
sensors

Article

Towards a Multi-Layered Phishing Detection

Kieran Rendall 1, Antonia Nisioti 2 and Alexios Mylonas 1,*
1 Department of Computing and Informatics, Bournemouth University, Bournemouth BH12 5BB, UK;

s4908752@bournemouth.ac.uk
2 Department of Computing and Mathematical Sciences, University of Greenwich, London SE10 9BD, UK;

a.nisioti@greenwich.ac.uk
* Correspondence: amylonas@bournemouth.ac.uk

Received: 15 July 2020; Accepted: 11 August 2020; Published: 13 August 2020
����������
�������

Abstract: Phishing is one of the most common threats that users face while browsing the web.
In the current threat landscape, a targeted phishing attack (i.e., spear phishing) often constitutes the
first action of a threat actor during an intrusion campaign. To tackle this threat, many data-driven
approaches have been proposed, which mostly rely on the use of supervised machine learning
under a single-layer approach. However, such approaches are resource-demanding and, thus,
their deployment in production environments is infeasible. Moreover, most previous works utilise
a feature set that can be easily tampered with by adversaries. In this paper, we investigate the use
of a multi-layered detection framework in which a potential phishing domain is classified multiple
times by models using different feature sets. In our work, an additional classification takes place
only when the initial one scores below a predefined confidence level, which is set by the system
owner. We demonstrate our approach by implementing a two-layered detection system, which uses
supervised machine learning to identify phishing attacks. We evaluate our system with a dataset
consisting of active phishing attacks and find that its performance is comparable to the state of the art.

Keywords: supervised machine learning; phishing; multi-layer

1. Introduction

In recent years, phishing attacks have been on the rise and inevitably have caught the attention of
the public. Phishing is a technique that is commonly used to obtain confidential information through
acts of impersonation. In the current threat landscape, phishing constitutes most of the time the initial
action [1] of any sophisticated attack [2]. Moreover, according to [3], 42% of business emails were
compromised from phishing attacks since June 2018.

The more the popularity of personal IoT (Internet of Things) devices, such as mobiles, wearables,
and smart assistants increases, the more these devices are used as phishing vectors by threat actors.
The built-in functionality of these devices enables the opening of emails, websites, and the downloading
of applications. Unfortunately, the protection that these devices offer to the end-users is rather
limited [4,5]. Moreover, the authors in [6] reported that phishing can be conducted by exploiting the
Android Instant App feature, thus bypassing the full installation process.

In 2020, phishing has been contextualised by exploiting a significant fear factor of the public.
The general public has been targeted by large-scale phishing campaigns amid the COVID-19 pandemic,
where threat actors were posing as government and other health authorities, such as the Center for
Disease Control (CDC, Atlanta, GA, USA) and the World Health Organisation (WHO). At the same
time, WHO employees were victims of targeted phishing attacks in an attempt to steal confidential
information [7]. For instance, a malicious site was observed on 13 March 2020 impersonating WHO’s
internal email system and harvesting logon credentials [8].

Sensors 2020, 20, 4540; doi:10.3390/s20164540 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/20/16/4540?type=check_update&version=1
http://dx.doi.org/10.3390/s20164540
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 4540 2 of 18

Regulations such as HIPPA and the more recent GDPR provide coherence around confidential data
and at the same time bring a significant financial impact to businesses following a breach. In July 2019
alone, British Airways were fined £183M and Marriot Hotels £99M [9] upon assaults using phishing.

While security organisations, such as Norton and UK’s National Cyber Security Centre,
are proactively advising the public on how to protect from this threat, a complementary approach for
tackling it is needed. Currently, blacklisting is the most commonly used security control for detecting
known phishing campaigns, i.e., those that are included in the blacklist. However, the short life cycle of
phishing domains renders blacklisting ineffective, as the process of identifying, reporting, and blacklist
updating is time-consuming. Specifically, [10] reported that 84% of phishing sites exist for less than
24 h, and [11] identified the life cycle of a phishing domain to be less than a benign domain.

For these reasons, the literature has explored data-driven approaches that aim to dynamically detect
phishing domains using supervised or unsupervised machine learning [12]. However, the majority
of approaches rely on single-layered models for detection, such as [13–15]. Their feature selection,
in conjunction with their implementations, is focused mainly on the extraction of domain characteristics,
such as URL length and the number of special characters, which could be easily tampered with by
threat actors [16]. Similarly, many approaches have impractical feature extraction strategies, as they
require large amounts of computational processing resources and may be constrained by TLS/SSL
encryption [14,17]. Thus, such single-layered approaches are bounded by their high computational
requirements, which does not allow them to be deployed in a real production environment. Despite the
features that have a high computational overhead, by having a multilayered system, the expense
of such features can be prioritised for uncertain classifications, and thus, computer power is not
wasted unnecessarily.

In this paper, we propose a two-layered detection framework that uses supervised machine
learning in order to identify phishing attacks. In our work, resource-demanding operations of the
second layer can be avoided based on the prediction confidence of the first inexpensive detection
layer. As a result, this saves infrastructure resources, which is a critical factor in the deployment of any
security control to a production environment. At the same time, it achieves comparable accuracy with
the past literature in the domain, which focuses on single-layer supervised machine learning.

In summary, this paper makes the following contributions:

• We propose a framework to detect active phishing attacks. The framework follows a two-layered
approach to identify phishing domains based on supervised machine learning. We implement
and evaluate the framework on a dataset that we created based on 5995 phishing and 7053
benign domains.

• We suggest and utilise features in each layer of the framework that have been used in the literature
as well as propose a new feature for layer two. We discuss their ability to resist tampering from a
threat actor who is trying to circumvent the classifiers, e.g., by typosquatting.

The rest of this paper is structured as follows: in Section 2, we discuss the background relevant to
our framework, while Section 3 presents the related work. Section 4 presents our methodology and
Section 5 our implementation. In Section 6, we present the evaluation setup and experimental results.
Finally, Section 7 concludes the paper and discusses future work.

2. Background

2.1. Detection Methods

Any detection system has three fundamental components: a data collection sensor, pre-processing
data functions, and a decision engine [18]. A sensor can either retrieve or be given data in the form of
host data and/or network traffic. Nowadays, a popular decision-making technique for detection is using
a signature/rule-based engine. The disadvantage of such a method is that it requires existing knowledge
of the malicious activity in the form of predefined rules. To overcome this, Monzer et al. [19] created

Sensors 2020, 20, 4540 3 of 18

a model-based rule generation algorithm to minimise the manual effort of crafting a rule/signature.
Despite signature-based detections being limited to detecting explicit patterns, they are powerful if
one knows what to discover. Nevertheless, such methods are constrained by their rule requirement,
which conflicts with the short life cycle of threat intelligence.

On the other hand, advanced statistical methods, such as supervised and unsupervised machine
learning (ML) systems that have been widely deployed for various detection tasks do not have this
disadvantage [20–26]. It is important to note that the objective of a detection system is to detect
specific categories of activity while keeping false-positive (FP) and false-negative (FN) numbers low.
Supervised techniques do not utilise rules but instead require training on past data in order to learn to
classify new observations in predefined categories. However, one needs to be careful when training
such a model, as underfitting or overfitting it on the training dataset negatively impacts performance.
The other main factor, apart from the supervised algorithm in use, that affects the performance of the
detection system is the chosen feature set. A higher number of features does not always equal better
performance, while an optimal set of features can allow a model to cope with noise in data, seasonality,
and trends.

This work considers four supervised machine learning algorithms, which have extensively been
used for phishing detection [12], namely: Multilayer Perceptron, Support Vector Machine, Naïve Bayes,
and Decision Trees.

Multilayer Perceptron (MLP) is a class of artificial neural network which has been widely used as
a supervised machine learning algorithm to achieve a binary-classification output. During the training
process, MLP weights and biases are adjusted to minimise error using the backpropagation technique.
Then, they are passed to an activation function, which in this work is a hyperbolic tangent. Finally, to
improve the model coefficients during learning and further reduce error, a parameter optimisation
algorithm was used, i.e., the scaled conjugate gradient.

Support Vector Machine (SVM) classifies by fitting a hyperplane to the data that maximises the
separability between the two classes and uses it as a decision boundary. A radial kernel function is
used to handle the non-linear separability on the features.

Naïve Byes (NB) is a supervised machine learning algorithm that classifies using a probabilistic
approach, i.e., the Bayes Theorem. The algorithm requires that features used are subject to independence
and it can effectively model relatively small datasets.

The decision tree (DT) algorithm is a supervised machine learning algorithm that can be used
in classification or regression problems. The algorithm is representative of a tree-like structure,
with branches and lead nodes growing arbitrarily. As with most machine learning algorithms,
a balanced dataset is important to reduce the likelihood of overfitting, i.e., lack data generalisation.

2.2. JDL Model

The Joint Directorate of Laboratories model (JDL) is a common framework for enabling situational
awareness for decision support contexts. Initially developed for military systems, its use in large-scale
critical infrastructure monitoring has been an effective framework to drive a structured and scalable
information fusion system that incorporates the user with machine-driven analytics [27]. With respect
to cyber defence, a lack of literature has been delivered applying the JDL framework. The reasons for
this may vary, including a limited understanding across the levels of JDL [28].

3. Related Work

Malicious URLs constitute a vector for the realisation of different attacks, such as malware
installation using a Domain Generated Algorithm for command and control [29] or for luring users as
part of a phishing campaign. Existing detection and prevention techniques typically rely on blacklisting
and supervised machine learning [30,31].

Blacklisting, which is the first line of defence against malicious websites, is today enabled by
default in all popular browsers (i.e., Chrome, Firefox, Opera, and Safari) irrespective of the platform

Sensors 2020, 20, 4540 4 of 18

that they execute (desktop or mobile device). Browsers provide to their users different blacklisting
technologies, such as Google Safe browsing and SmartScreen, with Google’s blacklist being the most
prevalent. However, past work has proven that the protection that blacklists, as a security control,
offer to their users is rather limited [4,5].

According to Bell and Komisarczuk [32], PhishTank and OpenPhish blacklists see up to a 24-h delay
before updating, providing to threat actors a considerable window of opportunity. Therefore, relying on
blacklisting can increase the risk exposure if an organisation is subject to a targeted phishing campaign.
Moreover, threat actors do take advantage of world events or crises, as [33] has reported that Gmail
service was blocking 18M Coronavirus scams per day during the Coronavirus pandemic. As a result,
if one needs to keep up with phishing campaigns, then it is important to use data-driven approaches
instead of solely relying on static knowledge provided by blacklists. Supervised machine learning
methods, particularly those applied for URL classification [12] 15have been successful in the past in
determining if the class of URL is malicious or benign.

Authors in [14] explored an approach to detect phishing which uses visual similarity signatures.
While the dataset endured discrimination using characteristics in page styling, SSL certificates,
and webpage contents, it required a large amount of processing. This can create computational
overhead, which can reduce the applicability of the detection system in production environments.
Hara et al. [17] also used image similarity, achieving a detection rate of 82.6% with a false-positive
rate of 18%. They compared their approach to browser-based detection with Google Safe Browsing,
which detected only 30.5%.

Other phishing detection approaches that have been used in the literature include applying
associative rule-based mining algorithms on the URL. The work by Jeeva and Rajsingh [16] used the
Apriori algorithm to identify the significance of a feature set. It was noted that the URL length and
special characters were useful in detecting malicious domains and that most of the malicious sites were
not using HTTPS. In addition, [34] reported that in 2016, less than 3% of phishing sites used HTTPS,
rising to 33% in 2017. The increase over the years will likely reduce the effectiveness of identifying
phishing using the previously mentioned strategies. Aburrous et al. [35] also used rule-based mining
and identified URL and domain features as significant to determine if a website is malicious or benign.
Abdelhamid et al. [36] identified features that correlate with the class of domain, i.e., malicious or
benign, which included the age of the domain, URL length, HTTP/S, and others.

Another attempt to detect phishing more accurately was conducted in [37]. The approach used real
Internet Service Provider traffic flows and modelled the data using a Deep Belief Network. The feature
set involved static features seen in previous studies, but also interactive features that are less likely to be
manipulated by threat actors. This included graphing IP addresses and calculating the in-degree and
out-degree of the active URL’s. Although identifying interactive characteristics at an ISP level would
be impractical due to resource constraints, Ma et al. [17] modelled a combination of other less-intrusive
interactive features. These included publicly available WHOIS properties, such as domain creation
data, registrar and Time-to-Live (TTL). However, Blum et al. [38] highlighted that using WHOIS data
could create a bottleneck in detection speed. Moreover, Aaron and Rasmussen [39] reported that out of
255,065 phishing attacks, 90% of domains were not used on the same day as registration, and around
15–20% of domains would remain inactive for 1–12 months. This suggests the creation date as a feature
could, in the future, be ineffective in discriminating significant proportions of phishing campaigns.

Stergiopoulos et al. [23] focused on overcoming the challenge that encryption carries in preventing
certain detection techniques, such as URL extraction. To this end, a range of features was extracted at
the packet level; more specifically, stemming from the time difference between packets and packet sizes.
In the context of phishing, when a user accesses a site, a DNS request is sent to a DNS server to retrieve
the respective IP address. As our results suggest, the response time for retrieving a DNS response
relative to the DNS request could be indicative of an unpopular domain. For instance, a response
time for paypal.com should be faster than that of a phishing site. Authors in [40] investigated if DNS
traffic could be correlated with other existing traffic to detect covert channel beaconing. Bilge et al. [41]

Sensors 2020, 20, 4540 5 of 18

explored the types of DNS features that could be used to detect malicious activity. It was found that
the TTL value could occasionally create false positives due to misconfigurations from the site owners
or those that were unsure of the optimal value for the DNS settings. They created a dataset of around
4.8 million observations and achieved a detection rate of 98.4%. A limitation of their approach is that
the features relied on analysis over-time, causing lengthy delays. Nonetheless, it allowed them to
compute averages and percentage changes on TTL values and IP addresses.

Zhauniarovich et al. [42] conducted a comprehensive review of DNS-based detection, with a
focus on the practicality of detections. The factors they considered include detection latency and
scalability. Similarly, the various features that are proposed in the existing literature can detect different
categories of malicious behaviour, and therefore, system owners may wish to adapt their systems to
detect different behaviours in-time. In summary, one can realise that a phishing detection system needs
to be designed with technologies driven by modularity and horizontal scalability.

Currently, very few layered phishing detection approaches are proposed in the existing literature.
These provide the opportunity to detect phishing that has the potential to bypass an initial detection
sensor designed to a specific feature set. Sonowal and Kuppusamy [31] designed a layered
heuristic-based detection system. The system achieved an accuracy of 92.73% overall, although a small
imbalanced dataset was used. Moreover, each layer could classify if a URL was malicious or benign
without consulting other layers in the system. However, this could lead to a bias classification resulting
in higher Type I and Type II errors. Smadi et al. [43] combined a neural network that is used for email
classification with reinforcement learning. Despite the ability to adapt to new learning environments,
it would be a resource-intensive engine due to the high number of features that were used. [44] used a
multi-classification method for email phishing detection. This involved forward-passing observations,
e.g., if the outputs for T1 and T2 are different, they forward-pass to T3. Although this is similar to our
approach, the technique was layered by a different algorithm for each tier, but maintained the same
feature set. On the contrary, our work is focused on delivering a layered feature approach, which results
in a better detection rate compared to single-layer approaches, lower resource consumption, and a
more specific method of identifying if a further classification is required.

Ref. [45] proposed a layered architecture to detect specific attack types. In their work, layer one
identifies the most important features per attack type, layer two is the classifier, and layer three is a
softmax layer. This approach enables the system to only process the features that were identified as the
most valuable during classification and thus it saves computation resources. Contrary to [45], who triage
the feature space prior to classification, our paper triages at the classification layer. This can provide
flexibility to what feature space could be used if they vary dramatically in computational requirements.

An empirical study by [46] used a layered process to strengthen an ensemble of classifiers by
pruning, a technique to remove minor contributions to classification. Despite efforts to enhance
the pruning process and achieving a higher F-measure compared to other non-pruned techniques,
the dataset in use was very small. A larger dataset will likely affect the results, and thus, the performance
of the layered approach is not effectively evaluated against existing and popular algorithms.

Finally, an approach by Nasr et al. [47] consisted of using an adversarial algorithm to perform
inference attacks against trained models. Song et al. [48] proposed two new methods of exploiting
the structural properties of adversarial conscious datasets, thus proving the investigated inference
defences ineffective.

4. Two-Layered Phishing Detection Framework

In this section, we introduce our novel two-layered approach to detect phishing domains,
which utilises both domain and DNS packet-level information to create static and dynamic features,
as well as a predetermined set of upper and lower boundaries.

Sensors 2020, 20, 4540 6 of 18

4.1. Approach

As depicted in Figure 1, our framework consists of three components, namely Sensors Module,
Detection Engine, and Triage Module. The Sensors Module is responsible for the collection and
pre-processing of the data, the Detection Engine includes the prediction scoring subcomponents,
and the Triage Module compares the scoring results of Layer 1 with the predefined thresholds. When a
URL is requested by the user, the relevant DNS request and the associated returning packets are
aggregated and processed by the Sensors Module. The processed data from the Domain (static features)
is then passed to the Layer 1 subcomponent of the Detection Engine, which is responsible for producing
a prediction score, with the use of a supervised machine learning algorithm, that is consumed by
the Triage Module. If the score is equal to or greater than the predefined threshold, the Triage Module
uses it to determine the nature of the request, i.e., producing the final decision of the framework.
Differently, the processed data from the Domain (dynamic features) is sent to the Layer 2 subcomponent
of the Detection Engine. Layer 2, in turn, produces another prediction score with the use of supervised
machine learning and determines if the URL is benign or phishing, i.e., producing the final decision of
the framework.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 18

In this section, we introduce our novel two-layered approach to detect phishing domains, which
utilises both domain and DNS packet-level information to create static and dynamic features, as well
as a predetermined set of upper and lower boundaries.

4.1. Approach

As depicted in Figure 1, our framework consists of three components, namely Sensors Module,
Detection Engine, and Triage Module. The Sensors Module is responsible for the collection and pre-
processing of the data, the Detection Engine includes the prediction scoring subcomponents, and the
Triage Module compares the scoring results of Layer 1 with the predefined thresholds. When a URL is
requested by the user, the relevant DNS request and the associated returning packets are aggregated
and processed by the Sensors Module. The processed data from the Domain (static features) is then
passed to the Layer 1 subcomponent of the Detection Engine, which is responsible for producing a
prediction score, with the use of a supervised machine learning algorithm, that is consumed by the
Triage Module. If the score is equal to or greater than the predefined threshold, the Triage Module uses
it to determine the nature of the request, i.e., producing the final decision of the framework.
Differently, the processed data from the Domain (dynamic features) is sent to the Layer 2
subcomponent of the Detection Engine. Layer 2, in turn, produces another prediction score with the
use of supervised machine learning and determines if the URL is benign or phishing, i.e., producing
the final decision of the framework.

Figure 1. The two-layered phishing detection framework.

More specifically, the Sensors Module includes the data collection sensor(s), an essential part of
the framework, on which the remaining components rely on in order to function. The sensor(s), which
can be deployed as either a centralised or decentralised architecture [49] based on the requirements
of the system owner’s infrastructure, capture users’ traffic and filter DNS packets. Every time a user
requests to access a particular URL (e.g., via a browser or other software or tool), the initial DNS
request packet becomes an input to our framework. Specifically, the Query Name field from the DNS
Question Record layer is extracted and processed. The processing involves using feature engineering
functions, which will be further explained in Subsection 3.2. The results of this process are stored in
two feature vectors, namely Df and Pf. Thus, the Sensors Module acts as a producer for the Detection
Engine.

The Detection Engine consists of two layers, each of which consists of a trained instance of a
machine learning algorithm discussed in Section 2. Each layer ingests a different set of data produced
by the Sensors Module to calculate a non-binary prediction score. The prediction score refers to the
result of the machine learning algorithm, i.e., the probability of a URL being phishing. Layer 1
consumes the data stored in the feature vector Df and produces the prediction score S1, while Layer 2
consumes the data from Pf and produces S2. These scores represent the probability that a given URL
is phishing.

Commented [M1]: Please check if it should be italic.

Commented [e2R1]: OK

Commented [M3]: Please make sure the italic in the

figures and main text is identical. e.g.，Sensors Module.

Check all figures.

Commented [kr4R3]: Updated figure added

Figure 1. The two-layered phishing detection framework.

More specifically, the Sensors Module includes the data collection sensor(s), an essential part of the
framework, on which the remaining components rely on in order to function. The sensor(s), which can
be deployed as either a centralised or decentralised architecture [49] based on the requirements of
the system owner’s infrastructure, capture users’ traffic and filter DNS packets. Every time a user
requests to access a particular URL (e.g., via a browser or other software or tool), the initial DNS
request packet becomes an input to our framework. Specifically, the Query Name field from the DNS
Question Record layer is extracted and processed. The processing involves using feature engineering
functions, which will be further explained in Section 4.2. The results of this process are stored in two
feature vectors, namely Df and Pf. Thus, the Sensors Module acts as a producer for the Detection Engine.

The Detection Engine consists of two layers, each of which consists of a trained instance of a
machine learning algorithm discussed in Section 2. Each layer ingests a different set of data produced
by the Sensors Module to calculate a non-binary prediction score. The prediction score refers to the result
of the machine learning algorithm, i.e., the probability of a URL being phishing. Layer 1 consumes the
data stored in the feature vector Df and produces the prediction score S1, while Layer 2 consumes the
data from Pf and produces S2. These scores represent the probability that a given URL is phishing.

The Triage Module is responsible for consuming the prediction score S1 and determining if the
URL will be sent to Layer 2 or not. For this reason, our framework requires that an upper and lower
decision boundary, TU and TL respectively, are defined. These have to be set by the system-owner,
taking into account the requirements of the infrastructure and the behaviour or profiles of the users.
The decision boundaries must be chosen by the system owner so that the non-confident predictions,
i.e., S1, fall within the defined boundaries, are captured by the Triage Module, and are sent to Layer 2.
Therefore, if S1 ≤ TL, the URL is determined as benign, while if S1 ≥ TU, the URL is determined as
phishing. As explained earlier, if TL < S1 < TU, then the URL is sent to Layer 2, where S2 is calculated.
Finally, if S2 < G, where G is a predefined value, the URL is determined as benign, while S2 ≥ G is
determined as phishing.

Sensors 2020, 20, 4540 7 of 18

4.2. Feature Selection

Data arriving at the Sensors Module is subjected to a process of feature engineering. The features
that have been chosen in this work are specific to the DNS Question Record and are split into two
categories, namely static and dynamic, and vary with regards to their tamper resistance.

The features contained in the feature vector Df are derived from the domain name (Features No. 1–6,
Table 1) and have been extensively studied and used in the literature, achieving strong detection
performance [31,50,51]. As presented in [52], the lengths of malicious domain names tend to be
significantly larger than the lengths of benign ones. This is likely to confuse the victims with
information overload, leading to users refraining from placing the domain into question [50]. In the
current threat landscape, it is common for phishing sites to be shared via email, where long links might
not be visible on handheld devices, such as smartphones, due to their limited screen sizes. Similarly, the
number of dots in the domain can be the result of an act of impersonation [50]. In addition, the domain’s
creation date can be used to detect campaigns that leverage a real-world crisis, as [53] reported a
surge in domain registrations associated with the Coronavirus outbreak in 2020. Even though an
attacker can directly manipulate these features, e.g., by changing the domain length, these features
are not computationally expensive and have been proven to suffice for the majority of phishing
instances [31,50,51].

Table 1. The features used in the Detection Engine.

Feature Type

1 Domain Length Static
2 SLD Length Static
3 TLD Length Static
4 TLD Static
5 Number of dots in Domain Name Static
6 Domain number to character ratio Static
7 Domain Creation Date Static
8 Registrar Name Static
9 Length of Response Dynamic

10 Count of Resource Requests Dynamic
11 Count of Resource Responses Dynamic
12 Packet Delta Dynamic

13 Time to Live (TTL) of the Resource
Record Dynamic

While some of the more advanced phishing campaigns that are carefully planned to circumvent
detection may not be detected using the features of vector Df, the remaining features, i.e., the ones
contained in Pf that derive from the DNS packet (Features No. 7–13, Table 1), are less likely to be
tampered with by a threat actor. This holds true due to their dynamic nature, which is caused by
the underlying infrastructure, and thus can be used to detect misconfigured TTL values or DNS data
unavailable in nearby caches.

Here we note that the packet delta (Feature 12, Table 1) feature refers to the time difference between
the two timestamps recorded in a DNS request and its corresponding response. Our experiments
suggest that the packet time interval is considerably higher for phishing domains, which is easily
observed by their standard deviation, σBen = 0.179712 and σPhish = 89.154237, and mean values,
µBen = 0.85355 and µPhish = 4.533967. This makes the packet time interval a valuable feature for our
Detection Engine, and, to the best of our knowledge, we are the first to use this feature in this domain.
This holds true as in general, the domain-relevant data for phishing sites are less likely to be stored in a
DNS cache, contrary to domains for benign sites.

Sensors 2020, 20, 4540 8 of 18

5. Implementation

In this section, we present the implementation of our two-layered framework for phishing
detection. Our implementation follows the JDL model to provide coherence for each of the layers of
implementation. More specifically, as summarised in Figure 2, the implementation of our phishing
detection framework applies the following JDL levels:

• Level 0—the collection of signal-level data for early pre-processing as part of the Sensor Module.
Herein, the data is collected from a sensor that is deployed as an agent on user devices.
Then, the necessary packet data aggregation is performed to enable further processing. This allows
the preservation of user privacy by only forwarding the relevant data across the network via a
data streaming technology.

• Level 1—Object Assessment/Refinement. In this level, which is also included in the Sensor Module,
the identification and extraction of features in the data output from Level 0 take place. Our system
uses a layered approach during detection, and therefore data fusion will occur as per the response
of the Triage Module and might include the collection of external data sources, such as WHOIS,
to refine the objects’ state, i.e., the creation of a domain date.

• Level 2—Situation Assessment/Refinement. This includes both layers of the Detection Engine and
involves the detection of unusual characteristics concerning objects of interest, i.e., Domain Name
System features, to achieve phishing recognition.

• Level 3—Impact Assessment. The Triage Module uses the Layer 1 classification as a feature whereby
the decision boundary represents a level of reasoning. The reasoning works to capture behaviour
relations to the initial object under classification as part of the fusion to create alerts.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 18

is easily observed by their standard deviation, σBen = 0.179712 and σPhish = 89.154237, and mean values,
µBen = 0.85355 and µPhish = 4.533967. This makes the packet time interval a valuable feature for our
Detection Engine, and, to the best of our knowledge, we are the first to use this feature in this domain.
This holds true as in general, the domain-relevant data for phishing sites are less likely to be stored
in a DNS cache, contrary to domains for benign sites.

5. Implementation

In this section, we present the implementation of our two-layered framework for phishing
detection. Our implementation follows the JDL model to provide coherence for each of the layers of
implementation. More specifically, as summarised in Figure 2, the implementation of our phishing
detection framework applies the following JDL levels:

• Level 0—the collection of signal-level data for early pre-processing as part of the Sensor Module.
Herein, the data is collected from a sensor that is deployed as an agent on user devices. Then,
the necessary packet data aggregation is performed to enable further processing. This allows the
preservation of user privacy by only forwarding the relevant data across the network via a data
streaming technology.

• Level 1—Object Assessment/Refinement. In this level, which is also included in the Sensor
Module, the identification and extraction of features in the data output from Level 0 take place.
Our system uses a layered approach during detection, and therefore data fusion will occur as
per the response of the Triage Module and might include the collection of external data sources,
such as WHOIS, to refine the objects’ state, i.e., the creation of a domain date.

• Level 2—Situation Assessment/Refinement. This includes both layers of the Detection Engine and
involves the detection of unusual characteristics concerning objects of interest, i.e., Domain
Name System features, to achieve phishing recognition.

• Level 3—Impact Assessment. The Triage Module uses the Layer 1 classification as a feature
whereby the decision boundary represents a level of reasoning. The reasoning works to capture
behaviour relations to the initial object under classification as part of the fusion to create alerts.

Figure 2. Implementation of the JDL levels relative to our framework’s components.

5.1. Experimental Setup

To demonstrate our framework, we used the test environment that is summarised in Figure 3
using an Intel Core i7-8700 at 3.2GHz, 32GB RAM. It consists of two sub-systems bridged by Kafka,
namely, (i) the network sensor fleet for data collection (Sensor Module) and (ii) the detection engine
(Detection Engine and Triage Module). The two sub-systems use Docker containers, which allows the
separation of underlying applications. They are bridged at the virtual network layer to enable
producer/consumer data streaming. The detection is the output of the system, which can be used to
provide situational awareness to a decision-making entity.

Figure 2. Implementation of the JDL levels relative to our framework’s components.

Experimental Setup

To demonstrate our framework, we used the test environment that is summarised in Figure 3
using an Intel Core i7-8700 at 3.2GHz, 32GB RAM. It consists of two sub-systems bridged by Kafka,
namely, (i) the network sensor fleet for data collection (Sensor Module) and (ii) the detection engine
(Detection Engine and Triage Module). The two sub-systems use Docker containers, which allows
the separation of underlying applications. They are bridged at the virtual network layer to enable
producer/consumer data streaming. The detection is the output of the system, which can be used to
provide situational awareness to a decision-making entity.

Sensors 2020, 20, 4540 9 of 18
Sensors 2020, 20, x FOR PEER REVIEW 9 of 18

Figure 3. The high-level architecture of the test environment.

We have implemented a prototype of the architecture that is summarized in Figure 2 to
demonstrate how to effectively stream data live for processing in a production environment, enabling
our multi-layered phishing detection framework to operate. Our implementation adheres to the need
to (a) protect from single-point-of-failure (SPoF), (b) use a decentralised network sensor fleet, and (c)
leverage infrastructure technologies that allow the implementation to scale.

This work considered different architectures for an intrusion detection system, namely
centralised, decentralised, and distributed architecture [49]. The network sensor fleet sub-system
operates in a decentralised manner to overcome the drawbacks of centralisation. These include a
SPoF, limited scalability, CPU overload, and maintaining processing performance. Firstly, by
decentralising the architecture, the throughput capacity of packets is increased by each machine
observing the traffic in and out of the network interface. Secondly, the User Datagram Protocol (UDP)
packets are captured and filtered by DNS, which reduces the resources required for data collection.
Moreover, Docker was selected for performance reasons as it allows us to install and run isolated
instances of technologies without the need to fully virtualise at the kernel level.

A core module that interfaces to the sensor fleet to collect observations is Apache Kafka (see
Figure 3), a low latency data-streaming technology. The technology is renowned for its development
and use by companies such as LinkedIn, Twitter, Spotify, and Uber. Kafka was selected to ingest and
move large amounts of data with high performance, which is achieved by using a publish-subscribe
messaging principle. Kafka provides to the detection system the ability to horizontally scale with
minimal data retention and topic group consumption. In-sync replicas enable the system to stay alive
if a Kafka broker goes offline. The data flow for live-streaming the test environment is depicted in
Figure 4.

Figure 4. The data flow diagram for the test environment.

6. Evaluation

6.1. Data Collection

To demonstrate our approach, we used multiple data sources to reduce the detection engine’s
sensitivity to new data. In this regard, our dataset had to include live domains; therefore, sources of
threat intelligence that are updated daily were necessary. To this end, in July 2020, we created a
dataset that included 18,030 benign domains, which were collected from Alexa,

Figure 3. The high-level architecture of the test environment.

We have implemented a prototype of the architecture that is summarized in Figure 2 to demonstrate
how to effectively stream data live for processing in a production environment, enabling our
multi-layered phishing detection framework to operate. Our implementation adheres to the need
to (a) protect from single-point-of-failure (SPoF), (b) use a decentralised network sensor fleet,
and (c) leverage infrastructure technologies that allow the implementation to scale.

This work considered different architectures for an intrusion detection system, namely centralised,
decentralised, and distributed architecture [49]. The network sensor fleet sub-system operates
in a decentralised manner to overcome the drawbacks of centralisation. These include a SPoF,
limited scalability, CPU overload, and maintaining processing performance. Firstly, by decentralising
the architecture, the throughput capacity of packets is increased by each machine observing the traffic
in and out of the network interface. Secondly, the User Datagram Protocol (UDP) packets are captured
and filtered by DNS, which reduces the resources required for data collection. Moreover, Docker was
selected for performance reasons as it allows us to install and run isolated instances of technologies
without the need to fully virtualise at the kernel level.

A core module that interfaces to the sensor fleet to collect observations is Apache Kafka
(see Figure 3), a low latency data-streaming technology. The technology is renowned for its development
and use by companies such as LinkedIn, Twitter, Spotify, and Uber. Kafka was selected to ingest and
move large amounts of data with high performance, which is achieved by using a publish-subscribe
messaging principle. Kafka provides to the detection system the ability to horizontally scale with
minimal data retention and topic group consumption. In-sync replicas enable the system to stay alive
if a Kafka broker goes offline. The data flow for live-streaming the test environment is depicted in
Figure 4.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 18

Figure 3. The high-level architecture of the test environment.

We have implemented a prototype of the architecture that is summarized in Figure 2 to
demonstrate how to effectively stream data live for processing in a production environment, enabling
our multi-layered phishing detection framework to operate. Our implementation adheres to the need
to (a) protect from single-point-of-failure (SPoF), (b) use a decentralised network sensor fleet, and (c)
leverage infrastructure technologies that allow the implementation to scale.

This work considered different architectures for an intrusion detection system, namely
centralised, decentralised, and distributed architecture [49]. The network sensor fleet sub-system
operates in a decentralised manner to overcome the drawbacks of centralisation. These include a
SPoF, limited scalability, CPU overload, and maintaining processing performance. Firstly, by
decentralising the architecture, the throughput capacity of packets is increased by each machine
observing the traffic in and out of the network interface. Secondly, the User Datagram Protocol (UDP)
packets are captured and filtered by DNS, which reduces the resources required for data collection.
Moreover, Docker was selected for performance reasons as it allows us to install and run isolated
instances of technologies without the need to fully virtualise at the kernel level.

A core module that interfaces to the sensor fleet to collect observations is Apache Kafka (see
Figure 3), a low latency data-streaming technology. The technology is renowned for its development
and use by companies such as LinkedIn, Twitter, Spotify, and Uber. Kafka was selected to ingest and
move large amounts of data with high performance, which is achieved by using a publish-subscribe
messaging principle. Kafka provides to the detection system the ability to horizontally scale with
minimal data retention and topic group consumption. In-sync replicas enable the system to stay alive
if a Kafka broker goes offline. The data flow for live-streaming the test environment is depicted in
Figure 4.

Figure 4. The data flow diagram for the test environment.

6. Evaluation

6.1. Data Collection

To demonstrate our approach, we used multiple data sources to reduce the detection engine’s
sensitivity to new data. In this regard, our dataset had to include live domains; therefore, sources of
threat intelligence that are updated daily were necessary. To this end, in July 2020, we created a
dataset that included 18,030 benign domains, which were collected from Alexa,

Figure 4. The data flow diagram for the test environment.

6. Evaluation

6.1. Data Collection

To demonstrate our approach, we used multiple data sources to reduce the detection engine’s
sensitivity to new data. In this regard, our dataset had to include live domains; therefore, sources of

Sensors 2020, 20, 4540 10 of 18

threat intelligence that are updated daily were necessary. To this end, in July 2020, we created a dataset
that included 18,030 benign domains, which were collected from Alexa, (https://www.alexa.com) as
well as 18,030 unique and active phishing domains, where 14,504 phishing domains were collected
from PhishTank (https://www.phishtank.com) and the rest from OpenPhish (https://openphish.com).

To train and evaluate the performance of the selected machine learning algorithms with the
aforementioned features, the dataset was enriched initially by confirming an active status through
visiting each domain. This reduced the volume to 17,244 benign and 7970 phishing domains using the
Google DNS service. Furthermore, the data enrichment process of refining the object (domain) state
reduced the dataset further to 16,494 benign and 7053 phishing domains.

Existing literature often uses balanced datasets for training and testing, as seen in [54,55].
However, Das et al. [12] state the concern that using a balanced test set does not reflect the real
world. This holds true because real network traffic includes proportionally more benign instances
than phishing ones. For this reason, our work used a balanced dataset only during the training of
the classifiers to prevent introducing bias (see Table 2). During their testing we used an imbalanced
dataset, reflecting conditions similar to a real production system.

Table 2. The data used in the experiments.

Benign Phishing Total

Train 4937 4937 9874

Test 2116 1058 3174

Total 7053 5995 13,048

Finally, here we choose to set G = 0.5, which is the most commonly used threshold for classification
algorithms. This means that when the prediction score S2 equals 0.5, we choose to classify the corresponding
URL as phishing. As a result, Layer 2 might misclassify a benign site as a phishing site, and thus increase
the FP. However, this work accepts this trade-off as, alternatively, an FN might occur, which poses a greater
security risk.

6.2. Results

In this section, we examine the Detection Engine’s performance with the use of the aforementioned
dataset. Initially, we evaluate the performance of the feature sets presented in Section 4.2 and then
focus on the performance of the proposed layered architecture. To evaluate the performance of the
feature sets, we use metrics that are commonly used to measure the performance of data modelling in
intrusion detection [49], namely: (i) Precision, (ii) Recall, (iii) F1 score, (iv) Accuracy, and (v) Matthews
correlation coefficient (MCC).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2×
Precision×Recall
Precision + Recall

(3)

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

Most of the existing literature on phishing detection uses a single-model approach, where several
features are used to detect phishing attacks. On the contrary, this work proposes a layered approach that
is evaluated to identify the effectiveness of triaging the initial classification confidence. The classifiers

https://www.alexa.com
https://www.phishtank.com
https://openphish.com

Sensors 2020, 20, 4540 11 of 18

that are evaluated herein, which have been described in Section 2, are: Multilayer perceptron, Support
Vector Machine, Naïve Bayes, and Decision Trees (see Table 3).

Table 3. Classifier performance on a single-layered model.

Algorithm Features Precision Recall F1-Score ACC MCC

Multilayer Perceptron
F1–F6 65% 71% 68% 78% 51%

F7–F13 69% 78% 74% 81% 59%
F1–F13 83% 84% 84% 89% 75%

Support Vector Machine
F1–F6 70% 65% 67% 79% 52%

F7–F13 36% 97% 52% 40% 15%
F1–F13 84% 82% 83% 89% 75%

Naïve Bayes
F1–F6 62% 61% 61% 75% 42%

F7–F13 35% 98% 52% 39% 13%
F1–F13 88% 40% 55% 78% 49%

Decision Trees
F1–F6 73% 60% 66% 79% 52%

F7–F13 72% 60% 66% 79% 51%
F1–F13 72% 82% 77% 83% 64%

With regards to the demonstration of our proposed framework, features 1– 6 from Table 1 were
used as the feature vector Df for Layer 1. These are static and, thus, can be immediately calculated from
the domain. Similarly, features 7–13 were used in Pf for Layer 2. This was deemed appropriate for
refining the object state (domain), as contacting external data sources (such as WHOIS) and tracking
returning packets is dependent on collecting the dynamic features 7–13.

Initially, we evaluate each classifier’s performance as one layer against three different feature sets.
Thus, for each classifier in scope (refer to Table 3), we study three different cases using features (i) F1–F6,
(ii) F7–F13, and (ii) F1–F13. We then evaluate the effectiveness of layering the features, such that two
separate model instances, i.e., one for Layer 1 and one for Layer 2, are trained on the layered feature sets
as presented in Section 3.

In all the cases where a classifier uses all the available features, it achieves the best detection scores
(see Table 3). Our results show in Table 3 that the MLP and SVM classifiers using features F1–F13
outperform the rest of the classifiers and feature set combinations we examined, with respect to the
achieved accuracy (89%) and MCC (75%). MLP using features F7-13 seems to outperform SVM using
features F7-13 in terms of accuracy (81% and 40%, respectively) and MCC (59% and 15%, respectively).
We did not notice any major difference in the results for features F1–F6. Despite MLP and SVM having a
weaker precision than Naïve Bayes in some instances, as summarised in Table 3, they achieve a balance
between precision and recall, which is crucial for phishing detection. This holds true as it provides
benefits to the end-user, i.e., by reducing misclassifications. In this regard, MLP outperforms the other
classifiers in the F1-Score, thus balancing precision and recall and being a stronger classifier overall.

We now evaluate the proposed framework against a range of values for the decision boundaries TU
and TL. Here we choose to assign symmetrical values for the boundaries. However, optimal boundary
values can be acquired through experimentation and tuning, as will be discussed further in the
next section.

As can be observed in Table 4 and Figures 5–8, in most cases, using TU = 15 and TL = 85 achieves
the best classification scores. This is expected as we are allowing a higher range between the two
boundaries and, thus, a higher number of requests are passed through Layer 2, where they get classified
using the second set of features. Moreover, the results suggest that Naive Bayes and Decision Trees
when used with a layered approach outperform their single-layer counterparts that use all the available
features. MLP had the highest score, with Decision Tree having the second-highest due to a small
deficit in the F1 and MCC metrics. When comparing the two-layered MLP with the single-layered

Sensors 2020, 20, 4540 12 of 18

MLP with all the available features, one can see that the former is performing similarly to the latter
with only 3–5% deficit in F1, Accuracy, and MCC scores.

Table 4. Classifier performance on a two-layered architecture.

Algorithm Decision Boundary Precision Recall F1 ACC MCC

Multilayer Perceptron

TL = 40, TU = 60 72% 77% 75% 83% 61%
TL = 35, TU = 65 74% 81% 77% 84% 65%
TL = 30, TU = 70 77% 82% 79% 86% 69%
TL = 25, TU = 75 75% 85% 80% 85% 69%
TL = 20, TU = 80 74% 87% 80% 86% 70%
TL = 15, TU = 85 75% 87% 81% 86% 70%

Support Vector Machine

TL = 40, TU = 60 71% 69% 70% 80% 56%
TL = 35, TU = 65 74% 71% 72% 82% 59%
TL = 30, TU = 70 74% 73% 73% 82% 60%
TL = 25, TU = 75 76% 76% 76% 84% 64%
TL = 20, TU = 80 72% 85% 78% 84% 66%
TL = 15, TU = 85 73% 84% 78% 84% 66%

Naïve Bayes

TL = 40, TU = 60 66% 58% 61% 76% 44%
TL = 35, TU = 65 70% 56% 62% 77% 47%
TL = 30, TU = 70 73% 56% 64% 79% 50%
TL = 25, TU = 75 74% 55% 63% 79% 49%
TL = 20, TU = 80 78% 52% 62% 79% 51%
TL = 15, TU = 85 79% 51% 62% 79% 51%

Decision Tree

TL = 40, TU = 60 72% 78% 75% 83% 62%
TL = 35, TU = 65 72% 78% 75% 83% 62%
TL = 30, TU = 70 72% 78% 75% 83% 62%
TL = 25, TU = 75 76% 82% 79% 85% 68%
TL = 20, TU = 80 76% 82% 79% 85% 68%
TL = 15, TU = 85 77% 81% 79% 86% 68%Sensors 2020, 20, x FOR PEER REVIEW 12 of 18

Figure 5. The performance of Multilayer Perceptron.

Figure 6. The performance of Support Vector Machine.

Commented [M12]: 1. This figure has not been referred to

within the text of the manuscript.

2. To avoid any changes to the figure, Please provide a

complete non-editable picture.

Commented [e13R12]: Updated the figures and used them

in the text.

Figure 5. The performance of Multilayer Perceptron.

Sensors 2020, 20, 4540 13 of 18

Sensors 2020, 20, x FOR PEER REVIEW 12 of 18

Figure 5. The performance of Multilayer Perceptron.

Figure 6. The performance of Support Vector Machine.

Commented [M12]: 1. This figure has not been referred to

within the text of the manuscript.

2. To avoid any changes to the figure, Please provide a

complete non-editable picture.

Commented [e13R12]: Updated the figures and used them

in the text.

Figure 6. The performance of Support Vector Machine.Sensors 2020, 20, x FOR PEER REVIEW 13 of 18

Figure 7. The performance of Naïve Bayes.

Figure 8. The performance of Decision Tree.

Figure 7. The performance of Naïve Bayes.

Sensors 2020, 20, 4540 14 of 18

Sensors 2020, 20, x FOR PEER REVIEW 13 of 18

Figure 7. The performance of Naïve Bayes.

Figure 8. The performance of Decision Tree.

Figure 8. The performance of Decision Tree.

7. Discussion and Conclusions

In the current threat landscape, phishing constitutes a significant risk for web users. In this
paper, we propose and demonstrate our novel two-layered detection framework to detect phishing
domains. Based on our evaluation with a representative dataset, which contains real and active
phishing instances, we demonstrate that our detection system achieves detection scores that are
comparable with the state of the art. Nonetheless, our results suggest that organisations can sacrifice
3–5% in detection scores, such as F1, accuracy, and MCC, but utilise a system that is better suited for
production environments. This holds true, as our proposed framework places classification operations
that are resource-demanding in the second layer, thus achieving better system performance. It is worth
noting that the focus of this work was not to find and tune the optimum feature set for each detection
layer. Instead, we explored and proved the feasibility of using a multi-layered approach which would
avoid resource consumption with the aid of the Triage Module.

The literature has covered different strategies that threat actors use in the current landscape
to (a) masquerade as an existing benign site and (b) bypass detection (e.g., with poisoning attacks).
Past literature mostly relies on the use of the domain name as a feature, which can be easily manipulated
by the threat actors. While our detection system relies on the domain as a classification feature,
it provides additional tamper resistance by using a different set of features in the second layer that
cannot be easily manipulated by threat actors. Furthermore, our system avoids the use of URLs as
a classification feature, contrary to previous works as well as many content-based solutions. This is
to adhere to recent developments on the web where the fact that TLS/SSL has become ubiquitous,
even amongst phishing sites, can prevent the use of URL and content-based features. Our framework
collects the domain name from the Query Name in DNS packets, which currently remain unencrypted
despite the use of TLS/SSL.

A key component of our framework is the Triage Module, which is based on a set of decision
boundaries and has the objective of capturing the observations that are least confident in the initial
detection. The decision boundaries are a system parameter that must be set by the system owner
in a way that the non-confident predictions are reclassified, based on past incidents, following data

Sensors 2020, 20, 4540 15 of 18

modelling or based on the requirements of the infrastructure and the behaviour or profiles of the
users. While in our evaluation we have used static values for the decision boundaries, we consider that
these values would need to be regularly updated in a production environment. Even though this falls
outside the scope of this work, we consider that in a production environment, the decision boundaries
must be updated dynamically through an automated module or by the system owner following a
data-driven exercise to enable non-confident predictions from Layer 1, i.e., S1 falls within the defined
boundaries, to be captured by the Triage Module and sent to Layer 2.

It is worth noting that, as our results suggest, the decision boundaries must be wisely selected,
otherwise correctly classified observations (TP and TN) from Layer 1 risk being misclassified in Layer
2, which creates additional FP and FN. The best-case scenario of this selection would be the use of a
decision boundary that would send all or almost all FN and FP to Layer 2 while passing minimum or no
TP and TN. However, this best-case scenario could be unachievable within a production environment,
as it would assume that all the misclassifications are always identified and forwarded to the next layer.
We leave this study as future work.

We have implemented a prototype of the architecture to demonstrate how to effectively stream
data live for processing in a production environment enabling our multi-layered phishing detection
framework to operate. To the best of our knowledge, this is the first application of this technique in such
a domain which is in a production-ready state. By demonstrating the architecture in alignment with the
JDL model, the viability for adoption in an organisation expands, as the JDL process and modularity
encourages development in other layers of JDL, namely, Situation Refinement, Process Refinement,
and Mission Refinement.

For future work, we plan to include a sophisticated data fusion process as part of JDL level 2
(Situation Refinement). Furthermore, we plan to explore if a larger dataset would help us improve the
detection scores of our system.

Author Contributions: All authors have equally contributed to this research work and have equivalent shares to
all the chapters of this article. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hutchins, E.; Cloppert, M.; Amin, R. Intelligence-Driven Computer Network Defense Informed by Analysis
of Adversary Campaigns and Intrusion Kill Chains. Lead. Issues Inf. Warf. Secur. Res. 2011, 1, 80.

2. MITRE ATT&CK. Spearphishing Link; The MITRE Corporation, 2019. Available online: https://attack.mitre.
org/wiki/Technique/T1192 (accessed on 24 February 2020).

3. Singleton, C.; Carruthers, S. State of the Phish: IBM X-Force Reveals Current Phishing Attack Trends; IBM:
New York, NY, USA, 2020; Available online: https://securityintelligence.com/posts/state-of-the-phish-ibm-x-
force-reveals-current-phishing-attack-trends/ (accessed on 13 May 2020).

4. Virvilis, N.; Tsalis, N.; Mylonas, A.; Gritzalis, D. Mobile Devices: A Phisherźs Paradise. In Proceedings
of the 11th International Joint Conference on e-Business and Telecommunications, Vienna, Austria, August 2014;
Science and Technology Publications: Setubal, Portugal, 2014; Volume 4, pp. 79–87.

5. Virvilis, N.; Mylonas, A.; Tsalis, N.; Gritzalis, D. Security Busters: Web browser security vs. rogue sites.
Comput. Secur. 2015, 52, 90–105. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0167404815000590
(accessed on 12 August 2020). [CrossRef]

6. Aonzo, S.; Merlo, A.; Tavella, G.; Fratantonio, Y. Phishing Attacks on Modern Android. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security (CCS ’18), January 2018; Association for
Computing Machinery: New York, NY, USA, 2018; pp. 1788–1801.

7. World Health Organisation. WHO Reports Fivefold Increase in Cyber Attacks, Urges Vigilance; World Health
Organisation: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/detail/23-04-
2020-who-reports-fivefold-increase-in-cyber-attacks-urges-vigilance (accessed on 7 August 2020).

https://attack.mitre.org/wiki/Technique/T1192
https://attack.mitre.org/wiki/Technique/T1192
https://securityintelligence.com/posts/state-of-the-phish-ibm-x-force-reveals-current-phishing-attack-trends/
https://securityintelligence.com/posts/state-of-the-phish-ibm-x-force-reveals-current-phishing-attack-trends/
https://linkinghub.elsevier.com/retrieve/pii/S0167404815000590
http://dx.doi.org/10.1016/j.cose.2015.04.009
https://www.who.int/news-room/detail/23-04-2020-who-reports-fivefold-increase-in-cyber-attacks-urges-vigilance
https://www.who.int/news-room/detail/23-04-2020-who-reports-fivefold-increase-in-cyber-attacks-urges-vigilance

Sensors 2020, 20, 4540 16 of 18

8. Seals, T. WHO Targeted in Espionage Attempt, COVID-19 Cyberattacks Spike. Threatpost. 2020.
Available online: https://threatpost.com/who-attacked-possible-apt-covid-19-cyberattacks-double/154083/

(accessed on 14 May 2020).
9. Lanois, P. ICO proposes fines against British Airways and Marriott; Fieldfisher: London, UK, 2019;

Available online: https://www.fieldfisher.com/en/services/privacy-security-and-information/privacy-security-
and-information-law-blog/ico-proposes-fines-against-british-airways-and-marriott (accessed on 14 May 2020).

10. Webroot. Webroot Quarterly Threat Update: 84% of Phishing Sites Exist for Less Than 24 Hours; Webroot:
Broomfield, CO, USA, 2016; Available online: https://www.webroot.com/in/en/about/press-room/releases/
quarterly-threat-update-about-phishing (accessed on 10 May 2020).

11. Le Page, S.; Jourdan, G.-V.; Bochmann, G.V.; Flood, J.; Onut, I.-V. Using URL shorteners to compare phishing
and malware attacks. In 2018 APWG Symposium on Electronic Crime Research (eCrime), San Diego, CA, USA,
15–17 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–13. Available online: https://ieeexplore.ieee.org/document/
8376215/ (accessed on 26 April 2020).

12. Das, A.; Baki, S.; El Aassal, A.; Verma, R.; Dunbar, A. SoK: A Comprehensive Reexamination of Phishing
Research From the Security Perspective. IEEE Commun. Surv. Tutor. 2020, 22, 671–708. Available online:
https://ieeexplore.ieee.org/document/8924660/ (accessed on 12 August 2020). [CrossRef]

13. Tyagi, I.; Shad, J.; Sharma, S.; Gaur, S.; Kaur, G. “A Novel Machine Learning Approach to Detect Phishing
Websites,”. In Proceedings of the 5th International Conference on Signal Processing and Integrated Networks
(SPIN), Noida, India, 22–23 February 2018; pp. 425–430.

14. Jain, A.K.; Gupta, B.B. Phishing Detection: Analysis of Visual Similarity Based Approaches. Secur. Commun. Netw.
2017, 2017, 1–20. Available online: https://www.hindawi.com/journals/scn/2017/5421046/ (accessed on
12 August 2020). [CrossRef]

15. Yan, X.; Xu, Y.; Cui, B.; Zhang, S.; Guo, T.; Li, C. Learning URL Embedding for Malicious Website Detection.
IEEE Trans. Ind. Inform. 2020, 16, 6673–6681. Available online: https://ieeexplore.ieee.org/document/9022897/

(accessed on 12 August 2020). [CrossRef]
16. Jeeva, S.C.; Rajsingh, E.B. Intelligent phishing url detection using association rule mining. Hum. Cent. Comput.

Inf. Sci. 2016, 6, 10. Available online: http://hcis-journal.springeropen.com/articles/10.1186/s13673-016-0064-3
(accessed on 12 August 2020). [CrossRef]

17. Hara, M.; Yamada, A.; Miyake, Y. Visual similarity-based phishing detection without victim site information.
In 2009 IEEE Symposium on Computational Intelligence in Cyber Security, Nashville, TN, USA, 30 March-2 April 2009;
IEEE: Piscataway, NJ, USA, 2009; pp. 30–36. Available online: http://ieeexplore.ieee.org/document/4925087/

(accessed on 25 April 2020).
18. Bridges, R.A.; Glass-Vanderlan, T.R.; Iannacone, M.D.; Vincent, M.S.; Chen, Q. (Guenevere). A Survey of

Intrusion Detection Systems Leveraging Host Data. ACM Comput. Surv. 2020, 52, 1–35. [CrossRef]
19. Monzer, M.H.; Beydoun, K.; FLAUS, J.-M. Model based rules generation for Intrusion Detection System

for industrial systems. In 2019 International Conference on Control, Automation and Diagnosis (ICCAD);
IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. Available online: https://ieeexplore.ieee.org/document/9037882/

(accessed on 12 August 2020).
20. Casas, P.; Mazel, J.; Owezarski, P. Unsupervised Network Intrusion Detection Systems: Detecting the

Unknown without Knowledge. Comput. Commun. 2012, 35, 772–783. Available online: https://linkinghub.
elsevier.com/retrieve/pii/S0140366412000266 (accessed on 12 August 2020). [CrossRef]

21. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. A multi-step outlier-based anomaly detection approach to
network-wide traffic. Inf. Sci. 2016, 348, 243–271. Available online: https://linkinghub.elsevier.com/retrieve/

pii/S0020025516300779 (accessed on 12 August 2020). [CrossRef]
22. Salunkhe, U.R.; Mali, S.N. Security Enrichment in Intrusion Detection System Using Classifier Ensemble.

J. Electr. Comput. Eng. 2017, 2017, 1–6. Available online: https://www.hindawi.com/journals/jece/2017/1794849/

(accessed on 12 August 2020). [CrossRef]
23. Stergiopoulos, G.; Talavari, A.; Bitsikas, E.; Gritzalis, D. Automatic Detection of Various Malicious

Traffic Using Side Channel Features on TCP Packets. In Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2018; pp. 346–362. Available online: http://link.springer.com/10.1007/978-3-319-99073-6_17
(accessed on 12 August 2020).

https://threatpost.com/who-attacked-possible-apt-covid-19-cyberattacks-double/154083/
https://www.fieldfisher.com/en/services/privacy-security-and-information/privacy-security-and-information-law-blog/ico-proposes-fines-against-british-airways-and-marriott
https://www.fieldfisher.com/en/services/privacy-security-and-information/privacy-security-and-information-law-blog/ico-proposes-fines-against-british-airways-and-marriott
https://www.webroot.com/in/en/about/press-room/releases/quarterly-threat-update-about-phishing
https://www.webroot.com/in/en/about/press-room/releases/quarterly-threat-update-about-phishing
https://ieeexplore.ieee.org/document/8376215/
https://ieeexplore.ieee.org/document/8376215/
https://ieeexplore.ieee.org/document/8924660/
http://dx.doi.org/10.1109/COMST.2019.2957750
https://www.hindawi.com/journals/scn/2017/5421046/
http://dx.doi.org/10.1155/2017/5421046
https://ieeexplore.ieee.org/document/9022897/
http://dx.doi.org/10.1109/TII.2020.2977886
http://hcis-journal.springeropen.com/articles/10.1186/s13673-016-0064-3
http://dx.doi.org/10.1186/s13673-016-0064-3
http://ieeexplore.ieee.org/document/4925087/
http://dx.doi.org/10.1145/3344382
https://ieeexplore.ieee.org/document/9037882/
https://linkinghub.elsevier.com/retrieve/pii/S0140366412000266
https://linkinghub.elsevier.com/retrieve/pii/S0140366412000266
http://dx.doi.org/10.1016/j.comcom.2012.01.016
https://linkinghub.elsevier.com/retrieve/pii/S0020025516300779
https://linkinghub.elsevier.com/retrieve/pii/S0020025516300779
http://dx.doi.org/10.1016/j.ins.2016.02.023
https://www.hindawi.com/journals/jece/2017/1794849/
http://dx.doi.org/10.1155/2017/1794849
http://link.springer.com/10.1007/978-3-319-99073-6_17

Sensors 2020, 20, 4540 17 of 18

24. Aloqaily, M.; Otoum, S.; Al Ridhawi, I.; Jararweh, Y. An intrusion detection system for connected vehicles in
smart cities. Ad Hoc Netw. 2019, 90, 101842. Available online: https://linkinghub.elsevier.com/retrieve/pii/
S1570870519301131 (accessed on 12 August 2020). [CrossRef]

25. Du, M.; Chen, Z.; Liu, C.; Oak, R.; Song, D. Lifelong Anomaly Detection Through Unlearning. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019;
ACM: New York, NY, USA, 2019; pp. 1283–1297. [CrossRef]

26. Mudgerikar, A.; Sharma, P.; Bertino, E. E-Spion: A System-Level Intrusion Detection System for IoT Devices.
In Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, Auckland, New Zealand,
7–12 July 2019; ACM: New York, NY, USA, 2019; pp. 493–500. [CrossRef]

27. Sabeur, Z.; Zlatev, Z.; Melas, P.; Veres, G.; Arbab-Zavar, B.; Middleton, L.; Museux, N. Large Scale
Surveillance, Detection and Alerts Information Management System for Critical Infrastructure. In IFIP
Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2017; pp. 237–246.
Available online: http://link.springer.com/10.1007/978-3-319-89935-0_20 (accessed on 12 August 2020).

28. Giacobe, N.A. Application of the JDL data fusion process model for cyber security. Proceedings of SPIE—The
International Society for Optical Engineering, Orlando, FL, USA, 28 April 2010; Braun, J.J., Ed.; p. 77100R.
[CrossRef]

29. Li, Y.; Xiong, K.; Chin, T.; Hu, C. A Machine Learning Framework for Domain Generation Algorithm-Based
Malware Detection. IEEE Access 2019, 7, 32765–32782. Available online: https://ieeexplore.ieee.org/document/
8631171/ (accessed on 12 August 2020). [CrossRef]

30. Chu, W.; Zhu, B.B.; Xue, F.; Guan, X.; Cai, Z. Protect sensitive sites from phishing attacks using features
extractable from inaccessible phishing URLs. In 2013 IEEE International Conference on Communications (ICC);
IEEE: Piscataway, NJ, USA, 2013; pp. 1990–1994. Available online: http://ieeexplore.ieee.org/document/
6654816/ (accessed on 2 April 2020).

31. Sonowal, G.; Kuppusamy, K.S. PhiDMA—A phishing detection model with multi-filter approach. J. King
Saud Univ. Comput. Inf. Sci. 2020, 32, 99–112. Available online: https://linkinghub.elsevier.com/retrieve/pii/
S1319157817301210 (accessed on 12 August 2020). [CrossRef]

32. Bell, S.; Komisarczuk, P. An Analysis of Phishing Blacklists: Google Safe Browsing, OpenPhish, and PhishTank.
In Proceedings of the Australasian Computer Science Week Multiconference, February 2020; ACM:
New York, NY, USA, 2020; pp. 1–11. [CrossRef]

33. Tidy, J. Google blocking 18m coronavirus scam emails every day. BBC News. 2020. Available online:
https://www.bbc.co.uk/news/technology-52319093 (accessed on 23 May 2020).

34. Phishlabs. 2018 PHISHING TRENDS AND INTELLIGENCE REPORT; Phishlabs: Charleston, SC, USA, 2018.
35. Aburrous, M.; Hossain, M.A.; Dahal, K.; Thabtah, F. Intelligent phishing detection system for e-banking

using fuzzy data mining. Expert Syst. Appl. 2010, 37, 7913–7921. Available online: https://linkinghub.elsevier.
com/retrieve/pii/S0957417410003441 (accessed on 12 August 2020). [CrossRef]

36. Abdelhamid, N.; Ayesh, A.; Thabtah, F. Phishing detection based Associative Classification data mining.
Expert Syst. Appl. 2014, 41, 5948–5959. Available online: https://linkinghub.elsevier.com/retrieve/pii/
S0957417414001481 (accessed on 12 August 2020). [CrossRef]

37. Yi, P.; Guan, Y.; Zou, F.; Yao, Y.; Wang, W.; Zhu, T. Web Phishing Detection Using a Deep Learning Framework.
Wirel. Commun. Mob. Comput. 2018, 2018, 1–9. Available online: https://www.hindawi.com/journals/wcmc/

2018/4678746/ (accessed on 12 August 2020). [CrossRef]
38. Blum, A.; Wardman, B.; Solorio, T.; Warner, G. Lexical feature based phishing URL detection using online

learning. In Proceedings of the 3rd ACM Workshop on Artificial Intelligence and Security—AISec ’10,
Dallas, TX, USA, November 2017; ACM Press: New York, NY, USA, 2010; p. 54. Available online:
http://portal.acm.org/citation.cfm?doid=1866423.1866434 (accessed on 5 April 2020).

39. Aaron, G.; Rasmussen, R. Global Phishing Survey: Trends and Domain Name Use in 2016; APWG:
Lexington, MA, USA, 2017.

40. Sheridan, S.; Keane, A. Detection of DNS Based Covert Channels. J. Inf. Warf. 2015, 14, 100–114. Available online:
www.jstor.org/stable/26487509 (accessed on 12 August 2020).

41. Bilge, L.; Sen, S.; Balzarotti, D.; Kirda, E.; Kruegel, C. Exposure: A Passive DNS Analysis Service to Detect
and Report Malicious Domains. ACM Trans. Inf. Syst. Secur. 2014, 16, 1–28. [CrossRef]

42. Zhauniarovich, Y.; Khalil, I.; Yu, T.; Dacier, M. A Survey on Malicious Domains Detection through DNS Data
Analysis. ACM Comput. Surv. 2018, 51, 1–36. [CrossRef]

https://linkinghub.elsevier.com/retrieve/pii/S1570870519301131
https://linkinghub.elsevier.com/retrieve/pii/S1570870519301131
http://dx.doi.org/10.1016/j.adhoc.2019.02.001
http://dx.doi.org/10.1145/3319535.3363226
http://dx.doi.org/10.1145/3321705.3329857
http://link.springer.com/10.1007/978-3-319-89935-0_20
http://dx.doi.org/10.1117/12.850275
https://ieeexplore.ieee.org/document/8631171/
https://ieeexplore.ieee.org/document/8631171/
http://dx.doi.org/10.1109/ACCESS.2019.2891588
http://ieeexplore.ieee.org/document/6654816/
http://ieeexplore.ieee.org/document/6654816/
https://linkinghub.elsevier.com/retrieve/pii/S1319157817301210
https://linkinghub.elsevier.com/retrieve/pii/S1319157817301210
http://dx.doi.org/10.1016/j.jksuci.2017.07.005
http://dx.doi.org/10.1145/3373017.3373020
https://www.bbc.co.uk/news/technology-52319093
https://linkinghub.elsevier.com/retrieve/pii/S0957417410003441
https://linkinghub.elsevier.com/retrieve/pii/S0957417410003441
http://dx.doi.org/10.1016/j.eswa.2010.04.044
https://linkinghub.elsevier.com/retrieve/pii/S0957417414001481
https://linkinghub.elsevier.com/retrieve/pii/S0957417414001481
http://dx.doi.org/10.1016/j.eswa.2014.03.019
https://www.hindawi.com/journals/wcmc/2018/4678746/
https://www.hindawi.com/journals/wcmc/2018/4678746/
http://dx.doi.org/10.1155/2018/4678746
http://portal.acm.org/citation.cfm?doid=1866423.1866434
www.jstor.org/stable/26487509
http://dx.doi.org/10.1145/2584679
http://dx.doi.org/10.1145/3191329

Sensors 2020, 20, 4540 18 of 18

43. Smadi, S.; Aslam, N.; Zhang, L. Detection of online phishing email using dynamic evolving neural
network based on reinforcement learning. Decis. Support Syst. 2018, 107, 88–102. Available online:
https://linkinghub.elsevier.com/retrieve/pii/S0167923618300010 (accessed on 12 August 2020). [CrossRef]

44. Islam, R.; Abawajy, J. A multi-tier phishing detection and filtering approach. J. Netw. Comput. Appl. 2013,
36, 324–335. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1084804512001397 (accessed on
12 August 2020). [CrossRef]

45. Sharma, J.; Giri, C.; Granmo, O.; Goodwin, M. Multi-layer intrusion detection system with ExtraTrees feature
selection, extreme learning machine ensemble, and softmax aggregation. EURASIP J. Info. Secur. 2019, 2019, 15.
[CrossRef]

46. Chowdhury, M.U.; Abawajy, J.H.; Kelarev, A.V.; Hochin, T. Multilayer hybrid strategy for phishing email
zero-day filtering. Concurr. Comput. Pract. Exp. 2017, 29, e3929. [CrossRef]

47. Nasr, M.; Shokri, R.; Houmansadr, A. Machine Learning with Membership Privacy using Adversarial
Regularization. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, ON, Canada, 15–19 October 2018; ACM: New York, NY, USA, 2018; pp. 634–646. [CrossRef]

48. Song, L.; Shokri, R.; Mittal, P. Privacy Risks of Securing Machine Learning Models against Adversarial
Examples. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
11–15 November 2019; ACM: New York, NY, USA, 2019; pp. 241–257. [CrossRef]

49. Nisioti, A.; Mylonas, A.; Yoo, P.D.; Katos, V. From Intrusion Detection to Attacker Attribution:
A Comprehensive Survey of Unsupervised Methods. IEEE Commun. Surv. Tutor. 2018, 20, 3369–3388.
Available online: https://ieeexplore.ieee.org/document/8410366/ (accessed on 12 August 2020). [CrossRef]

50. Chiew, K.L.; Choo, J.S.-F.; Sze, S.N.; Yong, K.S.C. Leverage Website Favicon to Detect Phishing Websites. Secur.
Commun. Netw. 2018, 2018, 1–11. Available online: https://www.hindawi.com/journals/scn/2018/7251750/

(accessed on 12 August 2020). [CrossRef]
51. Tupsamudre, H.; Singh, A.K.; Lodha, S. Everything Is in the Name—A URL Based Approach for Phishing

Detection. In Cyber Security Cryptography and Machine Learning; Springer: Cham, Switzerland, 2019; pp. 231–248.
Available online: http://link.springer.com/10.1007/978-3-030-20951-3_21 (accessed on 12 August 2020).

52. Thakur, T.; Verma, R. Catching Classical and Hijack-Based Phishing Attacks. In Information Systems Security;
Springer: Cham, Switzerland, 2014; pp. 318–337. Available online: http://link.springer.com/10.1007/978-3-
319-13841-1_18 (accessed on 12 August 2020).

53. NCSC; CISA. Advisory: COVID-19 Exploited by Malicious Cyber Actors; NCSC: London, UK, 2020. Available
online: https://www.ncsc.gov.uk/files/Joint%20Advisory%20COVID-19%20exploited%20by%20malicious%
20cyber%20actors%20V1.pdf (accessed on 12 August 2020).

54. Chiew, K.L.; Tan, C.L.; Wong, K.; Yong, K.S.C.; Tiong, W.K. A new hybrid ensemble feature selection
framework for machine learning-based phishing detection system. Inf. Sci. 2019, 484, 153–166. [CrossRef]

55. Sahingoz, O.K.; Buber, E.; Demir, O.; Diri, B. Machine learning based phishing detection from URLs.
Expert Syst. Appl. 2019, 117, 345–357. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://linkinghub.elsevier.com/retrieve/pii/S0167923618300010
http://dx.doi.org/10.1016/j.dss.2018.01.001
https://linkinghub.elsevier.com/retrieve/pii/S1084804512001397
http://dx.doi.org/10.1016/j.jnca.2012.05.009
http://dx.doi.org/10.1186/s13635-019-0098-y
http://dx.doi.org/10.1002/cpe.3929
http://dx.doi.org/10.1145/3243734.3243855
http://dx.doi.org/10.1145/3319535.3354211
https://ieeexplore.ieee.org/document/8410366/
http://dx.doi.org/10.1109/COMST.2018.2854724
https://www.hindawi.com/journals/scn/2018/7251750/
http://dx.doi.org/10.1155/2018/7251750
http://link.springer.com/10.1007/978-3-030-20951-3_21
http://link.springer.com/10.1007/978-3-319-13841-1_18
http://link.springer.com/10.1007/978-3-319-13841-1_18
https://www.ncsc.gov.uk/files/Joint%20Advisory%20COVID-19%20exploited%20by%20malicious%20cyber%20actors%20V1.pdf
https://www.ncsc.gov.uk/files/Joint%20Advisory%20COVID-19%20exploited%20by%20malicious%20cyber%20actors%20V1.pdf
http://dx.doi.org/10.1016/j.ins.2019.01.064
http://dx.doi.org/10.1016/j.eswa.2018.09.029
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Detection Methods
	JDL Model

	Related Work
	Two-Layered Phishing Detection Framework
	Approach
	Feature Selection

	Implementation
	Evaluation
	Data Collection
	Results

	Discussion and Conclusions
	References

