A Novel Design Pipeline for Authoring Tools

Daniel Green, Charlie Hargood, and Fred Charles

Bournemouth University, UK
{dgreen, chargood, fcharles}@bournemouth.ac.uk

Abstract. Interactive digital narrative research presents a diverse range
of authoring tools [1,4,8,12,14]. Although our field often publishes the
technology, it less often publishes a refined UX design pipeline for those
tools’ authoring experience. This is despite the UX of these tools long
being identified as a key challenge [14] and UX design pipelines being
an active area of research in adjacent technologies such as the games
that sometimes deliver our stories [3,10,11]. We present a three-stage
design pipeline targeting the creation of interactive narrative authoring
tools that is informed by existing design pipelines that consider the user
and their experience at all stages. We then detail our own application
of this pipeline to the design of a new authoring tool, reporting on the
methodologies, analyses, and findings of each step.

Keywords: Interactive Narrative - Authoring Tools - User Experience.

1 Introduction

Without a well-designed user experience (UX), accessibility is reduced, and sys-
tems can become restricted to those with appropriate technical knowledge. This
is true for Interactive Digital Narrative (IDN) authoring tools as much as any
other software where poor UX can act as a gatekeeper preventing creatives from
using the medium [12]. In order to increase the usability of our authoring tools,
we must not only design our authoring tools around the underlying narrative
data models. We must also consider the authoring experience at all stages by
incorporating them into established design and development processes.

Existing publications in this space detail features of the technology and some-
times an overriding philosophy behind the design of the tool, such as the support
of specific patterns [12] or “language-based” principles [9]. However, detailed UX-
centric design pipelines, such as in other software or games [10], are rarer, despite
discussions in this space identifying key UX concerns with these tools for some
time [14]. It follows that there is a gap in this domain that might be addressed
by more research into refined UX design methodologies and pipelines.

In this paper, we present our own design pipeline for creation of IDN author-
ing tools informed by NNGroup’s Product Design Cycle! and Hamm’s Wire-
framing Essentials [6]. We then describe our own application of the pipeline for
the design of an authoring tool that supports our Novella 2 narrative model [5].

! https://www.nngroup.com/articles/ux-research-cheat-sheet /


https://www.nngroup.com/articles/ux-research-cheat-sheet/

2 D. Green et al.

By using the design of our own tool as a case study we highlight what can be
learned from the application of this pipeline and how wider authoring tool design
might benefit from such a process.

2 The Pipeline

Our pipeline consists of three phases — Research, Discover, and Refine. The Re-
search phase includes creation of a persona(s) to represent a typical user of the
target audience, analysis of where in a pipeline the tool would best fit, and a Min-
imum Viable Product (MVP) listing of required features per user requirements
and expected functionality. This ensures that the target audience is known, the
software is positioned for practical use, and early requirements are identified.
The Discover phase involves creation of candidate designs in the form of static,
low-fidelity wireframes, and involvement of potential users in an exploratory par-
ticipatory design process, both based on the previous phase’s output. After this
phase, there should be a final candidate design ready to progress. The Refine
phase takes the final candidate design, and from it creates a high-fidelity, inter-
active wireframe. This is then refined further using a RITE philosophy [10,11],
ensuring that the final mockup has been tested with actual users to identify and
fix any potential usability issues. These three phases are informed by industry-
standard techniques, and after completion, will result in a refined mockup pro-
totype that is suitable for use in development.

2.1 Research

Persona Creation Personas typically evolve from insights into actual target
users, but for our field, access to professionals is limited, so we instead surveyed
relevant job postings and literature to build up a profile. 14 job postings from
a range of leading video game studios were used as a representative sample of
expected skills and requirements for the target audience of our authoring tool.
Using NNGroup’s persona guidelines?, the tabulated skills and requirements
were combined with information on the role of a Narrative Designer present in
The Game Narrative Toolbox [7] to help build our final persona.

Pipeline Analysis It is important for authoring tools development to not only
know how, but when the tool will be used. For game narrative authoring tools,
this is knowing where it fits within the game development pipeline. The point at
which the narrative team are involved and their level of engagement with devel-
opment differs not only between studios, but even between games of the same
studio. We looked at the approaches existing game studios take to implementing
narrative and considered upstream and downstream processes [7] to help frame
the position in the pipeline, taking into account the intended function of our
particular tool design. Combining these, we were able to build an understanding
of where the tool would fit within a real game development pipeline.

2 www.nngroup.com/articles/persona



A Novel Design Pipeline for Authoring Tools 3

MVP For our prototype tool, the MVP was building a core list of constraints and
requirements that consider the persona, pipeline position, satisfy the underlying
narrative model functionality, and cater for expected tool functionality.

2.2 Discover

The Discover phase is about creating and iterating upon candidate designs based
on the output of the Research phase, preparing them to be further developed
in the Refine phase. Taking into account outputs of the Research phase, several
candidate designs should now be drafted. In our case, we created two high-level
design variations as static wireframes. We used an approach based on participa-
tory design [13] allowing us to identify the first impressions formed by users and
to uncover any faults or desires early on in the design process.

Methodology The participant demographic was students of IDN who have
any level of experience with existing authoring tools. Participants, in individual
moderated sessions, were firstly shown an introduction document that covered
the persona, a high-level vision of the tool, its required functionality based on
the MVP, and a detailed description of the underlying model. Participants then
used think-aloud protocol to sketch and annotate the way that they intuitively
envisioned an interface supporting the descriptions they had just read. It was
critical to our approach that the detailed description in the introduction con-
tained no leading or suggestive phrasing to bias this process. These sketches
were explored in an unstructured interview seeking to understand their motiva-
tion and to expand upon their ideas. Following this, they were shown our own
candidate designs and engaged in discussion about their interpretation, as well
as the advantages and disadvantages of each approach.

Results & Discussion The experiment was run with three participants, all
with previous experience in authoring IDN. In participants’ own designs, all
intuitively defaulted to graph-based systems with nodes connected with lines.
Another trend between all participants was the use of an outliner panel on
the left of the interface to show hierarchical relationships to the user. Property
editing was implemented either as a popup window or a sliding panel, both
being used to allow for non-intrusive editing in a way that did not permanently
take up screen real-estate. All participants highlighted the importance in their
approaches of using distinct shapes and colors to differentiate between elements
of the model, with the intention being to aid quick identification.

Our first design was described as in intuitive and fluid due to the familiarity
of the flowchart-like visuals. However, there was mixed feedback about how the
design provides hierarchical context to the user. A suggested solution was the
addition of an outliner, something that all participants had in their own designs.

Our second design was preferred by all participants. All participants spoke
positively about the inclusion of an outliner due to its ability to provide an
overview of the story and given context as to the current position when edit-
ing. The most discussed part of the design was the multilayer ‘artboard’ system
which provides a window to see the contents of a node without explicitly travers-



4 D. Green et al.

ing into it. This was praised for providing extra context and therefore a better
understanding of the story at a given point without the need for further traversal.

Taking into account the feedback from participants, it was decided that the
second candidate design was to be chosen, with feedback from participants being
considered for inclusion in the design.

2.3 Refine

The final phase is Refine which involves taking the chosen candidate design and
feedback from the Discover phase and information from the Research phase and
using them to refine the prototype. As the chosen candidate design is an approach
rather than a prototype, it first needs to be expanded upon, which involves en-
hancing its features and visual quality, transitioning into a high-fidelity mockup
with interactivity. In our case, features were added inline with user feedback, con-
straints, and requirements outlined in previous phases. A notebook was created
alongside the new prototype to have a clear understanding of what everything
should do, which sometimes is unclear due to limited capability of prototypes.
Examples within the prototype were also contextualized to reflect an actual game
story rather than placeholder content. The methodology used in this process is
based upon the philosophy of the RITE method [11], which positions itself as
a discount usability test, and has extensive use in the games industry [10]. The
goal is to produce a prototype with a refined user experience by detecting and
fixing miscommunications and misunderstandings that participants encounter.

Methodology The participant demographic was students of IDN who have
any level of experience with existing authoring tools. Participants, in individual
moderated sessions, were shown a document that covered a summary of the
persona and an overview of the details about the tool. Following this, they were
walked through three short videos from Mass Effect®, which were simplified and
recreated in the prototype. A total of 36 tasks were created based on mandatory
functionality that users should be able to perform in the tool, mostly phased as
‘show me how’ or ‘walk me through’ due to limited interactivity of prototypes.
Participants completed each task using the prototype and think-aloud protocol.
This was semi-structured in that further questioning could take place based on
how the participant responds. If participants require minimal assistance when
completing a task (clarification of behavior, pointed in a broad direction) then
the RITE spreadsheet is marked with X representing error as miscommunication
of a feature. If they are unable to continue without assistance, a Z is marked,
representing failure as a misunderstanding of a feature. If a mark is made, further
questions were asked to identify the cause which aids generating solutions. For
each task, the participant’s expected solution was compared with the intended
solution of the design. Participant answers were rephrased and repeated back to
them to resolve potential ambiguity, allow them to expand upon their answer,
and to give time to take more accurate notes [2]. Tweaks and fixes were made to
the prototype between participant sessions based on RITE spreadsheet entries,

3 Mass Effect. BioWare, 2007.



A Novel Design Pipeline for Authoring Tools 5

T4 Couldn't figure out how to create a Frame. X Note 1

T8 Struggled to identify the nodes in the Canvas. X Note 2

T6 Thought that double clicking a node edited its label. X X Note 3

T10 'Unable to navigate into a node in Artboard mode. X Note 4

T13 'Unable to add Node Templates to the Canvas. X Note 5

T13 Unable to create Node Templates from the editor. X Note 6

T17 Unable to add links to nodes. X z Note 7

T28 Scripts window contained scripts unclear. X X X Note 8

T32 Couldn't tell that colored variables relate to the outputs. z

T33 Struggled with states in the Simulation Mode. X X Note9 Note 10 Note 11

Fig. 1. RITE spreadsheet showing changes due to errors (X) and failures (Z). Columns
P1-P7 are participants. Note 1: Added a Frame icon to the toolbar. Note 2: Added
‘Main’ Group to the Outliner. Note 3: Double clicking a node edits the label. Note
4: Replaced expand icon and darkened color. Note 5: Changed ‘+ Node Template
to ‘Insert Node Template‘, moved buttons to right, darkened text. Note 6: Added
labeled headers to lists in all Editor panels. Note 7: Connection panels animate a +
button. Note 8: Added a label to the left of the script dropdown and hidden the help
text in a popup. Note 9: Added an explicit save button and moved delete behavior
into a popover no longer requiring applying states to delete them. Note 10: Renamed
delete button to read ‘Delete...’. Note 11: Renamed delete button to read ‘Manage’.

feedback from participants, and moderator observations. Logs and copies of the
prototype were stored per participant to help track change over time.

Results & Discussion Seven participants took part in the experiment. Each
participant interacted with an iPad Pro acting as a real-time preview of the pro-
totype, controlled by the moderator. Fig. 1 shows the problems that participants
P1-P7 encountered and changes made to mitigate them. If a cell is empty, the
problem was not encountered by the participant. Shaded cells represent a corre-
sponding change being used. A summary of key changes follows with a sample
of the final refined interface shown in Fig. 2.

Artboard button In T10, P1 incorrectly assumed the icon button on Artboards
was for closing and only clicked after guessing. The icon was updated to be less
ambiguous and no others experienced troubles.

Node creation Creating nodes, tested in T3, was done via the Canvas’ context
menu. P3 suggested adding physical buttons, which was implemented by adding
an array of icon buttons to the Toolbar. These buttons could be clicked on
or dragged from into the Canvas, with their different interaction method being
distinguished by dotted outlines. All following participants used the buttons over
the context menu, and all correctly identified the drag-drop behavior.

Frames Frames, tested in T4, were originally created using the Canvas’ con-
text menu and didn’t take into account selections. P1 suggested autofitting to
selection, which was added to the prototype and the task text updated accord-
ingly. P3 required assistance with creation but no change was made as their
thought process greatly increased complexity and was contradictory to estab-



6 D. Green et al.

lished paradigms. P4 suggested adding a button for Frames to the toolbar, after
which all participants used this button over the context menu.

Adding links Adding links to nodes could originally be done only through a
context menu, and was tested in T17. P2 and P3 struggled with adding links. A
fix was introduced to reveal a hidden ‘+’ button on the node’s connection panel
upon hover. All following participants defaulted to the new hover functionality.
Outliner The Outliner originally displayed nodes made by the user only. In T8,
participants had to identify types of nodes in the Canvas, with P2 using the
Outliner hierarchy to help them, but incorrectly identified some. To help distin-
guish between the types, a parent ‘Main Group’ was added to the Outliner. After
adding this extra context, participants were able to identify all types without
trouble, using the Outliner as a reference.

Node Templates Creation and insertion of Node Templates was refined in
tasks 13 and 14. The insert button, originally labeled ‘+ Node Template’, was
identified by P1 as creation. The label was changed to ‘Insert Node Template’
and a context menu alternative was added to the Canvas. After these changes, no
participants had trouble inserting them. Creation was done in an editor window
using a context menu on an item list. This was problematic for P1 as the purpose
of the list was unclear. The solution involved adding labeled headers to all item
lists, and as a suggestion from P2, adding an explicit ‘+’ button to the headers as
an alternative to context menus. The labeled headers were then added to every
list for all editor windows. After these changes, no participants had trouble
creating elements, and most defaulted to the ‘4’ buttons in the headers.

Node properties Editing of node properties, refined in T6, was originally done
by double clicking a node to show a temporary floating window. P1 suggested
that the popup should be detachable, remaining permanent unless closed. P2
and P3 instead expected double clicking to edit a node’s label in-place, so the
behavior was changed and opening properties was demoted to the context menu.

eo0e Script

{} Variable Editor

Fig. 2. A snapshot of the refined authoring tool design with an editor window open.



A Novel Design Pipeline for Authoring Tools 7

Half of the remaining participants double clicked the node to edit its label, with
the other half preferring to use the properties panel.

Scripts All script editor panels have a collapsible error list, looked at in T23. P1
suggested that the clarity could be increased by adding a colored bar and icon
to reinforce that it shows errors. After this change, all participants identified its
function correctly. T28 looked at a node’s custom scripts, which are edited in a
dedicated window for that node. P1-P3 were unable to change which script was
being edited without assistance. This was fixed by better labeling the dropdown
used to select scripts, and by expanding upon yet counter-intuitively hiding the
help text behind an info button. With these changes, all following participants
read the help text and had no trouble selecting and assigning custom scripts.
Simulator Variables The Simulation window highlights variables that impacts
outputs or sibling triggers, and was tested in T32. P2 was unable to identify
this relationship, but upon discussion they decided it was misinterpretation of
colors. It was decided to not make changes until further occurrences, of which
none happened, and as such this was treated as an outlier.

Simulator Variable States T32 had participants complete a number of steps
relating to variable state management in the Simulator window using a small
desktop application that mimicked the states panel in the prototype. Initially,
this was done with a single editable combobox and delete button, with deletion
requiring assignment of a state first. P2 and P3 found the behaviors confusing.
With their feedback, an explicit save button was added (although placebo, as it
functioned identically to submitting in the combobox) and deleting was changed
to show a popup to select what to delete rather than deleting the current state.
All following participants were able to complete the tasks, even though the un-
derlying functionality didn’t change. However, P4 still hesitated with deleting,
and after discussion, the delete button was suffixed with ellipsis to suggest fur-
ther action. P5 and P6 hesitated less, so the label was changed one last time
to read ‘Manage’. This change appeared successful, as P7 did not hesitate at
all, and the terminology used allows for further expansion of state management
rather than only deleting.

Recordings After P6, a Recordings feature was added to the Simulation window
without disturbance of other features to allow capture and playback of story
traversals to better support users in their testing and to reduce human error.
Its design largely copies that of variable states, which had already been greatly
refined. Corresponding tasks to test this were also added. The RITE method is
flexible enough to allow for modifications like this, as long as there is a followup to
the changes. P7, who went through the new tasks, had no trouble explaining and
operating the feature, and explicitly commented upon its similarity to variable
states, saying that they found this intuitive as a result.

3 Conclusions

In this work we have identified a gap in existing authoring tool research con-
cerning formal UX design pipelines. We present our own pipeline for authoring



8 D. Green et al.

tool UX design and show through a case study of our own tool design how it has
helped us to refined the UX. Following our design pipeline will cover identifica-
tion of potential users and requirements of the tool, exploration and ideation of
early designs, and refinement of the designs to be ready for implementation, at
all stages considering the user. We demonstrate the potential of the pipeline by
walking through our own application of it in the creation of our own authoring
tool design. We were able to identify, report on, and fix usability problems that
we otherwise would not have noticed, especially if creating the design without
involving users. For example, the Scripts window in our tool is core to the model,
but the RITE process demonstrated that users found the initial design confusing.
Without this we may have mistakenly assumed that this was clear.

Our contributed design pipeline is composed of various user research method-
ologies that we believe are best suited to our needs, yet remain the most flexible
for the design of other future authoring tools. However, as established earlier the
specific methodologies used will depend on the context of the tool being devel-
oped. Our intent with this contribution is not to insist on a single UX design
pipeline but rather to confirm their value to IDN authoring tools, and how one
might be developed in a similar context.

References

1. Bernstein, M.: Storyspace 1. In: Proceedings of the Thirteenth ACM Conference
on Hypertext and Hypermedia. pp. 172-181. ACM (2002)

2. Bromley, S.: Interviewing Players. In: Games User Research. Oxford University
Press (2018)

3. Desurvire, H., El-Nasr, M.S.: Methods for Game User Research: Studying Player
Behavior to Enhance Game Design. IEEE CG&A 33(4), 82-87 (2013)

4. Green, D., Hargood, C., Charles, F.: Contemporary Issues in Interactive Story-
telling Authoring Systems. In: ICIDS. pp. 501-513. Springer (2018)

5. Green, D., Hargood, C., Charles, F.: Novella 2.0: A Hypertextual Architecture for
Interactive Narrative in Games. In: Proceedings of the 30th ACM Conference on
Hypertext and Social Media. HT 19, ACM (2019)

6. Hamm, M.J.: Wireframing Essentials. Packt Publishing Ltd (2014)

7. Heussner, T., Finley, T.K., Hepler, J.B., Lemay, A.: The Game Narrative Toolbox.
CRC Press (2015)

8. Koenitz, H.: Three Questions Concerning Authoring Tools. In: AIS, ICIDS (2017)

9. Martens, C., Igbal, O.: Villanelle: An Authoring Tool for Autonomous Characters
in Interactive Fiction. In: Interactive Storytelling. pp. 290-303. Springer (2019)

10. Medlock, M.: The Rapid Iterative Test and Evaluation Method (RITE). In: Games
User Research. Oxford University Press (2018)

11. Medlock, M., Wixon, D., Terrano, M., Romero, R., Fulton, B.: Using the RITE
Method to Improve Products: A Definition and a Case Study. UPA 51 (2002)

12. Millard, D.E., Hargood, C., Howard, Y., Packer, H.: The StoryPlaces Authoring
Tool: Pattern Centric Authoring. In: AIS, ICIDS (2017)

13. Muller, M., Kuhn, S.: Participatory Design. Communications of the ACM 36(6),
24-28 (1993)

14. Spierling, U., Szilas, N.: Authoring Issues beyond Tools. In: Interactive Storytelling.
pp. 50-61. Lecture Notes in Computer Science, Springer (2009)



	A Novel Design Pipeline for Authoring Tools

