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ABSTRACT: Practical applications of lithium-sulfur batteries are simultaneously hindered by 

two serious problems occurring separately in both electrodes, namely, the shuttle effects of 

lithium polysulfides and the uncontrollable growth of lithium dendrites. Herein, to explore a 

facile integrated approach to tackle both problems as well as guarantee the efficient charge 

transfer, we used two-dimension hexagonal VS2 flakes as the building blocks to assemble 

nanotowers on the separators, forming symmetrical double-side-modified polypropylene 

separator without blocking the membrane pores. Benefiting from the “sulfiphilic” and 

“lithiophilic” properties, high interfacial electronic conductivity and unique hexagonal tower-

form nanostructure, the D-HVS@PP separator not only guarantee the effective suppression of 

lithium polysulfide shuttle and the rapid ion/electron transfer, but also realize the uniform and 

stable lithium nucleation and growth during cycling. Hence, just at the expense of an 11% 

increase in the separator weight (0.14 mg cm-2), D-HVS@PP separator delivers an over 16 times 

higher initial areal capacity (8.3 mAh cm-2) than conventional PP separator (0.5 mAh cm-2) under 

high sulfur-loading condition (9.24 mg cm−2). Even when used under a low electrolyte/sulfur 

ratio of 4 mL g-1 and a practically relevant N/P ratio of 1.7, D-HVS@PP separator still enabled 

stable cycling with a high cell-level gravimetric energy density. The potentials in broader 

applications (Li-S pouch battery and Li-LiFePO4 battery) and the promising commercial 

prospect (large-scale production and recyclability) of the developed separator are also 

demonstrated.

KEYWORDS: lithium-sulfur batteries, amphiphilic, separator, lithium dendrites, recyclable, 

shuttle effect
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The rapid development of portable electronic devices, electric vehicles and smart grids 

has evoked the ever-increasing demand for high-energy-density energy storage systems 

with sustainable electrochemical performances.1-3 Lithium-sulfur (Li-S) batteries are 

regarded as a potential alternative to current state-of-the-art Li-ion batteries owing to their 

high theoretical capacity (1675 mAh g−1 of sulfur) and energy density (2600 Wh kg−1), 

low cost and environmental friendliness.4-6 Despite such a bright perspective, the practical 

implementation of Li-S batteries is still facing some tough challenges. In terms of the 

sulfur cathode, the severe “shuttling effect” of the dissolved intermediate lithium 

polysulfides (Li2Sx) gives rise to low active sulfur utilization, low coulombic efficiency 

and rapid capacity decay;7-9 For the lithium anode, the uncontrollable growth of lithium 

“dendrites” on the surface of lithium metal induces a series of adverse effects, such as the 

evolution of “dead” lithium, unstable solid electrolyte interphase (SEI), increased 

polarization and even explosion hazards.10, 11 Due to the disparate reaction mechanism 

and different physicochemical characteristics of the sulfur cathode and the lithium anode, 

synchronously suppressing the shuttle effect and the dendrite growth during long-term 

cycling has become a formidable technical challenge for the practical application of Li-S 

batteries. 

To date, several approaches have been developed to address these issues, including 

designing cathode host materials,12, 13 inserting interlayer,14 substituting binders15 and 

modifying the separator or the lithium anode.16-19 The majority of these technical 

strategies only focus on one part of the cell. Adopting an integrated approach that can 

simultaneously solve the lithium dendrites and Li2Sx shuttle effect maybe the way 

forward to make Li-S batteries achieve the commercial realization. Separators, as the 
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essential medium directly contacting and interacting with both the anode and the cathode, 

play a vital role in the battery system.20-23 Functionalizing both sides of commercially 

available separators is considered to be a facile/effective strategy in controlling the 

interfacial reactions of both the multielectron conversion of sulfur/polysulfide and the 

lithium deposition/dissolution, further boosting the overall battery performance.24-26 For 

this purpose, some asymmetric separator structures have been developed recently to 

satisfy the distinct requirements of both the cathode and the anode sides.20, 27, 28 However, 

the majority of these separators has shown difficulties to maintain the inherent pore 

structures of the separator itself during the charging/discharging process, representing a 

constraint for the high-flux Li+ diffusion.20, 29 In addition, the complicated design of the 

asymmetrical separator inevitably increases the difficulty for the separator 

commercialization. Based on the above analysis, it would be appealing to rationally select 

and design a multifunctional material using for separator modification, which could 

simultaneously meet distinct demands of the anode and cathode in Li-S batteries as well 

as guarantee the smooth ion diffusion.

Vanadium disulfide (VS2) is one of the transition-metal dichalcogenides (TMDs) that 

has attracted increasing interests in the fields of electrochemical energy storage in recent 

years because of its unique chemical/physical characteristics, intrinsic metallic behavior 

and two-dimensional (2D) layered structure.30-32 Cui et al.30 have reported that 

commercial VS2 could exhibit higher capacity and better cycling stability compared with 

other TMDs materials (TiS2, CoS2, Ni3S2, SnS2 and FeS) and graphite when used as the 

cathode host material in Li-S batteries. They attributed the performance enhancement to 

the high conductivity, strong interaction with Li2Sx, easy Li-ion transport and excellent 
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catalyzing reduction/oxidation capability of VS2. All these superiorities signify that VS2 

deserves specific attention as a promising functional material not only for the cathode but 

also as a modifier for the separator, an area which hardly been investigated in the 

literature. Furthermore, the performance of VS2 at the anode side, particularly the 

interaction at the anode/separator interfaces remain unexplored, despite the clear physical 

advantageous. Also, coating VS2 on the separators is a more simple and low-cost binder-

free modification strategy than coating the lithium metal surface. The facile coating 

process on the polymer separator would facilitate the practical application and 

commercial production of Li-S batteries.33, 34

Herein, a recyclable VS2 hexagonal nanotowers (HVS) double-side-modified 

commercial polypropylene (PP) separator (D-HVS@PP separator) was fabricated via a 

single-step hydrothermal method and subsequent vacuum filtration (Figure S1). The 

fabricated D-HVS@PP separator kept both the “sulfiphilic” and “lithiophilic” features, 

which can simultaneously trap Li2Sx and suppress lithium dendrites. In addition, due to 

the hexagonal tower-form nanostructure of the HVS, the D-HVS@PP separator also 

exhibited a high-flux lithium-ion diffusion with improved mechanical strength. As a 

result, the elaborate separator delivered high charge/discharge capacity and stable cycling 

performance in Li-S batteries, even under high sulfur loading/lean-electrolyte conditions 

with the controlled N/P ratio and when used in the pouch Li-S and lithium metal battery 

systems.

RESULTS AND DISCUSSION
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Figure 1. Working mechanism and theory simulation. Schematic illustrations of the 

working principle of the Li-S battery with (a) PP and (b) D-HVS@PP separator. (c) Density 

functional theory (DFT) calculation of the absorption energies of Li2S4, Li2S6, Li2S8 and Li on 

VS2 (011) facet (Vienna Ab-initio Simulation Package (VASP)).

As illustrated in Figure 1, the commonly employed PP separator in conventional Li-S 

batteries guarantees the primary functions for the efficient migration of lithium ions and 

the isolation of the counter electrodes. However, it can hardly restrain the polysulfide 

shuttle, and Li dendrites growth (Figure 1a).16, 24 In the current work, an “amphiphilic” 

HVS material was introduced onto both sides of the PP separator, simultaneously 

realizing the distinct functionalities for the anode and cathode (Figure 1b). In the sulfur 

cathode side, the HVS can effectively prevent the shuttled Li2Sx from passing through the 
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separator due to the strong chemical interactions. The designed layer-by-layer stacked 

nanostructure of the HVS also creates the abundant channels and spaces for high-flux ion 

diffusion/flow and provides enough exposed active sites for polysulfide adsorption. In 

addition, the intrinsic metallic nature of the HVS can further reduce the interfacial 

resistance between the electrode and the separator, enabling low polarization and fast 

sulfur conversion kinetics35. In the lithium anode side, the strong lithiophilic ability and 

high electronic conductivity of the HVS can induce ions/electrons to 

uniformly distribute at anode/separator interfaces, avoiding the formation of lithium 

dendrites caused by the local charge concentration.36-38 At the same time, the stable 

hexagonal tower-shaped architecture of the HVS is also beneficial to buffer the large 

volume change of lithium metal under deep cycling and serves as a physical shield to 

resist the lithium dendrites growth.18, 39 Hence, the D-HVS@PP separator can boost an 

obvious enhancement in battery performance, and the detailed reasons have been 

analyzed and discussed in the following sections.

The growth process and structural characterizations of the HVS were investigated in 

Figure S2-6. Firstly, the scanning electron microscopy (SEM) images at various stages of 

the hydrothermal process are displayed in Figure S2, where the possible formation 

mechanism of the VS2 hexagonal nanotowers is also schematically illustrated. PVP, as a 

surfactant, is playing a crucial role with dual functions of the hexagonal tower-shaped 

nanostructure.40 First, it serves as a linking agent to bridge adjacent VS2 nanoflakes 

together, leading to the self-assembly of the nanoflake subunits along the c-axis. Second, 

it plays a vital role on controlling the size and morphology of each VS2 nanoflake along 

the ab-plane, leading to the formation of a perfect hexagonal nanostructure instead of the 
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conventional VS2 microflowers (MVS).32, 41, 42 The high-resolution transmission electron 

microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy 

(XPS) analysis in Figure S3-5, showed that both HVS and MVS samples possessed the 

same crystalline phase (JCPDS No. 89-1640), valence state and chemical composition, 

belonging to the typical VS2 structure. However, the higher intensity of the XRD peaks 

and the perfect interlayer structure appears in the HRTEM images suggests that HVS is of 

longer crystalline order. The HVS exhibited a Brunauer-Emmett-Teller (BET) surface 

area of 31.4 m2 g-1, which is over 5 times higher than the MVS (5.8 m2 g-1), since the 

multi-layered tower-like nanostructure was conducive to the exposure of more 

micro/mesopores (10~70 Å) (Figure S6). The higher surface area allows the separator to 

store more electrolyte and contribute more active sites, facilitating high-flux lithium-ion 

diffusion and efficient interfacial reactions.43, 44

In addition, to evaluate the amphiphilic functional property of the HVS separator, the 

absorption energies of VS2 (011) main facet towards the soluble Li2Sx and metallic 

lithium were calculated by density functional theory (DFT) simulations. As shown in 

Figure 1c, the binding energies between VS2 (011) facet and Li2S4, Li2S6 and Li2S8 were -

1.36, -1.67 and -1.60 eV, respectively, much higher than that between graphene and Li2S4 

(-0.56 eV) (Figure S7). This confirmed that VS2 possesses strong absorption ability for 

Li2Sx, especially longer-chained Li2S6 and Li2S8. Long-chained Li2Sx are easier to 

dissolve and shuttle in the electrolyte and result in the rapid capacity decay of Li-S 

batteries.7 Notably, VS2 also showed high chemical affinity (-2.39 eV) for metallic 

lithium because of the strong interaction between Li and S atoms. This “sulfiphilic” and 
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“lithiophilic” property emphasizes the potential ability of VS2 to trap Li2Sx and suppress 

lithium dendrites simultaneously. 

Figure 2. Functional description of different VS2 modified separators on sulfur 

cathode side. Functional illustrations of the (a) MVS@PP, (b) NVS@PP and (c) 

HVS@PP separators on sulfur cathode side. (d) Transmission electron microscopy (TEM) 

images and element distribution of the VS2 hexagonal nanotowers. SEM images of (e) 

MVS@PP, (f) NVS@PP and (g) HVS@PP separators. Particle size distributions and contact 

angle images (inset) for (h) MVS@PP, (i) NVS@PP and (j) HVS@PP separators, Li-S 

electrolyte as a test liquid was used in contact angle tests. (k) Diffusion tests of Li2S6 with PP, 

MVS@PP, NVS@PP and HVS@PP separators.

Before verifying the performance of the double-sided treated separator (D-HVS@PP) 

for the sulfur cathode or the lithium anode, a single-sided HVS@PP separator was first 

Page 9 of 39

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

tested to investigate the reactions at one electrode and eliminate the possible influence 

from counter electrode. Firstly, three different VS2 modified separators (MVS@PP, VS2 

nano-bulks (NVS)@PP and HVS@PP separators) were compared. As shown in Figure 

2a, e and h, the MVS@PP separator is beneficial to achieve high-flux lithium-ion 

diffusion, due to the high electrolyte affinity of VS2 itself and the large particle sizes 

(diameter 2000~5000 nm) of the MVS structure. As a result, the MVS@PP separator 

exhibited a much smaller contact angle (15.7°) compared with the pure PP separator 

(37.0°) (Figure S8a). However, the MVS@PP separator can hardly resist the Li2Sx 

diffusion because of the large microporous gaps among particles and low surface area of 

MVS (Figure 2k). Also, the flower-shaped structure and the large particle sizes reduce 

the contact area between MVS and the PP substrate, leading to the uneven distribution 

and weak adhesive strength between the components of the MVS@PP (Figure S8b). The 

second tested separator was NVS@PP (Figure 2b, f, i and k and Figure S9), in which 

NVS were obtained by directly sonicating the HVS. The NVS particles were less than 

500 nm in diameter, which means it could be densely loaded onto the PP separator and 

effectively suppress Li2Sx shuttle. However, NVS particles formed a blocking layer on the 

PP substrate that significantly lowers the electrolyte wettability and hinders the lithium-

ion diffusion/flow. For HVS@PP separators, it can be seen that most of the nanotowers 

are aligned vertically on the separator with the hexagonal layers parallel to the surface 

(Figure 2g and Figure S10), which may be due to the more stable hexagonal 2D planes 

and larger plane/height ratio of the as-prepared VS2 nanotowers.45, 46 Due to the moderate 

particle sizes (400~1200 nm), well-designed hexagonal tower-like structure and the high 

surface area of the HVS, HVS@PP separators (Figure 2c, d, g and j) are able to guarantee 
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the adequate contact area and strong electrostatic interaction for HVS to be tightly linked 

to the separator (Figure S8b-d).45, 47 HVS also provided abundant tiny channels on the 

separator surface for both lithium-ion diffusion/flow and Li2Sx suppression (Figure 2k). 

Figure 3. Electrochemical performance towards sulfur cathode side. (a) Lithium-ion 

transference numbers for the PP, MVS@PP, NVS@PP and HVS@PP separators tested 

by Li || Li symmetric cells. (b) CV plots of the HVS@PP separator at various scan rates within a 

potential window of 1.7 V-2.8 V (vs. Li/Li+).  (c) Values of CV peak current (Ip)/square root of 

the scan rates (ν0.5) for the four different separators in the first (peak A: S8→Li2Sx) and second 

(peak B: Li2Sx→Li2S2/Li2S) cathodic reduction processes and the anodic oxidation process (peak 

C: Li2S2/Li2S→S8). (d) EIS curves tested at open-circuit voltage for the four different separators, 
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inset: equivalent circuit model. (e) Electrical conductivities for the MVS@PP, NVS@PP and 

HVS@PP separators. (f) Long-term cycling performance of the four different separators at 0.2 C 

for 300 cycles. (g) Rate performance of the four different separators from 0.1 C to 2 C.

To evaluate the electrochemical performance of various separators towards the sulfur 

cathode, a series of characterizations were further carried out in a coin-type configuration 

(Figure 3). Firstly, the lithium-ion transference numbers (tLi
+), defined as the ratio of 

steady-state current to initial current, of various separators were calculated at a potential 

of 10 mV.46 The tLi
+ represents the ratio of the total charge carried by lithium ions to that 

carried by both the lithium ions and the anions in the electrolyte, thus reflecting the 

lithium-ion transport property of various separators.48, 49 The tLi
+ value of the MVS@PP 

(0.71) and HVS@PP separators (0.69) are comparable to that of the pure PP separator 

(0.73). NVS@PP, on the other hand, has the lowest lithium-ion transference numbers 

(0.53). The low tLi
+ value suggesting the dense NVS functional layer covering on the 

separator surfaces produced a stronger binding for lithium ions, which is unfavorable to 

lithium-ion transport and conductivity.46, 49 This is also consistent with the results and 

previous analysis in Figure 2.

Next, cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) were 

collected to investigate the lithium-ion transfer rates across various separators. Since fast 

lithium-ion diffusion facilitates the sulfur conversion kinetics in Li-S battery system, the 

effective lithium-ion diffusion rates of different VS2 separators can be acquired by 

investigating the CV curves at various scan rates. For the CV plots of all the separators 

(Figure 3b and Figure S11), there are two reduction peaks and one oxidation peaks. The 

first peak (peak A: ~2.3 V) and the second peak (peak B: ~2.0 V) in the cathodic scan 

Page 12 of 39

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

javascript:;


13

represent the reduction of sulfur to soluble Li2Sx (S8→Li2Sx) and the formation of solid 

lithium sulfides (Li2Sx→Li2S2/Li2S). The anodic oxidation peak (peak C: ~2.4 V) 

corresponds to the reversible transition from lithium sulfides to sulfur (Li2S2/Li2S→S8). 

According to the Randles-Sevcik equation,30, 50 the peak current (Ip) has a linear relation 

with the square root of the scan rate (ν0.5) for all separators (Figure S12). The lithium-ion 

diffusion rate (DLi
+) can be calculated by the slope of the fitted line (Ip/ν0.5). As can be 

concluded from Figure 3c and Table S1, the VS2 modified separators at different peaks 

showed enhanced lithium-ion diffusion rates compared with the pure PP separator. The 

existed VS2 at the cathode/separator interfaces accelerates the redox process of insulated 

lithium sulfides and prevents them from depositing in the voids of the separators, 

ensuring facile lithium-ion diffusion. Benefiting from the high electrolyte affinity and the 

abundance of active sites, the HVS@PP separator exhibited the fastest lithium-ion 

diffusion rates among all the VS2 modified separators. Notably, the NVS@PP separator 

displayed the fastest lithium-ion diffusion at peak A, suggesting the efficient reduction 

from sulfur to Li2Sx. Nevertheless, it could hardly provide enough sites for the reversible 

conversion of lithium sulfides because of the dense NVS layer, consequently leading to 

lower lithium-ion diffusion rate at peaks B and C. The EIS curves of the various 

separators at open-circuit voltage were further displayed in Figure 3d, where all the 

Nyquist plots were composed by a high-frequency semicircle and a low-frequency sloped 

line, attributing to the charge transfer resistance (Rct) and mass-diffusion process, 

respectively.44, 51 Based on the fitted equivalent electrical circuit model, the calculated 

impedance data are summarized in Table S2. The Rct value of the HVS@PP separator 

(45.8 Ω) was lower than that of the PP (71.7 Ω), MVS@PP (56.3 Ω) and NVS@PP (87.2 
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Ω) separators. This result verified the faster faradic reaction kinetics and smoother charge 

transfer of the HVS@PP separator, consistent with the above analysis.44, 52 

Beside the lithium-ion transference, the conductivity is another vital factor to affect 

battery performance.53, 54 The NVS@PP (2.24 S cm-1) and HVS@PP (2.60 S cm-1) 

separators exhibited an almost tenfold higher surface conductivity compared with the 

MVS@PP separator (0.26 S cm-1) (Figure 3e), as the microscale flower-shaped structure 

of MVS could not uniformly distribute on the PP separator surfaces to ensure continuous 

electron transfer (Figure S8b). It has been proved that a higher surface conductivity of a 

separator can lower the cathode/separator interfacial resistance, facilitating low 

polarization (Figure S13) and fast sulfur conversion during charge/discharge processes.35, 

54 

Following the above-detailed analyses on structure and function, the practical cycling 

performance of various VS2 modified separators in Li-S batteries was investigated, and 

the results are shown in Figure 3f. Due to both the fast ion/electron diffusion and effective 

Li2Sx suppression, the HVS@PP separator delivered the highest initial discharge capacity 

of 1156 mAh g-1 at 0.2 C (1 C=1675 mAh g-1 in Li-S battery). The discharge capacity was 

maintained at 908 mAh g-1 with stabilized Coulombic efficiency (~99 %) and slow 

capacity attenuation (0.072 % per cycle) after 300 cycles. The NVS@PP separator, on the 

other hand, exhibited the lowest initial discharge capacity of 665 mAh g-1 with a 

gradual capacity rising in the first 40 cycles derived from the electrochemical 

activation,20, 55, 56 due to the dense NVS layer that hindered the lithium-ion diffusion/flow. 

However, the discharge capacity of the NVS@PP separator was retained at 697 mAh g-1 

after 300 cycles, higher than that of the MVS@PP (463 mAh g-1) and PP (338 mAh g-1) 
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separators, proving that suppressing Li2Sx shuttle is more crucial to maintain the stable 

cycle capacity in Li-S batteries. In addition, the HVS@PP separator also yielded the best 

rate performance among all separators (Figure 3g). When the current density was 

increased to 2 C, the HVS@PP separator still delivered a high discharge capacity of 630 

mAh g−1, reaffirming the low polarization and the fast reaction kinetics of the HVS@PP 

separator due to the improved ion/electron transferability at the cathode/separator 

interface.

A series of post-mortem analyses were further conducted better to evaluate the practical 

cycling stability of the HVS@PP separator. As shown in Figure S14, the HVS@PP 

separator still maintained the hexagonal tower-form structure after 300 cycles, proving its 

high stability in coping with the repeated charging and discharging. EIS plots for the 

HVS@PP separator after various cycles are also presented in Figure S15, with the 

corresponding impedance data listed in Table S2. The Rct value of the HVS@PP separator 

decreased from 45.8 Ω (fresh cell) to 13.5 Ω (after 50 cycles), and 6.3 Ω (after 300 

cycles), suggesting a gradually enhanced charge conductivity with the increased number 

of cycles, which is beneficial to the sulfur redox reaction kinetics in LSBs.7, 57 The 

HVS@PP separator also displayed lower Rct values than PP separator after 300 cycles, 

confirming the superiority of the HVS layer for the fast charge transfer during cycling. 

Finally, the sulfur content deposited on the lithium metal anodes for the various 

separators after 300 cycles were quantitatively assessed by inductive coupled plasma-

atomic emission spectrometry (ICP-AES) (Figure S16). The lithium metal anode 

assembled with the HVS@PP separator displayed the lowest sulfur content (5.1 ppm) 

compared with pure PP, MVS@PP and NVS@PP separators (16.7, 13.4 and 6.7 ppm). 
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This excellent Li2Sx suppression ability of the HVS@PP separator once again supports its 

stable cycling performance shown in Figure 3f. 

Figure 4. Schematics of lithium growth with different separators on lithium anode 

side. Functional illustrations of the (a) PP and (b) HVS@PP separators on lithium anode 

side. (c) Puncture strength tests of the PP and HVS@PP separators, inset: the PP and HVS@PP 

separators were fixed on a sample holder with a gap width of 8 mm for mechanical puncture tests. 

Finite element method (FEM) using COMSOL Multiphysics for the simulation of the electric 

field distribution at different growth periods of (d and e) the lithium dendrites and (f and g) the 

lithium dendrites covered with the HVS layer. SEM images of the lithium metal anodes with (h) 

PP and (i) D-HVS@PP separators after stripping/plating for 100 cycles.

Motivated by the excellent performance of the HVS grown on PP (HVS@PP), we then 

investigated the performance of the double-sided HVS@PP separator for lithium metal 

anode using various simulation and electrochemical spectroscopic techniques (Figure 4). 

For clarity, the mechanisms of lithium growth for the three different separators are 
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illustrated schematically. For pure PP separator (Figure 4a), it can hardly cope with both 

the lithium dendrite growth and the volumetric change of bare lithium metal during 

repeated stripping/plating cycles. Because of the unevenly distributed charges, lithium 

ions also tend to aggregate near the dendrites and further accelerate the dendrite growth, 

leading to a severe consumption of electrolyte and the fragmentation of solid electrolyte 

interphase (SEI) layer.11, 58 In contrast, the homogeneous lithium nucleation and growth 

can be achieved when an HVS layer modifies the surface of the PP separator facing the 

lithium metal anode for the following reasons (Figure 4b): (a) “Lithiophilic” feature of 

the HVS (Figure 1c) provides a high chemical affinity with lithium, which can effectively 

alleviate the dendrite spread and prevent the formation of “dead lithium” during 

cycling.36, 59 (b) The stable hexagonal multi-layered nanostructure of the HVS not only 

accommodate Li deposition and buffers volume expansion of lithium metal during 

cycling but also improves the puncture resistance of the PP separator to physically resist 

the lithium dendrite growth (Figure 4c).18, 24, 39 (c) The improved interfacial conductivity 

between the separator and the lithium anode ensures homogeneous electric field 

distribution and decreases the current density, thus conducive to the homogeneous 

nucleation and the suppression of lithium dendrites growth.38, 60 

To shed more light on the lithiation process, the COMSOL Multiphysics technique was 

adopted to simulate the electric field distribution at different growth periods of the lithium 

dendrites with or without an HVS covering layer (Figure 4d-g and Figure S17). 59, 61 For 

the bare lithium metal anode, the electric field intensity around the dendrites dramatically 

increases (visible in red) with the extremely uneven electric field distribution. This 

demonstrates that lithium ions are more likely to be focused at the formed dendrites due 
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to the tip effect, further leading to the continuous growth of lithium dendrites. 

Nevertheless, when the lithium dendrites are covered with the conductive HVS layer, the 

gathered electric fields around the dendrites are dispersed by the multi-layered HVS 

structure to form a more uniform distribution on the surface of lithium anode. Hence, the 

tip effect or hotspot around the lithium dendrites is eliminated. 

The lithium metal anodes for different separators were further studied after 100 cycles 

using SEM (Figure 4h and i) and atomic force microscopy (AFM) (Figure S18), to 

evaluate the practical suppression effect of the D-HVS@PP separator on the lithium 

dendrites growth. The lithium anode exhibited a quite rough surface with plenty of 

needle-shaped dendrites when PP separator was used. Conversely, the D-HVS@PP 

separator maintained a smooth lithium anode surface. The results further confirm the 

effectiveness of the D-HVS@PP separator in suppressing the dendrite growth as analyzed 

previously. 
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Figure 5. Electrochemical performance towards lithium anode side. (a) The voltage 

profiles in Li || Li symmetric cells with PP and D-HVS@PP separators at 1 mA cm-2 with 

a stripping/plating capacity of 1 mAh cm-2. (b) Rate performance of the symmetric cells with 

PP and D-HVS@PP separators at a stripping/plating capacity of 0.5 mAh cm-2. The voltage 

profiles in Li || Li symmetric cells with D-HVS@PP separator: (c) at 0.5 mA cm-2 with a 

stripping/plating capacity of 5 mAh cm-2 and (d) at 5 mA cm-2 with a stripping/plating capacity 

of 0.5 mAh cm-2.

Galvanostatic cycling performances of Li || Li symmetric cells with the PP and D-

HVS@PP separators were investigated to evaluate the stability of lithium 
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stripping/plating with different separators (Figure 5). Based on the voltage profiles in 

Figure 5a, the pure PP separator exhibited an initial overpotential of 89 mV, twice higher 

than the D-HVS@PP separator (41 mV). In addition, the polarization for the pure PP 

separator showed a sharp increase to nearly 1000 mV after 50 h, which might be 

attributed to the excessive formation of ‘dead’ lithium on the surface of lithium metal 

resulting in the fragmentation of SEI layer and unstable Li/electrolyte interface 

accompanying with poor electrical connection.25, 36 In contrast, the D-HVS@PP separator 

maintained a flat lithium stripping/plating plateau with a low overpotential of 26 mV even 

after 200 h. During the switch of different current densities from 0.5 mA cm−2 to 5 mA 

cm−2 and reverted to 0.5 mA cm−2 (Figure 5b), the D-HVS@PP separator also displayed a 

more stable polarization vibration compared with the pure PP separator, further indicating 

its enhanced rate performance in symmetric cells. Even at a larger stripping/plating 

capacity of 5 mAh cm-2 (Figure 5c) or a higher current density of 5 mA cm−2 (Figure 5d), 

the symmetric cells with the D-HVS@PP separator still exhibit stable voltage profiles 

(~27 mV for 350 h or ~71 mV for 400 h). All the results confirm D-HVS@PP separator 

can facilitate the uniform lithium nucleation and growth due to the synergistic effect of 

the effective chemical/physical restriction and the improved interfacial conductivity, 

subsequently achieving the high cycling stability of lithium metal anode.
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Figure 6. Performance of various battery configurations using different separators. (a) 

Cycling performance of PP and D-HVS@PP separators under high sulfur-loading and lean-

electrolyte conditions at 0.2 C. (b) Comparison of the areal capacities of D-HVS@PP separator 

at a high sulfur loading with that of other reported similar materials in Li-S battery, more details 

are shown in Table S4. (c) Comparison of both the areal weight and areal capacity of PP and D-

HVS@PP separators. (d) Cycling performance of D-HVS@PP separators under a lower E/S and 

N/P ratios at 0.2 C (e) LEDs illuminating test by a Li-S pouch cell using the D-HVS@PP 

separator in various folded states. (f) The cycling performance of PP and D-HVS@PP separators 

in the Li-LiFePO4 (LFP) batteries. (g) Image of the commercial PP separator. (h) The large-scale 

fabrication of D-HVS@PP separator. (i) The vanadium content of the various organic solvents 

(10 mL) after the recycling experiments of D-HVS@PP separator probed by ICP-AES, inset: the 

corresponding separator photos after the recycling treatment.
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Despite numerous efforts made to the development of advanced functional separators, 

most of the studies focused solely on the high capacity performance and ignored the 

consideration of sulfur loadings and electrolyte utilization4, 20. A low sulfur areal loading 

(<2.0 mg cm-2) and high electrolyte/sulfur (E/S) ratio (>15 mL g-1) can hardly achieve 

competitive areal capacities and energy density with that of the state-of-art Li-ion 

batteries20. Accordingly, the D-HVS@PP separator with a high sulfur-loading (9.24 mg 

cm-2) S/carbon nanofibers (CNFs) cathode and a ~200 μm thick lithium anode (Figure 

S19a) was employed under a lean-electrolyte condition (6 mL g-1) to explore its potential 

for practical use. The negative to positive capacity ratio (N/P) for this assembled Li-S 

battery was calculated to be 3.5 (Table S3).62, 63 Despite the relatively high polarization, 

which is due to the improved sulfur loading and the low E/S ratio, the D-HVS@PP 

separator maintained stable charging/discharging platform and excellent areal capacity of 

6.0 mAh cm-2 even after 120 cycles. The improved cycle stability can be attributed to the 

unique amphiphilic property, the high surface conductivity, and the superior electrolyte 

penetration for Li+ transfer (Figure 6a and Figure S20). Notably, the D-HVS@PP has 

achieved an initial capacity of 8.3 mAh cm-2, which is over 16 times higher than the PP 

separator (0.5 mAh cm-2) under similar conditions. The high initial area capacity and the 

excellent cyclic stability of the D-HVS@PP separator also outperforms other similarly 

reported materials applied as separators, cathodes or interlayers in Li-S batteries (Figure 

6b and Table S3).9, 16, 24, 30, 35, 64-67 This performance was achieved just at the expense of 

an 11% increase in the separator weight (0.14 mg cm-2), accounting for only 0.24% in the 

basic units of conventional Li-S battery or even lower (0.18%) in the current high sulfur-

loading battery system (Figure 6c and Table S5). Furthermore, considering that a thinner 
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Li anode and a controlled N/P ratio are more relevant to the practical applications of Li-S 

batteries, the cycling performance of D-HVS@PP separator was further investigated 

under more strict conditions; i.e. with a ∼85 μm thick lithium anode (Figure S19b) and 

the lower N/P (1.7) and E/S (4 mL g-1) ratios (Figure 6d). The battery with D-HVS@PP 

separator can still deliver a high cell-level gravimetric energy density of 327 Wh kgcell
-1 

(the detailed calculations are shown under Table S5) and favourable stability for 150 

cycles closed to the battery in Figure 6a. All these results prove the feasibility of the D-

HVS@PP separator in practical Li-S cells.

Furthermore, to achieve wider application visibility, we verified the separator stability 

in flexible devices. A Li-S pouch cell was assembled using S/CNFs cathode, D-HVS@PP 

separator, ~200 μm thick lithium anode and vacuum-sealed aluminium-plastic film, with 

an E/S ratio of 6 mL g-1 and an N/P ratio of 3.4. The flexible battery was directly applied 

in practical light-emitting diodes (LEDs) illumination tests without any additional 

pressure effect (Figure 6e). This pouch cell exhibited a high open-circuit voltage of 2.45 

V with low self-discharge (Figure S21), and can steadily power an array of LEDs in 

various folded states from 0° (flattened) to 180° (folded) and back to 0° (flattened), and 

even when repeatedly bent (Movie S1). Apart from the Li-S battery system, the D-

HVS@PP separator can also be extended to apply in the Li-LiFePO4 (LFP) batteries 

assembled with an LFP cathode and a lithium metal anode (Figure 6f). Due to the high 

charge conductivity, high electrolyte affinity and homogeneous lithium nucleation, the Li-

LFP battery with D-HVS@PP separator can deliver a stable discharge capacity of 148.1 

mAh g-1 and areal capacity of 1.13 mAh cm-2 at 1 C (1 C=170 mAh g-1 for LFP cathode) 

even after 800 cycles. These values are higher than that recorded for the conventional PP 
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separator (138.2 mAh g-1 and 0.97 mAh cm-2, short circuit after 100 cycles), further 

highlighting the potential of the D-HVS@PP separator in broader application fields. 

Notably, compared with the performance for Li-S batteries in Figure 6a and d, the lower 

but more stable cycling performance of Li-LFP battery is attributed to the distinct 

insertion/extraction lithium storage mechanism of LiFePO4 cathode and its well-known 

high stability benefiting from the strong support of phosphate group in its lattice structure. 

In addition to the universality, the large-scale fabrication and the recyclability of 

functional materials are other significant factors for practical and commercially viable 

separator materials. The D-HVS@PP separator can be simply prepared by one-step 

hydrothermal technique followed by vacuum filtration, hence easy to be commercialized 

and applied in the mass production of the D-HVS@PP separator. To further proof, we 

have prepared a thirty-centimetre-long D-HVS@PP separator through a large-area 

continuous filtration method (Figure 6g and h). Moreover, considering the cost 

and toxicity of VS2 materials,68 recycling tests were also carried out with the D-HVS@PP 

separator in various common organic solvents (Figure 6i). The HVS functional materials 

could be utterly separated from the PP separator to ethanol solvent with an assisted 

physical vibration, which may be attributed to the higher wettability of ethanol solvent 

towards PP separator. The recycled vanadium solution can be applied to the reproduction 

of the D-HVS@PP separator or some other aspects.

CONCLUSIONS

We designed a double-faces separator based on coating commercial PP membrane with 2D HVS 

(D-HVS@PP) via a facile and easy to scale up strategy to simultaneously solve different kinds of 

problems for the practicality of Li-S batteries. The prepared separator was subjected to a 
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comprehensive characterization program combining with the DFT calculation and COMSOL 

Multiphysics simulation. The materials spectroscopic and computational characterization 

confirmed the excellent physical, chemical, and electrochemical properties of the D-HVS@PP 

when used as a separator in Li-S batteries, e.g. the “amphiphilic” nature for both Li2Sx and pure 

lithium, high electronic conductivity and special hexagonal tower-like nanostructure. For the 

sulfur cathode, the HVS functional layer effectively suppressed the Li2Sx shuttle and ensured the 

fast interfacial electron transfer and the smooth lithium-ion diffusion through the separator. For 

the lithium anode, it also promoted the uniform nucleation and growth of lithium and buffered 

the volume expansion of lithium metal during repeated stripping/plating process. Hence, 

compared with conventional PP separators, the D-HVS@PP separators enabled a high cell-level 

gravimetric energy density of 327 Wh kgcell
-1 with stable cycling even under the practically 

relevant conditions of high sulfur loading, lean-electrolyte and low N/P ratio, or when applied in 

flexible Li-S pouch and Li-LFP batteries. In particular, the large-scale fabrication and 

recyclability of the D-HVS@PP separators are also evaluated to highlight its practicality further. 

We expect this feasible and straightforward separator design can arouse more attention and 

thoughts to boost the future commercialized development of the Li-S batteries and even other 

advanced energy storage technologies.

EXPERIMENTAL SECTION

Chemicals and materials. All chemicals were of analytical grade and used without further 

purification. Sodium metavanadate (NaVO3), sublimed sulfur (S) and N-methyl-2-pyrrolidone 

(NMP) were obtained from Aladdin. Thioacetamide (TAA) and ammonium hydroxide 

(NH3·H2O) were purchased from Sinopharm Chemical Reagent Co. Ltd. Polyvinylidene fluoride 
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(PVDF) was obtained from Arkema. Lithium sulfide (Li2S) was purchased from Sigma-Aldrich. 

Poly(vinylpyrrolidone) (PVP K90) was supplied by BASF chemical company in Germany.

Preparation of the VS2 hexagonal nanotowers (HVS). HVS was prepared using a one-step 

hydrothermal technique. Firstly, 0.468 g NaVO3, 1.503 g TAA, 6 ml NH3·H2O and 30 ml 

distilled water were mixed and magnetically stirred for 5 min. Secondly, 1 g PVP K90 was added 

into the mixture; then the solution was stirred for another 40 min at ambient temperature. The 

formed precursor solution was then transferred into a 50 ml Teflon-lined stainless-steel autoclave 

and maintained at 180 °C for 10 h. After cooling, the precipitate was collected and washed 

thoroughly with water and ethanol several times to recover the final HVS samples.

Preparation of the VS2 microflowers (MVS) and VS2 nano-bulks (NVS). MVS and NVS 

samples were prepared for comparison. Conventional MVS were synthesized using the same 

synthesis method as the HVS without the addition of PVP K90. NVS were obtained by 

sonicating the as-prepared HVS in ethanol solution for 1 hour. 

Preparation of the HVS@PP, MVS@PP and NVS@PP separators. The VS2 modified 

separators were prepared by direct vacuum filtration technology without using any binder. 2 mg 

of the as-prepared sample (HVS, MVS or NVS) was dispersed in 20 ml ethanol. The resulting 

suspensions were directly vacuum filtered onto a commercial PP separator and then dried at 60 

°C in a vacuum oven for 6 hours, to form the targeted HVS@PP, MVS@PP and NVS@PP 

separators, respectively.

Preparation of the sulfur cathodes. The sulfur slurry was prepared by ball-milling a mixture 

of 280 mg sulfur powder, 80 mg Super P, 40 mg PVDF and 1.8 ml N-methyl-pyrrolidone (NMP) 

for over 6 hours. The slurry was then coated to an aluminum foil and dried under vacuum at 60 

oC for 12 hours to form the sulfur cathode. The sulfur mass loading is ~1.5 mg cm-2.
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Preparation of the Li2S6 solution. 0.005 M Li2S6 solution (30 mM in sulfur) was obtained by 

chemically reacting sulfur powder with Li2S in 1,3-dioxolane/1,2-dimethoxyethane solution 

(DOL/DME, 1:1 by volume).

Characterization. Morphological data and energy dispersive spectra (EDS) mapping were 

obtained using a field emission scanning electron microscopy (FE-SEM) (GeminiSEM500, 

China) and a transmission electron microscopy (TEM) (JEOL JEM2100, Japan). X-ray 

diffraction (XRD) measurements were carried out using a PANalytical X’pert MPDPro 

(Netherlands) diffractometer with a Cu Ka radiation source (40 kV, 40 mA). Brunauer–Emmett–

Teller (BET) surface areas and pore size distributions were obtained at -196 oC liquid nitrogen 

temperature) using an ASAP 2020 (America) instrument. X-ray photoelectron spectroscopy 

(XPS) measurements were carried out on a Kratos Axis Ultra (England) instrument using a 

monochromatic Al Ka radiation source (150 W, 15 kV and 1486.6 eV) at 10-9 Torr pressure. The 

contact angle images were obtained on a KRUSS DSA100 (Germany) instrument using Li-S 

electrolyte as a test liquid. The accurate element contents (sulfur and vanadium) were acquired 

with an inductively coupled plasma-atomic emission spectrometry (ICP-AES) (Shimadzu ICPE-

9000, Japan). The electric conductivities of various VS2 modified separators were measured on a 

four-point probe tester (2182A, America) with a testing current from 4 to 8 mA. Mechanical 

puncture tests of the separators were carried out on an Instron 5548 (America) Micro Tester 

Load Test Machine, where a lab-made sample holder with a gap width of 8 mm was used to fix 

the tested separators, and the rate of compression displacement was set to be 1 mm min-1. A 

SOLVER NEXT (China) atomic Force Microscopy (AFM) was used to study the dendrite 

growth on the lithium anode surfaces.
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Cell assembly and electrochemical measurements. Coin-type (2032) and pouch cells were 

assembled in an Ar-filled glovebox (DELLIX LS750S, China) with moisture and oxygen 

contents below 1.0 ppm. For the Li-S batteries, the sulfur cathode and lithium-metal foil anode 

were separated by various VS2 modified PP separators. The electrolyte was composed of 1.0 M 

lithium bis (trifluoromethanesulfonyl) imide (LITFSI) in a solvent mixture of DME/DOL (1 : 1 

by volume) with 1.0 % LiNO3 additive. The quantity of electrolyte was controlled at 10~15 μL 

per 1 mg sulfur. Galvanostatic charge/discharge tests were carried out using a LANHE battery 

tester within a voltage window of 1.7~2.8 V (vs. Li/Li+). Cyclic voltammetry (CV) was 

performed using a CHI 660D (China) electrochemical workstation in a voltage range of 1.7~2.8 

V. Electrochemical impedance spectra (EIS) were obtained in a frequency range from 0.01 Hz to 

100 kHz. In addition, the Li || Li symmetric cells were assembled with the various separators 

sandwiched between two lithium electrodes. The Li-LFP coin-type batteries were constituted by 

sandwiching separators between an LFP cathode and a ~200 μm thick lithium anode. The 

electrolyte was 1.0 M LiPF6 in a solution of the ethylene carbonate and diethyl carbonate (1:1 by 

weight). 

Computational method. The density functional theory (DFT) calculation was performed 

using the Vienna Ab-initio Simulation Package.69, 70 The electron-ion interaction was described 

by projector augmented-wave (PAW) pseudopotentials. For the exchange and correlation 

functionals, we use the Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient 

approximation (GGA) exchange-correlation.70 In the DFT calculation, the (011) phase of VS2 

and the pure graphene were used to reveal the binding energy with polysulfide (e.g. Li2S4, Li2S6 

and Li2S8). The vacuum layer thickness was set to 15 Å to avoid virtual interaction and obtain 

more accurate results. The energy cutoff of 400 eV was used for the wave functions expansion. 
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The Brillouin zone integration was sampled with a 3 × 3 × 1 k-grid mesh for geometry 

optimization, and 5 × 5 × 1 k-grid mesh for electronic properties calculations to achieve high 

accuracy. The energy and force converged to 1.0 × 10-5 eV atom-1 and 0.03 eV·Å-1. The 

corresponding binding energy (∆EBE) is defined as:

                       ∆EBE = EA+B – EA – EB                                                                     (1)

Where the EA+B is the total energy of the structure of the VS2 (011) or graphene combined with 

polysulfide, EA is the total energy of the (011) phase of VS2 or pure graphene, and EB is the total 

energy of the polysulfide (e.g. Li2S4, Li2S6 or Li2S8). Based on the definition, a more negative 

value indicates a stronger binding system.

Finite element method (FEM) simulation. The electric field distribution in different growth 

periods of the lithium dendrites covered with or without the HVS layer was performed on a 

three-dimensional (3D) view by COMSOL Multiphysics 5.3a software. The constructed models 

referring to size ratio, shape and distribution of materials were established by SolidWorks 2016 

according to the experimental characterization results, to make the simulation process as close as 

possible to the actual situation. To simplify the module process, the physics module of “Electric 

Current Field” under steady-state conditions was used in the subsequent simulation. The 

simulated electric field intensity was set to be near platform voltage of 2 V with the direction 

from the separator to the anode. The relative dielectric constant of VS2 was set to 3.1, and the 

conductivity of VS2 was 500 S m-1.71 The physical field-controlled grids were selected to be the 

sequence type and extremely refined cell size.
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The Supporting Information is available free of charge on the ACS Publications website at 

DOI:       Figures S1 and S2 show the synthetic route and growth mechanism for the HVS. 

Figures S3-21 show the material characterizations (SEM, TEM, XRD, XPS, AFM and ICP-

AES), optical images, electrochemical characterizations, calculations and simulations for 

various samples. Tables S1-4 show some calculated electrochemical performance parameters for 

various separators in Li-S batteries, including the lithium-ion diffusion rate, EIS resistance, N/P 

ratio, areal capacity and areal weight.
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