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Sketch-based modeling with a differentiable renderer
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Sketch-based modeling aims to recover three-dimensional (3D) shape from
two-dimensional line drawings. However, due to the sparsity and ambiguity of
the sketch, it is extremely challenging for computers to interpret line drawings

UK
of physical objects. Most conventional systems are restricted to specific scenar-
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ios such as recovering for specific shapes, which are not conducive to generalize.
Recent progress of deep learning methods have sparked new ideas for solving
computer vision and pattern recognition issues. In this work, we present an
end-to-end learning framework to predict 3D shape from line drawings. Our
Present address approach is based on a two-steps strategy, it converts the sketch image to its nor-
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mal image, then recover the 3D shape subsequently. A differentiable renderer
is proposed and incorporated into this framework, it allows the integration of
the rendering pipeline with neural networks. Experimental results show our
method outperforms the state-of-art, which demonstrates that our framework is
able to cope with the challenges in single sketch-based 3D shape modeling.
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1 | INTRODUCTION
Sketching is an efficient and intuitive way of graphically demonstrating ideas. It plays an important role in areas of artistic
creation, product engineering and industrial design due to its succinctness and efficiency. However, there is a huge gap
between sketch and the product with concrete three-dimensional (3D) shape. Bringing two-dimensional (2D) sketch to
the 3D world is the goal of sketch-based 3D shape prediction. This stimulating topic has been widely discussed in computer
vision and pattern recognition area for many years.

Humans are good at perceiving 3D shapes and spatial positions from 2D sketches via prior knowledge, while it is
a challenging task for computers. “How can computers understand and interpret sketches in three dimensions?”! is the
question that computer scientists have been pondering for decades. Many researches define extra rules to get adequate
information for converting 2D sketch to 3D model,>> but these methods are extremely restricted to specific shapes and
preconditions, the shape recovering became much more cumbersome when there are too much irregular lines exist.®
Recovering a complete 3D shape from the sketch is a problem remains unsolved,! especially when the recovering is based
on a single sketch image on account of the multitude of ambiguities in single-view line drawings.
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Recent progress in deep neural networks has sparked a growing research interest in using deep learning methods for
image-based 3D shape reconstruction.”!> Indeed, a few recent works explored the potential of learning from 3D model
priors for predicting the 3D shapes of sketches,'®1? but the issues are still there, such as the output models lack sharp
features,'”!® require multiview for refining!”' or need category-specific 3D templates for training!® which can be seen
in Figure 1. In this paper, we consider the problem of 3D shape prediction from a single sketch image. To address the
problems mentioned above, an end-to-end learning framework with a differentiable renderer is presented. Figure 2 shows
partial experimental results of our approach.

Our approach recovers 3D mesh for a single sketch without any 3D supervision by introducing a differentiable ren-
derer. Renderer is an engineered program that projects the 3D models onto the 2D screen and then generates shaded
images via rasterization,? this process is also known as Rendering. Literally, recovering a 3D shape from a single image
can be seen as an inverse process of the rendering. Unfortunately, the rendering is not invertible due to the loss of vital data
like 3D spatial information. Deep learning methods can be potentially used to cope with this difficulty, the key obstacle
is the rasterization which is a discrete operation, while neural networks rely upon back-propagation by gradient descent
to update weights, which means the gradients cannot be back-propagated in the rendering process.

Several differentiable renderers have been proposed and applied to 3D shape prediction.” However, these methods
are focus on shaded image-based modeling, cannot handle that of sketch image. Kato et al.® introduce a hand-crafted
linear interpolation manner for calculating the approximated gradients, it only considers gradients on image plane so
that the predicted 3D shapes lack concave surface features. Liu et al.” and Chen et al.’ claim that they achieve a fully
differentiable rendering pipeline by introducing a probabilistic rasterization, while it brings a higher computational cost.
Although the prior differentiable renderers have achieved promising results in 3D shape recovering for the single shaded
image, they cannot be applied to sketch-based 3D shape prediction due to the sparsity and irregularity of the sketch.

In this work, we incorporate a differentiable renderer into a deep learning framework for 3D shape prediction from a
single sketch image. Inspired by the work of normal map generation in References 21,22, we use Conditional Generative
Adversarial Networks (CGANS) architecture? to train a normal image generator for the sketch. The generated normal
image is then transferred to encoder-decoder convolutional neural networks (CNNs) for 3D shape prediction. The learn-
ing process requires 2D supervision exclusively by employing the differentiable renderer. The overview of the system is
shown in Figure 3. The normal image contains both silhouette and surface geometric information of the 3D mesh, thus
the utilization of normal image allows us to recover the complete 3D shape by the 2D supervision. To demonstrate the
advantages of our approach, we compare with the state-of-art in both sketch and shaded image based 3D shape prediction
methods, the results are shown in Section 4.2.

Our main contributions can be summarized as:

FIGURE 1 State-of-art of sketch-based modeling methods. (a) Delanoy et al.}” and (b) Lun et al.’ use multiview sketches to refine the
three-dimensional (3D) shape. (c) The method of Smirnov et al.'® requires category-specific 3D templates that extremely restricts its
universality. (d) Pix2Vox'® shows a result lacking sharp features, though it can recover 3D shape from a single sketch
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FIGURE 2 The results of our method. Given a single-hand drawing sketch, even it has broken and irregular lines, our framework
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generates a complete three-dimensional shape
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« We present an end-to-end learning framework to recover 3D shape from a single sketch image. A differentiable ren-
derer is proposed and incorporated into the framework, it provides approximate gradients for rendering process, which
allows the integration of the rendering pipeline with neural networks.

« We introduce a novel two-step strategy for single sketch 3D modeling. Instead of directly recovering 3D shape from
line drawings, we consider the problem as normal image generation and normal image based shape prediction. The
generated normal image provides both silhouette and surface geometric information, to some extent, it facilitates the
disentanglement of ambiguities in the sketch.

2 | RELATED WORK
2.1 | Sketch-based 3D modeling

Recovering 3D shape from 2D line drawings has been an active research area for more than two decades.? The previous
work can be broadly categorized into two types in terms of whether it is learning-based approach.

Traditional constrained-based methods require specific shape features that can be achieved by defining extra rules, to
get adequate information for converting 2D sketches to 3D model. Malik and Jitendra? introduced line labeling rules to
classify the 2D lines, then interpreted 3D information such as depth, position and orientation of the line drawing scenes.
Based on the line labelling rules, Malik et al. presented a framework to partition the global constraints into constraint sets
corresponding to the faces, edges, and vertices for easier optimization was presented. Shao et al.* estimated the gemoetric
information of surface according to the cross-sections of the sketches. Then Cordier et al.>* described a system for inferring
the 3D shape for mirror-symmetric curves. These methods are commonly restricted to specific shapes and clean curves.
Incremental-based methods allow users to interactively add new strokes for dynamically reducing ambiguities in the
reconstruction process.?>?® These kind of systems require extra user guidance to obtain supplementary curves from one
or multiple views, which impedes their spread and application. In contrast, we aim to recover the 3D shape from a single
freehand sketch without extra annotation or modification.

This work is motivated by the recent progress of deep learning methods in solving computer vision issues specifically
on sketch-based modeling. Delanoy et al.'” introduced an interactive CNNs-based reconstruction engine that can refine
a voxel model by multiview sketch inputs, a post-process that converts the voxel to the polygon mesh was brought into
the pipeline. Lun et al.!® trained CNNs for generating normal images from sketches, then fused the multiview normal
images as 3D point clouds followed with a mesh converting process. The interactive system Pix2Vox'® provided a graphi-
cal interface for users to generate the 3D voxel shape in real-time, the shape was updating with respect to the incremental
changes of the input sketches. Polygon mesh is a more popular 3D representation compared to other types such as voxel
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and point clouds,®?%?! while because of the peculiar data structure of the mesh, the prior works cannot model a poly-

gon mesh from sketches directly using neural networks, they introduced a postprocess to convert the intermediate 3D
representations into mesh instead.!”!° In addition, Smirnov et al.!6 learned a special shape representation, a deformable
parametric template composed of Coons patches.?’ Though Smirnov et al. captured the piecewise smooth geometry of
shapes, category-specific 3D templates were required which extremely limits its generalization. Our approach recovers the
single sketch image to its 3D polygon mesh immediately without category-specific templates, the results are competitive
even surpasses the state-of-art.

2.2 | Differentiable rendering-based 3D shape prediction

Recently, a number of works were dedicated to predicting 3D polygon mesh for single shaded image by introducing
differentiable rendering pipeline.”® The core technique of the differentiable rendering is to find a way to change the
standard discrete rasterization into a continuous manner, which allows both forward and backward propagation.

OpenDR,*° known as the first differentiable rasterization-based general-purpose renderer, approximated gradients
of the projected pixels using first-order Taylor expansion. Neural (3D) Mesh Renderer (NMR)® hand-designed a linear
interpolation-based scheme for gradients approximation, which was applied to the single image 3D mesh reconstruction.
Both OpenDR and NMR followed the standard rendering pipeline in forward pass, and their approximated gradients
were operated on the 2D image domain. Then Liu et al.” introduced a probabilistic formulation that treated the rendering
as a probabilistic process, where every pixel was assigned to all faces. Subsequently, Chen et al.” proposed to specify
the foreground pixel to the most front faces, such that it can alleviate the highly computational cost induced by the
probabilistic rendering. Although the different differentiable renderer has been employed for single shaded image 3D
shape prediction.”® It has not yet been applied for single sketch image. Our approach converts the sketch to normal
image first, then use the single normal image to generate 3D shape, these two steps are unified in an end-to-end learning
framework with a differentiable renderer.

3 | METHOD
3.1 | Differentiable rendering pipeline

Standard rendering pipeline. Rendering pipeline is the process of drawing the 3D model into what the computer
monitor displays, the popular graphics application programming interfaces such as Direct3D and OpenGL provide unify
workflow for modern rendering pipeline.

We consider the rendering as starting from 3D vertex to 2D shaded plane. As shown in Figure 4, vertex shader takes
vertex data as input, transforms it into normalized device coordinates.?’ Shape assemblystage assembles all the points
in the specific shape primitive, triangle for example. Geometry shader is an optional shader, has ability to generate new
vertices for updating the shape. Rasterization is the central operation in the pipeline, it enumerates the pixels that are
covered by the shape primitive,?® the output is a set of fragments that will be transferred to fragment shader, to calculate
the final color of each pixel.

In this work, the geometry shader follows default settings, the vertex and fragment shaders are easily defined in
entirely differentiable manners. However, the rasterization is not differentiable due to the discrete sampling operation.
In the following, a differentiable rasterization formulation is demonstrated.

FIGURE 4 Thestandard
Vertex shader Shape assembly Rasterization Fragment shader rendering pipeline
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Our rasterization formulation. Inspired by Reference 8, let A;(x;,y;) be a single pixel of an image, its color is denoted
as I;, then the gradient can be represented as (%, %)- Assume that pixel 4; is outside the projected face f;, when f; move

to collide with A;, its color changes to I_, In standard discrete rasterization, the gradient is zero even the face is moved to
cover the pixel A; due to the sudden change of the color, which is not a continuous process.

Here we denotes D: d(4;, f;) as the differentials between A; and f; along with the x and y coordinates, such that we
define the derivate of I; as:

o _Li-I 1)
0A, oD

6 is a parameter that controls the strength of the gradients.

3.2 | Mesh prediction

The first step is to convert sketch to normal image, which facilitates the disentanglement of ambiguities in the sketch. This
process will be demonstrated in Section 3.3. On this basis, the second step is to generate 3D shape from the normal image.

Previous works have proved that shaded image based mesh prediction can be realized without 3D supervision by incor-
porating the differentiable rendering pipeline.”>*! Inspired by these series of work, we leverage the idea of generating 3D
mesh by deforming a predefined sphere mesh, with the topological genus 0, rather than category-specific 3D templates
as used in Reference 16. It can deform to the shape with the same genus level. The deformation process is formulated
asv; + Avﬁ + /A8, where v; is the vertex of the mesh, Avﬁ is the local bias for each vertex, and /\18 is a global bias.
These two bias vectors are the outputs of the mesh predictor. Following losses are used for supervising the reconstruction
networks:

In each iteration of the training process, surface normals of the mesh are calculated, and mapped into RGB range
[0,1], then render the values into a normal image N by our differentiable renderer, the ground-truth of the normal image
is N. In consideration of the normal image contains both 2D silhouette information and 3D mesh surface details, and
L1 distance keeps more sharpen features than L2 distance,’! we calculate the L1 distance between N and N as the
normal loss:

Ly =|IN =Nl ()

Then let S and S, respectively, denote the predicted and ground-truth silhouette. We use the Intersection-Over-Union
(IOU)*? as the silhouette loss, it is defined as:

S®s

L=1— — Il ®A||1 ’ 3)

I1S+S-S® S|
where the symbol ® presents an element-wise product.
In addition, the As-Rigid-As-Possible energy is adopted as the edge loss to regularize the edges:
1 A
Lo==Yllei—eill €
n
¢,€E

where e; denotes one original edge in the edge set E of the mesh, while &; is the current edge corresponding to e;, and n is
the amount of edges.

A smoothness loss®>2! is also employed, it acts on the predicted mesh directly and ensures the consistency of the
surface:

Ln= ) (L+cos<fify>)? (5)
(if)er

Here <f, f;> is the dihedral angle of two adjacent faces, and F denotes the set of all adjacent face pairs.
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The final loss for the mesh prediction is a weighted sum of above losses:

L= ALy + ALs + AeLo + AnLom. (6)

3.3 | Normal image generation

Isola et al.*} explored image-to-image translation problem using CGANs.? On this basis, Su et al.?? trained a normal
image generator that be able to convert sketch images to normal images. Inspired by these works, we treat the normal
image generation for a single sketch image as the image-to-image translation. We use CGANs mix a global L1 distance
and a local sharp feature sampling regularizer to optimize the normal image generator.

The CGANS architecture is a variant model of GANs,>* GANs consist of a generator G and a discriminator D, G maps
a random vector z to an image y, G:z —y. Based on GANs, CGANSs conditions on extra information x,23 in this work, x is
the sketch image. The standard objective function of CGANs?!2233 is defined as:

Lccans(G, D) = Exy[log D(x, p)] + Exy[log (1 — D(x, G(x,2)))], (7

where G and D represent the Generator and Discriminator, respectively, x is the input image and y is the normal image,
z is the random vector. A qualified Generator can be represented as: G= argming maxp Lceans(G, D).

We calculate the distance between the generated normal image and the ground-truth to regularize the global image
distribution. Compare to the L1 norm, L2 norm encourages image blurring,3! hence, the global distance is:

Ly(G) = Exy 11G(x, 2) = yll1], (8)

Additionally, in each iteration of training, we sample a few pixels from the areas with sharp geometric features such
as corners and edges via applying a Sobel Filter to the normal image, to enhance the constraints of local features:

Ly(G) = ]EfoCG(x,z),(pcy[l & — oll1], )

where @ is the sampled pixels from the generated normal image, ¢ is the corresponding pixels of the ground truth.
The normal image generator g is obtained by optimizing the final objective:

g=arg m(i;n max Lccans(G, D) + 4,L4(G) + ALy(G). (10)

4 | EXPERIMENTS
4.1 | Experimental setup

Data preparation. In this work, mass of sketches are required for training the networks, however, there is no large-scale
database of hand-drawn sketches with matched 3D meshes available. Thus, we generate synthetic training data from
ShapeNet,*® a popular opensouce 3D dataset which is used in prior works.”-*1%2! Our approach generates both sketch and
normal images simultaneously, the overview is shown in Figure 5.

We build a standard rendering pipeline to draw the normal and suggestive contour®® images under 24 azimuth angles
with 30-degree elevation angle for each model. To imitate the ambiguities presented in hand-drawn sketches, we employ
a synthetical method!® to augument the contours with features such as broken lines as shown in Figure 5. The resolution
of the images is 256 X 256.

Network settings. The overview of the system is shown in Figure 3. Specifically, to validate the performance of our
approach, the shape predictor is an encoder-decoder architecture that identical to that of.”!? In the training stage, we
first down-sample the normal images to 64 x 64, then feed the resized images to the network. A predefined sphere with
642 vertices was used as the underlying mesh, which is similar to that of previous works.”> We set the weights with
An = 0.002, A = 0.9, A, = 0.9, 4, = 0.01. The Adam optimizer with @ = 0.0001, #; = 0.9 and f, = 0.999. For each category,
we set the batch size to 64, iteration to 20,000.
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FIGURE 5 Training data
preparation. Render the normal and ‘
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For the normal image generator, the CGAN architecture is a common choice for image-to-image translation,?>2333 we
follow the structure in Reference 22. In every training iteration, we feed 256 x 256 pixels synthetic sketch image to the
Generator, the ground-truth and the generated intermediate normal images are transferred to the Discriminator. We set
the learning rate of the RMSProp optimizer to 5e-5.

4.2 | Results and comparisons

Our method achieves encouraging results that can be seen in Figure 6. To verify the superiority of the proposed approach,
we also compare results with that of state-of-art both in learning sketch-based modeling!'®'® and shaded image-based
modeling 310

Compared to previous single-view approaches. We compare our method to other single sketch-based
methods.!®!® The voxel-based method!® can recover the 3D voxel for the given single sketch image, but the result is
mediocrity as shown in Figure 7, while our method shows a more promising result.

Another state-of-art approach!® produces a parametric 3D model (Coons patches), but it is restricted to specific shapes,
due to the factor that it requires different templates for each category, in contrast, our approach uses only one template
mesh for all categories of shapes. Furthermore, our results show more sharp and accurate features than that of Smirnov
et al.,'® the comparison result can be seen in Figure 8.

Compared to the multiview approaches. In Figure 9, we compare with multiview-based methods. In Reference 17,

A

[1

an interactive system is introduced to obtain multiview sketches, they utilize the incremental sketches to refine the
approach takes only single sketch as the input, and generates promising 3D mesh online without any post process.
experimental results. (a) is the {

generated three-dimensional ,‘w ‘ ‘ »

provides geometric surface

3D voxel shape. Lun et al.!° takes multiview sketches as input to generate dense point cloud, both References 17 and
< .
ON—" l r
v
\p,
input sketch, and the generated l Y\g AN 1
mesh rendered from two
information that is beneficial to

19 unable to generate 3D mesh but introducing a postprocess to convert voxel!” or point cloud!® to mesh instead. Our
FIGURE 6 Some - F '
‘ﬁ/“‘\ '\/\ ’\
normal image. (b) and (c) are the
perspectives. The normal image
the concave features recovering \, (a) (b) (C)
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FIGURE 7 Compared to the
voxe-based approach. (a) is the
voxel-based method!® and (b) is our
method

(d)

FIGURE 8 Compared to the previous single-view approach. Though the method of Smirnov et al.’® (a and c) using single sketch as
input while specific shapes of template are required for different categories. Our approach (b and d) only needs a sphere as the template for
all categories, and recovers more sharp and accurate features as the areas marked by the red boxes above

=

(d)

FIGURE 9 Compared to the multi-view approaches. (a) Reference 17 and (c) Reference 19 require multiview sketches to refine the
shape, and a post-process to convert voxel'” or point cloud to mesh. Our approach (b and d) generates the mesh with promising shape
directly from a single sketch

Compared to single shaded image-based reconstruction approaches. To demonstrate the shape accuracy of our
results, we compare with the 3D unsupervised reconstruction methods. These methods take the image with completely
filled contour as input, generate 3D shape in voxel or mesh representation. We use I0U,*? the most commonly metric
for shapes’ similarity, to evaluate the comparison result. As shown in Table 1, our approach even achieves better IOU
scores with the single sketch image as input. Meanwhile, the result of comparison between ours and NMR? is shown in
Figure 10, it illustrates that the normal image-based constrain allows our method to recover more accurate and detailed
surface structures than that of silhouette based method.

TABLE 1 Comparison of Intersection-Over-Union scores (the higher the better)

Category Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean
Retrieval® 0.5564 0.4875 0.5713  0.6519 0.3512 0.3958 0.2905 0.4600 0.5133 0.5314 0.3097 0.6696 0.4078 0.4766
Voxel'® 0.5556 0.4924 0.6823  0.7123 0.4494 0.5395 0.4223 0.5868 0.5987 0.6221 0.4938 0.7504 0.5507 0.5736
NMR etal® 0.6172 0.4998 0.7143  0.7095 0.4990 0.5831 0.4126 0.6536 0.6322 0.6735 0.4829 0.7777 0.5645 0.6016
Our 0.6025 0.5132 0.7212 0.7436 0.5841 0.5852 0.4804 0.6700  0.6521 0.6944 0.4658 0.7876 0.6037 0.6233
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FIGURE 10 Compared to the state-of-art single shaded image-based shape reconstruction method NMR.® The results of NMR are lack
of concave features, while ours show more accurate and detailed surface structures

FIGURE 11 The genus of
predefined sphere is 0, therefore, the
hollow structure cannot be fully
recovered

4.3 | Limitation

Although our method has achieved promising results for the single sketch-based modeling, there are flaws in recovering
various topologies, especially when the topological genus is differ from the predefined mesh. As shown in Figure 11, the
edges of chair are not fully connected, even though the concave features are recovered, the hollow structure especially in
Lamp is ignored. Theoretically, our approach is suitable for the shapes with different topologies, as long as the predefined
mesh is changed to shape with the corresponding topological genus. In addition, incorrect normal image generation will
cause uncertain failure in final shape prediction.

5 | CONCLUSION

Research in sketch-based modeling has never been stopped since it has significant practical usage. However, the ambigu-
ous features of line drawing like a Grand Canyon between sketch and its 3D shape, which has attracted lots of researchers
to adventure . In this paper, we has explored the possibility of deep learning-based method, a unified learning framework
with a differentiable renderer incorporated was presented. The promising experimental results demonstrate that the pro-
posed framework is able to cope with the challenging in single sketch-based 3D shape reconstruction. In future, improve
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the efficiency of the differentiable rendering, automatic identify the genus of the objective shape would be deserved to try.
The proposed approach also shows potential in sketch-based 3D retrieval, it might be another fun adventure in the Grand
Canyon.
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