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Abstract
In recent years, the topic of skeleton-based hu-
man action recognition has attracted significant
attention from researchers and practitioners in
graphics, vision, animation, and virtual envi-
ronments. The most fundamental issue is how
to learn an effective and accurate representation
from spatio-temporal action sequences towards
improved performance, and this paper aims
to address the aforementioned challenge. In
particular, we design a novel method of hybrid
features’ extraction based on the construction
of multi-stream networks and their organic
fusion. First, we train a CNN model to learn
CNN-based features with the raw skeleton co-
ordinates and their temporal differences serving
as input signals. The attention mechanism is
injected into the CNN model to weigh more
effective and important information. Then, we
employ LSTM to obtain long-term temporal
features from action sequences. Finally, we
generate the hybrid features by fusing the
CNN and LSTM networks, and we classify
action types with the hybrid features. The
extensive experiments are performed on several
large-scale publically-available databases, and
promising results demonstrate the efficacy
and effectiveness of our proposed framework.

Keywords: Action Recognition; Human
Skeleton; Hybrid Features; Multi-stream Neural
Network; CNN; LSTM

1 Introduction

Human action recognition is one of the funda-
mental topics in computer vision. It has a wide
range of applications in many areas, such as in-

telligent video surveillance, sport analysis and
human computer interaction. Compared with
RGB images or videos data, the skeleton-based
action recognition has quite a few advantages.
On one hand, skeleton data is a high-level ab-
straction of human actions and is robust against
interference of backgrounds. On the other hand,
the data size of skeleton data is extremely small,
since it is represented as three-dimensional (3D)
coordinates of the major body joints. The key
tasks in skeleton-based action recognition are to
extract distinguishable spatial temporal features
to represent human action sequence and to ac-
quire the high recognition accuracy. To deal
with these issues, scholars have done abundant
related research. With the successful develop-
ment of deep learning, the researches have made
significant improvement. However, the prob-
lems are not yet fully addressed.

Some scholars designed hand-crafted features
to represent skeleton sequences, such as co-
variance matrices of joint trajectories [1], his-
tograms of 3D joint location (HOJ3D) [2] and
relative positions of joints [3]. These method-
s pay more attention to the spatial information.
They capture the temporal dynamics through hi-
erarchical structures. To extract more informa-
tive temporal dynamics, the recurrent neural net-
works (RNNs) are adopted to action recognition
[4, 5, 6, 7]. The LSTM based-on RNNs can
model the long-term contextual information of
temporal sequences well. However, RNN-based
model tends to emphasize the temporal informa-
tion [8].

Considering the convolution neural network-
s (CNN) model is effective for classify images,
increasing number of researchers use CNN to
learn spatio-temporal features for skeleton se-



quences. Some approaches transform skeleton
sequences into images, then they are fed into
CNN model for action recognition [9, 10, 11].
[12] propose the spatial temporal graph con-
volutional networks (ST-GCN) for human ac-
tion recognition by extending graph neural net-
works to a spatial-temporal graph model. [13]
present a co-occurence feature learning frame-
work based on CNN model. The co-occurence
features are learned gradually from point-level
features to global features. However, the above
research learn global features containing limited
local information of skeleton sequences. More-
over, quite a few human actions have character-
istic frequency, such as shaking hands, clapping,
but these typical methods ignore periodic pat-
terns in the frequency domain.

To overcome the limitations and extract more
discriminative information for skeleton-based
action sequence, we propose a novel method, as
shown in Figure 1), which uses hybrid features
to recognize human actions. The hybrid features
consist of CNN features and LSTM features. We
design the CNN model based on the two-stream
framework [14], which contains the raw skele-
ton position and the temporal difference. Af-
ter convolution operation for each stream, we
aggregate the two outputs to combined feature
map. Then the LSTM model is employed to
get the long-term temporal features. Since each
type of features describes slightly different as-
pects of the sequence, we fuse various features
to acquire more discriminative expression of ac-
tion sequences. Finally, we achieve the hybrid
features by confusing the CNN features and L-
STM features, and perform action classification
using hybrid features.

The major contributions of this work include:

• We proposed a multi-stream framework
that integrates CNN-based features and
LSTM-based features. It demonstrates that
the hybrid features are more efficient in
representation to receive improved perfor-
mance.

• The attention mechanism is introduced to
the CNN model to reallocate the feature
maps by computing associations among el-
ements. The improved CNN model can
effectively learn more discriminative fea-
tures.

2 Related work

2.1 Action recognition methods

Early approaches focus on the hand-crafted fea-
tures to represent the human body for recog-
nizing human action. [15] employs the rela-
tive positions of the joints to characterize posi-
tion feature, motion feature, and overall dynam-
ics feature. Principal Component Analysis (P-
CA) is applied to obtain EigenJoints representa-
tion. [15] proposes an actionlet ensemble mod-
el. The pairwise relative positions of each joint
with other joints are computed to represent the
position features, and Fourier Temporal Pyra-
mid (FTP) is used to represent the temporal dy-
namics. [16] uses the rotations and translations
between various body parts to represent geomet-
ric relationships, and the human action sequence
is modeled as a curve in the Lie group. Howev-
er, hand-crafted features can barely effectively
represent spatio-temporal information of action
sequences.

With the successful development of deep
learning based methods in image recognition
and Natural Language Processing (NLP), more
and more literatures learn skeleton representa-
tions by adopting deep learning methods and
achieve improved performance. There are main-
ly three categories: CNN-based methods, RNN-
based methods and GNN-based methods.

Recurrent Neural Networks (RNNs) and
Long-Short Term Memory (LSTM) networks
are used to model temporal information of skele-
ton sequences [4, 5, 6, 7, 17]. [4] divides the
skeleton joints into five sets corresponding to
five body parts. Then, the five sets are fed into
five LSTMs. [5] proposes a spatio-temporal L-
STM framework to model the dynamics and de-
pendency relations in both temporal and spatial
domains. CNN-based methods represents the
skeleton sequence as a pseudo-image, and then
feed it into a CNN to recognize the action class
just like image classification [9, 10, 11, 13]. In
[11], the skeleton sequences are represented as
three gray-scale images encoded from raw data.
[13] proposes an end-to-end convolutional co-
occurrence features learning framework, which
uses CNN to learn point-level features for each
joint and then aggregate these features from al-
l joints to obtain co-occurrence features hierar-
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Figure 1: The framework of our proposed method.

chically. The GNN-based methods model the
skeleton as a graph with joints and bones as ver-
texes and edges separately [12, 18, 19, 20].

2.2 Attention mechanism

The attention mechanism in Deep Learning can
ignore irrelevant information and focus on im-
portant information. In action recognition field,
researchers have utilized attention to learn more
abundant information feature by focusing on a
few joints, parts and frames. To select discrim-
inative spatial information, the attention mech-
anism is employed to focus on key joints [21].
[17] proposes a spatio-temporal attention mod-
el to allocate different attention weights to joints
and frames. [22] adopts a residual frequency at-
tention block in the frequency domain to focus
on discriminative patterns.

3 Proposed method

3.1 CNN-based features learning

The CNN model used in our frame work can be
described as Fiture 1. The raw human skeleton
data is a sequence of frames. Each of frames
contains a set of joint 3D coordinates. Be-
sides the joint coordinate location, the differ-
ences of joints contain temporal movements in a

sequence. Given a skeleton sequence, we calcu-
late the Euclidean distance between same joints
in adjacent frames. The skeleton sequence in
frame t can be represented:

St = {Jt
1, ...,J

t
N}, (1)

where N is the number of joint and J =
(x, y, z). The skeleton motion is defined as:

Mt = St+1 − St. (2)

We feed the joints coordinates S and the skele-
ton motion M into the network simultaneously
(Figure 1).

We represent a skeleton sequence X as a
T ×N×C tensor, where C, T,N denote the co-
ordinate dimension, the number of frames, and
the number of joints. As illustrated in Figure 1,
we feed two types of input into the CNN model.
Given a skeleton sequence tensor X, we obtain
a skeleton motion tensor M using Equation 2.
We design two branches to accept the skeleton
sequence X and skeleton motion M. Both two
branches have the same architecture and differ-
ent parameters. We fuse two feature maps by
concatenation along the channels.

The convolution operation enables interaction
between channels of feature map, where features
are aggregated from all input channels. Accord-
ingly, we introduce transpose operation into the
network. Given a feature maps X with shape



(C, T,N), we transpose it and the feature maps
get new shape (C,N, T ), so the frames is moved
to channels. As illustrated in Figure 1, we adop-
t 1 × 1 and 3 × 1 kernels in conv1 and conv2,
respectively. The kernel size of other convolu-
tions is equal to 3× 3. Before conv4 and conv5,
we attach two attention layers, which reallocate
weights of feature maps. The input and output
feature maps have in common shape by the at-
tention layer. After that, the feature maps can
contain more temporal information under sub-
sequent convolution layers and fully connected
layers. Then the CNN-based features are ob-
tained.
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Figure 2: The LSTM module.

3.2 LSTM-based features learning

Generally, Long Short-Term Memory (LSTM)
networks have superior performance in NLP
field, such as speech recognition, text catego-
rization, machine translation, etc. Considering
LSTM can model the long-term contextual in-
formation of temporal sequences well, we adop-
t the two-layer LSTM model to obtain LSTM-
based features. For each element in the input se-
quence, each layer computes the following func-
tion:

it = σ(Wiixt + bii + Whih(t−1) + bhi), (3)

ft = σ(Wifxt+bif +Whfh(t−1)+bhf ), (4)

ct = ft∗c(t−1)+it∗tanh(Wcxx+Wchht−1+bc),
(5)

ot = σ(Woxxt+Wohh(t−1)+Wocct−1+bo),
(6)

ht = otanh(ct), (7)

where σ(·) is the sigmoid function, and it, ft,
ct, ot are the input, forget, cell, and output gates
respectively and ∗ indicates element-wise prod-
uct. The structure of LSTM unit is shown in Fig-
ure 3.
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Figure 3: The structure of LSTM unit.

We process two types tensor: the skeleton se-
quence X and the skeleton motion M as inputs
in Section 3.1. Consequently, they are fed into
two LSTM networks branches shared the same
architecture. As shown in Figure 1, through the
LSTM networks, we obtain two LSTM-based
features, which are concatenated for next stage.
As illustrated in Figure 2, xt is the input of LST-
M. There are the configurations of LSTM model
for different datasets mentioned in Section 4.2.

3.3 Attention module

In this work, the attention module is employed
in CNN model to learning spatial features. We
are inspired by self attention proposed in [23],
which imported the self-attention mechanism
into Generative Adversarial Networks (GAN)
framework. The framework generates high-
quality images for this reason the self attention
module is effective in modeling long-range de-
pendencies.

We utilize the self attention module to our
framework for skeleton based human action
recognition. Given an action sequence, the sig-
nificance of joints and frames are diverse. To ob-
tain discriminative representation, we reassign
weights of feature maps by building associations
among elements with the attention tighter mech-
anism. Consequently, the learned features con-
tain dependencies between global features.

As illustrated in Figure 4, given a skeleton ac-
tion sequence, we obtain the feature maps which
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are the output of convolution layers. Then we
will obtain self-attention feature maps with the
same shape (C×H ×W ) by the attention mod-
ule. We feed the input feature maps into a con-
volution layers and generate three new feature
maps query, key and value respectively. Then
we perform matrix multiplication between query
and key with reshape and transpose operations.
A softmax layer is employed to obtain the atten-
tion maps. Afterwards, we perform another ma-
trix multiplication between value and attention
maps to obtain attention feature maps. Finally,
we update the original feature maps by element-
wise sum operation and obtain the self attention
feature maps.

3.4 Proposed network architecture

As shown in Figure 1, the proposed architecture
consists of multiple modules. CNN-based fea-
ture and LSTM features are obtained through
CNN and LSTM model respectively. Then we
concatenate them to receive the hybrid features.
Afterwards, we use one fully connected layer to
represent a skeleton sequence. A softmax lay-
er is added at the end for class prediction. For
the recognition task, a softmax function is used
to normalize the output of network. The archi-
tecture has different structures according to the
type of the process such as training and testing.

In the training process, there are three models
needed trained, such as CNN, LSTM and the hy-
brid model. The traing procedure is described in
Algorithm 1. Firstly, the submodels are trained
with a softmax function as loss function sepa-
rately. After the models have converged, the
softmax layers are discarded into two submod-

Algorithm 1 The proposed architecture for
training.
Input: The skeleton action sequence dataset.
Output: The trained model.
1: Initializing the network parameters.
2: Preprocessing the input data to position ten-

sor X and motion tensor M.
3: Training the CNN model with X and M.
4: Training the LSTM model with X and M.
5: Extracting the CNN features and LSTM fea-

tures.
6: Training the entire model.
7: Looping until convergence or reach given e-

pochs.
8: Return the trained model of our architec-

ture.

els. We train the entire architecture with the
trained parameters in CNN and LSTM model-
s. As the same as submodels, the entire archi-
tecture use a softmax function as loss funnction.
The probability that a skeleton sequence X be-
longs to the ith class is

P (Ci|X) =
ezi

ΣC
j=1e

zi
, i = 1, 2, ..., C, (8)

where o = (o1, o2, ..., Oc)
T is the output of the

network, C is the number of classes.

4 Experiments and evaluations

We evaluate the proposed method on two large-
scale datasets, i.e. the NTU RGB+ D [7] and the
Skeleton-Kinetics [12]. Both of these dataset-
s have been widely used in previous work for



Table 1: Configuration of NTU RGB+D dataset.

Joint Label Joint Label
1 base of the spine 14 left knee
2 middle of the spine 15 left ankle
3 neck 16 left foot
4 head 17 right hip
5 left shoulder 18 right knee
6 left elbow 19 right ankle
7 left wrist 20 right foot
8 left hand 21 spine
9 right shoulder 22 tip of the left hand

10 right elbow 23 left thumb
11 right wrist 24 tip of the right hand
12 right hand 25 right thumb
13 left hip

skeleton-based action recognition. We work on
the two data sets to validate the approach and
make a comparison with the state of the art
methods.

4.1 Datasets

4.1.1 NTU RGB+D

NTU RGB+D is currently the most widely used
skeleton-based action recognition dataset. It
contains 56000 skeleton action sequences, each
annotated an action. There are 60 classes in-
cluding single-actor action, e.g., jumping up and
two-actor action, e.g., handshaking. We follow
the benchmark evaluations in the original pa-
per [7], i.e. Cross-Subject (CS) and Cross-View
(CV). In the cross-subject evaluation, the train-
ing set contains 40,230 sequences, and valida-
tion set contains 16,560 sequences. Each frame
contains 25 joints and shown in Figure 5 (left).
The corresponding labels of the joints are in Ta-
ble 1. In the cross-view evaluation, the training
set contains 37,920 sequences, and the valida-
tion set contains 18,960 sequences. Top-1 accu-
racy is reported on both the two benchmarks.

4.1.2 Skeleton-Kinetics

The Skeleton-Kinetics is based on Kinetics hu-
man action dataset [24] without skeleton data
collected from YouTube. There are 400 class-
es actions in the dataset. The Skeleton-Kinetics
[12] are extracted employing the open source
toolbox OpenPose [25]. As shown in Figure 5
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Figure 5: Illustration of the human skeleton
graphs in two datasets. The left s-
ketch shows 25 joints of the NTU-
RGBD dataset and the figure on the
right is Skeleton Kinetics dataset with
18 joints.

(right), the toolbox can estimate 18 joints for
each person with 2D coordinates (X,Y ) and
confidence score C. We represent each join-
t with a tuple of (X,Y,C). In one frame, on-
ly the top-2 persons are selected by the joint
confidence. The released data pad every clip to
300 frames. A skeleton sequence with T frames
can be represented as a tensor with dimension
of (18 × 3 × T ). Both Top-1 and Top-5 clas-
sification accuracies are reported as the recom-
mendation. The dataset provides a training set
of 240,000 clips and a validation set of 20,000.

4.2 Implementation details

Our framework is implemented on the Pytorch
[26] and trained with the same bath size (32),
training epochs (150). The Adam [27] is applied
as the optimization algorithm for the network.
For the NTU RGB+D dataset, if there are two
persons in the sequences, we choose the person
with higher value as the main subject. The skele-
ton sequences are normalized to a fixed length
(64) using bilinear interpolation. The learning
rate is initialized to 0.0001 and exponentially
decayed every 1K steps with a rate of 0.99. In
the LSTM model, the number of inputs x is 64.
The number of hidden units of LSTM is 200.
For the Skeleton-Kinetics, the LSTM has 300
inputs and 200 hidden units.



Table 2: Ablation study on the NTU RGB+D
dataset.

Methods CS(%) CV(%)
P-LSTM [7] 62.9 70.3
HCN [13] 86.5 91.1
Ours(CNN) 85.6 90.2
Ours(LSTM)) 65.2 73.6
Ours(CNN-ATT) 87.1 92.3
Ours(CNN-ATT-LSTM) 88.0 94.5

Figure 6: Confusion matrix comparison on the
NTU RGB+D dataset.

4.3 Ablation study

In this section, we examine the effectiveness of
the proposed hybrid features learning architec-
ture on NTU RGB+D dataset with the bench-
mark of cross-subject and cross-view. The re-
sults of our method are reported in Table 2.
First two rows show the accuracies of previ-
ous approaches, which are CNN-based method
and LSTM-based method, respectively. Here we
compare with four baselines, which utilize dif-
ferent types of features to recognize action se-
quences as follows.

• CNN: main CNN network without atten-
tion designs.

• LSTM: main LSTM network.

• CNN-ATT: CNN model with attention
module.

• CNN-ATT-LSTM: the framework of CNN
model with attention and LSTM.

First, we evaluate our CNN method and L-
STM method. Table 2 shows validity of base-
lines with CNN and LSTM models. At the next

Table 3: Performance comparison on the N-
TU RGB+D dataset. CS and CV
mean the cross-subject and cross-view
respectively.

Methods CS(%) CV(%)
Joint [28] 60.2 65.2
P-LSTM [7] 62.9 70.3
HCN [13] 86.5 91.1
VA-LSTM [29] 79.2 87.7
ST-GCN [12] 81.5 88.3
2S-AGCN [30] 88.5 95.1
GCN-NAS [19] 89.4 95.7
DGNN [18] 89.9 96.1
Ours 88.0 94.5

step, we evaluate CNN-ATT model. Compared
to CNN model showed in the third row, CNN-
ATT improve the accuracy 1.5% and 2.1% on
cross-subject and cross-view, respectively. At
the last step, we evaluate the proposed hybrid
model (CNN-ATT-LSTM). As shown in Table
2, the hybrid model achieves the highest accura-
cies 88.0% in cross-subject, and 94.5% in cross-
view evaluations. The confusion matrix on the
NTU RGB+D dataset is shown in Figure 6.

4.4 Comparisons and discussion

To evaluate the performance of our method,
we compare it with other skeleton-based action
recognition approaches. The compared methods
include hand-crafted methods [28], CNN-based
methods [13], LSTM-based methods [7, 29, 31]
and GCN-based methods [12, 30, 19, 18] on N-
TU RGB+D and Skeleton-Kinetics datasets. Ta-
ble 3 and Table 4 show the results on these t-
wo datasets respectively. The performance of
deep learning based methods is better than hand-
crafted based methods. As illustrated in Table 3,
our method outperforms hand-crafted based, C-
NN based and LSTM based methods. The result
is similar on Skeleton Kinetics dataset (Table
4). Nevertheless, compared to the GCN-based
methods, the results of our model is worse on
NTU RGB+D and Skeleton Kinetics datasets.
In the GCN-based methods, the human skeleton
action sequence is represented as spatial tempo-
ral graph instead of pseudo-image. Intuitively,
the human skeleton is more like a graph, which



Table 4: Performance comparison on the
Skeleton-Kinetics dataset.

Methods Top-1(%) Top-5(%)
P-LSTM [7] 16.4 35.3
ST-GCN [12] 30.7 52.8
AS-GCN [20] 34.8 56.5
2S-AGCN [30] 35.1 57.1
DGNN [18] 36.9 59.6
GCN-NAS [19] 37.1 60.1
Ours 30.2 52.4

joints are represented as vertices and bones are
represented as edges. These works have com-
bined the joint information and bone informa-
tion together for skeleton-based action recogni-
tion. The spatial and temporal features are ob-
tained simultaneously in these methods.

In our work, we merely consider the infor-
mation of joints without bones. In spite of
the spatial-temporal features we obtain, the fea-
tures have less information than the features
the GCN-based methods obtain. As a result,
we report lower recognition accuracies on two
datasets, shown as Table 3 and Table 4. Never-
theless, from comparison results, our method is
an effective strategy for recognizing human ac-
tion based on skeleton. The key contribution of
our method is coupling different types of fea-
tures. The model learns discriminative hybrid
features with two submodels. In the CNN mod-
el, we employ attentional module to reweigh-
s the convolution feature maps. The new fea-
ture maps ignore irrelevant information. More-
over, we obtain the temporal features by LSTM
model. Then we acquire hybrid features by con-
catenating two features. The experiment results
demonstrate that the hybrid features are high-
efficiency representation of skeleton sequence
with abundant spatial and temporal information.

5 Conclusion

In this work, we present a hybrid features learn-
ing framework for skeleton-based action recog-
nition. The hybrid features consist of CNN-
based and LSTM-based features learning by C-
NN model and LSTM model. Specifically, the
skeleton sequence X and the skeleton motion M

are fed into CNN networks and LSTM network-
s simultaneously. In addition, we introduce at-
tention module to the CNN layers. Afterwards,
we obtain the hybrid features by concatenating
two features. We evaluate our method on two
large-scale datasets: NTU RGB+D and Skele-
ton Kinetics. From the experimental results we
illustrate that the hybrid features learning frame-
work is an effective strategy. In the future, we
will continue combine different types of features
and consider the information of bones in skele-
ton sequences simultaneously. In addition, ex-
ploration is recommended into how to extend
human action to other scenes, such as predict-
ing people’s emotion by coupling human action
and facial expression.
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