
1

Affinity Matrix with Large Eigenvalue Gap for
graph-based Subspace Clustering and

Semi-Supervised Classification
Xiaofang Liu, Jun Wang, Dansong Cheng, Feng Tian and Yongqiang Zhang

Abstract—In the graph-based learning method, the data graph
or similarity matrix reveals the relationship between data, and
reflects similar attributes within a class and differences between
classes. Inspired by Davis-Kahan Theorem that the stability
of matrix eigenvector space depends on its spectral distance
(i.e. its eigenvalue gap), in this paper, we propose a global
local affinity matrix model with low rank subspace sparse
representation (GLAM-LRSR) based on global information of
eigenvalue gap and local distance between samples. This method
approximate the similarity matrix with ideally diagonal block
structure from the perspective of maximizing the eigenvalue gap,
and the local distance between data is utilized as a regular
term to prevent the eigenvalue gap from being too large to
ensure the efficacy of similarity matrix. We have shown that
the combination of subspace (LRSR) partitioning method such
as Sparse Subspace Clustering(SSC) and the similarity matrix
constructed by GLAM can improve the accuracy of subspace
clustering, and that the similarity matrix constructed by GLAM-
LRSR can be successfully applied to graph-based semi-supervised
classification task. Our experiments on synthetic data as well as
the real-world datasets for face clustering, face recovery and
motion segmentation have clearly demonstrate the significant
advantages of GLAM-LRSR and its effectiveness.

Index Terms—affinity matrix, subspace clustering, semi-
supervised Classification, low rank representation, sparse rep-
resentation

I. INTRODUCTION

H IGH-volume and high-dimensional datasets such as
videos and millions of images are ubiquitous due to

advances in sensing and storage technology and dramatic
growth in applications [1]. Subspace segmentation refers to
the problem of segmenting high-dimensional data according
to their underlying subspaces. Recent subspace clustering
algorithms are mainly categorized into algebraic methods,
statistical methods and graph-based methods. Generalized
Principal Component Analysis (GPCA) [2] is an algebraic
method by fitting the data with polynomials. The drawback
is that it is hard to estimate polynomials when data contains
large noises. Statistical approaches usually use independent
samples drawn from a mixture of probabilistic distributions
to model data generation processes. The processes can be
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tackled by Expectation-Maximization (EM) algorithm with
alternating between data clustering and subspaces estimation
or estimating the mixture structure by iteratively finding a min-
max estimation [3]. However, the optimization of statistical
methods is difficult and the use of the EM also leads to a
local minimum. Graph based clustering methods have attracted
increasing attention over the last decade and have succeeded
in many applications [4], [5], [6], [7].

One representative graph based clustering approach is the
graph based subspace clustering, which may further be catego-
rized as local spectral clustering and global spectral clustering.
The local spectral clustering based approaches such as Local
Subspace Affinity (LSA)[8] and Locally Linear Manifold
Clustering (LLMC) [9] do not perform well on tackling
with points near the intersection of subspaces. In addition,
the number of neighborhood also affects the performance of
these methods. As a local spectral clustering methods, Sparse
Subspace Clustering (SSC) [7], [10] exploit the discriminative
nature of sparse representation and discovers the sparsest rep-
resentations for the data set. According to the theoretical work
[7], [11], the subspace-sparse recovery holds when a certain
value of the data distribution in each subspace is smaller
than the smallest principal angle between each subspace and
any other subspace. However, the pursuit of sparsity leads
to sparse within class homogeneity so as to separate points
in the same cluster into several small singleton which leads
to bad results of poor recall rates. Global approaches such
as Low-Rank Representation (LRR) [6], [12] are actually
a general version of Robust principal component analysis
(RPCA) [13], [14], which is based on minimizing the rank of
the representation matrix. While RPCA is assumed that data lie
in a single low-rank subspace, LRR considers data from mixed
subspaces by seeking the lowest-rank representation among
all the candidates that can represent the data vectors as linear
combinations of the basis in a given dictionary. Although LRR
recovers the affinity matrix of dense within-class affinities, the
between-class are also dense especially when the subspace
are not independent. However, the spectrum properties are not
considered during the construction of the affinity matrix for
the follow-up spectral clustering step.

To tackles the limitations above, Feng et al. [15] constrains
the rank of Laplacian with a Block-Diagonal prior by opti-
mizing the coefficient representation matrix and the Laplacian
matrix alternatively. Liu et al. [16] assumes the affinity matrix
is of low rank by regularizing a nuclear norm term of the
affinity matrix. However, the proposed optimization model
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directly computes the pairwise distance of the original data
as local constraint. Moreover, minimizing the nuclear norm of
the affinity matrix tends to minimize its spectrum variance by
simultaneously minimizing all the singular values, which may
reduce the relative distances among k clusters. Actually, each
cluster can be represented by its corresponding eigenvector
and only the top k eigenvectors of the affinity matrix, span
the subspaces denoting the clusters.

According to Davis-Kahan Theorem [17], the stability of
matrix eigenvector space depends on its spectral distance,
i.e. the size of its eigenvalue gap. Therefore, we proposes
to construct similarity matrix model for clustering or semi-
supervised classification by using global information of spec-
tral spacing (maximizing the affinity matrix’s eigenvalue gap)
and local distance between samples. First, a new optimiza-
tion model called Global Local Affinity model(GLAM) is
proposed to maximizing the sum of the top k eigenvalues
and minimizing the sum of the rest n-k ones for getting k
tight clusters [18]. Second, we combine the similarity matrix
constructed by GLAM with a subspace segmentation method
based on low-rank subspace sparse clustering [19] seeking
low-rank ’Dictionary’, called as GLAM-LRSR, this method
can not only recover the lowest-rank subspace but also get a
relatively sparse segmentation with regard to the intersection
of subspace.

II. GLOBAL AND LOCAL AFFINITY MATRIX MODEL WITH
LOW RANK SUBSPACE SPARSE REPRESENTATION

(GLAM-LRSR)

In this section, We propose a comprehensive model GLAM-
LRSR by combining GLAM with low rank subspace sparse
representation(LRSR)[19] to learn low-rank coefficient and the
graph affinity matrix with large eigenvalue gap simultaneously.

A. Global and Local Affinity Matrix model with Low Rank
subspace Sparse Representation (GLAM-LRSR)

The objective function of our model(GLAM-LRSR) is as
follows:

min
D,E

‖Z‖∗ + λ‖E‖2,1 + min
Z,E
‖J‖∗ + λ‖K‖1

+ γ
(
−tr

(
ZAZT

)
+ β · ξk (A)

)
s.t. A1n = 1n, A ∈ Sn, A ≥ 0, X = XZ + E

(1)

The nuclear norm ‖·‖∗ and ‖·‖2,1 is the surrogate of low-
rankness rank ( ) and column sparsity ‖·‖2,0 respectively.
Given the parameter is self-adaptive, the combined model
concludes two sub-problems, i.e. multiple subspace recovery
(low-rank coding) and graph construction. So we transfer Eq.
(1) into three sub-models as follows:

min
Z,E
‖Z‖∗ + λ2‖E‖2,1

s.t. X = XZ + E
(2)

min
Z,E
‖J‖∗ + λ1‖K‖1

s.t. A = AZ + E,Z = J, Z = K
(3)

min
A
−tr

(
ZAZT

)
+ β · ξ (A)

s.t. A1n = 1n, A ∈ Sn, A ≥ 0.
(4)

In terms of Eq. (1), we set γ = 0 when dealing with Z
and E thus it refers to LRR. GLAM-LRSR model consists of
two consecutive stages, the low rank representation methods
to get the coefficient matrix and GLAM . Similarly, we
also combining GLAM with Robust Shape Interaction Matrix
(RSIM)[20] as GLAM-RSIM and combining GLAM with
Low Rank Representation (LRR) [6] as GLAM-LRR. The
effectiveness of these approaches is evaluated in Section VI.

With the auxiliary variables J and K, the problem (Eq. (4))
is equivalent to

min
A
−tr(ZAZT ) + β · ξk (J)

s.t. A1n = 1n, A = J,A = K,

J ∈ Sn,K ≥ 0.

(5)

We introduce three Lagrangian multipliers M1,M2 and M3

to remove the equality constraints in Eq. (5) and formulate the
augmented Lagrangian function of Eq. (5) as follows:

Jgl

(
A, J,K, {M}3i=1

)
= −tr(ZAZT ) + β · ξk (J)

+ 〈M1, A1n − 1n〉 + 〈M2, A− J〉+ 〈M3, A−K〉

+
µ1

2
‖A1n − 1n‖2F +

µ2

2
‖A− J‖2F +

µ3

2
‖A−K‖2F

(6)

where µ1, µ2 and µ3 are positive penalty parameters. Then
ADM updates A, J,K, {M}3i=1 by minimizing the energy
function Jgl with respect to one variable while fixing others,
respectively. Specifically, the updating schemes can be formed
as follows:

A+ =(ZTZ + µ11n1Tn + µ2J + µ3K −M11Tn −M2 −M3)Q,

J+ = arg min
J∈Sn

1

2

∥∥∥∥J − (A+ +
M2

µ2

)∥∥∥∥2

F

+ β · ξk (J) ,

K+ =χ
(
A+ +M3/β3

)
,

M+
1 =M1 + β1

(
A+1n − 1n

)
,

M+
2 =M2 + β2

(
A+ − J+

)
,

M+
3 =M3 + β3

(
A+ −K+

)
,

(7)

where the superscript “+” means that the value is updated,
Q =

(
µ11n1Tn + (µ2 + µ3) I

)−1
and χ (O) is a matrix defined

as follows:

χ ([O])ij =

{
[O]ij if [O]ij ≥ 0;

0 if [O]ij < 0.
(8)

The overall process of solving GLAM-Lagrange via ADM is
shown in Algorithm 1.

B. Randomized algorithm of Eigen Decompostion

In Algorithm 1, when updating of variable J , we need to
compute the eigenvalue decomposition of n ∗ n matrix. Even
if deterministic methods, such as the fastest Housholder trans-
formation method, are directly used, so the time complexity
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Algorithm 1 Solving GLAM-Lagrange via ADM
1: Input: Representation matrix Z, number k of clusters, the parameter β > 0, ρ > 1, ε, βmax

2: Output: Affinity Matrix A∗
3: Initialization: J = K = M1 = M2 = M3 = 0
4: while not converged do
5: Follow the updating scheme Eq. (7) (Note that the eigenvalue decomposition to solve J is done with Algorithm 2),
6: If max

(
‖A+1n − 1n‖

2
F , ‖A+ − J+‖2F , ‖A+ −K+‖2F

)
< ε then

7: β = min (βmax, ρβ)
8: else
9: Return A∗ = A+.

10: end
11: end while

is O( 4n3

3 + n2). Our method use a random algorithm for
matrix feature decomposition, which can effectively reduce the
time complexity of matrix feature decomposition operations.
In Algorithm 2, Phase 1 is the orthogonal basis of the subspace
in which the data J is to be constructed, where the number
of orthogonal bases is the rank of the matrix. The time-
consuming operation in step 3 is matrix multiplication, and
the time complexity is O(n2l). In fact, the subsampling ran-
domized Fourier Transform (SRFT) is used to reduce the time
complexity to O(n2 log(l)) [21]. Step 3 solves the problem of
slow singular value decay of matrix J using a power iteration
method (where q=2 or q=4). After the orthogonal matrix Q is
obtained, a small-scale matrix A ∈ Rl×l is constructed in the
second phase, which reduces the scale of subsequent matrix
feature decomposition.

Algorithm 2 Randomized algorithm of Eigen Decompostion
1: Input: Decomposed matrix J , estimated rank k
2: Output: Matrix composed of eigenvectors U , Diagonal

Matrix Constituted by Eigenvalues ΛJ (J = UΛJU
T )

3: //Phase 1: Estimate the base vector Q of matrix J by
power iteration;

4: sampling a random matrix from a Gaussian distribution
Ω ∈ Rn×l, where l > k;

5: construct a matrix Y = (JJT )qJΩ of n× l;
6: QR decomposition of Y ,Y = QR, and then Ω ∈ Rn×l,

the column vector Y is the orthogonal basis of the
subspace in which matrix Y is located;

7: // Phase 2: Direct feature decomposition
8: construct a small-scale matrix QTJQ
9: Calculate the eigendecomposition for matrix A: A =
V ΛJV

T

10: Construct an orthogonal matrix: U = QV

C. Time complexity analysis

In Algorithm 1, the main time consuming computation lies
in the update of variables A and J . The update of variable A
only involves matrix multiplication, and its time complexity
is O(n3 +mn2). But the matrix multiplication is simple and
facilitates large-scale parallelization processing. The update
of variable J contains the eigenvalue decomposition of the
n × n matrix, which is accelerated by algorithm 2. The time

complexity of the first phase is O(n2 log(l) + nl2) , the time
complexity of the second phase is O(n2 log(l) + nl2 + l3),
and the main time-consuming operation is the sixth step.
Matrix multiplication O(n2l), while matrix multiplication is
simple, and the actual time-consuming overhead is low. In
summary, the time complexity of the overall algorithm is
O(T (n3 + n2 log(l) + mn2 + l3)) , where T is the number
of iterations. Obviously, the computation time complexity
of the GLAM approach (Algorithm 1) are not more than
those of the traditional method approach, such as K-nearest
neighbour(KNN)[22].

III. APPLICATIONS BASED ON GRAPH LEARNING VIA
GLAM-LRSR

Graph-based subspace learning methods are usually divided
into three stages (as shown in Fig. 1). 1) For high-dimensional
noisy data, subspace partitioning is used to obtain data rep-
resentation in low-rank subspace; 2) graph construction is
equivalent to the construction of similarity matrix; 3) relat-
ed applications based on graph model, such as clustering,
transductive semi-supervised classification and inductive semi-
supervised classification. In this section, we will introduce
three representative graph based learning applications, includ-
ing clustering, transductive semi-supervised classification and
inductive semi-supervised classification.

A. Graph based clustering

In the Algorithm 3, we show the process of the spectral
clustering method of Normalized Cut [23] combined with
the similarity matrix obtained by GLAM-LRSR model for
subspace clustering.

B. Transductive semi-supervised classification

The given data X contains the labeled samples Xl and unla-
beled samples Xu. X = {x1, x2, , · · · , xl, xl+1, · · · , xl+u} =
[Xl, Xu], the sample number n = l + u. Our purpose is
to deduce labels from labeled sample. The similarity matrix
of the graph can be easily combined with the label prop-
agation method, such as Gaussian Harmonic Function [24].
The label probability distribution of samples is expressed by
Y = [Yl, Yu], where Yl be the Label probability distribution of
labelled samples and Yu be the label probability distribution of
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Fig. 1. The flowchart of the framework about graph based learning methods

Algorithm 3 The Subspace Clustering Framework of Normal-
ized Cut based on GLAM-LRSR

1: Input: Data matrix X ∈ Rm×n, number k of clusters
2: Output: Cluster labels for each sample in X .
3:
4: Obtain the low rank representation matrix Z using LRSR

(Eq. (1)) from the given data X ,
5: Construct the affinity matrix A using Z via Algorithm 1,
6: Normalize the affinity matrix A = D−1/2AD−1/2, where
D = diag(d1, ..., dN ) is the degree matrix,

7: Perform eigenvalue decomposition (EVD) of A, select top
k eigenvectors to Vk ∈ Rn×k,

8: Perform KNN on Vk.

unlabelled samples, the probability value vectors of unlabelled
samples can be obtained from the following formula:

Yu = −YlLuuL
−1
uu (9)

where L is the Laplasse matrix obtained by the similar-
ity matrix W . The details of the procedure are shown in
Algorithm 4. In addition to Gaussian Harmonic Function,
the constructed graph can also be combined with other label
propagation methods, such as local and global consistency [25]
and Linear neighbor propagation [26].

C. Inductive semi-supervised classification

Semi-supervised Discriminant Analysis (SDA) [27] extends
the smoothness constraint of graphs to the objective function
of Linear Discriminant Analysis (LDA) [28].

arg max
a

aTSBa

aT (ST + αXLXT )a
(10)

where X is data matrix, a is transformation matrix, the
matrix SB and SW is the inter class and intra class matrix
obtained by LDA, ST = SB + SW is the sum of covariance
matrices with inter class and intra class, L = I−D− 1

2WD
1
2 is

Laplacian matrix. W is a graph similarity matrix constructed in

Algorithm 4 The framework of transductive Semi-supervised
classification based on GLAM-LRSR

1: Input: Data matrix X = [Xl, Xu] ∈ Rm×n, number k,
labeled samples {Xl, Yl}

2: Output: Label probability value matrix of unlabeled
samples Yu.

3:
4: Obtain the low rank representation matrix Z using LRSR

(Eq. (1)) from the given data X ,
5: Construct the affinity matrix A via Algorithm 1,
6: Normalize the affinity matrix W = D−1/2AD−1/2, where
D = diag(d1, ..., dN ) is the degree matrix,

7: Finding Laplasse matrix: L = I −W ,
8: Perform the label probability value on Yu by Eq.(9).

Algorithm 5 The framework of inductive Semi-supervised
classification based on GLAM-LRSR

1: Input: Data matrix X = [Xl, Xu] ∈ Rm×n, number k
, labeled samples {Xl, Yl}

2: Output: Label probability value matrix of unlabeled
samples Yu .

3:
4: Obtain the low rank representation matrix Z using LRSR

(Eq. (1))from the given data X ,
5: Construct the affinity matrix A via Algorithm 1,
6: Normalize the affinity matrix W = D−1/2AD−1/2, where
D = diag(d1, ..., dN ) is the degree matrix,

7: Find Laplasse matrix: L = I −W ,
8: Calculated the inter class covariance matrix SB and inner

class matrix SW of labeled sample Xl , ST = SB + SW

9: Eigenvalue decomposition for Eq.(11), the subspace Ak =
[a1, · · · , ak] composed of the first k eigenvectors is ob-
tained, projecting samples to subspaces Ck = AT

kC.
10: Perform the label probability value on Yu by KNN .
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a)ORL b)Extended YaleB
Fig. 2. Convergence curve of GLAM(GLAM-LRSR) on ORL and Extend-
edYaleB (15 faces) database.

this paper. The maximization problem in Eq. (10) is converted
to the maximum eigenvalue problem for solving the following:

SBa = λ(ST + αXLXT )a (11)

Finally, we map all the samples to the learned subspace
Ak and classify the test samples with the k-nearest neighbor
method. The details of the procedure are shown in Algorithm
5.

IV. EXPERIMENTS

To verify the effectiveness of the proposed model, in this
section we conduct three experiments on face clustering, face
recovery, motion segmentation and semi-supervised classifica-
tion.

A. Face Clustering

In this section, we evaluate the clustering performance of
GLAM-LRSR,GLAM-LRR and GLAM-RSIM compared with
BD-LRR [15], BD-SSC [15], LRR [6], SSC [7],RSIM [20] and
Model-II [29] on the Extended Yale B dataset. The dataset
consists of 192 × 168 pixel cropped face images of n = 38
individuals, where there are Ni = 64 frontal face images
for each subject acquired under various lighting conditions.
We downsample the images to 48 × 42 pixels and treat each
2016-dimensional vectorized image as a data point. The face
images are corrupted by errors such as shades or highlight.

In this experiment, we test on five groups of n subjects,
n ∈ {5, 8, 10, 15, 20}. And we set the parameters α = 18 for
SSC, λ = 0.12 for LRR, the parameters β = [0.32, 0.25, 0.25]
for GLAM-RSIM, GLAM-LRR and GLAM-LRSR. At the
same time, this paper also compares with the method Model-II
[29]. which uses the characteristics of the equilibrium graph
to construct the similarity matrix reflecting clustering infor-
mation. Fig. 2 shows the convergence of the GLAM method
on the ORL and Extended YaleB data sets, where the relative
error is minimum value of ‖A1n−1n‖F , ‖A−J‖F ,‖A−K‖F ,
As can be seen from the figure, the GLAM method can quickly
converge within a limited number of steps.

We use both F-measure and NMI as the evaluation metric.
Table I and Table II reveal the clustering results of various
methods on five sets of Extended YaleB datasets, Table III

and Table IV show the clustering results of different methods
performed on the ORL, PIE and USPS database. It can be
seen from the tables that the results obtained by the traditional
method KNN are the worst, possibly because the similarity
criterion based on Gaussian kernel construction is not robust to
noise. The coefficient representation matrix obtained by LRR
algorithm is inferior to LRR-COS because the post-processing
technique filters out non-zero elements on non-diagonal blocks
to some extent. Using the GLAM model to construct the
similarity matrix of the graph can greatly improve the accuracy
of the spectral clustering algorithm. As can be seen from
Table I and Table II, GLAM-LRR, GLAM-LRSR and GLAM-
RSIM have a significant improvement compared to LRR,
LRSR and RSIM. It is more obvious that the GLAM-LRR
method has an average increase of 20% in LRR and about
10% in comparison with LRR-COS. Since BD-LRR and BD-
SSC also take into account the spectral information, there is
no essential difference between the GLAM model and the
BD-LRR and BD-SSC models. The main difference is that
the former maximizes the spectral spacing while the latter
introduces constraints on the Laplacian matrix on LRR and
SSC. The rank of the matrix is n−k. BD-LRR averages 12%
higher than the F-measure value of the LRR method. BD-SSC
also improves the clustering accuracy of SSC. However, as can
be seen from Table I ∼ Table IV, the GLAM based methods
have higher average accuracy than BD-LRR and BD-SSC for
various image data sets. For example, in the five sample sets
of Extended YaleB, the average F-measure of GLAM-LRSR
is 4.9% higher than that of BD-LRR, 6.8% higher than that of
BD-SSC and 7.8% higher than that of Model-II. On PIE data
sets, the F-measure of GLAM-LRSR is 3% higher than that
of BD-LRR and 4% higher than that of Model-II method; on
USPS data sets, the F-value accuracy of GLAM-RSIM method
is 4.3% higher than that of BD-LRR, 6.8% higher than that of
BD-LRR, 4.6% higher than that of BD-SSC and 3.8% higher
than that of Model-II method; on ORL data sets, GLAM-
LRSR method performs best (F-measure is 0.835, NMI is
0.857), followed by Model-II method (F-measure is 0.832,
NMI is 0.851).

To more intuitively demonstrate the superiority of the
GLAM approach, in Fig.3, the similarity matrix results plots
for various methods on the Extended YaleB dataset (15 face
objects) are shown. The graph of similarity matrix results on
the extended YaleB dataset (15 face objects) can be seen in the
figure. It can be seen from the figure that although the structure
of the diagonal block obtained by the LRR is obvious, there
are still many non-zero elements on the non-diagonal block,
which may cause serious clustering errors. The similarity
matrix obtained by SSC is relatively sparse, but the diagonal
block structure is not obvious, and there are more non-zero
elements on the non-diagonal block. The same problem occurs
in the result graph of the BD-LRR, and the horizontal lines
in the result graph can be clearly seen. In the result graph
of BD-SSC, the diagonal block structure is very loose, which
may divide the original larger cluster into multiple smaller
clusters, which affects the propagation of labels in semi-
supervised classification. The results of Model-II show that
there are fewer non-zero elements on non-diagonal blocks, but
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TABLE I
F-MEASURES OF DIFFERENT METHODS PERFORMED ON THE EXTENDED YALEB DATABASE

5 Subjects 8 Subjects 10 Subjects 15 Subjects 20 Subjects
KNN [22] 0.76±0.32 0.75±0.40 0.70±0.35 0.73±0.40 0.72±0.11
SSC [7] 0.82±0.08 0.94±0.05 0.87±0.12 0.84±0.11 0.85±0.13
LRR [6] 0.78±0.08 0.75±0.15 0.69±0.17 0.72±0.16 0.70±0.16
LRR-COS [6] 0.85±0.18 0.95±0.05 0.84±0.12 0.82±0.17 0.82±0.16
GLAM-LRR 0.92±0.02 0.96±0.03 0.91±0.01 0.92±0.11 0.90±0.12
LRSR [19] 0.878±0.068 0.941±0.052 0.909±0.089 0.867±0.111 0.877±0.182
GLAM-LRSR 0.943±0.02 0.961±0.032 0.932±0.072 0.927±0.12 0.931±0.035
RSIM [20] 0.90±0.08 0.95±0.13 0.91±0.19 0.91±0.18 0.87±0.26
GLAM-RSIM 0.94±0.07 0.98±0.03 0.95±0.04 0.93±0.12 0.95±0.05
BD-LRR[15] 0.88±0.11 0.95±0.06 0.87±0.10 0.86±0.14 0.87±0.13
BD-SSC [15] 0.86±0.31 0.93±0.12 0.86±0.27 0.82±0.37 0.88±0.21
Model-II [29] 0.872±0.012 0.8803±0.017 0.8694±0.007 0.8576±0.0165 0.822±0.0079

TABLE II
NMI OF DIFFERENT METHODS PERFORMED ON THE EXTENDED YALEB DATABASE

5 Subjects 8 Subjects 10 Subjects 15 Subjects 20 Subjects
KNN [22] 0.78±0.31 0.73±0.33 0.72±0.37 0.75±0.29 0.73±0.27
SSC [7] 0.79±0.21 0.93±0.17 0.82±0.27 0.842±0.17 0.832±0.21
LRR [6] 0.82±0.09 0.77±0.20 0.71±0.31 0.73±0.19 0.74±0.21
LRR-COS [6] 0.86±0.19 0.942±0.09 0.94±0.13 0.84±0.21 0.831±0.22
GLAM-LRR 0.937±0.03 0.941±0.039 0.921±0.11 0.932±0.057 0.913±0.19
LRSR [19] 0.867±0.043 0.937±0.032 0.887±0.047 0.871±0.071 0.868±0.082
GLAM-LRSR 0.940±0.05 0.953±0.056 0.941±0.063 0.932±0.08 0.919±0.020
RSIM [20] 0.91±0.17 0.941±0.21 0.921±0.18 0.93±0.21 0.939±0.21
GLAM-RSIM 0.932±0.14 0.964±0.15 0.947±0.10 0.932±0.25 0.941±0.12
BD-LRR[15] 0.891±0.19 0.931±0.09 0.853±0.09 0.862±0.19 0.83±0.04
BD-SSC [15] 0.86±0.31 0.93±0.19 0.849±0.31 0.853±0.24 0.861±0.17
Model-II [29] 0.883±0.023 0.874±0.023 0.8794±0.027 0.867±0.0166 0.846±0.0149

a)LRR b)SSC c)GLAM-LRR

d)BD-LRR e)BD-SSC f)Model-II
Fig. 3. Visualization of different graphs on Extended YaleB database.

the diagonal block structure is clear but the numerical value
is small. In the similarity matrix obtained by GLAM-LRR,
the number of non-zero elements on non-diagonal blocks is
relatively small, and the structure of diagonal blocks is clear
and the value is large.

B. Face Recovery

This section introduces two groups of face recovery exper-
iments on two face datasets, Extended YaleB and ORL. For
the Extended YaleB dataset, we randomly selects 640 images
of 10 categories to form the matrix X by column expansion,
and then randomly selects 300 samples to add random noise.

TABLE III
F-MEASURES OF DIFFERENT METHODS ON THE ORL, PIE AND USPS

DATABASE.

ORL [30] PIE [31] USPS [32]
KNN [22] 0.75±0.12 0.33±0.01 0.68±0.12
SSC [7] 0.80±0.03 0.49±0.04 0.69±0.11
LRR [6] 0.78±0.08 0.75±0.15 0.69±0.17
LRR-COS 0.82±0.07 0.60±0.01 0.70±0.03
GLAM-LRR 0.87±0.08 0.76±0.12 0.80±0.04
LRSR [19] 0.802±0.03 0.76±0.14 0.70±0.05
GLAM-LRSR 0.88±0.04 0.76±0.17 0.82±0.07
RSIM [20] 0.83±0.02 0.65±0.13 0.77±0.11
GLAM-RSIM 0.89±0.03 0.72±0.15 0.81±0.02
BD-LRR[15] 0.82±0.04 0.67±0.14 0.75±0.02
BD-SSC[15] 0.84±0.07 0.69±0.21 0.73±0.17
Model-II [29] 0.832±0.012 0.681±0.018 0.715±0.007

TABLE IV
NMI OF DIFFERENT METHODS ON THE ORL, PIE AND USPS DATABASE.

ORL [30] PIE [31] USPS [32]
KNN [22] 0.761±0.13 0.421±0.19 0.651±0.13
SSC [7] 0.78±0.142 0.532±0.23 0.725±0.26
LRR [6] 0.737±0.02 0.627±0.12 0.721±0.102
LRR-COS 0.802±0.06 0.60±0.01 0.70±0.03
GLAM-LRR 0.865±0.102 0.71±0.13 0.77±0.13
LRSR [19] 0.81±0.08 0.71±0.05 0.747±0.12
GLAM-LRSR 0.875±0.08 0.79±0.1 0.817±0.051
RSIM [20] 0.825±0.07 0.69±0.24 0.772±0.15
GLAM-RSIM 0.876±0.15 0.76±0.06 0.825±0.17
BD-LRR[15] 0.84±0.04 0.70±0.12 0.75±0.08
BD-SSC[15] 0.83±0.13 0.653±0.14 0.735±0.12
Model-II [29] 0.851±0.012 0.674±0.0108 0.7154±0.0102
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Fig. 4. Face recovery on Extended YaleB datasets (1).

The proportion of noise and data is ‖N‖
2
F

‖X‖2F
≈ 1. Note that only

300 columns selected in the noise matrix are non-zero values,
and the rest are all zero.

Fig.4 and Fig.5 show the restoration results of four face
images in the contaminated image set for Extended YaleB. In
the first row, the first and third columns are the original face
images, and the second and fourth columns are the noise added
face images. The first and third columns from the second row
to the fifth row are the recovered face of method GLAM-
LRSR, RPCA [13], LRR [6] and SSC [7] respectively, and the
second and fourth columns are the corresponding noise image.
Through cross validation, the parameters of LRSR method in
this experiment are set to λ1 = 0.7; λ2 = 0.6. The other
methods all choose the parameter setting that give the best
result, in which the RPCA parameter setting is λ = 0.008,
the SSC parameter setting is α = 9, and the LRR parameter
setting is λ = 0.015.

RPCA method is a very classical space recovery method.
It can be seen from Fig.4 and Fig.5 that although RPCA
method can recover clear and high-quality face images, each
damaged face image has got a similar average face, which does
not restore the characteristics of different faces. The images
restored by SSC and LRR still show the influence of noise.
Moreover, the face restored by SSC is not the same as the
original image. Because of the noise, different face images are
similar to each other. The L1 norm constraint in SSC lacks
the ability to describe the data globally, so the same face may
be represented by a few other face combinations. In contrast,
LRSR method can recover clear and accurate face image.

For ORL dataset, we downsample images so their dimension
becomes 56*46. The sample size of ORL is a small dataset

Fig. 5. Face recovery on Extended YaleB datasets (2).

consisting of 40 categories of faces in total, and in each
category has only 10 images with different expressions. So, it’s
challenging to recover the damaged face. We randomly select
one third of face images and add noise to them, and the ratio
of noise to data is ‖N‖

2
F

‖X‖2F
≈ 0.25. Through cross validation, the

parameters of GLAM-LRSR are set to λ1 = 0.8; λ2 = 0.5.
For the other methods, the parameter setting under the best
result is selected. The RPCA parameter setting is λ = 0.006,
the SSC parameter setting is α = 9, and the LRR parameter
setting is λ = 0.01.

It can be seen in Fig.6 and Fig.7 that the results of LRR and
RPCA methods are very fuzzy in facial contour and details.
The results of SSC and GLAM-LRSR are relatively clear, but
the result of SSC does not completely eliminate the noise,
while GLAM-LRSR achieves relatively smooth results.

C. Motion Segmentation

The motion segmentation refers to the problem of separating
a video sequence into multiple spatio-temporal regions corre-
sponding to different rigid-body motions in the scene. The
motion segmentation problem can be preceded by first ex-
tracting a set of feature points

{
xfi ∈ R2

}N
i=1

from the video
sequences f = 1, . . . , F using standard tracking methods.
Each data point yi, which is also called a feature trajectory,
corresponds to a 2F-dimensional vector obtained by stacking
the feature points xfi in the video as

yi
∆
=
[
xT

1i xT
2i · · · xT

Fi

]T ∈ R2F .

Then the problem is reduced to clustering these points
trajectories according to different rigid-body motions. Under



8

Fig. 6. Face recovery on ORL dataset (1).

Fig. 7. Face recovery on ORL dataset (2).

the affine projection model, all feature trajectories associated
with a single rigid motion lie in a linear subspace of dimension
at most 4 in R2F [33]. Hence, the motion segmentation
becomes clustering of data points in a union of subspaces.

Here, we apply GLAM-LRR and GLAM-RSIM to motion
segmentation problem and evaluate them on the Hopkins155
motion database. The database consists of 155 sequences of
two and three motions which can be divided into three main
categories: Checkerboard, Articulated and Traffic sequences.
The trajectories are extracted automatically by a tracker and
outliers are manually removed. Therefore, the trajectories
are only corrupted by noises without any missing entries or
outliers. We set the parameters α = 15 for SSC, λ = 0.6 for
LRR, β = 0.15, 0.0.9, 0.09 for GLAM-RSIM ,GLAM-LRR
and GLAM-LRSR, respectively. The proposed models achieve
better performance than LRR, LRSR and RSIM, as shown in
Table V and Table VI.

Table V and Table VI show the F-measure value and NMI
average error rate for the Hopkins155 dataset clustering, where
GLAM-LRSR parameters are set to λ1 = 0.2; λ2 = 0.01.
GLAM-LRSR performs worse on the Traffic video than SSC,
mainly because the moving vehicles in the video are some-
times close together, and SSC can better avoid dividing the
calibration points on different vehicles into the same moving
vehicle. In general, the average error rate (F-measure value)
of GLAM-LRSR is 3.17%, which is not much improvement.
mainly because the data set itself contains less noise, the
previous method has achieved high accuracy on Hopkins 155.
Secondly, when the dimension of the affine subspace is not
more than 4, the correlation between the data is too strong,
resulting in the accuracy of GLAM-LRSR and SSC algorithm
is similar [7].

D. Semi-supervised classification

In this experiment, our model and other methods (SS-
C [7], LRR[6], RSIM[20], BD-LRR[15], BD-SSC [15]) on
transductive semi-supervised classification and the inductive
semi-supervised classification are repeated 5 times. Each time
we randomly select some labeled samples for each class
of images. For Extended YaleB, PIE, ORL and USPS data
sets, the proportion of labeled samples is varied from 5% to
30% intervals. Fig.8 and Fig.9 show the combination of the
graph (similarity matrix) model obtained by various methods
on transductive semi-supervised classification and inductive
semi-supervised classification, respectively. The classification
accuracy is obtained by the label propagation strategy of
the Gaussian harmony function [24]. The horizontal axis
represents percentages of labeled samples.

In most cases, the graph model constructed by the sparse
representation is better than the graph from KNN because
the similarity criterion of Gauss kernel structure is not robust
to noise. LRR, SSC, RSIM, BD-LRR and BD-SSC displays
the noise that is implied in the data, and constructs the
graph model under the representation of low rank subspace.
GLAM-LRR and GLAM-RSIM are all under the low rank
subspace representation, if the global and local properties of
the data class space structure are taken into account. The
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TABLE V
F-MEASURES OF DIFFERENT METHODS ON THE HOPKINS155 WITH 2 MOTIONS AND 3 MOTIONS RESPECTIVELY, WHERE β = 0.15, 0.15, 0.09 FOR

GLAM-LRSR,GLAM-LRR AND GLAM-RSIM.

Checkerboard Articulated Traffic Checkerboard Articulated Traffic
Two Motions Three Motions

SSC [7] 0.73±0.02 0.95±0.03 0.96±0.10 0.70±0.14 0.93±0.17 0.94±0.09
LRSR [19] 0.86±0.19 0.90±0.13 0.98±0.31 0.85±0.25 0.90±0.20 0.96±0.20

GLAM-LRSR 0.87±0.19 0.975±0.12 0.97±0.21 0.87±0.20 0.97±0.15 0.97±0.01
LRR [6] 0.82±0.21 0.90±0.13 0.98±0.31 0.81±0.25 0.88±0.20 0.96±0.22

GLAM-LRR 0.85±0.18 0.97±0.12 0.97±0.21 0.84±0.19 0.96±0.15 0.97±0.01
RSIM [20] 0.83±0.02 0.92±0.12 0.97±0.21 0.83±0.21 0.95±0.16 0.96±0.12

GLAM-RSIM 0.89±0.12 0.96±0.11 0.98±0.21 0.87±0.02 0.96±0.30 0.97±0.11
BD-LRR [15] 0.86±0.11 0.93±0.21 0.95±0.14 0.85± 0.31 0.91±0.18 0.97±0.36
BD-SSC [15] 0.87±0.21 0.90±0.33 0.91±0.21 0.83± 0.45 0.88±0.10 0.92±0.28
Model-II [29] 0.846±0.11 0.929±0.21 0.949±0.14 0.851± 0.31 0.911±0.18 0.966±0.36

TABLE VI
NMI OF DIFFERENT METHODS ON THE HOPKINS155 WITH 2 MOTIONS AND 3 MOTIONS RESPECTIVELY, WHERE β = 0.15, 0.15, 0.09 FOR

GLAM-LRSR,GLAM-LRR AND GLAM-RSIM.

Checkerboard Articulated Traffic Checkerboard Articulated Traffic
Two Motions Three Motions

SSC [7] 0.70±0.02 0.92±0.03 0.94±0.10 0.68±0.14 0.91±0.17 0.92±0.09
LRSR [19] 0.83±0.19 0.89±0.13 0.96±0.31 0.84±0.25 0.89±0.20 0.95±0.20

GLAM-LRSR 0.86±0.19 0.962±0.12 0.96±0.21 0.86±0.20 0.96±0.15 0.96±0.01
LRR [6] 0.81±0.21 0.89±0.13 0.97±0.31 0.79±0.25 0.87±0.20 0.95±0.22

GLAM-LRR 0.852±0.18 0.96±0.12 0.965±0.21 0.84±0.19 0.956±0.15 0.967±0.01
RSIM [20] 0.83±0.02 0.912±0.12 0.957±0.21 0.823±0.21 0.945±0.16 0.956±0.12

GLAM-RSIM 0.889±0.12 0.956±0.11 0.978±0.21 0.88±0.02 0.956±0.30 0.968±0.11
BD-LRR [15] 0.856±0.11 0.932±0.21 0.935±0.14 0.845± 0.31 0.901±0.18 0.97±0.36
BD-SSC [15] 0.864±0.21 0.89±0.33 0.90±0.21 0.823± 0.45 0.878±0.10 0.912±0.28
Model-II [29] 0.846±0.11 0.923±0.21 0.945±0.14 0.851± 0.31 0.901±0.18 0.967±0.36

prominent feature of GLAM is the spectral spacing describing
the properties of similarity matrix to construct a graph model
of balanced class structure.

The GLAM model based on LRR and RSIM outperforms
other methods in the datasets with obvious subspace structure.
It performs well on Extended YaleB, PIE and ORL datasets.
Because of its constraints on the global structure of the analog
data class space, the GLAM model is also superior to the
USPS handwritten digital set which is not obvious in the
spatial structure, though the performance margin is not large.

On three face image sets (Extended YaleB, ORL, PIE),
GLAM-LRR, GLAM-LRSR and GLAM-RSIM improve the
accuracy based on the original algorithms (corresponding
to LRR, LRSR, RSIM respectively), and the classification
effect is better than other algorithms. There is little difference
between the various methods when the proportion of labeled
samples becomes larger. However, when there are fewer la-
beled samples, the GLAM method is much larger than the
original method alone. In general, the accuracy of GLAM-
LRR and GLAM-LRSR is about 7% higher than that of LRR
and LRSR, and GLAM-RSIM is about 5% higher than RSIM.
kNN performs the worst because it is sensitive to the noise
contained in the data. However, on the USPS dataset, it may
be because some of the numbers are similar, resulting in a
similar subspace. The highest average accuracy is the kNN
algorithm though GLAM-RSIM perform similarly. As can be
seen from Fig.8 and Fig.9, even with very limited labeled data,
the GLAM method can achieve higher accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, a method based on global information of spec-
tral spacing and similarity matrix of local distance between
samples and low rank subspace sparse representation(LRSR)
model is proposed,called as GLAM-LRSR. This paper notices
that graph similarity matrix plays a key role in subsequent
clustering or semi-supervised classification tasks. Therefore,
this paper proposes a global-local Affinity Matrix Model
(GLAM) from the global and local perspectives of data. The
innovations of the proposed algorithm are as follows: 1) In this
paper, spectral spacing reflecting class information is used as
a global constraint, and larger spectrum is obtained. Spacing
resists noise to some extent and maintains the stability of the
feature space of similarity matrix. Therefore, the similarity
matrix of ideal diagonal block structure is approximated from
the angle of maximizing spectral spacing. 2) Regarding the
local distance between data as a regularization term not only
prevents the failure of similarity matrix caused by too large
spectral distance, but also maintains the local smoothness of
data embedding manifold. The combination of similarity ma-
trix constructed by GLAM and subspace partitioning (LRSR)
improves the accuracy of subspace clustering significantly. At
the same time, the similarity matrix constructed by GLAM-
LRSR is successfully applied to graph-based semi-supervised
classification tasks. The experimental results on real public
datasets demonstrate the effectiveness of GLAM-LRSR al-
gorithm. We observed that the proposed methods outperform
significantly some other state-of-the-art methods. Our model
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(a) Extended FaceB (b) ORL

(c) PIE (d) USPS
Fig. 8. Accuracy comparison on the transductive semi-supervised classification versus different percentages of labeled samples on four datasets

(a) Extended FaceB (b) ORL

(c) PIE (d) USPS
Fig. 9. Accuracy comparison on the inductive semi-supervised classification versus different percentages of labeled samples on four datasets
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will be applied to supervised models in future work.
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