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Abstract  

 

Acanthocephalans are parasites with complex lifecycles that are important components of 

aquatic systems and are often model species for parasite-mediated host manipulation. Genetic 

characterisation has recently resurrected Pomphorhynchus tereticollis as a distinct species 

from Pomphorhynchus laevis, with potential implications for fisheries management and host 

manipulation research. Morphological and molecular examinations of parasites from 7 

English rivers across 9 fish species revealed that P. tereticollis was the only Pomphorhynchus 

parasite present in Britain, rather than P. laevis as previously recorded. Molecular analyses 

included two non-overlapping regions of the mitochondrial gene- cytochrome oxidase and 

generated 62 sequences for the shorter fragment (295 bp) and 74 for the larger fragment (583 

bp). These were combined with 61 and 13 sequences respectively, from Genbank.  A 

phylogenetic analysis using the two genetic regions and all the DNA sequences available for 

P. tereticollis identified two distinct genetic lineages in Britain. One lineage, possibly 

associated with cold water tolerant fish, potentially spread to the northern parts of Britain 

from the Baltic region via a northern route across the estuarine area of what is now the North 

Sea during the last Glaciation. The other lineage, associated with temperate freshwater fish, 

may have arrived later via the Rhine/Thames fluvial connection during the last glaciation or 

early Holocene when sea levels were low. These results raise important questions on this 

generalist parasite and its variously environmentally adapted hosts, and especially in relation 

to the consequences for parasite vicariance.  
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1. Introduction 

 

Modern-day species distributions in many regions are a consequence of complex dispersal 

events shaped by the last glaciation (Pedreschi et al., 2019). Complex colonisation histories 

include the water vole Arvicola amphibius in the British Isles, where there are two genetically 

distinct populations today, both of which were previously assumed to have all arrived during 

the Holocene. However, ancient DNA (aDNA) analysis of fossil water voles from Britain has 

suggested that one of the populations of the species had arrived earlier during the last 

glaciation (Brace et al., 2016). Similar patterns have been made apparent from aDNA 

analyses of brown bear Ursus arctos that is now believed to have persisted in NW Europe 

during the Last Glacial Maximum (LGM- c.20.000-c.16.000 BC), possibly including in 

Britain (Ersmark et al., 2019). This further raises the possibility of other species being present 

in northern regions during the last glaciation that were previously believed to have colonised 

in the Holocene. It also raises important questions about how co-evolutionary relationships 

can be maintained through such climate changes (Graham and Lundelius, 1984), including 

those between free-living host species and their parasites. It also prompts questions regarding 

how vicariance in such organisms takes place (Schlutter, 2000).  

 

The issues of understanding dispersal and colonisation events for parasites with complex 

lifecycles is important given their frequent use in studies on their ecology and co-

evolutionary relationships with free-living hosts (e.g. Lefevre et al., 2009). For example, 

Pomphorhynchus laevis (Zoega in Müller, 1776) is a generalist parasite with a complex 

lifecycle involving a wide range of definitive hosts and has a broad geographical distribution 

in the Palaearctic (Kennedy, 2006, Spakulova et al., 2011). It has been frequently used as a 

model for testing hypotheses on parasite manipulation, where its modification of the 
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behaviour of its intermediate Gammaridae hosts has been studied extensively (e.g. Fayard et 

al., 2020). However, the phylogenetic and phylogeographic affinities of P. laevis in relation 

to that of its various hosts have not been considered. Moreover, high morphological and 

physiological variability has been reported in P. laevis in both continental Europe (Perrot-

Minnot, 2004) and the British Isles (Kennedy et al., 1989, O'Mahony et al., 2004). In 

combination, both of these aspects are important given that genetic and morphological studies 

have recently indicated the existence of a cryptic species within the P. laevis species complex 

(Kral'ova-Hromadova et al., 2003, Perrot-Minnot, 2004, Spakulova et al., 2011, Perrot-

Minnot et al., 2018, Reier et al., 2019). The presence of two Pomphorhynchus species has 

also been supported through karyotype analysis (Bombarova et al., 2007) with 

Pomphorhynchus tereticollis (Rudolphi, 1809) recently re-described as a distinct species 

following genetic work that indicated its divergence from P. laevis (Perrot-Minnot et al., 

2018, Spakulova et al., 2011).  

 

Within the British Isles, P. laevis was originally recorded from three river systems, the 

Thames, the Severn and the Hampshire Avon, with these populations comprising the ‘British 

strain’. A ‘marine strain’ was also believed to exist in the Baltic and North Sea (Kennedy et 

al., 1989), which was genetically similar to that found in Ireland and Scotland (O'Mahony et 

al., 2004). This discontinuous distribution was explained by natural post-glacial events and 

subsequent dispersal by anthropogenic activities, such as the translocation of infected fish, 

especially European barbel Barbus barbus. In the introduced range, the parasite utilised 

locally available species of Gammaridae as intermediate hosts and cyprinid fishes as final 

hosts (Kennedy and Rumpus, 1977). Whilst the only genetic investigation into P. laevis in the 

British Isles gave support for two major British strains that were associated with different 

host typologies, this was based on a short fragment of subunit I of cytochrome c oxidase and 
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used only a limited number of samples from specific hosts (O'Mahony et al., 2004), thus 

limiting the inferences that can be drawn from these data.  

 

More recent work on Pomphorhynchus spp. across a wide European range used a longer 

fragment of subunit I of cytochrome c oxidace and included 13 samples from the UK and 

Ireland, with all samples having been identified as P. tereticollis (Perrot-Minnot et al., 2018). 

The samples from Great Britain had sequences that belonged to the two main clades, PtL1 

and PtL2, which have different phylogeographic histories (Perrot-Minnot et al., 2018). 

Perrot-Minnot et al., (2018) demonstrated that P. tereticollis has differentiated in Western 

and Central Europe and then expanded to form two main lineages; PtL1 (Central and 

European lineage) which subsequently underwent dispersal, vicariance and admixture 

between the Baltic Sea and the British Isles, and PtL2 (Western and Ponto-Caspian lineage) 

whose dispersal, vicariance and admixture occurred within the Rhone and Rhine rivers, the 

Carpathians and the British Isles. In light of these recent results, it could by hypothesized that 

the ‘marine strain’ of the British Isles (Kennedy et al., 1989) belong to the PtL1 lineage 

whereas the ‘British strain’  (Kennedy et al., 1989) would be of the PtL2 lineage.  

 

Consequently, following this new information on the phylogeography of P. tereticollis 

(Perrot-Minnot et al., 2018)  and the non-species specificity of the genetic region amplified 

by O’Mahony et al., (2004), the aims here were to (a) investigate the genetic and 

morphological identity of British Pomphorhynchus parasites by increasing the number of 

Pomphorhynchus parasites tested; and (b) extending the work of O’Mahony et al., (2004) and 

Perrot-Minnot et al., (2018) by further testing the role of host and vicariance in driving strain 

formation in Pomphorhynchus spp. in Britain through using newly generated genetic 

sequences combined with publicly available sequences. 
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2. Materials and Methods  

 

2.1 Sample collection 

Adult Pomphorhynchus spp. samples were obtained from their fish hosts by electric fishing 

six rivers in England (Table 1). The sampled fish species, comprising of both definitive and 

paratenic hosts, were Cottus gobio, Squalius cephalus, Barnbatula barbatula, Phoxinus 

phoxinus, Anguila anguila, Salmo trutta, Gobio gobio, Rutilus rutilus and Cyprinus carpio. 

The fish were identified to species, euthanized (anaesthetic overdose; Tricaine 

methanesulfonate) and dissected in the laboratory, with any Pomphorhynchus spp. present in 

the gastrointestinal tract removed. These adult Pomphorhynchus samples were supplemented 

by the collection of larval samples from five rivers, four for which adult samples were 

already available (Table 1). The larval samples were collected from their amphipod 

intermediate hosts. This required the hosts to be collected by kick-sampling in the rivers, 

sorting for infected amphipods (identified by an orange spot on their back; Sheath et al. 

2016), followed by dissection of the larval parasites from the amphipod host in the 

laboratory. All Pomphorhynchus spp. samples were then preserved in 98 % ethanol. 

 

2.2 Genetic analyses 

Two genetic regions were amplified for each Pomphorhynchus spp. sample (adult and 

juvenile): (1) subunit I of cytochrome c oxidase (a mitochondrial gene) (Kral'ova-Hromadova 

et al., 2003, Spakulova et al., 2011); and, (2) the small fragment of subunit I of cytochrome 

oxidase I used by O’Mahony (2004) (with the latter analysed to provide consistency across 

all  the studies, as it represents the only genetic region from historical British 

Pomphorhynchus samples). 

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0031182020001663
Downloaded from https://www.cambridge.org/core. IP address: 86.8.167.187, on 10 Sep 2020 at 08:53:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0031182020001663
https://www.cambridge.org/core


 

 

 

Total genomic DNA was extracted from adult and larval parasites using the Qiagen DNeasy 

extraction kit (Qiagen), and genetic analyses were performed on the cytochrome oxidase 

subunit I (COI) gene using primers LCOI1490 and HCO2198, and yielding 583 bp DNA 

fragments which from here on are referred to as COI-long (primer details in Perrot-Minnot et 

al., 2018). Strain formation in the British Isles was further investigated by amplifying a 

separate region of the COI gene using the primers p4 and p3, as per O’Mahony et al., (2004), 

yielding a DNA fragment of 295 bp, hereafter referred to as ‘COI-short’. Polymerase chain 

reactions were performed using the standard protocol of the Multiplex PCR kit (Qiagen) in 10 

µl reaction volume with 10 ng of template DNA and annealing temperature of 50 °C for all 

primer pairs. 

 

2.3 Phylogenetic analyses 

All sequences were manually aligned using BioEdit ver. 5.0.9 (Hall, 1999), with haplotype 

number determined using DnaSP v.5 (Librado and Rozas, 2009).  The haplotype sequences 

were deposited in the GenBank database (accession numbers KY075791-KY075800). For 

phylogenetic analyses, sequences available from GenBank (which included information on 

the host from which the parasite was extracted from) were added to the dataset 

(Supplementary material Table 1). Phylogenetic relationships for the COI-long region were 

reconstructed using MrBayes (Pronquist et al., 2012) using sequences from the present study, 

plus all the sequences of P. tereticollis available from GenBank, with P. laevis used as an 

outgroup (LN994840, LN994890, LN994940, LN994943, LN994930 and LN994924). The 

substitution model, GTR + I, was chosen using jmodeltest (Darriba et al., 2012). Robustness 

of the nodes was estimated using posterior probability with MrBayes (Ronquist et al., 2012). 

Two independent runs of four heated Markov chains Monte Carlo (MCMC) were used. The 
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generation number was set to 1,000,000 MCMC replications with one tree sampled every 500 

generations. The first 250,000 trees were discarded from the analysis (25% burn-in). The tree 

was visualized using figtree (http://tree.bio.ed.ac.uk/software/figtree/). The median-joining 

haplotype network was calculated using PopART (Leigh and Bryant, 2015).  

 

2.4 Testing the influence of host salinity tolerance, country and biogeographical region on 

strain formation  

The influence of host, host salinity tolerance and biogeographical region in explaining the 

genetic variation with the Pomphorhynchus spp. samples was investigated using all of the 

COI-long sequences generated in this study, plus the available P. tereticollis sequences 

available in Genbank (see Supplementary material Table 1); this resulted in 87 sequences for 

analysis in AMOVA (Arlequin ver 3.5.2.2; Excoffier and Lischer, 2010). Using the COI-

short region, the data generated in this study were combined with those of O’Mahony et al., 

(2004), and used in AMOVA to test which variable (country [England, Scotland and Ireland] 

and host salinity tolerance) explained the most variation within Britain and Ireland. This 

provided a more balanced design (sequences from 75 stenohaline vs. 48 euryhaline hosts) 

when compared to O’Mahony et al., (2004) (20 stenohaline vs. 41 euryhaline sequences).  

 

The biogeographical region used followed the work of Perrot-Minnot et al., (2018). As 

Perrot-Minnot et al., (2018) did not assign a biogeographical region to samples from Scotland 

and Ireland then in the AMOVA analysis performed here, two possible biogeographical 

groupings for Scottish and Irish samples were tested for: (a) grouped within the Western 

Europe–English Channel, and (b) in a proposed Northern Europe group (encompassing 

samples from Central Europe-Baltic Sea, Ireland and Scotland).  
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2.4 Morphological analysis 

The genetic analyses were then complemented by morphological characterisation (as per 

Špakulová et al., (2011)) of 10 individual Pomphorhynchus parasites collected from 10 fish 

(Anguila anguila and Oncorhynchus mykiss) from the rivers Thames and  Hampshire Avon 

(Supplementary material Table S1). Archived specimens from the rivers Kennet, Thames and 

Hampshire Avon were obtained from the Environment Agency (n=6, England) and the 

Natural History Museum (n=4 London, England) and were also assigned to species through 

morphological identification. These samples originated from English rivers between 1951 

and 2015, and all had been previously recorded as P. laevis (as P. tereticollis was considered 

a junior synonym at that time). For the characterisation of the contemporary parasites, live 

adults were dissected from their fish hosts, relaxed in tap water to promote eversion of the 

proboscis and fixed in 100% ethanol, before they were cleared using creosote and examined 

microscopically (x100 to x400) to obtain hook measurements using Image J (Schneider et al., 

2012). Small regions of the body from fixed parasites were removed and stored for molecular 

confirmation.  

 

3. Results 

 

3.1 Phylogenetic analyses and strain formation hypothesis 

The COI-long and COI-short gene fragments were amplified from 74 and 62 samples 

respectively (Supplementary material Table S2). All sequences were deposited in Genbank 

(KY075791-KY075817).  

 

The phylogenetic reconstruction using the COI-long used the 74 sequences from the present 

study and 13 sequences from Perrot-Minnot et al., (2018). The analysis identified that 
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haplotypes belonging to the two established P. tereticollis lineages are present in Britain, 

with individuals from Scotland and Ireland grouping within lineage PtL1 and all samples 

from England (collected in the present study) grouping within lineage PtL2 (Figure 1). The 

effect of country, biogeographical region and host salinity tolerance as explanatory variables 

for the genetic differentiation between lineages PtL1 and PtL2 for the COI-long gene 

revealed that host salinity tolerance and a potentially northern European biogeographical 

grouping explained the largest proportion of genetic variation (54.33 % and 63.24 % 

respectively (COI-long; Table 2, Figure 1). The influence of host and host-salinity tolerance 

was further tested using the COI-short region using the data generated in the current study 

(62 sequences) and the 61 sequences generated by O’Mahony et al., (2004), and revealed host 

salinity tolerance was the most significant explanatory variable (Table 2, Figures 2, 3). These 

results also demonstrated that the parasites present in western England grouped with those in 

the lineage present in the River Thames basin (Figure 1).  

 

3.2 Morphological analysis 

Morphological analysis of all adult parasites had characteristics consistent with recent 

descriptions of P. tereticollis (Spakulova et al., 2011). These included presence of medial 

hook projections, notably stouter hooks in rows 5-6, presence of hooks on the base of the 

proboscis bulb and hook morphometrics consistent with the ones reported by Špakulová et 

al., (2011) (Supplementary Figure 1, Supplementary Table S1). Furthermore, the re-

examination of archived material also confirmed that all specimens from English rivers, 

previously identified as P. laevis since 1951, were morphologically consistent with recent 

descriptions of P. tereticollis. 

 

4. Discussion 
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The results here indicate that P. tereticollis is present and established in British freshwaters, 

with no evidence that P. laevis is also present. This absence of P. laevis included rivers that 

have previously been reported to harbour historic P. laevis infections. The re-examination of 

archived material supported the misidentification of P. tereticollis as P. laevis. As such, it is 

proposed that P. laevis is absent from British freshwaters and that the name P. tereticollis 

should replace all previous literature pertaining to P. laevis in Britain (e.g Kennedy et al., 

1989). This includes the only genetic information purporting to be of British P. laevis, which 

used the short COI gene that is not species specific (O'Mahony et al., 2004). It seems likely 

that this record also represents P. tereticollis, despite it being reported as P. laevis due to the 

more precise COI-long sequences reported here from four populations (O'Mahony et al., 

2004, Perrot-Minnot et al., 2018).  

 

The analysis of the genetic data collected in the present study, in combination with all P. 

tereticollis sequences deposited in Genbank with their reported host, revealed two distinct 

clades within P. tereticollis, which corresponded to those reported in Perot-Minnot et al. 

(2018). Furthermore, the analysis provides support for the hypothesis put forward by Perrot-

Minnot et al., (2018) that parasites belonging to clade PtL1, possibly associated with cold 

adapted fish, may have spread to the northern parts of Britain from the Baltic region via a 

northern route across the estuarine area in what is now the North Sea during the last 

glaciation. The second lineage, PtL2, may have arrived later via the Rhine/Thames fluvial 

connection during the last Glaciation or early Holocene when sea levels were low (as 

proposed by Perrot-Minnot et al., 2018). The present data supports this, as the English P. 

tereticollis populations cluster with P. tereticollis from the River Rhine which is one of the 

main rivers which connected to East flowing English rivers such as the Thames at that time. 
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Subsequently, P. tereticollis has invaded numerous western flowing rivers through the 

translocation of its main definitive hosts, particularly B. barbus, and has been documented to 

expand its range soon after its introduction (Kennedy et al., 1989).  

 

The presence of a morphologically and genetically distinct P. tereticollis in Scotland and 

Ireland (Evans et al., 2001, O'Mahony et al., 2004) had been initially linked to a different 

strain, which possibly arose due to adaptation to salinity tolerant host species. In the current 

study, analyses with both COI gene segments (long and short) strongly support the effect of 

host salinity tolerance in explaining the genetic differentiation between the P. tereticollis 

lineages PtL1 and PtL2, as proposed by Perrot-Minnot et al., (2018). The analyses of variance 

conducted here, where samples from Ireland and Scotland were grouped within the Central 

European-Baltic sea biogeographic region (as per Perrot-Minnot et al., 2018), suggest the 

possibility that the PtL1 lineage spread from that region in the past. It appears to have co-

evolved with cold and salinity tolerant fish hosts such as brown trout Salmo trutta, but it can 

still infect cyprinid species (Figure 1).  Phylogeographic studies of S. trutta have suggested 

they survived as a species through the Late Pleistocene in northern refugia in Europe and that 

British populations cannot be distinguished from the continental populations, suggesting a 

relatively recent dispersal or connection (Bernatchez, 2001). This may imply that a 

movement of S. trutta with the PtL1 lineage of the P. tereticollis parasite spread since the end 

of the Last Glacial Maximum (post-LGM; circa 16 kyrs ago) from the Baltic region to 

Britain. This in turn may have been enabled by the low lying northern Doggerland area, 

which would have been dominated by deltaic/estuarine environments that possibly provided a 

link between the Baltic and northern Britain, including Scotland, during low sea levels (Sturt 

et al., 2013). This scenario is consistent with the phylogeographic analyses of other cold 
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tolerant fish, such as C. gobio (Hanfling et al., 2002), which suggest the survival of fish 

throughout the LGM in northern European rivers.  

 

A second dispersal route is suggested for the PtL2 parasite lineage, with its association with 

warmer, freshwater adapted fish hosts. This was likely to have occurred later, during the 

Early Holocene, or perhaps the Late Glacial Interstadials, due to the warmer association of 

the specific fish hosts. However, it had to occur prior to the inundation by rising seas levels 

of the fluvial connection between the Rhine and the Thames (and other East flowing Southern 

English river catchments) at ca. 7 kyrs (Sturt et al., 2013). 

 

The majority of the hosts sampled in this study were fish and the intermediate hosts were not 

as widely sampled. Therefore, the influence of the intermediate hosts and their respective 

vicariance in explaining the phylogeographic patterns of P. tereticollis remains largely 

unexplored. The parasite has a complex lifecylce and would have required the presence of 

both intermediate and final hosts in its colonization of the British Isles. Future work could 

therefore focus on the intermediate hosts, especially for the PtL1 lineage, with exploration of 

the role that they have played in the colonization route of the northern British Isles. Sampling 

should include both fresh and estuarine waters.  

 

In conclusion, the present study provides further support for the proposed hypotheses of 

Perrot-Minnot et al., (2018) to explain the phylogeography of P. tereticollis. It also updates 

the only other British Isles genetic work on Pomphorhynchus parasites of O’Mahony et al., 

(2004). The results confirm that P. tereticollis is the only Pomphorhynchus parasite species 

present in British freshwaters, raising a series of evolutionary and ecological questions that 

require further investigation. Of particular interest is the potential to use P. tereticollis as a 
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model species to address the role of host-specialisation driving speciation in generalist 

parasites, especially as a comparator to P. laevis. In particular, P. tereticollis can be used to 

better understand the relationship between a generalist parasite and its variously 

environmentally adapted hosts, and the consequences of this to vicariance in that parasite.  
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Table 1: Sampling location and haplotype distribution by species for all samples collected in the 

present study.  

  Haplotype distribution 

  COI-Long COI-short 

River Host C1 C2 C3 C4 C5 C6 C7 L1 
**

 

L2 
**

 

L3 
**

 

Hampshire Avon Cottus gobio  13      3 10  

 Squalius cephalus  3      1 2  

 Barbatula barbatula  3   1   2 1 1 

 Phoxinus phoxinus  2      2   

 Gammarus  1     1    

 Anguila anguila*  1         

 Anguila anguila  3       3  

 Salmo trutta  5       5  

Darent Cottus gobio  3      1 2  

 Squalius cephalus 1 2       3  

 Gobio gobio  3       3  

 Phoxinus phoxinus  3       3  

 Rutilus rutilus  1       1  

 Barbatula barbatula  3       3  

Kennet Phoxinus phoxinus  2      1 1  

Lodden Cottus gobio  1 1      2  

 Phoxinus phoxinus  2       2  

 Gammarus  2       2  

Teme Cottus gobio  6  1    1 6  

 Barbatula barbatula  1      1   

 Gammarus sp.           

Thames Cyprinus carpio*      1     

 Gammarus sp.      2 1    

Cain Gammarus sp  1         
*Old samples; **L1 = AY390511; L2 = AY390509; L3 = AY390512;Haplotypes C2 and C6 correspond to 

haplotypes Pt22 and Pt23 in Perrot-Minnot et al., (2018) respectively.  
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Table 2: Results of AMOVA analyses where populations were grouped by country, 

biogeographic region (as defined by Perrot-Minnot et al., 2018), species and host salinity 

tolerance. Analyses were performed using sequences generated in this study plus sequences 

from Perrot-Minnot et al., (2018) for the long COI and O’Mahony et al., (2004). 

 Groups d.f Among 

groups 

(%) 

Among 

populations 

within 

groups (%) 

Within 

populations 

(%) 

FCT P 

COI 

long 

Country 5 22.62 43.67 33.70 0.22624 0.09 

 Biogeographic region 

(IRL&SCO included in 

Western Europe) 

 

2 41.43 32.79 25.78 0.41427 0.02 

 Biogeographic region 

(IRL&SCO as a distinct 

group) 

 

3 52.82 22.15 25.03 0.52821 0.003 

 Biogeographic region 

(IRL, SCO combined 

within the Central 

Europe group) 

 

2 54.33 21.12 24.55 0.54327 0.0009 

 Host salinity tolerance 1 63.24 8.59 28.17 0.63242 0.009 

COI 

short 

Country  

(IRE vs UK) 

 

1 51.42 36.61 11.97 0.51417 0.05 

 Country 

(IRE, ENG, SCO) 

 

2 60.20 27.98 11.82 0.60197 0.02 

 Host salinity tolerance 1 60.88 11.21 27.91 0.60878 0.01 

 For the long COI, a number of different groupings were tested for Ireland (IRL), Scotland 

(SCO) and England (ENG): (a) grouped together in the Western Europe biogeographic 

region; (b) IRL and SCO as distinct biogeographic region; (c) IRL, SCO grouped within  

central European group.  
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Figure 1 Bayesian tree reconstructed from COI-long sequences of Pomphorhynchus 

tereticollis. P. laevis was used as an outgroup. Branch support values are posterior 

probabilities. Haplotypes are indicated in Table S1. Geographical locations are denoted next 

to the haplotype and are:  ENG-Englang; FR-France; GER1- Germany(Rhine); GER2-

Germany (Baltic); IRE-Ireland; ROM-Romania; SK-Slovakia. 
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Figure 2 Network of Pomphorhynchus tereticollis, COI-short (295 bp) from Ireland and 

Britain. Samples were categorised by host species. Data from the current study (n=62) and 

O’Mahony et al., (2004) (n=56) were combined (detailed description of data in 

Supplementary Table 2). Each line represents 1 base difference between samples. 
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Figure 3 Network of Pomphorhynchus tereticollis, COI-short (295 bp) from Ireland and 

Britain. Data were categorised by country of origin. Data from the current study (n=62) and 

O’Mahony et al., (2004) (n=56) were combined (detailed description of data in 

Supplementary Table 2). Each line represent 1 base difference between samples 
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