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Due to the complexity of a train crash, it is a challenging process to describe and estimate mathematically. Although different
mathematical models have been developed, it is still difficult to balance the complexity of models and the accuracy of estimation.
,is paper proposes a nonlinear spring-mass-damper model of train frontal crash, which achieves high accuracy and maintains
low complexity. ,e Convolutional Long-short-term-memory Generation Adversarial Network (CLGAN) model is applied to
study the nonlinear parameters dynamic variation of the key components of a rail vehicle (e.g., the head car, anticlimbing energy
absorber, and the coupler buffer devices). Firstly, the nonlinear lumped model of train frontal crash is built, and then the physical
parameters are deduced in twenty different cases using D’Alembert’s principle. Secondly, the input/output relationship of the
CLGANmodel is determined, where the inputs are the nonlinear physical parameters in twenty initial conditions, and the output
is the nonlinear relationship between the train crash nonlinear parameters under other initial cases. Finally, the train crash
dynamic characteristics are accurately estimated during the train crash processes through the training of the CLGAN model, and
then the crash processes under different given conditions can be described effectively. ,e estimation results exhibit good
agreement with finite element (FE) simulations and experimental results. Furthermore, the CLGAN model shows great potential
in nonlinear estimation, and CLGAN can better describe the variation of nonlinear spring damping compared with the traditional
model. ,e nonlinear spring-mass-damper modeling is involved in improving the speed and accuracy of the train crash es-
timation, as well as being able to offer guidance for structure optimization in the early design stage.

1. Introduction

Among railway accidents, train crashes are considered to be
one of the most serious rail disasters, leading to a great
number of casualties as well as property losses, as in the case
of the railway traffic accident that occurred on the Ningz-
hou-Wenzhou line in China, resulting in 40 deaths and 172
injuries, and the South Carolina train crash accident,
resulting in 2 deaths and 116 injuries. In the past years,
researchers and manufacturers have gradually developed
new active safety technologies, such as the automatic train
operation (ATO) [1], the automatic train adjustment (ATA)
[2], the intelligent train operation (ITO) [3], and the train
crash detection system (TCD) [4]. However, passive safety

systems, in particular crashworthiness design, are still
serving as the base for train safety and are therefore widely
researched by vehicle engineers and researchers.

Train crash scenarios can be classified into four dif-
ferent modes: frontal, side, rear, and rollover crashes [5].
Many different models have been proposed to describe
the crash process, including the finite element (FE) model
and the lumped parameter model (LPM) [6, 7]. ,e es-
sential difference between these two lies in the parameters
incorporated in the vehicle model: LPM uses mass,
spring, and damping to describe the vehicle’s structure
only, while the FE model takes into consideration the
geometry, material, and connection of every component
of the train.
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Many researchers are currently focusing on the devel-
opment of new modeling techniques that make use of
Machine Learning algorithms [8–10], and, among these, we
can identify research directions that fall into three main
categories: the first category consists of approaches that use
FE method combined with Machine Learning. Stoffel et al.
[11] take into account the strain-rate and high dynamic
deformation in nonlinear structural deformations and
propose an intelligent finite element, where an Artificial
Neural Network (ANN) is used instead of viscoelastic
constitutive equations. In this way, a finite element theory is
combined with Machine Learning, which substitutes a
physically nonlinear constitutive law and leads to low fidelity
simulation (see Figure 1(a)).

,e second category includes multibody dynamics
methods combined with Machine Learning algorithms.
Pawlus et al. [12] propose a rebuilding oblique crash method
by applying the Levenberg-Marquardt (LM) algorithm to
analyze the basic concepts of rigid vehicle kinematics and
dynamics in plane motion. Pawlus et al. [13] apply a non-
linear autoregressive model and a feedforward neural net-
work to simulate the elastic-plastic characteristics of a car
body. Munyazikwiye et al. [14] investigate whether it is
possible to accurately estimate the basic crashworthiness
parameters (e.g., acceleration severity index and maximum
dynamic crushing) by using a simple piecewise LPM and a
genetic algorithm.,emodel is firstly calibrated with impact
velocity of 56 km/h, and then the crashworthiness param-
eters are calculated for a range of velocities (40, 48, 64, and
72 km/h).,ese methods investigate whether it is possible to
accurately estimate the basic crashworthiness parameters by
using the earlier proposed LPM modeling combined with
Machine Learning (see Figure 1(b)).

,e third category comprises data-driven direct
modeling methods. Tang et al. [15] propose a data-driven
train crash modeling method. ,ey extract useful force-
displacement curve models and predict force-displacement
relations from existing FE simulation data through the
application of a parallel stochastic forest algorithm under
various crash conditions. Acar [16] proposes outlier
analysis to improve the crash response accuracy of inte-
grated prediction models based on cross validation error.
Wei et al. [17] propose a robust parameter identification
method using the integrated empirical mode decomposi-
tion method. ,ey introduce a new piecewise model
structure to describe the acceleration of vehicles during
frontal crash, in this way allowing for an effective esti-
mation of the crash process under different working
conditions. Zhao et al. [18] propose a new adaptive neu-
rofuzzy inference system (ANFIS) to reconstruct the
process of vehicle crash and reproduce the vehicle kine-
matics (acceleration, velocity, and displacement) in oblique
crash mode. Munyazikwiye et al. [19] develop a fuzzy logic
model to predict the crash dynamics of a vehicle from an
acceleration signal and analyze the level of contribution of
jerk and kinetic energy to the derivation of the impact
strength. Karimi et al. [20] propose a new method to re-
produce the acceleration pulse during vehicle crash based
on wavelet. ,e originality of all these methods is directly

related to the exploration of the field of vehicle dynamics
modeling by using Machine Learning (see Figure 1(c)).

,e rapid development of modeling methods that use
Machine Learning algorithms has brought advantages in
terms of model complexity being greatly reduced and
computational efficiency being considerably improved.
However, the resulting model is still required to explore the
dynamic characteristics of vehicle structure interactions in a
train crash process and also to give a relevant physical ex-
planation for data-driven methods. ,erefore, the scope of
this work is to build a surrogate model to explore the
nonlinear spring-mass-damper of the crash process based on
both experimental results and FE modeling results. More-
over, this work will have very important theoretical and
application value for improving the crashworthiness and
safety of train and vehicle structures.

In this paper, the CLGAN model and the nonlinear
lumped parameter model are built to reproduce the train
crash process (see Figure 1(d)). In the first step, the non-
linear lumped parameter model consisting of five key
components and ten parameters is built. ,en, the nonlinear
time-varying parameters of the five key components in
twenty different cases are estimated and predicted during the
train frontal crash process by applying the CLGAN model,
which shows great potential in nonlinear estimation. Finally,
the train frontal crash process is estimated under different
conditions, and lastly the model is verified.

2. The Nonlinear Lumped Model

Train crash is a complex problem in terms of the design of
material, contact, and geometric nonlinearity [21, 22]. In
this work, we conducted cash experiments on the energy
absorbing device of the front locomotive (see Figures 2(a)
and 2(b)). ,e front locomotive was equipped with anti-
climbing devices and energy absorbing components. ,e
transient impact force test system is used to measure the
impact force in real time and the high-speed camera system
is used to record the entire impact process. ,en the se-
quences image motion analysis of the energy absorption
device is performed. Finally, the dynamic responses such as
the deformation mode, impact stroke, displacement, ve-
locity, and acceleration during the impact process are
obtained.

At the same time, the FE model of energy absorbing
device (see Figures 2(c) and 2(d)) and the representative FE
model (see Figures 2(e) and 2(f )) are built through the use of
a four-node shell mesh to disperse the vehicle on the
LSDYNA software platform. ,e bilinear isotropic and ki-
nematic hardening material models are used to express the
elastic and plastic properties; the translational freedom of
one-end two-spring seat in the z-axis direction is con-
strained; the relative relationship between the bogie and the
vehicle body is simulated. ,e overall Euler buckling de-
formation occurs at the front end of the car body; thus the
rigid wall is constrained with 6 degrees of freedom to
simulate it. As a result, the FE model with nonlinear large
deformation is built, and subsequently we are able to obtain
the FE modeling results under different velocities.
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Figure 2: Cash experiments and FEM simulation. (a) Experimental state of energy absorbing device at initial time. (b) Experimental results
of energy absorption device at initial speed of 60 km/h, t� 50ms. (c) FEmodel of energy absorbing device. (d) FEmodel simulation results of
energy absorption device at initial speed of 60 km/h, t� 50ms. (e) FEmodel of intermediate car. (f ) FE simulation results of the intermediate
vehicle model at 60 km/h and t� 50ms.
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Figure 1: Mechanistic and statistical methods for mechanics problems.
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In order to further accurately evaluate the nonlinear
variation of the train frontal crash process, a physical model
of nonlinear spring-mass-damper, which includes mass,
stiffness, and damping coefficients, is built through the
parameterization of this complex process (see Figure 3).
Being the most common vibration system, the spring-mass-
damper can quantitatively describe the dynamic charac-
teristics of the system and reveal the mathematical ex-
pressions between the system’s structural and dynamic
parameters. ,e resulting model is suitable for component
modeling (creep and relaxation) as well as for vehicle frontal
impact modeling.

2.1. Head Car Modeling. ,e nonlinear head car lumped
model consists of the head car mass block and the anti-
climbing energy absorber mass block, which are able to
estimate and analyze the specific behavioral performance
of the head car and the anticlimbing energy absorber,
respectively. ,e nonlinear lumped model of the head car
is shown in Figure 3(a). In the diagram, M1 is the mass of
the anticlimbing energy absorber, K1 is the initial stiffness
of the anticlimbing energy absorber, C1 is the initial
damping of the anticlimbing energy absorber, M2 is the
mass of the head car, K2 is the initial stiffness of the head
car, and C2 is the initial damping of the head car. ,e
corresponding kinematics equation is established as fol-
lows [23]:

M1 €x1 + K1x1 + C1 _x1 + K2 x1 − x2( 􏼁 + C2 _x1 − _x2( 􏼁 � 0,

M2 €x2 − K2 x1 − x2( 􏼁 − C2 _x1 − _x2( 􏼁 � 0.

(1)

We sum up equation (1) and rearrange to get

M €X + C _X + KX � 0. (2)

,e mass, the stiffness, and the damping coefficients of

the nonlinear lumped model are found to be M �
M1
M2

􏼢 􏼣,

X �
x1
x2

􏼢 􏼣, K �
K1 + K2 −K2

−K2 K2
􏼢 􏼣, and C �

C1 + C2 −C2
−C2 C2

􏼢 􏼣.

In this work, the displacement, velocity, and accelera-
tion, which are obtained from finite element method at
different initial velocity, are substituted into equation (2),
followed by computation of spring stiffness and damping
coefficients at each timestep. On the basis of this data
analysis, we are able to deduce the performance of the
stiffness and the damping coefficients in the given cases.

2.2. Intermediate Vehicle Modeling. ,e estimation and
analysis of the specific performance of the coupler buffer
system in trains require building the nonlinear intermediate

vehicle lumped model, which consists of two vehicle mass
blocks as shown in Figure 3(b). In the diagram, Mi and
Mi+1 (i � 2, 3, 4) are the masses of two intermediate ve-
hicles, whereas K and C are the initial stiffness and initial
damping coefficient of the coupler buffer device, respec-
tively. ,e following equations of motion (EOM) are
established:

Mi €xi + Ki xi − xi+1( 􏼁 + Ci _xi − _xi+1( 􏼁 � 0,

Mi+1 €xi+1 − Ki xi − xi+1( 􏼁 − Ci _xi − _xi+1( 􏼁 � 0.
(3)

We sum up equation (3) and rearrange to get

q � xi − xi+1( 􏼁,

_q � _xi − _xi+1( 􏼁.
(4)

By substituting equation (4) into equation (3), we obtain
the following EOM:

€q + Ci

1
Mi

+
1

Mi+1
􏼠 􏼡 _q + Ki

1
Mi

+
1

Mi+1
􏼠 􏼡q � 0. (5)

We sum up equation (5) and rearrange to get

C � Ci

1
Mi

+
1

Mi+1
􏼠 􏼡,

K � Ki

1
Mi

+
1

Mi+1
􏼠 􏼡.

(6)

Finally, the characteristic equation of the nonlinear
lumped model is defined as

€q + C _q + Kq � 0. (7)

2.3. TrainModeling. ,e nonlinear train lumped model with
multiple vehicle mass blocks is built to estimate and analyze
the specific behavioral performance of the locomotive head
and coupler buffer devices, respectively. Figure 3(c) illus-
trates the nonlinear lumped model of a train with four
vehicles. In the diagram, M1 is the mass of anticlimbing
energy absorber,M2 is the mass of the head car, andM3,M4,
and M5 are the masses of three intermediate vehicles; K1 is
the initial stiffness of anticlimbing energy absorber, K2 is the
initial stiffness of the head car, and K3, K4, and K5 are the
initial stiffness coefficients of the intermediate vehicle; C1 is
the initial damping coefficient of anticlimbing energy ab-
sorber, C2 is the initial damping coefficient of the head car,
and C3, C4, and C5 are the initial stiffnesses of the inter-
mediate vehicle, and the ten parameters have nonlinear
characteristics. ,e differential equations of train motion
with masses M1, M2 . . . M5 can be expressed by using
D’Alembert’s principle [24]:
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M1 €x1 + C1 _x1 + C2 _x1 − _x2( 􏼁 + K1x1 + K2 x1 − x2( 􏼁 � 0,

M2 €x2 + C2 _x2 − _x1( 􏼁 + C3 _x2 − _x3( 􏼁 + K2 x2 − x1( 􏼁 + K3 x2 − x3( 􏼁 � 0,

M3 €x3 + C3 _x3 − _x2( 􏼁 + C4 _x3 − _x4( 􏼁 + K3 x3 − x2( 􏼁 + K4 x3 − x4( 􏼁 � 0,

M4 €x4 + C4 _x4 − _x3( 􏼁 + C5 _x4 − _x5( 􏼁 + K4 x4 − x3( 􏼁 + K5 x4 − x5( 􏼁 � 0,

M5 €x5 + C5 _x5 − _x4( 􏼁 + K5 x5 − x4( 􏼁 � 0.

(8)

,e nonlinear variation of stiffness and damping coeffi-
cients that changes with time can be calculated by substituting
the dynamic characteristics of two adjacent moments into
D’Alembert’s principle, and this lays the foundation for
further exploration of the nonlinear lumped model.

Generally, the maximum train crash speed is 100 km/h;
thus, in this paper, we choose the initial velocity to be in the
range between 5 km/h and 100 km/h. In order to further
explore the dynamic characteristics of trains in different initial
cases, we choose a step of 5 km/h to perform calculations, so
that the dynamic performance of 20 different initial states is
analyzed with full consideration of calculation and sufficiency,
meaning that there is enough data to learn, and the amount of
calculation is relatively low. ,erefore, we are able to obtain
variations for 10 nonlinear lumped model parameters under
different initial conditions. Finally, a perusal of the literature
[25, 26] revealed the specific parameters of the initial train
model to be set, as can be seen in Table 1.

,e flowchart of the nonlinear lumped modeling is
shown in Figure 4. In the first stage, a reference anticlimbing
energy absorber is taken for crash tests, and the results of the
experiments are used to validate the FE analysis. ,en, the
validated FE model conducts numerical tests on 20 different
initial velocities using the LS-DYNA solver, and train crash
characteristics and corresponding nonlinear parameters are
stored in a knowledge database. In the second stage, the
nonlinear relationship between train crash nonlinear pa-
rameters is calculated by using dynamic characteristics in
twenty initial conditions (input), whereas the nonlinear
parameters under different initial conditions (output) are
established through the CLGAN model. In the third stage,
the estimated nonlinear parameters are substituted into the

nonlinear lumped model, allowing the quick and effective
computation of train crash dynamic characteristics under
any condition.

,e neural network model, which we called CLGAN
model in this paper, is validated through comparison by
analyzing the original data obtained from the FE model
based on the LS-DYNA platform. In this work, a 10-pa-
rameter nonlinear lumped model of the train is built based
on D’Alembert’s principle; then the crash process is
reconstructed by evaluating and predicting the variation of
nonlinear parameters properties. ,e specific analysis of the
spring stiffness and damping coefficients under different
conditions will be introduced in Section 4.

3. CLGAN Model

3.1. Data Preprocessing. Abundant performance data of
nonlinear spring stiffness and damping coefficients under
different conditions could be obtained by combining ex-
perimental analysis with FE analysis. However, there are
many uncertainties in the actual calculation, which leads to
the randomness of the generated data. To accurately evaluate
the characteristics of the nonlinear parameters, it is neces-
sary to recognize and process the abnormal data. In this
work, we mainly apply the three-sigma rule for anomaly
detection and processing of raw data and use Fourier
transform for filtering in the frequency domain in order to
correct it.

,e three-sigma rule [27], also known as PauTa Crite-
rion, determines an interval according to the calculated
probability value. Test data are considered to be a random
error when it lies within this interval and as a gross error
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Figure 3: Nonlinear lumped model of (a) the head car, (b) intermediate vehicle, and (c) train.
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when it falls beyond the specified interval. In this way, we
can distinguish and judge abnormal values. ,e main cal-
culation steps are as follows:

(1) Calculate the standard deviation of the original data.
(2) Compare the absolute difference between each

sampling point and the mean value with three times

the standard deviation. ,e data point is eliminated
if it is greater than three times the standard deviation.
,e calculation formula is as follows:

xi − x
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 3

�������������������������������

x1 − x( 􏼁
2

+ x2 − x( 􏼁
2

+ · · · + xn − x( 􏼁
2

n − 1

􏽳

. (9)

Table 1: Description of the train parameters.

Parameter Description Initial design Unit
M2 Head car masses 37000 kg
M3, M4, M5 Intermediate vehicle masses 34000 kg
M1 Anticlimbing device masses 75 kg
K3, K4, K5 Initial stiffness of coupler buffer device 0.8∗10̂ 6 N/m
C3, C4, C5 Initial damping coefficient of coupler buffer device 5.2∗10̂ 4 Ns/m
K2 Initial stiffness of head car 3.1∗ 10̂ 7 N/m
K1 Initial stiffness of anticlimbing device 1.0∗10̂ 5 N/m
C2 Initial damping coefficient of head car 6.0∗10̂ 5 Ns/m
C1 Initial damping coefficient of anticlimbing device 2.0∗10̂ 4 Ns/m

V0 Initial velocity of tests 5/10/15/20/25/30/35/40/45/50/55/60/65/70/75/80/85/90/95/
100 Km/h
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Figure 4: Modeling flowchart of the nonlinear lumped model.
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(3) Repeat step 1 until all outliers are identified and
processed.

,e data we have is time-domain information, and, in
fact, some information is hidden in the frequency-domain
part. ,erefore, in this work, we apply a mathematical
transformation method, such as Fourier transform [28],
Wavelet transform [29], and Hilbert transform [30], into the
time frequency analysis of train crash signals to obtain the
most apparent information. In this work, Fourier transform
[28], a kind of reversible transformation, is mainly used to
obtain the frequency-domain information from the spring
stiffness and damping coefficients data obtained previously,
so as to realize the frequency-domain filtering. ,e Fourier
transform formula is

X(f) � 􏽚
∞

−∞
x(t) · e

− 2jπftdt. (10)

Fourier inverse transform is applied to the nonlinear
spring stiffness and damping coefficients obtained from the
CLGAN model, and the final time-domain information is
obtained. ,e formula is as follows:

x(t) � 􏽚
∞

−∞
X(f) · e

2jπftdt. (11)

In the formula, t represents time, f denotes frequency, x
corresponds to signal data in the time domain, and X
represents signal data in the frequency domain.

3.2. Model Architecture. Due to the strong nonlinearity of
the parameters in complicated train crash processes, it is
difficult to balance the complexity of models and the ac-
curacy of estimation. A CLGAN model, combining Gen-
erative Adversarial Network (GAN), Convolutional Neural
Network (CNN), and Long-Short-Term-Memory (LSTM)
neural network, is built to explore the variation rule of
nonlinear spring-mass-damper during the crash process
based on both experimental results and FE modeling results.

In this work, nonlinear parameters can be estimated
through the analysis of the train crash dynamic character-
istics data (e.g., displacement, velocity, and acceleration)
obtained from general FE modeling. We take initial con-
ditions (e.g., velocity and time) as input data of CLGAN and
the variation of nonlinear parameters over time as the output
of CLGAN. We use LSTM as the generator G to generate the
adversarial neural network and use CNN as the discrimi-
nation D to make same distribution of the generated value
coincide with the nonlinear parameters. ,en the corre-
sponding relationship between the initial conditions and the
train crash nonlinear parameters can be determined.

,e nonlinear spring stiffness and damping coefficients
are a series of data over time, so we prefer 1DCNN, which
mainly includes a 1D convolution layer (Cov1D layer), a
pooling layer, a fully connected layer, and a
nonlinear activation function [31]. In this network, X �

(x1, x2, . . . , xn, cl) is input vector, where xn ∈ Rd and cl ∈ R

represent the feature and the label of the class, respectively.
A series of new features f can be obtained by convolving
the input data. ,ese features are the input of the output

layer, and then the posterior probabilities of each category
are obtained, defined as follows:

Ot � softmax V0 ∗ tanh ωf
xi,i+f−1 + b􏼐 􏼑 + b0􏼐 􏼑, (12)

where b, b0 ∈ R is a bias term.
,e LSTM network is a Recurrent Neural Network

(RNN). ,is network uses a control gate mechanism and
includes memory cells, input gates, output gates, and forget
gates [32]. In the LSTM network, the cell candidate state
value at time t is the input gate value, the activation value of
the forget gate at time t can be calculated, and then the cell
state updated value Ct at time t can be calculated.

Ct � δ Wi ∗ Xt, ht−1( 􏼁 + bi( 􏼁∗ tanh W∗ Xt, ht−1( 􏼁 + bc( 􏼁

+ δ W∗ Xt, ht−1( 􏼁 + bf􏼐 􏼑∗Ct−1.

(13)

,en, the value of the output gate is obtained, and the
calculation formula as follows:

Ot � δ W0 ∗ Xt, ht−1( 􏼁 + bo( 􏼁∗ tanh Ct( 􏼁. (14)

GAN is a minimal maximum confrontation game be-
tween discriminator D and generator G, which is kind of
minimal maximization problem [33]. To optimize the im-
portant parameters and improve the ability of generator G,
the distribution of generated samples should gradually ap-
proach the real data samples, so the specific objective
function can be described as

min
G

max
D

V(D, G) � EX∼Pdate(x)[logD(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))],
(15)

where EX∼Pdate and EX∼z represent the expected loss of real
data and the distribution of noise z, respectively.

Finally, the important parameters and performance of
the generator can be optimized and improved through al-
ternating iteration. ,en the corresponding relationship
between the initial conditions and the train crash nonlinear
parameters can be determined. So the nonlinear spring
stiffness and damping coefficients can be predicated under
other conditions, and the dynamic characteristics can be
derived through using Newmark-β method. ,erefore, the
train crash dynamic characteristics are accurately estimated
during the train crash processes, and the crash processes
under different given conditions can be described effectively.

In the CLGAN model, we set the discriminator initial
learning rate to 0.008 and the generator learning rate to
0.004 to ensure the stability of the system. For training more
deeper and complex networks, we generally use an optimizer
with adaptive learning rate to converge faster, so we chose
Adam as the generator optimizer, which is suitable for most
nonconvex optimizations, large datasets, and high-dimen-
sional spaces; and we choose RMSprop as the discriminator
optimizer, which is suitable for handling nonstationary
targets and works well for RNN; the ReLU activation
function is replaced by a LeakyReLU layer. See the CLGAN
algorithm pseudocode for a detailed overview of the process
in Algorithm 1 [34].
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,e training process of CLGAN neural network is shown
in Figure 5. ,ere are two kinds of training samples, the real
pair and the fake pair. To adapt the dataset files to our
waveform generation purposes, we downsample the original
data to evaluate the nonlinear spring stiffness and damping
coefficients. Furthermore, twenty different initial velocities
(5 km/h, 10 km/h, 15 km/h, 20 km/h, 25 km/h, 30 km/h,
35 km/h, 40 km/h, 45 km/h, 50 km/h, 55 km/h, 60 km/h,
65 km/h, 70 km/h, 75 km/h, 80 km/h, 85 km/h, 90 km/h,
95 km/h, and 100 km/h) are considered.

During training, we extract chunks of waveforms with a
sliding window of approximately a tenth of a second of
speech (67840×10 samples) every 500ms (50% overlap).
During the testing stage, we slide the window with no
overlap through the whole duration of our test data and
concatenate the results at the end of the stream. In both
training and testing, we apply a high-frequency preemphasis
filter with coefficient of 0.95 to all input samples (during
testing, the output is deemphasized accordingly).

Regarding the architecture, the generator G is composed
of 5 LSTM layers.,e number of filters per layer increases so
that the depth gets larger as the width (i.e., duration of signal
in time) gets narrower. Each of the five neuron layers has a
size of 64, while the corresponding training parameters are
set to 67840, 33024, 33024, 33024, and 33024, respectively.
,ere, we sample the noise samples z from our prior 1× 385-
dimensional normal distribution N(0, I). As previously
mentioned, the decoder part of G mirrors the encoder by
having the same filter widths and the same number of filters
per layer. However, due to skip connections and the addition
of the latent vector, the number of feature maps in every
layer is doubled. ,e network D is composed of 3 one-di-
mensional convolutional layers, and it follows the con-
ventional topology of a convolutional classification network.
,e main characteristics are as follows: (1) it gets two input
channels of 67840 samples; (2) it uses virtual batch norm
before LeakyReLU nonlinearities; (3) in the last activation
layer, there is a one-dimensional convolution layer with one
filter of width 1 which does not downsample the hidden

activations. ,is last stage (3) allows for the reduction of the
number of parameters required for the final classification
neuron, which is fully connected to all hidden activations in
a linear way. In conclusion, this CLGAN model abandons
the complex process of sampling and processing in the
traditional stage and has a good regress generating function
for the nonlinear prediction.

4. Estimation and Prediction of
Nonlinear Spring-Mass-Damping

Nonlinear parameters can be estimated through the analysis
of the train crash dynamic characteristics data (e.g., dis-
placement, velocity, and acceleration) obtained from general
FE modeling. In this work, these parameters are used as
input data to the CLGAN model, and the variation of
nonlinear spring stiffness and damping coefficients under
different initial conditions over time is predicted and is the
output data of the CLGAN model. To make a simple
comparative analysis, twenty different initial velocities are
used for this purpose, and this not only ensures sufficient
sample capacity but also accurately describes the nonlinear
characteristics of the spring stiffness and damping
coefficients.

4.1. Estimation and Analysis of Nonlinear Spring-Mass-
Damping. Twenty initial crash velocities are picked in the
range from 5 km/h to 100 km/h. ,en the stiffness of the
head car (K1), the anticlimbing energy absorption device
(K2), the coupler buffer device (K3, K4, and K5), the damping
coefficient (C1), the head car damping coefficient (C2), and
the coupler buffer coefficients (C3, C4, and C5) can be cal-
culated accordingly. ,e parameters’ variation curves are
obtained, and a comparative analysis is carried out to explore
the patterns.

In this work, the physical parameters of the head car,
anticlimbing device, and coupler buffer devices at different
initial speeds are analyzed.,e results show that the head car

For number of training iterations do:
For K steps do:
Sample mini batch of m noise samples z(1), . . . , z(m)􏼈 􏼉 from noise prior Pg(z)
Sample mini batch of m examples x(1), . . . , x(m)􏼈 􏼉 from data applying LSTM net to generate distribution Pdata(x)
Sample mini batch of m examples y(1), . . . , y(m)􏼈 􏼉 from data applying CNN as discriminator
,e cost function of the calculation discriminator:

Jd � (1/m) 􏽐
m
i�1[logD(x(i)) + log(1 − D(G(z(i))))]

Update the parameters of the discriminator through RMSprop gradient drop algorithm:
θd � Adam(∇θd(Jd), θd)

End for
Sample mini batch of m noise samples z(1), . . . , z(m)􏼈 􏼉 from noise prior
,e cost function of the calculation generator:

Jg � (1/m) 􏽐
m
i�1 log(1 − D(G(z(i))))

Update the parameters of the generator through Adam gradient drop algorithm:
θg � Adam(∇θg(Jg), θg)

End for

ALGORITHM 1: CLGAN algorithm: mini-batch stochastic gradient descent training of generative adversarial net.
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resists deformation at the moment of mid-high-speed crash;
after that, the anticlimbing device and coupler buffer devices
resist deformation. ,erefore, we can conclude that the
anticlimbing energy absorber performance is best at middle
and low speed, whereas a delayed state can be found at high
speed by comparing and analyzing the parameters variation.
In addition, this method can provide new guidance to
further improve the performance of anticlimbing and
coupler buffer devices.

After evaluating the results obtained at 20 initial ve-
locities, the derived nonlinear spring stiffness and damping
coefficients are plugged in as input to the CLGAN model to
obtain more precise parameters variation over time. ,e
output values through training correspond to the nonlinear
spring stiffness and damping calculated at the given speeds.
To illustrate the results effectively, the initial velocities of
10 km/h, 35 km/h, 60 km/h, and 85 km/h are chosen, and the
comparison results obtained by estimation and prediction
contrastive analysis are shown in Figures 6–10.

As can be seen in Figure 6, when the anticlimbing device
collides at a low initial speed, the stiffness and damping
values reach their maximum at the samemoment at 0.06 s: at
this time, the stiffness value is much larger than the damping
one, indicating that the anticlimbing device starts to resist
the main deformation [35]. As the speed increases, stiffness
and damping values quickly reach their maximum. When
the crash occurs at a higher initial speed, the stiffness and
damping values reach their maximum at about 0.05 s: the
damping value at this time is far greater than the stiffness
one, meaning that the anticlimbing device absorbs the main
energy. In Figure 7, it can be clearly seen that when the head
car collides at a high speed, the leading vehicle’s stiffness and
damping values change sharply, indicating that serious
damage occurred at this time [36]. Figure 8 shows that when
the initial crash speed is low, the stiffness and damping
values have multiple high peaks, indicating that the coupler
buffer device 2 has a continuous buffering effect at this time,
and the energy absorption effect is the best at this speed. As
the speed increases, the buffering effect of the coupler buffer
device 2 decreases. As can be seen in Figure 9, when the
initial crash speed is low, the stiffness value continuously
fluctuates, indicating that coupler buffer device 3 plays a

continuous buffering role at this time. When the initial crash
speed is medium at 35 km/h, the damping coefficient of
coupler buffer device 3 has reached its maximum value, and
this indicates that the energy absorption effect of the coupler
buffer device is the best at this speed [37]. However, the
buffer effect of coupler buffer device 3 will decrease as the
speed increases. Finally, from Figure 10, we can see that
when the initial crash speed changes from low to high speed,
the stiffness and damping values of coupler buffer device 4
always fluctuate. In addition, through a comparative analysis
of the stiffness and damping parameters of the anticlimbing
device, it can be seen that the predicted values completely
match with the trends of the evaluation values. Furthermore,
the results well verify that the CLGAN model not only has
sufficient model capacity and good training accuracy but
also has high generalization accuracy.

4.2. Estimation of CLGAN Model. To verify the accuracy of
the prediction results, the goodness of fit, called R-squared
(the closer to 1 the value of R2 is, the better the fitting is), of
K1, C1, K2, C2,K3, C3,K4, C4, K5, and C5 is 0.993, 0.988, 0.822,
0.866, 0.761, 0.77, 0.914, 0.795, 0.819, and 0.821, respectively,
as can be seen in Figure 11(a). Also, the CLGAN model and
RNN model are both trained in order to compare these two
methods with the original data, as shown in Figure 11(b).
From Figure 11(a), it can be observed that the goodness of fit
of the 10 different spring-mass-damper models obtained by
applying the CLGAN model is very well; at the same time,
the variation of 10 nonlinear spring-mass-damper models is
accurately evaluated. From Figure 11(b), it can be seen that
both CLGAN and RNN are well trained by comparing the
two methods, and CLGAN can better describe the variation
of nonlinear spring damping compared with RNN model.
Furthermore, the CLGAN method is more accurate and
valid than the traditional method.

,is iteration process is run sequentially for all the
training datasets sample by sample, which is defined as one
“epoch” iteration. ,e algorithm proceeds in this fashion
until the error decreases below some acceptable threshold or
until the error stops decreasing over possibly hundreds of
epochs. ,e discriminator loss curves and the adversarial

CLGAN neural network model

G_Loss

×

σ σ
ta
nh σ

tanh

××

Features Features

Generator Discriminator

Fake

True

z~N (0, 1)

The
variation of
nonlinear

parameters

ht

Xt

+

Figure 5: CLGAN model.
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generator loss curves can be obtained after 1000 iterations, as
shown in Figures 12(a) and 12(b).

,rough a comparison of results, it can be seen that the
predicted values by the Deep Learning model are consistent
with the trend of the estimation results. Its goodness of fit is
well, which indicates that the model has high accuracy. In
conclusion, the CLGAN model is effective and is able to
provide a good basis for obtaining the crash dynamic
characteristics in Section 5.

5. Modeling Validation

Based on the information presented in Sections 2 and 4, ten
parameters, including spring stiffness and damping

coefficients, are predicted through the use of the CLGAN
model. ,en the displacement, velocity, and acceleration of
five key components at the initial speed of 60 km/h (16.67m/s)
are estimated and predicted by the Newmark-βmethod [38]
during the crash process.

5.1. Anticlimbing Drive Model. In this section, the anti-
climbing drive model is analyzed: with the anticlimbing
device crash dynamic characteristics are simulated using the
CLGAN model and the Newmark-β method. ,e results of
the simulation are shown in Figure 13.

In order to verify the accuracy of the method, we compare
anticlimbing device’s crash dynamic characteristics, such as
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displacement, velocity, and acceleration predicted by the
CLGAN model, with the FE model results, as can be seen in
Figure 14.

,e figure shows the analysis of the results of both the
CLGAN model and FE model. With regard to the FE model
results, the maximum error of displacement is 7.6%, the
maximum error of velocity is 7.2%, and the maximum error
of acceleration is 29.6%. ,e error is within the acceptable
range, and the overall trend is consistent with the finite
element results. For further verification, the dynamic
characteristics of the anticlimbing device predicted by the
CLGAN model method are also compared with the ex-
perimental results, as shown in Figure 15.

As can be seen in the figure, after the CLGAN model is
compared with the FE model results, the maximum error of
the displacement is 7.4%, the maximum error of the velocity

is 7.1%, and the maximum error of the acceleration is 23.9%.
,e error is again within the acceptable range, and the
overall trend is consistent with the experimental results.

By comparing and analyzing these three representative
methods (CLGANmodel with test results and finite element
analysis), the reliability and accuracy of the CLGAN model
are verified from the perspective of dynamic characteristics:
it can be seen that the trends of displacement and velocity are
consistent; and even though the variable noise of acceler-
ation is relatively large, possibly due to the sharp irregu-
larities, the error is again within an acceptable range.

5.2. Head Car Model. In this section, the head car model is
analyzed. Similar to before, the anticlimbing device’s crash
dynamic characteristics are simulated using the CLGAN
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model and Newmark-β method, and the results of the
simulation are shown in Figure 16.

Again, the head car crash dynamic characteristics such as
displacement, velocity, and acceleration predicted by the
CLGAN model are compared with the FE model results, as
shown in Figure 17.

As can be seen in the figure, after the CLGAN model is
compared with the finite element results, the maximum error
of the displacement is 5.8%, the maximum error of the ve-
locity is 9.1%, and the maximum error of the acceleration is
29.2%.,e trends of displacement and velocity are consistent,
thus confirming the effectiveness and accuracy of the CLGAN
model from the perspective of dynamic characteristics.

5.3. IntermediateCarModel. In this section, the intermediate
car model is analyzed: its crash dynamic characteristics are
simulated using the CLGANmodel and Newmark-βmethod.
,e results of the simulation are shown in Figure 18.

Similar to the previous analysis, the intermediate car
crash dynamic characteristics such as displacement, velocity,
and acceleration predicted by the CLGAN model are
compared with the FE model results, as shown in Figure 19.

In the figure, after comparing and analyzing the CLGAN
model with the finite element results, we can see that the
displacement, speed, and acceleration trends of the dynamic
characteristics of the intermediate car essentially coincide
with one another, and the error is within an acceptable

0.988

0.866

0.77 0.795 0.821

0.993

0.822
0.761

0.914

0.819

Damping coefficient
Stiffness

Lo
co

m
ot

iv
es

C
ou

pl
er

 2

C
ou

pl
er

 3

C
ou

pl
er

 4

A
nt

ic
lim

bi
ng

de
vi

ce

0.0

0.2

0.4

0.6

0.8

1.0

(a)

M
ax

im
um

 ac
ce

le
ra

tio
n 

(m
/s

^2
)

0.0

1.0 × 108

2.0 × 108

3.0 × 108

4.0 × 108

5.0 × 108

0.02 0.04 0.06 0.08 0.100.00
Time (s)

Original
CLGAN
RNN

(b)

Figure 11: Estimation of CLGAN model. (a) Goodness of fit, R2, of nonlinear parameters. (b) Comparison of different methods.

Evaluation:
10km/h
35km/h
60km/h
85km/h

Prediction:
10km/h
35km/h
60km/h
85km/h

Evaluation:
10km/h
35km/h
60km/h
85km/h

Prediction:
10km/h
35km/h
60km/h
85km/h

0.02 0.04 0.06 0.08 0.100.00
t (s)

0.02 0.04 0.06 0.08 0.100.00
t (s)

0

1 × 1010

2 × 1010

3 × 1010

4 × 1010

5 × 1010
K 

(N
/m

m
)

0.0
2.0 × 107

4.0 × 107

6.0 × 107

8.0 × 107

1.0 × 108

1.2 × 108

1.4 × 108

1.6 × 108

C 
(N

s/
m

m
)

Figure 10: Coupler buffer device 4 comparisons of estimation and prediction.

12 Shock and Vibration



range. ,erefore, the reliability and accuracy of the CLGAN
model are again verified from the perspective of the dynamic
characteristics. From the comparison, we can also observe
that the CLGAN model is able to make effective estimations
for different key components. Although the acceleration
plots do not exactly match, the overall shape of the estimated
acceleration graph is preserved and corresponds to the
reference measured acceleration. Similarity between the
velocity and crush time histories was also achieved.

5.4.ModelingComparison. A comparison of the FE analysis
time and training time of the nonlinear lumped model
applying the CLGAN neural network is reported in
Table 2.

,e results show that the CLGAN model demonstrates
high accuracy in evaluating and predicting the nonlinear
lumped model with nonlinear parameters, which is con-
sistent with the analysis results of the FE modeling.
Moreover, the time required is only one-tenth of what is
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needed for the FEmodel. ,erefore, the proposed model can
achieve better estimation performance while having ex-
tremely low complexity, and it is also easy to establish with
low time cost and economic.

6. Application in Train Sets Crash Simulation

In order to further evaluate the feasibility of the nonlinear
lumped model in a train set crash simulation, we built
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Figure 15: Comparison of the anticlimbing device’s crash dynamic characteristics. (a) Displacement comparison of CLGAN model and
experiment results. (b) Velocity comparison of CLGAN model and experiment results. (c) Acceleration comparison of CLGAN model and
experiment results.
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dynamic models for the lead car and vehicles and con-
nected them end to end to construct the dynamic model
for a train set (see Figure 20), which can be used in train
set crashworthiness research. In the simulation depicted
in Figure 21, the left 4-vehicle train set, with assigned
speed V0, comes into crash with the right 4-vehicle static
train set.

In this case study, the initial velocity is set to 50 km/h.
We build the nonlinear lumped model, where each vehicle
corresponds to a rigid body whose end structures and
couplers are substituted by nonlinear spring elements. ,e

nonlinear parameters of the model at different initial speeds
are predicted by applying the CLGAN neural network, and
these are then substituted into the nonlinear lumped model.
,en, the 4-vehicle train sets dynamic characteristics are
predicted and evaluated, as shown in Figure 21.

Figure 21(a) shows that the crash displacement of the
train increases with time. It can be observed that the dis-
placement of the driving train increases directly after the
crash, whereas, in the case of the static train, it increases
gradually after the stationary stagemainly due to the fact that
the latter has been buffered after crash. From Figure 21(b),
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Figure 17: Comparison of the head car crash dynamic characteristics. (a) Displacement comparison of CLGAN model and FE model. (b)
Velocity comparison of CLGAN model and FE model. (c) Acceleration comparison of CLGAN model and FE model.
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Figure 18: Results of the CLGAN model simulation.

Table 2: ,e comparison of the analysis time of different models.

Model Simulation time (s) Training time (s) Prediction time (s) Percentage (%)
FE model 426732 — — —
Nonlinear lumped model 32246.64 + 26927.96 2216.47 + 961.77 128.42 + 105.03 13.8%
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the graph of the velocity of the active train shows a
downward trend during the crash process; meanwhile the
static train begins speeding up. At 0.6 s, the two vehicles
reach the same velocity: from this phenomenon, we can infer
that the velocities of the middle vehicles in the two train sets
have two stages, which correspond to the different velocities
when exerting force from couplers and end structures, re-
spectively. Finally, from Figure 21(c), it can be observed that
the acceleration curves have multiple peak points, which
means that the acceleration decreases with some time-
varying fluctuations rather than in a strictly monotonic
manner. ,is is mainly because each vehicle in the two train
sets collides with the neighboring vehicle.

7. Conclusions

,is work is essentially based on the inherent relationship
between the nonlinear parameters and the dynamic charac-
teristics of the frontal crash process of the Beijing metro.
Nonlinearity in the system derives from a huge number of
elements, joints, and connections involved in a crash event.
,us, a nonlinear lumped model that applies the CLGAN
model is proposed, which shows a good correspondence with
the deformation process in the experimental results by eval-
uating and observing ten time-varying nonlinear parameters.
Compared to previous crash models, the proposed method
describes the kinetic signal of amodel directly and includes the
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Figure 21: Dynamic characteristics of each vehicle in 4-vehicle train sets crash. (a) Displacement characteristics. (b) Velocity plots. (c)
Acceleration signals.
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deformation features of the vehicle structure. ,is enables the
model to balance its accuracy and complexity properly.

An integrated crash estimation scheme is also proposed
in this work: for each type of crash, the structure of its signals
is firstly given, and then the parameters are, respectively,
investigated according to the velocity change. Our case
studies give examples of the application of the proposed
scheme and demonstrate its effectiveness. In addition, it
provides a new way of thinking for engineers when it comes
to optimizing the performance of the anticlimbing energy
absorber and coupler buffer devices. Compared to tradi-
tional modeling methods, the main contributions of this
work are summarized as follows:

(1) ,e combination of the nonlinear spring-mass-
damper modeling with Deep Learning is a new
technology that can potentially have a higher ability
in estimating and predicting dynamic characteristics
while maintaining lower complexity.

(2) ,e CLGAN model is proposed to explore the
nonlinearity of the stiffness and damping coeffi-
cients, and this reveals the mathematical expressions
between the structural parameters and the dynamic
characteristics of the system. ,e CLGAN model
shows great potential in nonlinear estimation, and it
can better describe the variation of nonlinear spring
damping compared with RNN model.

(3) ,e obtained results have a significant impact, es-
pecially in the early concept design stages when a
detailed finite element model is usually not available.
Moreover, this model is easy to build, economical,
and practical and has high computational efficiency.

(4) ,emodel can accurately evaluate and reproduce the
variation of the nonlinear parameters of the key
components during the train crash process.

A limitation of our approach is that the present method
has restricted applicability to a specific type of train. In the
future, it will be interesting to investigate the performance of
another estimation algorithm, as there exists a variety of
different approaches that can be utilized for this task. Finally,
we believe this work has the potential to benefit the design of
other safety functions, and further studies on the dynamics
of crashes occurring under more complex conditions (e.g.,
oblique and offset cases) should be carried out in the future.
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