering results obtained in Step 3 are assumed as follows: 

{d1 , d2},{ d3 , d4},{ d5 , d6},…, (McAfee et  a l . ) , {d s , d t },…,{dn - 1 , dn}.  

By the following sub-steps, transform these clusters into contiguous intervals: 

Step 4.1: The first cluster {d1 ,  d 2} transformed into the interval [d 1 ,  d2 ) . 

Step 4.2: If the current interval is [d i , d j )  and the current cluster is {dk , d l }, then 

(1) If d j  is greater than equal to d k ,  ( i . e.  d j ⩾d k) then transform the current 

cluster {dk , d l } into the interval [d k , d l ) . Let [ dk , d l )  be the current interval and let the next 

cluster{d m , d n} be the current cluster. 

(2) If d j  is less than d k ,  ( i . e.  d j <d k) then transform {dk , d l } into the interval [ dk , d l )  and 

create a new interval [d j , d k)  between [d i , d j )  and [dk , d l ) . Let [d k , d l )  be the current 

interval and let the next cluster {dm , d n} be the current cluster. If the current interval 

is [d i , d j )  and the current cluster is {d k}, then transform the current 

interval [ d i , d j )  into [d i , d k) . Let [ d i , d k)  be the current interval and let the next cluster be 

the current cluster. 

Step 4.3:  The current interval and the current cluster need to check repeatedly until all the 

clusters have been transformed into intervals. 

Step 5: Add each three of the intervals obtained in Step 4 in a new interval and continue this 

until the last interval come.  

3.3 Particle swarm optimization 

Particle swarm optimization (PSO) is an optimization approach introduced by (Eberhart and 

Shi, 2001, Shi and Eberhart, 2001, Kennedy et al., 2001) that can effectively search optimal 

or near optimal solution of any kind of optimization problems (Poli et al., 2007, Feng et al., 
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2006, Chen et al., 2007). The PSO contains a swarm of particles like the behaviour of animal 

such as bird flocking, fish schooling that explore the space of possible solutions to an 

optimization problem. Particles are initialized randomly and then allowed to fly in the virtual 

searing space for an optimization problem. Each particle calculates its own fitness and 

neighbouring particle fitness at the time of optimization. Any Particles can remember its 

own best position as well as the candidate’s position it has been passed so far when moves to 

another position. At each optimization step, a moving particle (id) adjusts its candidate 

position according to following equations: 

            Vid = ω×Vid + c1× Rand() × (Pid - Xid) + c2 × Rand() × (Pgd - Xid)           (3.6)    

        X i d  = X i d  +V i d                                                                                    (3 .7)      

where Vid denotes the velocity of the particle id, ω denotes the inertia weight 

factor; c1 and c2 are acceleration values which represent the self-confidence coefficient and 

the social confidence coefficient, respectively. The value of ω linearly decreased during the 

moving process and the c1 and c2 are constants in a standard PSO. The symbol Xid is the 

current position of the particle, Pid is the personal best position of the particle with best 

fitness value; Pgd is the best one of all personal best positions of all particles that experience 

a global best fitness value; d denotes the dimension of the problem space; Rand( ) denotes a 

function that can generate random real numbers in the range of (0, 1). Vid is limited to [-Vmax, 

Vmin] where Vmax is a constant which determines the resolution of searching regions between 

the present position and the target position (Chen and Chung, 2006). The standard PSO is 

described in the following algorithm. 

Algorithm 1. The Standard PSO Algorithm 

1. randomly initialize positions and velocity of all particles 

2. while stop condition (the optimal solution is found, or maximum iterations are 

attained) is not reached do 

3. for each particle id do 

4. evaluate the fitness 

5. update local best position and global best position 

6. adapt velocity using Eq. (3.6) 

7. update the position using Eq. (3.7) 

8. end for 

9. end while 

 

http://www.sciencedirect.com/science/article/pii/S0957417410014909#e0100
http://www.sciencedirect.com/science/article/pii/S0957417410014909#e0105
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Based on the literature review and information collected from the existing forecasting 

model, a hybrid forecasting model has been proposed and the approaches described below in 

figure 3.4 with a relevant flowchart. 

3.4 Flow Chart of proposed hybrid forecasting model 

 

Figure 3.1 Flow chart of the proposed hybrid forecasting model 

3.5 Fuzzy time series in forecasting model 

In this section, a brief overview of fuzzy time series was introduced to forecast the 

enrollments of the University of Alabama. Historical enrollments of the University of 
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Alabama are listed in Table 3.1 (Chen and Chung, 2006). The step by step procedure of the 

proposed model using fuzzy time series is explained as follows: 

Step 1: Define the universe of discourse 

Let Y(t) be the historical data on enrollments of the University of Alabama at 

year t (1971 ⩽ t ⩽ 1993). The universe of discourse is defined 

as U = [Umin − Dmin, Umax + Dmax], where Umin and Umax the minimum and the maximum 

enrollment of Y(t), respectively. Dmin and Dmax are two positive integer values used to tune 

the lower bound and upper bound of the U. According to historical data shown in Table 3.1, 

attained Umin = 13,055 and Umax = 19,337 at year 1971 and 1992, respectively. For getting 

appropriate intervals, set Dmin = 55 and Dmax = 663 and get the universe of discourse on 

U = [13,000, 20,000]. 

Table 3.1 Historical enrollment of University of Alabama. 

Year Actual Enrolments 

1971 13 055 

1972 13 563 

1973 13 867 

1974 14 696 

1975 15 460 

1976 15 311 

1977 15 603 

1978 15 861 

1979 16 807 

1980 16 919 

1981 16 388 

1982 15 433 

1983 15 497 

1984 15 145 

1985 15 163 

1986 15 984 

1987 16 859 

1988 18 150 

1989 18 970 

1990 19 328 

1991 19 337 

1992 18 876 

 

http://www.sciencedirect.com/science/article/pii/S0957417410014909#t0015
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Step 2: Partition of U into appropriate intervals by using an automatic clustering technique 

Phase 1 From the historical data shown in Table 1 in an ascending sequence and the 

following sorted results can be obtained: 

13055, 13563, 13867, 14696, 15145, 15163, 15311, 15433, 15460, 15497, 15603, 

15861, 15984, 16388, 16807, 16859, 16919, 18150, 18876, 18970, 19328, 19337 

If there are repeated numerical data, just consider the data only once in the sorted sequence.  

Based on equation (4), the value of ave_dif can be calculated as,  

ave_di f=[(13563-13055)+(13867-13563)+(14696-13867)+(15145-

14696)+(15163-15145)+(15331-15163)+(15433-15331)+(15460-

15433)+(15497-15433)+(15603-15497)+(15861-15331)+(15984-

15861)+(16388-15984)+(16807-16388)+(16859-16807)+(16919-

16859)+(18150-16919)+(18876-18150)+(18970-18876)+(19328-

18970)+(19337-19328)] /21=6282/21=299.  

Phase 2 By following the ave_dif value and the three principles of Phase 2, the clustering 

results from the ascending data sequence are as follows: 

{13055}, {13563}, {13867}, {14696}, {15145, 15163}, {15311, 15433, 15460, 

15497}, {15603}, {15861, 15984}, {16388}, {16807, 16859}, {16919}, {18150}, 

{18876, 18970}, {19328, 19337}. 

Phase 3 By performing the three principles of Phase 3, the clustering results from Step 2 

can be found in the following form: 

{13055,13354},{13264,13862},{13568,14166},{14397,14995}, {15145,15163}, 

{15331,15497}, {15603},{15861,15984}, {16089,16687}, 

{16807,16859},{16919}, {17851,18449}, {18876,18970}, {19328,19337}. 

Phase 4 By following and performing the sub-steps of Phase 4, the following intervals can 

be observed: 

u1=[13055,13354), u2=[13354,13862), u3=[13862,14166), u4=[14166,14397), 

u5=[14397,14995), u6=[14995,15145), u7=[15145,15163), u8=[15163,15331), 

u9=[15331,15603), u10=[15603,15861), u11=[15861,15984), u12=[15984,16089), 

u13=[16089,16687), u14=[16687,16807), u15=[16807,16919), u16=[16919,17851), 

u17=[17851,18449), u18=[18449,18876), u19=[18876,18970), u20=[18970,19328), 

u21=[19328,19337]. 

Phase 5 Finally, the intervals by considering the range are as follows:  

http://www.sciencedirect.com/science/article/pii/S0957417409002309#tbl1
http://www.sciencedirect.com/science/article/pii/S0957417409002309#fd1
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u1=[13055,14166), u2=[14166,15145), u3=[15145,15603), u4=[15603,16089), 

u5=[16089,16919), u6=[16919,18876), u7=[18876,19337) 

The intervals generation process from the clusters of the historical enrollments of the 

University of Alabama is shown in Table 3.2 

Table 3.2 Clustering Historical Enrollment Datasets of University of Alabama. 

Clusters Data Lower 

bound(bst) 

Upper 

bound(bet) 

Middle 

value(mt) 

Cluster1 {13055,  

13563, 13867} 

13055 14166 13610.5 

Cluster2 {14696, 15145} 14166 15145 14655.5 

Cluster3 {15163, 15311, 

15433, 15460, 

15497, 15603} 

15145 15603 15374 

Cluster4 {15861, 15984} 15603 16089 15843 

Cluster5 {16388, 16807, 

16859, 16919} 

16089 16919 16504 

Cluster6 {18150, 18876} 16919 18876 17897.5 

Cluster7 {18970, 19328, 

19337} 

18876 19337 18672.5 

 

Step 3: Define all Fuzzy set on historical enrollment data 

According to the interval in Step 2, seven linguistic variable Ai (1 ⩽ i ⩽ 7) of enrollment can 

be considered for the seven intervals. The linguistic variable values are A1 = “not 

many”, A2 = “not too many”, A3 = “many”, A4 = “many many”, A5 = “very many”, A6 = “too 

many” and A7 = “too many many” adopted from Song and Chissom (1993b). Fuzzy set can 

be represented as Ai = δ1/u1 + δ2/u2 + δ3/u3 + δ4/u4 + δ5/u5 + δ6/u6 + δ7/u7, where the symbol 

‘+’ denotes union operator, ‘/’ denotes the membership of uj which belongs to Ai , 

uj (1 ⩽ j ⩽ 7) is the element of fuzzy sets, δj (1 ⩽ j ⩽ 7) is the real number (1 ⩽ δj ⩽ 7). In 

other word, fuzzy set is represented in the form Ai = {δj/uj} where 

uj = {u1, u2, u3, u4, u5, u6, u7} with a different membership degree 

δj = {δ1, δ2, δ3, δ4, δ5, δ6, δ7}. Thus, the definitions of all the fuzzy sets are listed as follows: 

 A1  = 1/u 1+ 0 .5 /u 2+ 0/u 3+0/u 4+0/u 5+0/u 6+0/u 7  

A 2  =0.5/u 1+1/u 2+0.5/u 3+0/u 4+0/u 5+0/u 6+0/u7  

A 3  =0/u 1+0.5/u 2+1/u 3+0.5/u 4+0/u 5+0/u 6+0/u7  

A 4  =0/u 1+0/u 2+0.5/u 3+1/u 4+0.5/u 5+0/u 6+0/u7  

A 5  =0/u 1+0/u 2+0/u 3+0.5/u 4+1/u 5+0.5/u 6+0/u7  

http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0135
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A 6  =0/u 1+0/u 2+0/u 3+0/u 4+0.5/u 5+1/u 6+0.5/u7  

           A7  =0/u 1+0/u 2+0/u 3+0/u 4+0/u 5+0.5/u 6+1/u 7  

 

To fuzzify all historical data, the usual method is to assign a corresponding linguistic value 

of each year’s enrollment into an equivalent interval. For example, the historical enrollment 

of year 1972 is 13,563 which falls within (13,055, 14,166], so it belongs to interval u1. By 

considering Eq(3.1), the membership degree of the fuzzy set  A6  and  A7 with values δ6 = 1 

and δ7 = 1 can be found, these are greater than all other fuzzy sets. Therefore, the linguistic 

value of “too many” and “too many many” are labelled for the fuzzy set A6 and A7. Let Y(t) 

and F(t) two time series data at year t, where Y(t) is actual enrollment and F(t) is the fuzzy 

set of Y(t). So, all the elements of Y(t) are integer representing actual enrolment and all the 

elements of F(t) are linguistic value (i.e. fuzzy set) with respect to the corresponding 

element of Y(t). Table 3 represents the results of fuzzification on enrollments of the 

University of Alabama. Actual enrollment Y(t) is fuzzified to a corresponding linguistic 

value of the fuzzy set F(t). For instance, Y(1988) = 18,150 is converted to F(1988) = A6 with 

the linguistic value “too many”; Y(1991) = 19,337 is converted to F(1991) = A7 with the 

linguistic value “too many many”, and so on. 

Step 4: Generate all fuzzy relationships 

After the creation of fuzzy time series F(t), the fuzzy relationship under different orders can 

be constructed easily. All linguistic values of the current state and the next state used as 

training data. The first order fuzzy relationship can be constructed using the pattern as 

F(t − 1)→F(t) based on fuzzy time series definition 2, where F(t − 1) is the current state and 

F(t) is the next state, respectively. Fuzzy sets of F(t − 1) and F(t)    can be found from the 

corresponding historical enrolment of Y(t − 1) and Y(t), i.e. 

F(t − 1) = Ai and F(t) = Aj where i ⩽ j and 1 ⩽ i,  j ⩽ 7.  Then a fuzzy relationship Ai → Aj 

can be created by replacing the F(t − 1) and F(t) with the corresponding linguistic values. 

For example, F(1971) →F(1972) be a fuzzy time series relationship with the fuzzy sets as 

F(1971) and F(1972). F(1971) = A1  and F(1972) = A1 can be observed according to table 3.3 

and a fuzzy relationship A1 → A1 is obtained by replacing the F(1971)  and F(1972) with 

linguistic values of A1 and A1, respectively. The first order fuzzy relationships of the 

historical enrollments from the year 1971 to 1992 are listed in column 4 of table 3.3.  To 

find all λ (λ ≥ 2 ) order fuzzy relationships, λ consecutive fuzzy sets are necessary in the 

training phase, these are F(t − λ), F(t − λ + 1),.., F(t − 2), F(t − 1)→F(t), where the pattern 

“F(t − λ), F(t − λ + 1), … , F(t − 2), F(t − 1)” is called the current state and F(t) is called the 

next state. Then the λ order fuzzy relationships can be found by replacing the corresponding 

linguistic values by fuzzy set. For instance, a third-order fuzzy relationship A
1
, A

1
, A

1
 → A

2, 
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has got as F(1971), F(1972), F(1973) → F(1974). From table 3.3, it also obtained that  

F(1971) = A1, F(1972) = A1, F(1973) = A1 and F(1974) = A2  and  by replacing fuzzy 

sets F(1971), F(1972), F(1973) and F(1974) with linguistic values A1, A1, A1 and A2 the 

fuzzy relationships A1, A1, A1 → A2 is created. The linguistic value of F(1993) does not exist 

within the historical data, the symbol ‘#’ is used to denote the unknown next state. As the 

fuzzy relationships are untrained pattern, it can be used for testing purpose. For example, a 

three-order relationship is F(1990), F(1991), F(1992) → F(1993) where the linguistic values 

are F(1990) = A7, F(1991) = A7, F(1992) = A6 and F(1993) = unknown. Therefore, the fuzzy 

relationship is expressed as A7, A7, A6 → #. 

 

Table 3.3 First order and Third-order fuzzy relationships for enrollment 

Year Actual 

Enrolments 

Fuzzy 

sets 

First 

Order 

Third Order 

1971 13 055 A
1
   

1972 13 563 A
1
 A

1
 → A

1
  

1973 13 867 A
1
 A

1
 → A

1
  

1974 14 696 A
2
 A

1
 → A

2
 A

1
, A

1
, A

1
 → A

2
 

1975 15 460 A
3
 A

2
 → A

3
 A

1
, A

1
, A

2
 → A

3
 

1976 15 311 A
3
 A

3
 → A

3
 A

1
, A

2
, A

3
 → A

3
 

1977 15 603 A
3
 A

3
 → A

3
 A

2
, A

3
, A

3
 → A

3
 

1978 15 861 A
4
 A

3
 → A

4
 A

3
, A

3
, A

3
 → A

4
 

1979 16 807 A
5
 A

4
 → A

5
 A

3
, A

3
, A

4
 → A

5
 

1980 16 919 A
5
 A

5
 → A

5
 A

3
, A

4
, A

5
 → A

5
 

1981 16 388 A
5
 A

5
 → A

5
 A

4
, A

5
, A

5
 → A

5
 

1982 15 433 A
3
 A

5
 → A

3
 A

5
, A

5
, A

5
 → A

3
 

1983 15 497 A
3
 A

3
 → A

3
 A

5
, A

5
, A

3
 → A

3
 

1984 15 145 A
2
 A

3
 → A

2
 A

5
, A

3
, A

3
 → A

2
 

1985 15 163 A
3
 A

2
 → A

3
 A

3
, A

3
, A

2
 → A

3
 

1986 15 984 A
4
 A

3
 → A

4
 A

3
, A

2
, A

3
 → A

4
 

1987 16 859 A
5
 A

4
 → A

5
 A

2
, A

3
, A

4
 → A

5
 

1988 18 150 A
6
 A

5
 → A

6
 A

3
, A

4
, A

5
 → A

6
 

1989 18 970 A
7
 A

6
 → A

7
 A

4
, A

5
, A

6
 → A

7
 

1990 19 328 A
7
 A

7
 → A

7
 A

5
, A

6
, A

7
 → A

7
 

1991 19 337 A
7
 A

7
 → A

7
 A

6
, A

7
, A

7
 → A

7
 

1992 18 876 A
6
 A

7
 → A

6
 A

7
, A

7
, A

7
 → A

6
 

1993  # A
6
 → # A

7
, A

7
, A

6
 → # 

 

Step 5: Set all fuzzy relationship groups 

Once the fuzzy relationships of time series are identified, all fuzzy relationships with the 

same current state can be found to form fuzzy relationship groups. To find out all first order 

and higher order relationship groups, two suitable examples have been considered. Based on 
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the table 3.4, a first order fuzzy relationship group G1 with the current state A1, consists of 

fuzzy relationships listed as follows:   

      G 1 :A 1→ A 1 ,  A2 .  

Here A1 → A1, A1 → A1 and A1 → A2 at years 1972, 1973 and 1974, respectively. Based on 

table 3.5, a third-order fuzzy relationships group G7 with the current state “A3, A4, A5”, 

consists of fuzzy relationships listed as follows:  

G 7 :A 3 ,  A 4 ,  A5→ A 5 ,  A6 .  

Here A3, A4, A5 → A5 and A3, A4, A5 → A6 at years 1980 and 1988, respectively. Table 3.5 

shows the three order fuzzy relationships with 19 groups in the training phase and 

group G19 is represented as A7, A7, A6 → # which contains the unknown linguistic value of 

the next state at year 1993. The forecasted value of the year 1993 is decided in testing phase. 

Table 3.4 First-order fuzzy relationship groups for enrollment 

 

  

 

 

 

 

 

Table 3.5 Third-order fuzzy relationship groups for enrollment 

Group label Fuzzy relationships 

G
1
 A

1
, A

1
, A

1
 → A

2
 

G
2
 A

1
, A

1
, A

2
 → A

3
 

G
3
 A

1
, A

2
, A

3
 → A

3
 

G
4
 A

2
, A

3
, A

3
 → A

3 
 

G
5
 A

3
, A

3
, A

3
 → A

3
,  

G
6
 A

3
, A

3
, A

4
 → A

5
 

G
7
 A

3
, A

4
, A

5
 → A

5
, A

6
 

G
8
 A

4
, A

5
, A

5
 → A

5
 

G
9
 A

5
, A

5
, A

5
 → A

3
 

G
10

 A
5
, A

5
, A

3
 → A

3
 

G
11

 A
5
, A

3
, A

3
 → A

2
 

G
12

 A
3
, A

3
, A

2
 → A

3
 

G
13

 A
3
, A

2
, A

3
 → A

4
 

G
14

 A
2
, A

3
, A

4
 → A

5
 

G
15

 A
4
, A

5
, A

6
 → A

7
 

G
16

 A
5
, A

6
, A

7
 → A

7
 

Group 

label 

Fuzzy relationships 

1 A
1
 → A

1
 A

1
 → A

2
  

2 A
2
 → A

3
   

3 A
3
 → A

3
 A

3
 → A

2
 A

3
 → A

4
 

4 A
4
 → A

5
   

5 A
5
 → A

5
 A

5
 → A

6
 A

5
 → A

3
 

6 A6 → A
7
   

7 A
7
 → A

7
 A

7
 → A

6
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G
17

 A
6
, A

7
, A

7
 → A

7
 

G
18

 A
7
, A

7
, A

7
 → A

6
 

G
19

 A
7
, A

7
, A

6
 → # 

 

Step 6: Calculate the forecasting values 

Forecasting accuracy can be improved by introducing two new terms like, global 

information of fuzzy relationships and local information of current fuzzy fluctuation (LFF). 

The global information of fuzzy relationships with the local information of current fuzzy 

fluctuation combined to calculate the predicted value. Eq. (3.8) represented the forecasted 

value of enrollments with two weighted parts Glob_info and Local_info, respectively, for 

each of the groups of the forecasted value where w1 and w2 are adaptive weights for global 

information of the fuzzy relationships and local information of the LFF. The forecasted 

value of enrollments can be represented as: 

Forecas ted_value  = w 1×Glob_ in fo+ w2×Local_ in fo              (3 .8)  

 

where w1 + w2 = 1 and assume that w1 and w2 are equally weighted as 0 ⩽ w1, w2 ⩽ 1. On the 

basis of the (Chen and Chung, 2006)  defuzzification  method, the defuzzified value for each 

fuzzy relationship can be calculated through the midpoint of the next state. In Eq. (3.8), the 

Glob_info represents the global information decided by the fuzzy groups created in Step 5. 

The midpoint mt of each interval ut can be calculated by applying seven intervals in Step 2 

and can be represented as follows: mt = (bst − bet)/2, where 1 ⩽ t ⩽ 7 and ut is bounded 

within (bst, bet]. Therefore, the midpoints are                   

m1 = 13,610, m2 = 14,655.5, m3 = 15,374, m4 = 15,843, m5 = 16,504, 

 m6 = 17,879.5 and m7 = 18,672.5.  

 

For more than one fuzzy relationship exists in a fuzzy relationship group, the value of 

Glob_info is the average of the respective midpoints of all intervals with respect to all 

linguistic values in the next states of all fuzzy relations. Assuming a first-order fuzzy 

relationship group is At−1 → At1, At2, …, Atk, and the midpoints of linguistic 

values At1, At2, … , Atk, are mt1, mt2, … , mtk , respectively. Then, the value of Glob_info is 

calculated as follows: 

     Gobl_info =    
𝑚𝑡1+𝑚𝑡2+……+ 𝑚𝑡𝑘

𝑘
                                      (3 .9)                               

 

In Eq. (3.8) the Local_info represents the local information derived by the LFF scheme. The 

LFF scheme is determined by the next state and the latest past in the current state. Suppose 

a λ-order fuzzy relationship is At−λ, At−λ+1, … , At−2, At−1 → At, where λ ⩾ 1 and t ⩾ 2. Latest 

past in the current state and the next state are represented by At−1 and At, respectively. 

Here, mt−1 and mt are midpoints of the fuzzy intervals ut−1 and ut with respect to At−1 and At, 
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where ut−1 = (bst−1, bet−1] and ut = (bst, bet]. The fuzzy difference 

between At−1 and At using mt−1 and mt can be computed by the LFF scheme.  Then the fuzzy 

difference should be normalized by dividing mt−1 + mt and the LFF scheme can be expressed 

as follows: 

          Local_info = (bst  +   
𝑏𝑒t− bst  

2
  × 

mt− mt−1

mt+  mt−1
)                               (3 .10)  

To find out the forecasted enrollment of the year 1975, the linguistic enrollment of current 

state at 1974 is A2. From table 4 it can be found that a fuzzy relationship A2 → A3 in the 

group G2 appears the same linguistic value of the current state A2. The fuzzy 

sets A2 and A3 maximum membership values occur at intervals u2 and u3, respectively, 

where u2 = (bs2, be2] and u3 = (bs3, be3].  

 

The obtained values from step 2 are as follows, bs2 = 14,166, be2 = 15,145, bs3 = 15,145 

and be3 = 15,603. The midpoints of the intervals u2 and u3 are m2 = 14,655.5 

and m3 = 15,374, respectively, where m2 = ½(14,166 + 15,145) 

and m3 = ½(15,145 + 15,603). The global information of year 1975 is equal to m3, that 

is Glob_info = 15,374. According to Eq. (3.10), by setting bst = bs3, bet = be3, mt-1 = m2, 

mt = m3, ut−1 = u2 and ut = u3, the value of the Local_info on the enrollment of the year 1975 

can be calculated as follows: 

Local_info = (bs3 +   
𝑏𝑒3− 𝑏𝑠3 

2
 × 

𝑚3− 𝑚2

𝑚3+  𝑚2
) 

                                              = 15,145 +  
15,603−15,145 

2 
×

15,374−14,655.5 

15,374+14,655.5
 

              = 15,150.4 

The forecasted value of the year 1975 can be computed, which is 15,217.9 (i.e. 

0.5 × 15,374 + 0.5 × 15,150.4) from the obtained values of the Glob_info and 

the Local_info. For the forecasted enrollment of year 1982, the current state of the 

enrollment at year 1981 is A5 in Table 3 need to be considered. From Table 4, it can be 

found that three-order fuzzy relationships A5 → A5, A5 → A6 and A5 → A3 in group G5 appear 

the same current state A5. Based on Eq. (3.5), (3.6) and (3.7), the forecasted enrollment of 

the year 1982 can be calculated as follows: 

    Forecasted_Value  =  w1 × Global_info + w2 × Local_info 

= 0.5 × 
𝑚5+ 𝑚6+ 𝑚3

3
  + 0.5 × (bs3  +   

𝑏𝑒3− 𝑏𝑠3 

2
  × 

𝑚3− 𝑚5

𝑚3+  𝑚5
)        

http://www.sciencedirect.com/science/article/pii/S0957417410014909#e0070
http://www.sciencedirect.com/science/article/pii/S0957417410014909#t0025
http://www.sciencedirect.com/science/article/pii/S0957417410014909#t0030
http://www.sciencedirect.com/science/article/pii/S0957417410014909#e0060
http://www.sciencedirect.com/science/article/pii/S0957417410014909#e0065
http://www.sciencedirect.com/science/article/pii/S0957417410014909#e0070
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= 0.5 × 
16,504 + 17,897.5+ 15,374

3
  + 0.5 × (15,145  +   

15,603− 15,145 

2
  × 

15,374 − 16,504

15,374 +  16,504
)                  

= 15864.35 

Now, the higher order fuzzy relationship group and the corresponding midpoint of the 

linguistic values need to be considered. Suppose a λ-order fuzzy relationship group 

is At−π, At−π+1, …, At−1 → #, and the midpoints of the linguistic values 

are  mt−π, mt−π+1, … , mt−1, respectively. Two voting schemes are introduced by Kao and Chen 

(Kuo et al., 2010) to deal with untrained testing data. Kuo (Kuo et al., 2010) proposed a 

master voting (MV) which gives latest past and other past linguistic values in the current 

state the highest votes and one vote respectively. The MV scheme calculates the forecasted 

value by using the following formula in Eq. (3.11) where the whigh denotes the highest votes 

that predefined by the user.  

  Forecasted_value =    
𝑚𝑡−1 ×  𝑤ℎ𝑖𝑔ℎ + 𝑚𝑡2 +⋯ + 𝑚𝑡−𝜆+1+𝑚𝑡−𝜆

 𝑤ℎ𝑖𝑔ℎ+ 𝜆 − 1
                    (3 .11) 

 

Decreasing voting scheme (called DV) was proposed by Chen et al. (2008) that considered 

different votes decreasingly for all linguistic values in the current state. The DV scheme 

calculates the forecasted value by using the following formula: 

 Forecasted_value =    
𝑚𝑡−1 × 𝜆 + 𝑚𝑡2 ×(𝜆−1)+ … + 𝑚𝑡−𝜆+1 + 𝑚𝑡−𝜆 ×1 

𝜆 +(𝜆−1)+ …+2+ 1
             (3.12) 

 

To deal with untrained data in the testing phase the voting schemes have been simplified. 

Assume At−2 and At−1 denote two latest past linguistic values before unknown next state of 

time t, where mt−2 and mt−1 are two midpoints of the fuzzy intervals ut−2 and ut−1 with respect 

to linguistic values At−2 and At−1. LFF scheme calculates the fuzzy difference between two 

consecutive linguistic values of At−2 and At−1 using mt−2 − mt−1 to obtain the local information 

of untrained data. Then the fuzzy difference should be normalized by dividing mt−2 + mt−1. 

The intervals for the linguistic values At−2 and At−1 are ut−2 and ut−1, respectively, 

where ut−2 = (bst−2, bet−2] and ut−1 = (bst−1, bet−1]. The global information and complete LFF 

scheme for untrained data are formulated as follows: 

                            Glob_ in fo=m t - 1                                        (3 .13) 

                                    Local_info = (bst-1 +   
bet−1− bst−2 

2
 × 

𝑚𝑡−1− 𝑚𝑡−2

𝑚𝑡−1+  𝑚𝑡−2
)               (3 .14)     

                            
To forecast the enrollment of the year 1993 by using three-order fuzzy relationship, the 

current state is composed of three linguistic values of years 1990, 1991 and 1992, which 

are A7, A7 and A6, respectively. After searching the current state in Table 3.5, a fuzzy 

relationship group G19 can be obtained with the unknown next state in the last row, 

i.e., A7, A7, A6 → #. Two latest past linguistic values before the next state 

are A7 and A6 corresponding to At−2 and At−1, respectively from the table 3.3. The maximum 

http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0090
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0015
http://www.sciencedirect.com/science/article/pii/S0957417410014909#t0035
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membership values of A7 and A6 occur at intervals u7 and u6, respectively, 

where u7 = (bs7, be7] and u6 = (bs6, be6]. It also observed that bs7 = 18,876, 

be7 = 19,337, bs6 = 16,919 and be6 = 18,876. The midpoints of the intervals u7 and u6 

are m7 = 18,672.5 and m6 = 17,897.5, where m7 = ½(18,876 + 19,337) and 

m6 = ½(16,919 + 18,876). From Eq. (3.13) and Eq. (3.14), the Glob_info of year 1993 is 

equal to 17,897.5 and mt−2 = m7, mt−1 = m6, ut−2 = u7 and ut−1 = u6, the value of 

the Local_info on enrollment of the year 1993 can be calculated as follows 

Local_info = (bs6  +   
be6− bs6 

2
  × 

𝑚6− 𝑚7

𝑚6+  𝑚7
) 

                                               = 16,919 +  
18,876 − 16,919 

2 
×  

17,897.5 − 18,672.5  

17,897.5 + 18,672.5 
 

                        = 16,898.3 

Now, the forecasted value of year 1993 is 18,244 (i.e., 0.5 × 18,500 + 0.5 × 17,987). The 

forecasted enrollments of the first-order fuzzy relationships are listed in Table 3.6 

Table 3.6 Forecasted enrollment of the first-order fuzzy relationships 

Year Fuzzy 

sets 

Glob_ 

info 

Local_ 

info 

Forecasted 

values 

1971 A
1
 

   
1972 A

1
 14,133 13,055  13,594 

1973 A
1
 14,133 13,055 13,594 

1974 A
2
 14,133 14,184.1 14,158.55 

1975 A
3
 15,374 15,150.4      15,262.2 

1976 A
3
 15,290.8 15,145 15,217.9 

1977 A
3
 15,290.8 15,145 15,217.9 

1978 A
3
 15,290.8 15,606 15,448.4 

1979 A
4
 16,504 16,097.4 16,300.8 

1980 A
4
 16,591.8 16,504 16,547.9 

1981 A
4
 16,591.8 16,504 16,547.9 

1982 A
3
 16,591.8 15,137 15,864.3 

1983 A
3
 16,591.8 14,137 15,364.3 

http://www.sciencedirect.com/science/article/pii/S0957417410014909#e0085
http://www.sciencedirect.com/science/article/pii/S0957417410014909#t0040
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1984 A
3
 16,591.8 14,154 15,372.9 

1985 A
3
 15,374 15,150.4 15,262.2 

1986 A
3
 16,591.8 15,606 16,098.9 

1987 A
4
 16,504 16,097.4 16,300.7 

1988 A
6
 16,591.8 16,958.6 16,775.65 

1989 A
6
 18672.5 18880.8 18776.6 

1990 A
7
 18285 19337 18811 

1991 A
7
 18285 19337 18811 

1992 A
6
 18285 16,898.1 17,591.55 

1993 A
7
 18672.5 18880.8 18776.65 

 

Step 7: Fuzzy forecasting rules creation 

To find out the fuzzy forecasting rule, the fuzzy relationship groups and relative forecasting 

values mentioned above has been considered. The basic format for the fuzzy forecast rule 

represents by the if-then statements. The first order fuzzy forecasting rules to forecast the 

enrollments Y(t) using fuzzy group, just simply find out the corresponding linguistic value 

of F(t − 1) with respect to the data Y(t − 1), and then a forecasted value from the forecasting 

part of the matched forecast rule can be obtained. the fuzzy forecasting rule R1 as: 

                        if F(t − 1) = A1 then Y(t) = Glob_info + Local_info.                     (3 .15)    

 

As mentioned earlier, the Glob_info value is determined by fuzzy groups and 

the Local_info value is determined by LFF scheme. The first order fuzzy relationship for 

enrollment is mentioned in Table 3.7 

Table 3.7 First-order fuzzy relationship rules for enrollment 

Rules Antecedent Consequent 

1 if F(t − 1) = A
1
 then Y(t) = 14,133 + Local_info 

2 if F(t − 1) = A
2
 then Y(t) = 15,374 + Local_info 

3 if F(t −1) = A
3
 then Y(t) = 15,290.5 + Local_info 

4 if F(t − 1) = A
4
 then Y(t) = 16,504 + Local_info 

5 if F(t − 1) = A
5
 then Y(t) = 16,591.8 + Local_info 

6 if F(t − 1) = A
6
 then Y(t) = 18,672.5 + Local_info 

7 if F(t − 1) = A
7
 then Y(t) = 18,285 + Local_info 
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Step 8: Forecasted accuracy estimation using MSE values 

Forecasted performance of fuzzy time series can be measured by several evaluation 

criterions like, MSE, SE, RMSE, MPE, MAE etc. The mean square error (MSE) is an 

effective one to represent the forecasted accuracy. The MSE value is calculated by the 

following formula: 

                      MSE =   
∑     (𝐹𝐷𝑖− 𝑇𝐷𝑖)2𝑁

𝑖=1

𝑁
                                                      (3 .16)     

where the number of historical data in time series is denoted by N, fvi and avi denotes the 

forecasted value and actual value at time i. The MSE value of the forecasted enrollment from 

year 1972 to year 1992 is calculated by using the Eq. (3.16) as follows: 

    MSE =   
∑     (𝐹𝐷𝑖− 𝑇𝐷𝑖)2𝑁

𝑖=1

𝑁       =  
∑     (𝐹𝐷𝑖− 𝑇𝐷𝑖)221

𝑖=1

21        

               

 =   
  (13594− 13055)2 +(13594− 13563)2+⋯…….+ (18776.6.− 18876)2

21                            

 =    313,626 
 

3.6 Particle Swarm Optimization in forecasting model 

In this article, two essential factors have been addressed which have an influence on fuzzy 

time series forecasting accuracy; these are the contents of forecasting rules and the effective 

lengths of intervals. A hybrid forecasting model (MFPSO) has proposed by using fuzzy time 

series, automatic clustering algorithm and particle swarm optimization (PSO) to adjust the 

length of the interval in the training phase and minimize the MSE value. After all the training 

data has been well trained by the PSO method based on fuzzy forecast rules and LFF scheme, 

the intervals with minimum MSE value has used to forecast in the testing phase. Assume the 

number of the intervals be n, the lower bound of historical data Y(t) be b0 and the upper bound 

of historical data Y(t) be bn. A vector b consisting of n-1 elements, i.e. 

b = {b1, b2, …, bi, … , bn−1} is used in each particle, where b1 ⩽ bi ⩽ bn−1 and bi ⩽ bi+1. The 

universe of discourse cut by the vector b into n intervals which 

are u1 = (b0, b1], u2 = (b1, b2], … , ui = (bi−1, bi], … , un−1 = (bn−2, bn−1] and un = (bn−1, bn], 

respectively. If a particle moves to another position, the elements bi (1⩽ i ⩽ n-1) of the 

corresponding vector b must be sorted in ascending order.  

Each particle in the MFPSO model uses the intervals to create an independent group of fuzzy 

forecast rules to get the forecasted accuracy for each particle depending on all historical 

training data. To denote forecasted accuracy of a particle the mean square error (MSE) value 

defined in Eq. (3.16) is used and if the MSE value of the particle is lower the better the 

forecasted accuracy is. The MFPSO model moves all the particles to a new position in the 

training phase according to Eq. (3.6) and (3.7). To evaluate the forecasted accuracy of all the 
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particles the steps mentioned above will be repeated until the predefined stop condition is 

satisfied or the optimal solution is found. If the stop condition is satisfied, then all fuzzy 

forecast rules trained by the best one of all personal best positions of all particles are chosen 

to be the end result. The MFPSO model uses all the trained fuzzy forecast rules to forecast the 

new testing data in the testing phase. The whole process is mentioned in the following 

algorithm. 

Algorithm MFPSO   

1. randomly initialize all particles positions and velocity 

2. while the ending condition (the optimal solution is found, or the maximal moving 

steps are reached) is not fulfilled do 

3.    for every particle id do 

4.        Partition universe of discourse into new intervals by automatic clustering          

       algorithm          

5.        fuzzify all historical training data according to all intervals  

6.        establish all fuzzy relationships of different order according to all  

             fuzzified training data 

7.        create all fuzzy forecast rules depending on all high order fuzzy  

        relationship 

8.        calculate forecasting values by step 6 

9.        forecast all historical training data according to all fuzzy forecast rules 

10.        calculate the MSE value for particle id 

11.        update the local best position and the global best position according to               

       according to the MSE value  

12.    end for 

13.    for all particle id do 

14.        move particle id to another position according to velocity (Vid) and current  

       position (Xid) 

15.    end for 

16. end while 

 

The hybrid forecasting model uses the PSO to train all fuzzy forecast rules for all historical 

training data Y(t) i.e. (1971 ⩽ t ⩽ 1992), where the lower bound and upper bound of the 

universe of discourse represented by the symbol b0 and b7,   by letting the values 13055 

and 19337, respectively. The universe of discourse of Y(t) = (13055, 19337].  Let the number 

of particles and the number of intervals is 5 and 7, respectively. From Eq. (3.6) and (3.7), 

let Xid be limited to (13055, 19337], Vid be limited to [−100, 100], both C1and C2 be 2, 

and ω be 1.4 (ω linearly decreases its value to the lower bound, 0.4, through the whole 

http://www.sciencedirect.com/science/article/pii/S0957417408004818#fd9
http://www.sciencedirect.com/science/article/pii/S0957417408004818#fd10
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procedure), respectively. The initial positions and the initial velocities of all the particles 

listed in a table below are selected on a random basis. Each particle defines an independent 

group of seven intervals represented in Table 3.8, which are u1 = (b0, b1], u2 = (b1, b2], 

u3 = (b2, b3], u4 = (b3, b4], u5 = (b4, b5], u6 = (b5, b6], u7 = (b6, b7], respectively. So, the intervals 

of the initial position of particle 1 can be represented as follows:  

u1 = (13 055, 14 166], u2 = (14 166, 15 145], u3 = (15 145, 15 603], u4 = (15 603, 16 089],   

u5 = (16 089, 16 919], u6 = (16 919, 18 876] and u7 = (18 876, 19 337].  

In particle 1 seven intervals are considered that are identical like the previously used 

forecasting example in section 2. The randomized initial positions of all particles are 

represented in Table 3.8 

Table 3.8 The randomized initial position of all particles 

 b
1
 b

2
 b

3
 b

4
 b

5
 b

6
 MSE 

Particle 1 14 166 15 145 15 603 16 089 16 919 18 876 313 626 

Particle 2 13 582 14 843 14 785 15 920 16 756 18 589 332 127 

Particle 3 13 357 14 225 15 010 15 746 16 412 17 982 201 426 

Particle 4 13 829 15 124 14 979 15 895 16 843 19 456 642 364 

Particle 5 14 063 14 768 15 357 16 054 16 937 18 687 221 833 

 

The forecasting procedure described in Section 2 needs to be followed with respect to the 

MFPSO Algorithm mentioned above and from the forecasted results in Table 3.6. By 

considering the formula from Eq. (16), the MSE value for particle 1 is calculated 

where FDi (1 ⩽ i ⩽ 21) denotes the forecasted data on Y(1972 + i) and TDi denotes the 

corresponding historical training data (i.e. Y(1972 + i)). The randomized initial velocities of 

all particles are listed in Table 3.9 

Table 3.9 The randomized initial velocities of all particles 

 v
1
 v

2
 v

3
 v

4
 v

5
 v

6
 

Particle 1 77.692 33.421 22.462 19.653 92.123 15.247 

Particle 2 91.453 68.036 75.685 35.942 42.433 76.998 

Particle 3 82.129 54.761 16.224 48.534 81.554 4.567 

Particle 4 63.875 71.352 39.743 16.765 35.941 35.223 

Particle 5 55.748 83.145 6.864 3.975 73.565 41.457 

 
After getting the MSE value for all the particles, each particle needs to update its own 

personal best position. Initial personal best positions are set as the initial positions of all 

particles. The initial personal best positions of all particles are represented in Table 3.10. 

http://www.sciencedirect.com/science/article/pii/S0957417408004818#tbl12
http://www.sciencedirect.com/science/article/pii/S0957417408004818#sec1
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Then all particles move to the second position by the PSO model according to Eq. (3.6) and 

(3.7). The second position and the corresponding new MSE values of all the particles are 

listed in Table 3.11.  

Table 3.10 The initial personal best position of all particles 

 b
1
 b

2
 b

3
 b

4
 b

5
 b

6
 MSE 

Particle 1 14 166 15 145 15 603 16 089 16 919 18 876 313 626 

Particle 2 13 582 14 843 14 785 15 920 16 756 18 589 332 127 

Particle 3 13 357 14 225 15 010 15 746 16 412 17 982 201 426 

Particle 4 13 829 15 124 14 979 15 895 16 843 19 456 642 364 

Particle 5 14 063 14 768 15 357 16 054 16 937 18 687 221 833 

The global best position is created by particle 3 as its MSE is the least among all particles. 

 

Table 3.11 The second position of all particles 

 b
1
 b

2
 b

3
 b

4
 b

5
 b

6
 MSE 

Particle 1 14 066 15 045 15 503 15 989 16 919 18 776 209 471 

Particle 2 13 582 14 843 14 785 15 920 16 756 18 589 351 642 

Particle 3 13 357 14 225 15 010 15 746 16 412 17 982 189 158 

Particle 4 13 829 15 124 14 979 15 895 16 843 19 456 417 951 

Particle 5 14 063 14 768 15 357 16 054 16 937 18 687 235 748 

 

Table 3.12 The personal best position of all particles 

 b
1
 b

2
 b

3
 b

4
 b

5
 b

6
 MSE 

Particle 1 14 066 15 045 15 503 15 989 16 919 18 776 209 471 

Particle 2 13 482 14 943 14 885 15 820 16 856 18 489 332 127 

Particle 3 13 257 14 325 15 090 15 791 16 512 18 054 189 158 

Particle 4 13 729 15 024 14 979 15 895 16 743 19 356 417 951 

Particle 5 14 063 14 868 15 257 16 154 16 837 18 787 221 833 

     

By considering the datasets from Table 3.10 and Table 4.11 listed above and comparing the 

MSE values, it is obvious that particle 1, particle 3 and particle 4 reached a better position 

than their own personal best position so far. In Table 3.12, the three particles update their own 

personal best positions. The MSE value of the particle 3 represents the least, so the new 

global best position is created by particle 1.  
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3.7 Experimental results in training phase 

All historical enrollments from year 1971 to 1992 are used as training data set and the 

experimental results for MFPSO model are compared with the existing models. The MFPSO 

model is executed 100 runs. The best result of all runs is taken to be the result. The MFPSO 

model has the following parameters. The number of particles is 30, the maximal movement 

for each particle is 100, the inertial weight (i.e. ω) value is linearly decreased from 1.4 to 

0.4, the self-confidence coefficient (i.e.C1) and the social-confidence coefficient (i.e. C2) 

both are 2, the velocity Vid is limited to [−100, 100]. MSE value is considered for evaluating 

the performance of forecasted accuracy.  

To compare the forecasted accuracy of the proposed model under different order and 

different number of intervals, three hybrid fuzzy time series models are considered. The 

models are, CC06F (Bruce et al., 2006) model, HPSO (Kuo et al., 2009) model, AFPSO 

(Huang et al., 2011) model under a different number of intervals and listed in Table 3.13.  

The MSE value of the proposed model is smaller, comparison to any other model mentioned 

above. All the models use the Chen’s (Bruce et al., 2006) method to create the first order 

fuzzy forecast rules to forecast the training data. The key difference between CC06F model 

and the MFPSO model is that the former uses the genetic algorithm, but latter uses particle 

swarm optimization to get the appropriate intervals, respectively.  

From Table 3.13, it is obvious that the PSO algorithm is more powerful than the genetic 

algorithm in terms of efficiently searching virtual problem space.  The difference between 

HPSO method and MFPSO method is that LFF scheme used in MFPSO can provide better 

forecasted accuracy than HPSO, though each model uses the PSO method. For the AFPSO 

model and the MFPSO model, both utilize the PSO method and LFF scheme, however, 

MFPSO model can provide much better forecasted accuracy as the intervals from the 

universe of discourse are not in fixed length.  

To compare the forecasted accuracy of the proposed model with those of the existing high 

order models like HCL98 (Hwang et al., 1998),  CC06H model (Bruce et al., 2006), HPSO 

(Kuo et al., 2009) model, AFPSO (Huang et al., 2011) is selected for comparison and listed 

in Table 5.2. The experimental results illustrate that the proposed model achieves the lowest 

MSE value and is more precise than any other existing model.  
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Table 3.13 Forecasted accuracy comparisons among CC06F model, HPSO model and 

AFPSO model with different number of intervals. 

Models  

8 

Number 

9 

     of   

10 

intervals 

11 

 

12 

 

13 

 

14 

CC06F (Chen &  

Chung, 2006a) 

132,963 96,244 85,486 55,742 54,248 42,497 35,324 

HPSO (Kuo et al. 

2009) 

119,962 90,527 60,722 49,257 34,709 24,687 22,965 

FLK-means 

(Tinh et al. 2016) 

78,950 42,689 37,265 35,647 33,834  21,308 18,770 

AFPSO 27,435 24,860 19,698 19,040 16,995 11,589 8224 

MFPSO 23,128 19,470 17,356 16,173 14,405  9447 6819 

 

Table 3.14 Forecasted accuracy with different high order models with different intervals 

where number of intervals=7 

Order  

C02 (Chen, 

2002) 

CC06b (Chen 

2006a) 

HPSO(Kuo         

et al., 2009) 

FRPSO (Tinh et 

al., 2017) 

FRH(Tinh         

et al., 2019) AFPSO MFPSO 

2 89,093 67,834 67,123 67,104.9 42,650 19,594 19,243 

3 86,694 31,123 31,644 31,641 56,65.5 31,189 29,687 

4 89,376 32,009 23,271 23,27.8 55,13.8 20,155 17,589 

5 94,539 24,948 23,534 23,533.8 36,71.8 20,366 17, 942 

6 98,215 26,980 23,671 23,662 31,47.7 22,276 18,765 

7 104,056 26,969 20,651 20,645 N/A 18,482 15,836 

8 102,179 22,387 17,106 17,090.6 N/A 14,778 12,920 

9 102,789 18,734 17,971 17,962 N/A 15,251 13,534 

Avg. 

MSE 

95,868 31,373 28,121 28,113.8 N/A 20,261 16,453 

The performance of the forecasted enrollments of the proposed model under a different 

number of intervals with those of the existing first order models like the SC93b model 

(Bruce et al., 2006), the C96 model (Bruce et al., 2006), the H01H model (Bruce et al., 

2006), CC06a model (Bruce et al., 2006) with different number of intervals are listed in 

Table 3.15. From the proposed method the smallest value obtained 6819. The experimental 

results show that the proposed model performs more precise than existing model in terms of 

first order fuzzy time series. 

http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0025
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0025
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0090
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0090
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0010
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0010
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0020
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0020
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0090
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0090
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0020
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0020
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0090
http://www.sciencedirect.com/science/article/pii/S0957417410014909#b0090
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Table 3.15 Comparison of the forecasted results of the proposed model with the existing 

model with first order of the time series under different number of intervals 

 

To evaluate the performance of the proposed model based on different order and distinct 

intervals with those of the existing model (i.e. SC94 model (Bruce et al., 2006), HCL98 

model (Bruce et al., 2006), S07S model (Bruce et al., 2006), C02 model (Bruce et al., 2006), 

CC06b (Bruce et al., 2006) model , HPSO (Kuo et al., 2009) model, AFPSO (Huang et al., 

2011) are represented in Table 3.16 where the HPSO model, AFPSO model and MFPSO 

model use 9 order fuzzy relationships and 14 intervals to train the forecasting enrollments. 

The experimental results show that MFPSO model is more accurate than other existing 

forecasting model under different number of intervals.    

Table 3.16 Comparison of the forecasted results of the proposed model with the existing 

model with high order models of the time series under different order and different number 

of intervals 

Year Actual data H01H CC06a HPSO FRPSO FIPSO 

(2019) 

 AFPSO MFPSO 

1971 13,055         

1972 13,563 14,000 13,714 13,555 13,715.6 13,469  13,579 13,618 

1973 13,867 14,000 13,714 13,994 13,715.6 13,952  13,812 13,784 

1974 14,696 14,000 14,880 14,711 14,768.4 14,596  14,565 14,352 

1975 15,460 15,500 15,467 15,344 15,330.4 15,439  15,422 15,516 

1976 15,311 15,500 15,172 15,411 15,437.1 15,241  15,307 15,255 

1977 15,603 16,000 15,467 15,411 15,437.1 15,925  15,618 15,675 

1978 15,861 16,000 15,861 15,411 15,437.1 15,880  15,660 15,791 

1979 16,807 16,000 16,831 16,816 16,806.4 16,810  16,794 16,722 

1980 16,919 17,500 17,106 17,140 16,918.1 17,009  17,032 17,013 

1981 16,388 16,000 16,380 16,464 16,416.8 16,260  16,390 16,420 

1982 15,433 16,000 15,464 15,505 15,502.8 15,435  15,504 15,480 

1983 15,497 16,000 15,172 15,411 15,437.1 15,212  15,431 15,471 

1984 15,145 15,500 15,172 15,411 15,437.1 15,282  15,077 15,018 

1985 15,163 16,000 15,467 15,344 15,330.4 15,344  15,297 15,145 

1986 15,984 16,000 15,467 16,018 16,040 15,714  15,848 15,254 

1987 16,859 16,000 16,831 16,816 16,806.4 16,833  16,835 16,902 

1988 18,150 17,500 18,055 18,060 18,148.8 18,016  18,145 18,227 

1989 18,970 19,000 18,998 19,014 18,943 18,937  18,880 18,794 

1990 19,328 19,000 19,300 19,340 19,304.9 19,345  19,418 19,375 

1991 19,337 19,500 19,149 19,340 19,304.9 19,147  19,260 18,943 

1992 18,876 19,000 19,149 19,014 18,943 19,152  19,031 19,182 

 MSE 226,611 35,324 22,965 20,318.3 23,710  8224 6819 
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3.8 Experimental results in testing phase 

To evaluate the future enrollments forecasted accuracy, the historical enrollments data set 

can be divided into two separate parts i.e. training part and testing part. In this paper, the 

historical enrollments data from 1971 to 1989 is used as the training data set and the 

historical enrollments data of year 1990, 1991, and 1992 are used as the testing data set. To 

forecast the new enrollment of the next year, historical enrollment data set from the previous 

year are used. For instance, to forecast the new enrollment of the year 1991, the past years’ 

historical enrollment data set from 1971 to 1990 is used. From Table 3.17  it can be found 

that the proposed model has a smaller MSE value compared to the model like C96 model 

(Bruce et al., 2006), HPSO (Kuo et al., 2009) model, AFPSO (Huang et al., 2011) under first 

order fuzzy time series.  

HPSO model employs a master voting scheme (MV) and the highest votes for the MV 

scheme are assigned 15. Better forecasted accuracy can get by a good voting scheme no 

Year Actual 

data 

HCL98 S07S C02 CC06b HPSO FRH 

(2019) 

AFPSO MFPSO 

1971 13,055         

1972 13,563         

1973 13,867         

1974 14,696 14,500        

1975 15,460 15,361 15,500       

1976 15,311 16,260 15,468 15,500      

1977 15,603 15,511 15,512 15,500      

1978 15,861 16,003 15,582 15,500   15,877   

1979 16,807 16,261 16,500 16,500 16,846  16,836   

1980 16,919 17,407 16,361 16,500 16,846 16,890 16,910 16,920 16,960 

1981 16,388 17,119 16,362 16,500 16,420 16,395 16,385 16,388 16,362 

1982 15,433 16,188 15,744 15,500 15,462 15,434 15,442 15,467 15,475 

1983 15,497 14,833 15,560 15,500 15,462 15,505 15,482 15,472 15,398 

1984 15,145 15,497 15,498 15,500 15,153 15,153 15,153 15,158 15,185 

1985 15,163 14,745 15,306 15,500 15,153 15,153 15,153 15,159 15,235 

1986 15,984 15,163 15,442 15,500 15,977 15,971 15,970 15,976 15,994 

1987 16,859 16,384 16,558 16,500 16,846 16,890 16,836 16,858 16,772 

1988 18,150 17,659 17,187 18,500 18,133 18,124 18,151 18,142 18,253 

1989 18,970 19,150 18,475 18,500 18,910 18,971 18,957 18,974 18,998 

1990 19,328 19,770 19,382 19,500 19,334 19,337 19,328 19,338 19,387 

1991 19,337 19,928 19,487 19,500 19,334 19,337 19,328 19,335 19,318 

1992 18,876 19,537 18,744 18,500 18,910 18,882 18,885 18,882 18,794 

 MSE 321,418 133,700 86,694 1101 234 169 173 112 
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matter what the order of the fuzzy time series is. In HPSO voting scheme, the number of 

votes given to the latest past year directly affects the forecasted accuracy when deals with 

the untrained trained fuzzy forecast rules for the testing phase. According to high order time 

series comparison, smaller MSE values can be got by the proposed model from order 2 to 5. 

From table 3.17, the best MSE value for HPSO model is 98,607 is achieved from 4-order 

fuzzy time series with seven intervals. Moreover, AFPSO model revealed an MSE value of 

90,538 in the same order and the same number of intervals.  By considering same order the 

proposed method obtains the MSE value of 83,586. The proposed method obtained the 

lowest three MSE values which are 86,674, 83,586 and 88,764 for 3-order, 4-order, and 5-

order fuzzy time series, respectively, at the same intervals. In the testing phase, two models 

(HPSO, AFPSO) have been compared with the proposed model and it is observed that the 

proposed method produces the smallest MSE value which is 83,586 under 4-order fuzzy 

time series and seven intervals. To recapitulate, it can be said that, the proposed model 

performs tremendously well compared to some other models for enrollments.  

Table 3.17 Comparison of the forecasted results of C96 model, HPSO(MV) model, AFPSO 

model with the proposed model for the testing phase (highest vote for the MV scheme =15, 

the number of intervals=7) 

Year 
Actual 

data 
Order = 1 Order = 2 Order = 3 

  

HPSO AFPSO MFPSO HPSO AFPSO MFPSO HPSO AFPSO MFPSO 

1990 19,328 18,685 18,970 18,852 18,599 18,983 18,892 18,988 18,975 18,869 

1991 19,337 19,138 19,433 19,365 19,246 19,142 19,058 19,167 19,156 19,135 

1992 18,876 19,176 19,473 19,752 19,246 19,471 19,534 19,265 19,214 19,182 

 

MSE 181,017 164,596 159,845 230,089 170,358 146,984 98,607 90,538 86,674 

Year 
Actual 

data 
Order = 4 Order = 5  

  HPSO AFPSO MFPSO HPSO AFPSO MFPSO    

1990 19,328 18,821 18,982 18,986 18,593 18,971 18,987    
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3.9 Analysis Discussion 

The proposed hybrid forecasting model (MFPSO) for the historical enrollments of the 

university of Alabama based on two advanced methods, fuzzy time series and particle 

swarm optimization.  To improve the forecasting accuracy of the proposed model in 

comparison with HPSO (Kuo et al., 2009) model, AFPSO (Huang et al., 2011), an automatic 

clustering algorithm is considered for the interval calculation from the universe of discourse 

and combined the global information of fuzzy relationships with the local information of 

latest fuzzy fluctuation to get the defuzzified forecasting value. In addition to that, particle 

swarm optimization is used to adjust the length of each interval in the universe of discourse.  

The experimental results of forecasting enrollments of students of the University of Alabama 

represent that the proposed model obtained higher forecasting accuracy compared to any 

other existing models. It also performs best for fuzzy time series with various orders in 

training and testing phases, respectively. In the training phase the minimal MSE value for 

the proposed model is 112, which is the lowest forecasting error mentioned in Table 3.16. In 

the testing phase, the minimal MSE value for the proposed model is 83,586, which is the 

smallest forecasting error mentioned in Table 3.17.  

Finally, the proposed forecasting model was tested for the forecasting enrollment problem 

and the model is effective enough for others practical domains. Figures 3.2 and 3.3 

represented the actual and forecasted enrollments of students of the University of Alabama. 

First-order and high order forecasting of students of the University of Alabama are 

represented in figures 3.3 and 3.4 that compared the graph of the proposed model to other 

state-of-the-art forecasting model. 

 

1991 19,337 19,040 19,148 19,234 18,886 19,141 19,373    

1992 18,876 19,192 19,212 19,248 19,076 19,210 19,248    

 MSE 148,371 89,444 83,586 261,209 92,474 88,764    
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Figure 3.2 Actual Student Enrollment Dataset 

 

                       

 

 

 

 

 

 

 

                     

                Figure 3.3 Forecasting Student Enrollment Dataset 
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 Figure 3.4 Frist-Order Forecasting of Student Enrollment Dataset (MSE= 6819) 

        Figure 3.5: High Order Forecasting of Student Enrollment Dataset (MSE=112) 
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3.10 Summary 

The main purpose of the research was to explore the state-of-the-art fuzzy time series 

forecasting methods and to propose a new hybrid forecasting technique. The main findings 

being very general and evidence frequently suggesting that hybrid forecasting methods 

based on fuzzy time series can perform better than individual ones. Empirical assessment of 

forecasting model was performed and characterized using the student enrollment datasets of 

university of Alabama. The main objective here was to ponder a hybrid forecasting model 

where an automatic clustering algorithm was utilized to analyze the datasets interval in a 

more efficient manner. Conventional forecasting practices have some shortcomings due to 

not dealing with specific forecasting problems where the historical data are symbolized by 

linguistic values. Fuzzy time series forecasting is employed to overcome that weakness. 

Moreover, the hybrid forecasting model has been investigated through particle swarm 

optimization method to attain improved forecasting outcome. 
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4 Combination Forecasting Model 

Based on literature review and information collected from the existing forecasting model, a 

linear and nonlinear combination forecasting model was proposed in this chapter, and the 

approaches are described below with a relevant pictorial diagram.  

4.1 Forecast combinations 

Forecasting method is appropriate for roughly all the circumstances. Research shows the 

significant impact of the individual forecast can be found by the combination of the models 

that can produce substantial gain in forecasting accuracy. There is also evidence that adding 

up quantitative forecasts to qualitative forecasts reduces forecast accuracy. Research has not 

yet revealed the conditions or methods for the finest possible combinations of forecasts. 

Judgmental forecasting usually entails combining forecasts from more than one source. 

Informed forecasting begins with a set of key assumptions and retains a combination of 

historical data and expert opinions. Moreover, involved forecasting search for the views of 

all those directly affected by the forecast (e.g., the sales force would be included in the 

forecasting process). These methods normally produce better quality forecasts than can be 

attained from a single source. 

Forecast combination lead a way to compensate for insufficiencies in a forecasting 

technique. The effectively selection of the complementary methods, the shortcomings of one 

technique can be offset by the advantages of another. Since the publication of the seminal 

paper on forecast combination by Bates and Granger in 1969, research in this area has been 

active. In general, four key reasons for the prospective advantages of forecast combinations 

have been discovered:  

• The situation appears doubtful to be able to precisely model a real data generation 

method based on only one model. The single forecasting models are presumably be 

interpretations of a significantly more intricate reality. Therefore, numerous models 

might be complementary to each other to be able to estimate the actual method 

better.  

• Since a single finest model is available, lots of professional knowledge is essential 

to discover the suitable functions and parameters. Forecast combinations assist to 

attain excellent results without any depth knowledge about the application. 

Moreover, the time-consuming, computationally complex fine-tuning processes of a 

single model need to be care about. 
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• It is not always feasible to consider all the evidence an individual forecast and to 

establish a superior model, because the information may be private, unobserved, or 

provided by a closed source. 

• In the data generation process, individual models may have different velocities to 

acclimate the changes. Those changes are difficult to detect in real-time. Therefore, 

a combination of forecasts with distinct capabilities might perform well. 

4.2 Linear Forecast Combination  

The linear forecast combination handles a combined forecast �̂�𝑐 as the weighted sum of m 

individual forecasts �̂�1,�̂�2,.., �̂�𝑚 as shown below: 

           �̂�𝑐 = ∑ 𝜔𝑖�̂�𝑖
𝑚
𝑖=1                                                                          (4 .1)    

In various ways, the weights can be estimated and calculated. The easiest and robust 

example is the simple average combination with identical weights. A variance-based 

approach first mentioned by Bates and Granger in (1969) and further extended by Newbold 

and Granger in 1974 uses the average of the sum of the past squared forecast errors (MSE) 

over a certain period. Granger and Ramanathan (1984) propose the regression method and 

treat individual forecasts as regressors in an ordinary least squares’ regression including a 

constant. In a rank-based approach, according to Bunn (1975), each combination weight is 

expressed as the likelihood that the corresponding forecast is going to outperform the others, 

based on the number of times where it performed best in the past. Gupta and Wilton (1987) 

additionally consider the relative performance of other models using a matrix with pairwise 

odd ratios. The elements of the matrix exemplify the probability of the model of the 

subsequent field, will surpass the model on the subsequent column. 

4.3 Proposed Linear Forecast Combination Model 

 

Figure 4.1 Flow chart of the proposed linear combination forecasting method 

In figure 4.1, the pictorial diagram represented a linear forecast combination method. The 

original dataset is pre-processed and several individual forecasting models like ARIMA, 
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RBF. SVM, and FANN (fast artificial neural network) are combined and each combination 

weight is expressed as the likelihood based on a linear combination technique that 

outperforms state-of-the-art combination forecasting model. 

4.4 Nonlinear Forecast Combination  

Theoretically, a linear forecast combination never considers the nonlinear relationships 

among the forecasts, delivering the key claim regarding the usage of nonlinear combination 

methods. Backpropagation feedforward neural networks be the most examined nonlinear 

methods for forecast combination that considers individual forecasts are input data and the 

combined forecast obtained as the output. This method was first mentioned by (Shi et al., 

1999). Fuzzy systems for forecast combination can be found following two different 

paradigms. First, fuzzy systems can be observed as a kind of regime model where two or 

more different forecasting models can be active at one time. Second, the resulting fuzzy 

system almost always outperforms or draws level with the individual forecasts and linear 

forecast combination methods. In 2002, Xu presents a self-organizing algorithm based on 

the Group Method of Data Handling (GMDH) technique that was proposed by Ivakhnenko 

in the 1970s. 

In combination algorithm, the individual forecasts are carried as an input variable, different 

transfer functions, usually polynomials, then create intermediate model candidates for the 

first layer. The best models are selected iteratively with an external criterion and applied as 

input variables for the next layer, producing more complex model candidates until the best 

model is found. Several authors favour the approach of pooling forecasts before combining 

them. By grouping similar forecasts and subsequently combining the pooled forecasts, 

several issues like increased weight estimation errors because of a high number of forecasts 

to combine can be addressed. Research in this area recently started with clustering forecasts 

based on their recent past’s error variance in and continued with investigations by Riedel 

and Gabrys (2005) on how to extend and modify the clustering criteria in the context of a big 

pool of individual forecasts that have been diversified by different methods. The treelike 

structures of these multi-level and multi-step forecast combinations can be evolved with 

genetic programming, using the quality of the combined predictions on the validation data as 

the fitness function to optimize. 
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4.5 Proposed nonlinear forecast combination method 

 

Figure 4.2 Flow chart of the proposed nonlinear combination forecasting method 

In figure 4.2, the pictorial diagram represented a non-linear forecast combination method. 

The original dataset is pre-processed and several individual forecasting models like ARIMA, 

RBF. SVM, and FANN (fast artificial neural network) are combined and each combination 

weight is expressed as the likelihood based on a non-linear combination technique that 

outperforms state-of-the-art combination forecasting model. 

4.6 Datasets 

For empirical verification of forecasting performances of our proposed ensemble technique, 

three real-world time series are used in this paper. These are the Canadian lynx, Wolf’s 

sunspots, and the monthly international airline passenger’s series. All three series are 

available in the well-known Time Series Data Library (TSDL). The description of these 

three-time series is presented in Table 4.1 and their corresponding time plots are shown in 

figure 4.3 to 4.6. Table 4.1 represented the time series dataset used for evaluating the 

performance of combination forecast model. Different categories of the time series dataset 

along with the type, total training, and testing size are represented below.  

                         Table 4.1 Description of the Time Series Datasets 

Series Type  Total  

Size 

Testing 

Size 

Lynx Stationary, 

noseasonal 

Number of lynx trapped per year 

in the Mackenzie River district of 

Northern Canada (1821–1934). 

114 14 

Sunspots Stationary, The annual number of observed 288 67 
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noseasonal sunspots (1700–1987). 

Airline Monthly 

seasonal 

Monthly number of international 

airline passengers (in thousands) 

(January 1949–December 1960). 

144 12 

River 

flow 

Stationary, 

noseasonal 

River flow of Idaho (1830–

1930). 

600 100 

 

 

Figure 4.3 Time Plots (Lynx) 

 

 

 

 

 

 

Figure 4.4 Time Plots (Sunspots) 
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Figure 4.5 Time Plots (Airline) 

 

 

 

 

 

 

Figure 4.6 Time Plots (River Flow) 

4.7 Implementation of Individual Models 

Due to lack of individual forecasting model, the forecast combination concept come into 

action and performed well with greater accuracy result in a real-life dataset. Figure 4.7 to 4.9 

depicted the individual forecasting model prediction with the actual dataset based on the 

model named RBF, ANN, and BPNN. The individual model is combined to get significant 

improvement in combination forecast model. 
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Figure 4.7 Forecasting (RBF) 

 

 

 

 

 

 

 

   

 

 

 

      Figure 4.8 Forecasting (BPNN) 

 

 

 

 

 

 

 

 

 

Figure 4.9 Forecasting (ANN) 
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Table 4.2 represented the comparison results of the various individual forecasting models as 

well as corresponding forecast combination method. Different forecast combination 

techniques like average, mean, median, out performance method have applied to give a clear 

comparison of the models. 

Table 4.2 The obtained Forecasting results 

4.8 Summary 

The main purpose of the research was to explore the state-of-the-art individual forecasting 

methods and to propose a new forecast combination method. The main findings being very 

general and evidence frequently suggesting that forecast combination methods based on 

several individual forecasting method can perform better than individual ones. Empirical 

assessment of forecasting model was performed and characterized using the real-life 

Canadian datasets with different categories.  

 

Series Type Individual Models  Combination Models  

  

ARIMA RBF SVM FANN Avg.  Median EB Out_Pf. 

Lynx MAE 0.103 0.173 0.173 0.154 0.112 0.133 0.097 0.107 

 MSE 0.015 0.053 0.053 0.032 0.018 0.026 0.013 0.015 

Sunspots MAE 14.91 20.06 20.06 20.06 15.96 14.98 13.78 13.75 

 MSE 348.5 630.3 630.3 630.3 371.8 428.4 352.3 375.4 

Airline MAE 12.49 10.49 10.49 16.17 11.63 11.73 10.85 10.85 

 MSE 291 176.9 176.9 378 176.5 176.5 157.8 152.5 

River 

Flow 
MAE 1.26 0.687 0.687 

0.66 
0.751 0.676 0.712 

0.665 

 MSE 2.606 1.172 1.172 1.217 1.158 1.138 1.197 1.068 
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5 Conclusions 

With the profusion of time series forecasting algorithms available, exclusively concentrating 

on expanding new methods, enhancing current techniques, and conducting countless 

empirical experiments on diverse datasets does not seem reasonable. The research 

investigated time series forecasting from a distinct point of view and produced contributions 

to deliver a hybrid and the combination forecasting model with various datasets that behaved 

well and provided reasonable predictions in certain circumstances. This chapter presented a 

synopsis of the thesis; its findings, conclusions, and original contributions, associated to the 

research objective presented in the introductory chapter. A discussion of openings for future 

research will round up this chapter and the thesis. 

5.1 Summary of the Research  

The primary objective of the research was to investigate and explore the time series 

forecasting methods to determine motivations to design a new forecasting technique. The 

requirement for a deeper understanding of the fuzzy time series forecasting, a hybrid 

forecasting model and the combination forecasting methods and their usage was motivated 

in the introduction. At the same time, forecasting of student enrollment of the university of 

Alabama was introduced as a practical application that utilized in the forecasting model to 

attain greater accuracy by comparison with other individual and hybrid forecasting model. 

The literature review conducted at the beginning of this research project revealed the 

background of time series forecasting, qualitative and quantitative forecasting, hybrid 

forecasting and more general behaviour of fuzzy time series and forecast combination.  

Chapter 3 started by critically observing the studies published in the literature. Therefore, the 

main findings being very general and evidence frequently suggesting that hybrid forecasting 

methods based on fuzzy time series can perform better than individual ones. Empirical 

examination of forecasting model was conducted and described using the student enrollment 

datasets of the university of Alabama. The main objective here was to consider a hybrid 

forecasting model where an automatic clustering algorithm was used to calculate the datasets 

interval in a more effective manner. Traditional forecasting methods have some drawbacks 

that it cannot deal with any forecasting problems where the historical data are represented by 

linguistic values. Fuzzy time series forecasting is used to overcome that drawback. 

Moreover, the hybrid forecasting model has been investigated through particle swarm 

optimization method to obtain better forecasting result. 

In Chapter 4, a combination forecasting method is proposed by following the literature 

published in a different article. Linear and non-linear forecast combination techniques were 
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mentioned. The combination forecast model is developed by using a few individual 

forecasting models and the combination results found based on statistical methods. 

Therefore, the main findings being very general and evidence frequently suggesting that the 

combination forecast methods based on several individual methods can perform better than 

individual ones. Empirical examination of forecasting model was conducted and described 

using the Canadian lynx, Wolf’s sunspots, and the monthly international airline passenger’s 

series datasets.  

5.2 Future Work 

In any empirical study, there can always be a broader range of forecasting methods, more 

parametrisations, more attributes, and diverse datasets. According to Ord (2001) the future 

of time series forecasting must lie in obtaining a good understanding of the performance of 

existing forecasting methods in diverse scenarios rather than increasing the number of 

empirical studies. Therefore, the experiments on a hybrid forecasting model presented in 

chapter 3 seem to be particularly promising for future research. Combination forecast model 

certainly has potential for further research. Other topics suggested by Ord (2001) include the 

need to develop model selection procedures that make effective use of both data and prior 

knowledge, and the need to specify the objectives for forecasts and develop forecasting 

systems that address those objectives. These areas are still in need of consideration and the 

future research will contribute tools to solve these problems. Furthermore, Big Data analysis 

and forecasting in a distributed system might be a key issue where the forecasting models 

can be used to get better performance. More research is to be expected in this context to 

provide a certain contribution. The key issues that need to be addressed to contribute more to 

this research are mentioned below. 

Analysis of Hybrid forecasting model 

In this analysis, the following points are the key considerations for hybrid forecasting 

model- 

1. More real-life datasets should be introduced to evaluate the model. 

2. Comparison with other hybrid forecasting models where ant colony optimization, 

bee colony optimization, and genetic algorithm might be used. 

Analysis and design of combination forecasting model  

For combination forecasting model following points are the main considerations in this 

analysis- 
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1. Analysis of certain combination forecasting models using ARIMA, SARIMA, ANN, 

RBF, Naïve Bias, etc. 

2. Comparing existing combination models and evaluates their performance and 

accuracy in terms of forecasting. 

3. Model selection approaches while combining forecasting model. 

4. Linear and nonlinear forecast combination methods should be considered to get an 

appropriate combination. 

Performance evaluation of forecasting model in a distributed system using 

Hadoop/MapReduce   

For performance evaluation of forecasting model in a distributed environment using Hadoop 

MapReduce setting, the following points are the major considerations in this analysis- 

1. Analysis of the machine learning applications using large scale parallelism and 

small-scale parallelism. 

2. In most existing machine learning applications, the researchers just apply single 

learning algorithm or technique to deal with practical problems, but it is important to 

realize that each approach has strengths and weaknesses. Therefore, the idea of 

hybrid learning should be further considered at present in the big data background. 

3. The simplest and most common technique of parallel processing is to simply run the 

same learning algorithm with different parameters on different processors. The 

approach needs to be carefully considered to identify whether it speed up the 

individual run of a learning algorithm. 

4. Hadoop/MapReduce workflow should be considered for effectively process the 

large dataset. Many of the Big Data tools in this domain (non-linear supervised 

learning) are clunky, slow, memory-inefficient and buggy (affecting predictive 

accuracy). 
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