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Abstract: Medical image segmentation based on deep learning is a central research issue in the field of
computer vision. Many existing segmentation networks can achieve accurate segmentation using fewer
data sets. However, they have disadvantages such as poor network flexibility and do not adequately
consider the interdependence between feature channels. In response to these problems, this paper
proposes a new de-normalized channel attention network, which uses an improved de-normalized
residual block structure and a new channel attention module in the network for the segmentation of
sophisticated vessels. The de-normalized network sends the extracted rough features to the channel
attention network. The channel attention module can explicitly model the interdependence between
channels and pay attention to the correlation with crucial information in multiple feature channels. It can
focus on the channels with the most association with vital information among multiple feature channels,
and get more detailed feature results. Experimental results show that the network proposed in this
paper is feasible, is robust, can accurately segment blood vessels, and is particularly suitable for complex
blood vessel structures. Finally, we compared and verified the network proposed in this paper with the
state-of-the-art network and obtained better experimental results.

Keywords: medical image segmentation; de-normalization; channel attention mechanism; u-net

1. Introduction

Medical images have multiple modalities, such as Magnetic Resonance Angiography (MRA),
Computed Tomography Angiography (CTA), Positron Emission Tomography (PET), ultrasound
imaging, and more. In clinical diagnosis and treatment, the segmentation technology of medical images
affects the reliability of diagnosis results to a great extent. Moreover, medical image segmentation
technology is the first step of many medical image processing technologies, such as visualization,
3d reconstruction. Therefore, its development will affect the evolution of other related technologies in
medical image processing.

With the rapid development of deep learning, a large number of intelligent methods based
on neural networks for medical images segmentation have emerged in recent years. Nevertheless,
medical image segmentation has some limitations, including data scarcity and class imbalance [1].
To get the results we want through deep learning training, we often need many medical images as a
data set. For solving the problem of sparse data sets, different data transformation or enhancement
techniques are sometimes used to increase the number of available labeled samples, such as the
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automatic data augmentation method proposed by Google in 2018 [2], or use a patch-based approach
to resolve class imbalances.

To reduce large data sets required for network training and improve the efficiency of the work,
U-Net [3] was proposed, so that we can complete the network training with very few data sets and
accurately segment the region of interest. However, U-Net has some defects, such as the accuracy of
the model is limited by the batch size, and the correlation between the channels is not fully considered.

To address these issues, we propose an improved de-normalized residual block. It uses a new
initialization method, which solves the problem of gradient explosion and gradient disappearance by
properly adjusting initialization parameters at the beginning of training. During the training process,
it can converge faster. The attention mechanism, because of its low model complexity, can be calculated
in parallel, and the advantage of being able to obtain critical information is also increasingly used in
medical image segmentation tasks. This paper proposes a new channel attention module called SCA,
which can calculate the feature mapping value in each channel, to explore the correlation of channel.

The contributions of our work can be summarized as below:

(1) We propose a de-normalized channel attention network, which consists of a new channel attention
module SCA and an improved de-normalized block.

(2) We construct two brain vascular data sets, which uses multiple angles of CTA and MRA images
from various patients, called the ELE and CORO data sets, respectively. The labeling process
consults brain vascular experts.

(3) We perform experiments on the public retinal vascular data set DRIVE [4] and brain vascular
data sets ELE and CORO, compare the results with the state-of-the-art methods, and obtain high
accuracy. The effects of de-normalized structure on vascular segmentation were tested on DRIVE,
ELE, and CORO data sets, respectively.

2. Related Work

In the past, many traditional algorithms can be used for medical image segmentation, including
threshold-based segmentation [5], region-based image segmentation [6], edge detection-based
segmentation [7], wavelet analysis and wavelet transform image segmentation method [8],
genetic algorithm-based image segmentation [9,10], active contour model-based segmentation
method [11]. However, traditional segmentation methods have some problems, such as the need for
human intervention in the segmentation process, prior knowledge before segmentation, the existence
of over-segmentation in segmentation, and low segmentation accuracy.

Deep learning-based methods for image segmentation have made significant achievements.
Their accuracy has surpassed that of traditional methods. Jonathan Long et al. [12] proposed a fully
convolutional network for semantic segmentation to classify images at the pixel level, solving the
problem of semantic level image segmentation method. Based on it, Korez et al. [13] proposed a
3DFCN network structure. They optimized the spine structure segmented by the 3D FCN network
using a deformation model algorithm, which further improved the accuracy of the segmentation of
spinal MR images. Zhou et al. [14] combined the FCN algorithm and the majority voting algorithm to
segment 19 targets in the human torso CT image. However, the results obtained by FCN are still not
subtle enough. It classifies each pixel, does not adequately consider the relationship between pixels,
and is not sensitive to the details in the image, so it is not suitable for the segmentation of blood vessels.

U-Net [3] is undoubtedly one of the most successful medical image segmentation methods.
After the emergence of U-net, many network variants appeared. For example, Alom et al. [15]
proposed a recursive residual convolutional neural network (R2U-net) based on U-net. This residual
network can achieve deeper Network, R2U-net can make the network extract more features than U-Net.
LadderNet [16], proposed by Zhuang, uses an improved residual block, where two convolutional
layers in one block share the same weight, and LadderNet has more information flow paths than
U-Net. This allows it to get more accurate segmentation results. Similar to Ladder, Khanal et al. [17]
proposed a dynamic deep network, which adds a small U-net to classify the blurred areas of the image



Appl. Sci. 2020, 10, 6280 3 of 15

in a more refined manner, thereby achieving higher accuracy. Currently, the network with the most top
performance on the DRIVE data set is IterNet [18] proposed by Li et al. Its structure is very similar to
the dynamic deep network, has a u-net, and a mini u-net. And the blurred details of the blood vessel
to be divided can be found from the segmented image itself. It has obtained the highest AUC value of
0.9816 on the DRIVE data set [4]. However, these networks do not fully consider the correlation of
each channel, and a lot of effective information will be lost during the training process, so this paper
introduces a channel attention mechanism.

In many image segmentation tasks, the attention module is introduced. For example, SeNet proposed
by He et al. [19], it automatically learns the importance of each feature channel through learning,
then according to the importance to enhance useful features and suppress useless for the current task.
Zhang et al. [20] proposed the EncNet structure, in which the Context Encoding Module is used to capture
the semantic context of the scene and selectively emphasize the category-related feature maps. Li et al. [21]
proposed the Feature Pyramid Attention module (FPA) and Global Attention Up-sample module (GAU)
and introduced an attention mechanism for semantic segmentation. Fu et al. [22] proposed DANet to
capture frame feature dependencies in space and channel dimensions. The position attention module
can learn the correlation of spatial features, and the channel attention module can model the correlation
of channels.

At present, there are many attention-related state-of-the-art models for medical image
segmentation, but they are quite different from the implementation of our network. For example,
a medical imaging attention gate (AG) model was designed in Attention U-Net proposed by
Oktay et al. [23], which can automatically learn to focus on different shapes and sizes of target
structures, learn to find the pancreas. Sinha et al. [24] proposed multi-scale guided attention for medical
image segmentation. It obtains global features through a multi-size strategy, and then introduces the
learned global features into the attention module. Bastidas et al. [25] proposed the channel attention
network, which uses two u-nets to extract the features of the visible stream and infrared stream of
the input image respectively, and then extracts the features to obtain the final segmentation results
through the attention mechanism. The channel attention module proposed in this paper will enhance
the useful features after each up-sampling and sub-sampling.

Yet, there is a common problem with the above networks, i.e., to obtain accurate segmentation
results, it often requires a lot of training time, and the segmentation efficiency of the network is
very low. Arfan et al. [26] proposed a method based on artificial neural networks and fully parallel
field-programmable gate arrays (FPGAs). The hardware implementation proposed by this method
can effectively improve the segmentation efficiency. In our paper, in order to solve the performance
problem, we use a de-normalization method, which can greatly reduce training time.

3. Methods

3.1. Fixup Initialization Channel Attention Neural Network

Our de-normalized channel attention network follows the basic encoder-decoder structure of
U-net. Its feature fusion method is to stitch the features together in the channel dimension to form
a more “thick” feature. We want to be able to extract more elaborated features, so we adopt a dual
U-Net structure with multiple pairs of skip connections. Its complete structure is shown in Figure 1.
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Figure 1. Structure of FAU-net.

The first de-normalized network uses an improved de-normalized residual block structure,
which we call Fixupblock (Figure 2 right). Since it does not use batch normalization, the efficiency of
the model is significantly improved. The second channel attention network adds the SCA module to
Basicblock (Figure 3), called Attentionblock. We first input the patches of the original picture and the
mask picture into the de-normalized network, which can quickly extract rough features of the blood
vessel and send the feature values to the second channel attention network (Hereafter called CAU-Net).
CAU-Net can model the interdependence between feature channels so that the weight of useful feature
maps in the channel is higher than useless ones, and the weight of invalid or less useful feature maps
is smaller so that features can be refined. The last layer of CAU-Net is the SoftMax layer, so the loss
function we adopt is the negative log-likelihood loss function NLLLoss. Comparison experiments
on three data sets with multiple state-of-the-art networks prove that our network has achieved the
highest AUC value currently.

Figure 2. Resnet’s Basiclock structure on the left, and an improved Fixupblock structure on the right.
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Figure 3. Left is the overall structure of the Attentionblock, right is the structure of the channel attention
module SCA.

3.2. Improved De-Normalized Residuals Block

ResNet [27] was proposed in 2015, and its basic block is called the residual block. Residual block
there are generally two kinds of forms, BasicBlock and Bottleneck, respectively. BasicBlock structure
mainly uses two convolution sums of 3× 3. The branch of residual is:

OUT = CONV3× 3 + BN + RELU + CONV3× 3 + BN (1)

Then add it to the identity map and go through a RELU layer:

OUT = OUT + x + RELU (2)

The structure of BasicBlock is shown on the left in Figure 2. The reason BasicBlock can work
has a significant relationship with the BN layer it adds. Many residual networks cannot correctly
account for the effects of residual connections without normalization techniques such as BatchNorm,
resulting in gradient explosions. Lim et al. [28] experimentally verified that normalizing features using
BN would eliminate the range flexibility of the network. Moreover, in the segmentation task of blood
vessels, in order to obtain higher experimental accuracy, we often use larger batch size, which will
significantly increase the memory usage of the GPU. A new initialization method [29] that does not
require any normalization method was proposed. Based on this method, we propose an improved
de-normalization block called Fixupblock. It appropriately adjusts the initial offset parameter at the
beginning of training to ensure that the update of the network function (Gradient) stays in the proper
range. It is independent of the network depth so that it can solve the problem of gradient explosion
and gradient disappearance. At the same time, we add the two drop-out layers in Fixupblock to
prevent some features from overfitting. It makes the weight update is no longer dependent on the
combination of a stable relationship between hidden nodes. It avoids situations where certain features
only work for certain other features, forcing the network to learn more robust features.

Improved Fixupblock structure shown in the right of Figure 2, where the bias term bias1a, bias2a,
bias2a, bias2b all initialized to zero, the scale is initialized to one.

3.3. Channel Attention Module

Similar attention networks used for segmentation, such as [25,30], have bigger regions of interest
and are more suitable for pathological segmentation. Our channel attention network can allocate the
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weight after each convolution and enhance the useful features, which is suitable for the segmentation
of small blood vessels.

Generally, the output of the convolutional layer does not consider the channel dependence.
We adopt the structure in SEblock [19], which is called Se calculation. It can enhance the effective
features and suppress ineffective features between channels. We combine it with the channel attention
module and propose a new channel attention module called SCA (Figure 3). Then add the SCA module
to the second residual block of u-net and call it an Attentionblock (Figure 3). The following is the
detailed calculation process of the channel attention module.

We assume that the original feature is F ∈ RC×H×W, and the original feature goes through three
pipelines 2, 3, and 4 as shown in Figure 3. After passing through these three pipelines, the original
feature first undergoes Squeeze-and-Excitation calculation (Hereinafter referred to as Se).

In Se calculation, the first step is the Squeeze operation Fsq, which is the operation of global
average pooling:

Zc = Fsq ( fc) =
1

H ×W

H

∑
i=1

W

∑
j=1

fc(i, j) (3)

Among them, fc represents the initial feature (i.e., the three-dimensional matrix F ∈ RC×H×W),
and the subscript c represents the c-th two-dimensional matrix in F, i.e., the channel. Equation (3)
converts the input of C×H×W into 1× 1× C, which indicates the numerical distribution of the c
feature maps of the layer, i.e., the global information. The Squeeze operation in Equation (3) operated
in the feature map of a channel, and the operation in Equation (4) is to fuse the weight of the feature
map of each channel, i.e., the Excitation operation Fex:

s = Fex(z, W) = σ(g(z, W)) = σ (W2δ (W1z)) (4)

where z is the result of Equation (3), W1 multiplied by z is the first fully connected layer operation, and the
dimension of W1 is C

r ×C, where r is a scaling parameter, to reduce the number of channels and thus
reduce the amount of calculation. In this paper, r sets to 2. The dimension of z is 1× 1×C, then the
dimension of W1z is 1× 1× C

r . Then it goes through a RELU layer with the same dimensions, multiply it
with W2, which is the operation of the second fully connected layer. The dimension of W2 is c× c

r , and the
dimension of output is 1× 1×C. Finally, the dimension is unchanged after passing the sigmoid function.
The obtained s (Equation (4)) is the feature map weight of the channel learned through the previous fully
connected and non-linear layers. It is the result of pipeline 2, 3, 4 after Se operation.

In pipeline 4, we transform the initial characteristics F ∈ RC×H×W to F ∈ RC×N , where N = H×W
represents the pixels of the picture. Pipeline 3 was reshaped after SE processed the original features.
Then perform matrix multiplication on the reshaped F and the transpose of F passing through pipeline 4,
and finally use a SoftMax layer to get the channel attention map X ∈ Rα:

xij = so f tmax(Fi · Fj) =
exp(Fi · Fj)

∑C
i=1 exp(Fi · Fj)

(5)

where xij represents the influence of the i-th channel on the j-th channel.
In addition to the above operation, we perform matrix multiplication on the transpose of X and F

obtained through pipeline 2 and reshape the result to RC×H×W. Then multiply this result by a scale
parameter β and perform a pixel-level addition with F of pipeline 1 to get E ∈ RC×H×W:

Ej = β
C

∑
i=1

(
xjiFi

)
+ Fj (6)

Finally, the result E passes through a RELU and softmax layer, and the final feature is P ∈ RC×H×W.
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4. Quantitative Assessment Method

The segmentation of blood vessels is a binary classification problem. In classification problems,
we usually use some indicators to evaluate the pros and cons of the algorithm. In this article,
we use the values of Accuracy (AC), Precision, Recall, and Area under the ROC curve (AUC) and
Fβ − score(Fβ) evaluated the performance of FAU-net. We will use True Positive (TP), True Negative
(TN), False Positive (FP), recall rate and False Negative (FN) to calculate the above indicators.
Performance metrics calculation is as follows:

AC =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

We assume that the positive samples are pixels marked as blood vessels and the negative samples
are background. We assign different weights to recall and precision to indicate the preference for
classification models. The calculation equation is as follows:

Fβ =

(
1 + β2) · Precision · Recall

β2 · Precision + Recall
(10)

It can be seen that when β = 1, then Fβ changes back to F1; when β > 1, the model prefers to improve
recall, which means that the model pays more attention to the ability to recognize positive samples.
when β < 1, the model pays more attention to the ability to distinguish negative samples. In this article,
we do not want the model to produce the wrong results to cover more samples. It will affect the doctor’s
diagnosis of the patient’s condition. Therefore, we will adjust the parameter β to 0.75.

Considering the class imbalance of the data set, we also introduce Receiver Operating
Characteristic (ROC) and Precision-Recall (PR) curves. The ROC curve is drawn with True Positive
Rate (TPR) as the y-axis and False Positive Rate (FPR) as the x-axis. With the accuracy as the y-axis and
the recall as the x-axis, we get the PR curve. The calculation equations of TPR and FPR are as follows:

TPR =
TP

TP + FN
(11)

FPR =
FP

FP + TN
(12)

5. Experiments

5.1. Training Parameters

Our network is an open-source framework based on Python 3.7, PyTorch 1.1.0. The experimental
platform system is a Linux operating system (Ubuntu18.04), Intel Xeon E5-2620CPU@2.1 GHZ
processor, 64 GB memory, Nvidia Titan Xp graphics card.

FAU-Net is trained for a total of 200 epochs. The learning efficiency set in the first 150 epochs
is 0.001, and the learning efficiency of the last 50 epochs is 0.0001. This method of learning rate decay
makes the model easier to approach the optimal solution. It consists of two 5-layer U-shaped networks,
using Adam optimizer and cross-entropy loss function. In Fixupblock, we set initialization parameters
bias term bias1a, bias2a, bias2a, bias2b all as 0, the scale as 1. The rate of the two drop-out layers is 0.25.
We use a 3× 3 convolution with padding equals 1. In Attentionblock, the number of intermediate
channels is 512, and the drop-out rate is 0.1.
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5.2. Database Preparation

To evaluate the quality of the network, in addition to use the common retinal blood vessel dataset
DRIVE, we also constructed two cerebral blood vessel datasets, called ELE and CORO datasets. For the
selection of brain blood vessel data set, we mainly consider the problem of class imbalance. Our region
of interest is blood vessels, so when selecting pictures, we should choose the more evenly distributed
blood vessels. Otherwise, there will be many patches with only background but no blood vessels,
which will reduce the accuracy of network training. The brain vascular data set is different from the
retinal vascular data set in that it may have a more significant imbalance problem. The difficulty of
retinal vascular segmentation is that there is no significant difference between the retinal vascular
segmentation and the background. Compared with the data set of retinal vascular, ELE, and CORO
brain blood vessel data set have a significant gap between the background and blood vessels, but there
is a lot of noise. Moreover, the structure of the brain blood vessels is not coherent. It is easy to break
during the segmentation, which can be a good evaluation of the performance of the segmentation
network. How to make the overall structure of blood vessels clearer is the main problem we need
to solve.

DRIVE data set [4]: We use the retinal vascular public data set DRIVE, and the brain blood vessel
3D CTA image data set ELE, and the brain blood vessel MRA data set. Each of their original images is
565 × 584 pixels in size.

ELE data set: The ELE data set consists of 40 colorful CTA images of the brain of different patients
at different angles. Each image corresponds to an artificially labeled vascular mask picture, 20 pictures
for training, and 20 samples for testing. The size of the image is 565 × 584 pixels.

CORO data set: The CORO data set consists of 40 brain MRA images, 20 pictures for training,
and 20 samples for testing, which are images of multiple patients and multiple different angles. Each image
corresponds to an artificially labeled vascular mask map, and the image size is 565 × 584 pixels.

Each picture in these three data sets will generate a square data set during training (see Figure 4).
In order to improve the reliability of training results, 190,000 patches were randomly selected,
among which 10% was used as the verification data, of which 171,000 patches were used for training,
and the remaining 19,000 patches were used for verification. The size of each patch was 48 × 48 pixels.

Figure 4. From left to right are the data sets DRIVE,ELE,CORO. Above are patches of the original
image, and below are patches of the output results.
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5.3. Segmentation Results and Discussion

Figure 5 shows the results of segmenting using FAU-Net. The first line is the grayscale image
of the input image, the second line is the ground truth, and the third line is the experimental output.
The first column is the result of the segmentation of the blood vessels of the eyeball. Compared with
the marked pictures, our network can segment the marked vessels very well, even smaller vessels that
are not marked.

The second column is the CORO segmentation result of the brain MRA vascular data set. From the
segmentation results, we can distinguish between the blood vessel and the background noise, and there
is less artifact information. Our segmentation makes the brain blood vessel the overall structure
is clearer.

The third column is the segmentation result of our brain CTA image. The blood vessel structure
of the CTA image is relatively simple, but it is difficult to distinguish the thinner and darker blood
vessels from the image. Our network can distinguish these thinner and darker blood vessels well,
enabling doctors to perform better medical analysis.

Figure 5. Complex vessel segmentation results. From left to right are the DRIVE, CORO,
and ELE datasets.

5.4. Comparative Experiments

We compare our network with the state-of-the-art models, such as U-Net, LadderNet,
Dynamic Deep Networks, and IterNet, respectively, on three data sets, and use the standard evaluation
method to evaluate.

Figure 6 shows the segmentation details of U-Net [3], LadderNet [16], Dynamic Deep Network [17],
and our network on the three data sets of DRIVE, ELE, and CORO. See from a partially enlarged view of
the image, our network can distinguish the retinal blood vessels from the background noise, and there is
less noise in the boundary part of the eyeball. From the results of the segmentation of the ELE data set,
our network can distinguish between thinner and darker one’s vascular structure. For the CORO data
set, our segmentation made the vascular structure clearer and has fewer artifacts. Compared with other
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networks, the blood vessel structure segmented by our network is more complete and there are fewer
broken blood vessels. In summary, we can say that our network has a more precise segmentation of small
blood vessels than other networks, and has less background noise.

Figure 7 shows the precision-recall curve and ROC curve obtained by running our network on the
DRIVE data set. From the figure, we can see that the area under the precision-recall curve has reached
0.9100, and the area under the ROC curve reached 0.9853, indicating that our model is very robust.
Figures 8 and 9 show the precision-recall curve and ROC curve obtained by running our network
on the ELE data set and the CORO data set, respectively, and their area under the curve has reached
above 0.98.

Figure 6. Visualization of the segmentation results on DRIVE, ELE, and CORO datasets.
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Figure 7. Precision-recall curve and ROC curve experimentally obtained from FAU-Net on the DRIVE
data set from left to right.

Figure 8. Precision-recall curve and ROC curve experimentally obtained from FAU-Net on the ELE
data set from left to right.

Figure 9. From left to right, the Precision-recall curve and ROC curve experimentally obtained on the
CORO data set by FAU-Net.

We compared the three data sets to verify the effect of our improved de-normalization structure
on vascular segmentation. The approach with fixup means that we replace the original Basicblock
with Fixupblock and do not use the channel attention mechanism. The data with the bold font in the
table is the better data result. The last digit is the result of rounding. All data are the result of training
200 epochs.
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Table 1 compares the results of the original U-net, LadderNet, and U-net using the de-normalized
structure on the DRIVE data set. AUC has improved. LadderNet, which uses a de-normalized structure,
has achieved better results in both Precision and Fβ-score. Tables 2 and 3 compare the test results of
U-net and LadderNet on the ELE and CORO data sets, respectively. Under the de-normalized structure,
U-net’s various indicators under the ELE data set have improved and achieved better performance.
On the CORO data set, the results of using the de-normalized u-net and the original u-net are not
large, and the original LadderNet achieves better performance on Fβ-score and AUC. According to
the results of these experiments, better segmentation accuracy can be obtained using the improved
de-normalization method.

Table 1. Results on DRIVE data set.

Methods Accuracy Precision Fβ-Score AUC

U-net 0.9531 0.8852 0.8142 0.9755
U-net with fixup 0.9561 0.8612 0.8196 0.9783
LadderNet 0.9561 0.8593 0.8202 0.9793
LadderNet with fixup 0.9572 0.8616 0.8305 0.9779

Table 2. Results on ELE data set.

Methods Accuracy Precision Fβ-Score AUC

U-net 0.9801 0.9631 0.9486 0.9875
U-net with fixup 0.9891 0.9735 0.9685 0.9982
LadderNet 0.9890 0.9709 0.9688 0.9983
LadderNet with fixup 0.9896 0.9717 0.9692 0.9982

Table 3. Results on CORO data set.

Methods Accuracy Precision Fβ-Score AUC

U-net 0.9801 0.9784 0.9633 0.9808
U-net with fixup 0.9847 0.9914 0.9721 0.9960
LadderNet 0.9842 0.9906 0.9723 0.9962
LadderNet with fixup 0.9843 0.9918 0.9695 0.9957

Table 4 compares the experimental results of our network with the current state-of-the-art network
for vascular image segmentation on three data sets. On two data sets, DRIVE and ELE, our network
has made significant improvements to Accuracy, Fβ-score, and AUC. These indicators are more critical
for vascular segmentation. On the CORO data set, our network also has significant improvements
in the two indicators, Accuracy and AUC. The area under our network-trained ROC curve and the
precision-recall curve has achieved Accuracy above 0.9 on all three data sets, which shows that our
model is more efficient and robust.

Table 5 shows the calculation time for the test phase of each sample. We compared the U-Net,
Recurrent U-Net, Residual U-Net, LadderNet, Dynamic Deep Networks, IterNet(Patched), R2U-Net
and FAU-Net on the three blood vessel data set DRIVE and the brain blood vessel data sets ELE and
CORO, respectively. Results proved that our model could achieve high accuracy under high efficiency.

Taking a comprehensive look at Tables 1–3 and 5, we can see that using this de-normalized
structure not only can get good experimental results but also can significantly reduce the computational
time for testing. It is significant for clinical applications.
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Table 4. Experimental results of FAU-net compared with other networks on DRIVE, ELE,
CORO data sets.

Dataset Year Methods Accuracy Precision Fβ-Score AUC

DRIVE

2015 U-net [3] 0.9531 0.8852 0.8142 0.9755
2018 Recurrent U-Net [15] 0.9556 0.8603 0.8155 0.9782
2018 Residual U-Net [15] 0.9553 0.8614 0.8149 0.9779
2018 R2U-Net [15] 0.9556 0.8589 0.8171 0.9784
2018 LadderNet [16] 0.9561 0.8593 0.8202 0.9793
2019 Dynamic Deep Networks [17] 0.9693 0.8284 0.8259 0.9775
2020 IterNet(Patched) [18] 0.9573 0.8534 0.8205 0.9816
2020 FAU-net 0.9698 0.8651 0.8320 0.9853

ELE

2015 U-net 0.9801 0.9631 0.9486 0.9875
2018 Recurrent U-Net 0.9776 0.9736 0.9465 0.9930
2018 Residual U-Net 0.9837 0.9670 0.9582 0.9902
2018 R2U-Net 0.9806 0.9501 0.9684 0.9955
2018 LadderNet 0.9889 0.9709 0.9685 0.9980
2019 Dynamic Deep Networks 0.9816 0.9435 0.9684 0.9942
2020 IterNet(Patched) 0.9821 0.9664 0.9568 0.9961
2020 FAU-net 0.9891 0.9695 0.9688 0.9982

CORO

2015 U-net 0.9801 0.9784 0.9633 0.9808
2018 Recurrent U-Net 0.9739 0.9806 0.9541 0.9912
2018 Residual U-Net 0.9716 0.9792 0.9498 0.9755
2018 R2U-Net 0.9786 0.9892 0.9642 0.9893
2018 LadderNet 0.9843 0.9906 0.9723 0.9962
2019 Dynamic Deep Networks 0.9798 0.9758 0.9649 0.9897
2020 IterNet(Patched) 0.9739 0.9825 0.9654 0.9953
2020 FAU-net 0.9834 0.9932 0.9730 0.9928

Table 5. computational time for testing(Time (s)/sample).

Dataset DRIVE ELE CORO

U-Net 2.16 s 2.35 s 2.05 s
Recurrent U-Net 5.23 s 4.56 s 4.23 s
Residual U-Net 3.57 s 4.16 s 3.13 s
R2U-Net 5.75 s 2.54 s 5.34 s
IterNet (Patched) 16.53 s 14.45 s 15.86 s
LadderNet 1.78 s 2.01 s 1.41 s
Dynamic Deep Networks 4.72 s 4.23 s 3.88 s
FAU-Net 1.43 s 1.27 s 1.21 s

6. Conclusions and Future Work

This paper proposes a de-normalized channel attention network based on a dual U-Net structure.
De-normalized blocks and channel attention modules were added to accurately segment sophisticated
blood vessels such as retinal blood vessels and brain blood vessels, and our experiments have
achieved superior results. To test the impact of the de-normalized block on the segmentation network,
we examined the effects using batch normalization and de-normalization on three data sets and
compared them. Experiments show that our de-normalized block can improve network performance
and robustness while achieving higher accuracy. In the next step, we will continue to refine our
segmentation network and apply the segmentation results to the vascular navigation path planning.
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