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Abstract 25 

 26 

Invasions of alien fishes can result in considerable consequences for native biodiversity, including 27 

local extinctions of native species through genetic introgression. In Italy, the alien European barbel 28 

Barbus barbus was first detected in 1994. It has since undergone range expansion, raising 29 

conservation concerns on their impacts on endemic Barbus species, including Barbus plebejus and 30 

Barbus tyberinus. Here, the genetic and phenotypic consequences of B. barbus invasion in the 31 

Tyrrhenian and Adriatic basins of central Italy were assessed by comparing ‘invaded’ with 32 

‘uninvaded’ river sections that remain free of B. barbus due to barriers preventing their upstream 33 

dispersal. In both basins, uninvaded sites were confirmed as B. barbus free, but the endemic 34 

populations had low genetic variability. In the invaded sections, haplotype and nucleotide diversity 35 

was relatively high, with introgression skewed towards B. barbus genes, with the Barbus populations 36 

comprising of only 4 % and 23 % of pure autochthonous B. tyberinus and B. plebejus respectively. 37 

Relatively high morphological differentiation was apparent between pure B. tyberinus and hybrid 38 

forms, whilst differences were less apparent between pure B. plebejus and their hybrid forms. Thus, 39 

the endemic Barbus only persist in areas that remain free of invasive B. barbus, with this only due to 40 

river structures that impede their upstream movements. As these structures also limit the effective 41 

population size of the endemic Barbus, conservation plans must reconcile B. barbus dispersal 42 

prevention measures with the need to increase the population connectivity of the endemics.  43 

  44 
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Introduction 45 

 46 

The invasion of freshwater ecosystems by alien fishes can result in considerable consequences for 47 

native biodiversity, including local extinctions of endemic and native species (Gozlan et al. 2010; 48 

Jackson et al. 2017; Mollot et al. 2017). These consequences can result from the trophic interactions 49 

of the invader with native species that lead to increased predation and competition pressure (David et 50 

al. 2017; Jackson et al. 2017), the foraging behaviours of the invader that modify the habitat 51 

characteristics through ecological engineering (Mollot et al. 2017), and the transmission of novel 52 

pathogens (Sheath et al. 2015). In addition, genetic introgression between the invader and native 53 

species can result in the loss of genetic integrity of populations of ecologically important native 54 

species (Hanfling et al. 2005; Hayden et al. 2010; Meraner et al. 2013; Geiger et al. 2016). 55 

Consequently, invasive alien fish represent a considerable global challenge, requiring effective 56 

management and regulation (Pimentel et al. 2000; Dlugosch and Parker 2008; Estoup and Guillemaud 57 

2010).  58 

 59 

The management and regulation of invasive species can be strongly informed by their invasion 60 

genetics (Hänfling 2007). Information on the introduction history of the invader, its biogeographic 61 

source, population connectivity, and mixing of the species in both the native and invasive range can 62 

inform knowledge on its genetic diversity in the invasive range, how this diversity varies spatially, 63 

and help identify the introduction pathways (e.g. Lawson Handley et al. 2011; Bock et al. 2015; 64 

Hardouin et al. 2018). A further genetic consideration is where the invasion process is being 65 

facilitated by hybridization, where the invader is undergoing introgression with populations of 66 

taxonomically similar native species. This can result in the rapid evolution of invasiveness, with a 67 

consequent loss of native genetic diversity and locally adapted genotypes (Rhymer and Simberloff 68 

1996; Brennan et al. 2014; Bock et al. 2015; Morais and Reichard 2018). This is particularly common 69 

in fish, especially in species of the Cyprinidae family (Scribner et al. 2001), where the widespread 70 
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incidence of interspecific hybridization among closely related species has been widely observed 71 

(Scribner et al. 2001). This potentially leads to new invasive hybrid lineages that may out-compete 72 

native parental genotypes through the production of more vigorous hybrids (Hanfling 2007). It can 73 

also result in higher adaptive capacity to altered environmental conditions that are driven by 74 

anthropogenic exploitation of the freshwater resources (e.g. habitat fragmentation due to dam and 75 

weir construction, increased environmental pollution) (e.g. Oziolor et al. 2019). 76 

 77 

These issues of invasion hybridisation and genetic introgression are increasingly apparent in Italian 78 

river basins where, during the last century, environmental degradation has increased dramatically at 79 

a time when there has also been multiple and recurrent introductions of freshwater fishes, especially 80 

of cyprinid fish species (Gherardi et al. 2008; Castaldelli et al. 2013; Bianco, 2014; Carosi et al. 81 

2017a; Lanzoni et al. 2018). Introductions of cyprinid fishes have resulted in ecological impacts 82 

including trophic niche overlap, habitat shifts, and extirpations of native populations (Vilizzi 2012). 83 

There have also been frequent events of genetic introgression between native and exotic species 84 

(Kottelat and Freyhof 2007). This is especially the case between co-generic Barbus species, with the 85 

recent introduction of the exotic European barbel Barbus barbus (Linnaeus, 1758) resulting in 86 

introgression with endemic Barbus species (Meraner et al. 2013; Zaccara et al. 2014). The European 87 

barbel, a fluvio-lacustrine cyprinid naturally distributed in central Europe (e.g. Danube basin), has 88 

habitat preferences of medium-large flowing rivers that are characterized by laminar flows and 89 

relatively warm temperatures (Kottelat and Freyhof 2007). These habitat preferences are shared with 90 

endemic Italian barbels (common barbel Barbus plebejus Bonaparte, 1839 and Tiber barbel Barbus 91 

tyberinus Bonaparte, 1839). The natural distributions of these Italian endemic barbel vary; B. plebejus 92 

inhabits the Adriatic basins of Padano-Venetian district (PV), while B. tyberinus is present in 93 

Tyrrhenian basins within the Tuscany-Latium district (TL) (sensu Bianco 1995). Barbus barbus was 94 

first reported in Italian waters in 1994 in the Po River, with the species surmounting the Alps through 95 

‘mixed cyprinid stocking’ events (Meraner et al. 2013). Its subsequent range expansion and invasion 96 
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of several Italian river basins has been assisted by unregulated releases by recreational anglers 97 

(Zerunian 2002). In the Po River, impacts of hybridization between B. barbus and endemic Barbus 98 

species has been well documented (Meraner et al. 20013; Zaccara et al. 2014; Piccoli et al. 2017). 99 

Since 1998, B. barbus has been present in the Tyrrhenian and Adriatic basins of central Italian 100 

peninsula (Mearelli et al. 2000), where its hybridization with native B. plebejus and B. tyberinus is 101 

considered likely (Buonerba et al. 2015; Carosi et al. 2017b).  102 

 103 

The aim of this study is, therefore, to use the river basins of central Italy that are populated by B. 104 

plebejus and B. tyberinus to assess their genetic and phenotypic responses to the invasion of B. 105 

barbus. Through molecular and morphological assessment of barbels in these basins, important 106 

knowledge on the impact of invasive B. barbus will be generated that can then be used by policy-107 

makers and practitioners to limit its further diffusion, including of its hybrid forms.  108 

 109 

Materials and methods 110 

 111 

Sampling locations and methods 112 

Pure populations of B. tyberinus and B. plebejus, and populations in basins where B. barbus is present, 113 

were sampled in the Tyrrhenian (Tiber River) and Adriatic (Metauro River) basins respectively (Fig. 114 

1, Table 1). In these rivers, both uninvaded and invaded areas have recently been recorded (Zaccara 115 

et al. 2019b). In both basins, one invaded and one uninvaded site was selected. In the Tiber basin, the 116 

invaded B. tyberinus site was in the Paglia River (here after referred as TLi), where B. barbus has 117 

been recorded since 1998 (Carosi et al. 2017b). The non-invaded site in the Tiber river was in the 118 

Montacchione Stream (here after referred as TLp), a tributary of the Paglia River that is isolated from 119 

the main channel by the presence of two weirs with a head of approximately 2 m that prevents the 120 

upstream movement of B. barbus (Carosi et al. 2017b; Zaccara et al. 2019b). In the Metauro River 121 

basin, invaded B. plebejus were collected from the Candigliano River, where B. barbus has been 122 
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present since 2005 (Lorenzoni et al. 2006). The non-invaded site was the upper section of the Metauro 123 

River basin (i.e. Bosso Stream, here named PVp), that was isolated from B. barbus invasion by three 124 

weirs with heads of between 0.4 and 1 m (Zaccara et al. 2019b). In general, these tributaries are 125 

characterised by highly variable flow regimes, especially in summer where flows can be very low 126 

due to a combination of drought and abstraction (for irrigation and hydropower production). 127 

 128 

The Barbus populations were sampled at each site using electric fishing during July 2019. Following 129 

their capture, fish were held in aerated tanks of water. Then, under general anaesthesia (MS-222), 130 

fish were photographed (left side; Nikon D300 camera (24–85 mm lens) positioned by a tripod on a 131 

table with a millimetric scale), measured (total length, nearest mm), weighed, and a biopsy of the 132 

caudal fin taken from a sub-sample of each population (approximately 20 specimens per site). The 133 

fin clips were preserved in 90% ethanol and stored at 4°C prior to DNA extraction. Following their 134 

recovery to normal behaviour, the fish were released to their approximate location of capture.  135 

 136 

Morphological analyses 137 

A total of 167 fish were used for morphological analyses. From their images, eight morphometric and 138 

four meristic traits were analysed (sensu Zaccara et al. 2019a; Supplementary material: Fig. S1A), 139 

with their phenotypic characters (spot/dot/pigmentation presence on the body, and all fins and fin 140 

colour) also recorded. Twenty-eight landmarks (LMs) were used for geometric morphometric 141 

analyses of body shape within the R Geomorph function “digitize2d” (Adams et al. 2018; Fig. S1B). 142 

In the images, the positioning of caudal fin was important in ensuring their associated LMs could be 143 

used in these analyses (17-28; see supplementary material Fig. S1B). Generalized Procrustes analysis, 144 

as implemented in MorphoJ software (Klingenberg 2011), removed any non-shape variation that had 145 

resulted from variation in fish position, orientation, and size. In the same software, shape variations 146 

between the four populations were analysed by canonical variate analyses (CVA), with Mahalanobis 147 

distances calculated using permutation tests (10,000 replicates). Morphometric traits were 148 
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standardized to the overall mean standard length to reduce the effects of size and allometry (Beacham 149 

1985). Pairwise comparison on morphological traits between the four populations was performed 150 

using analysis of variance (ANOVA) and Tukey post hoc tests, as implemented in PAST software 151 

(Hammer et al. 2001). 152 

 153 

Molecular analysis and DNA polymorphism 154 

Total genomic DNA was extracted from 102 individuals using a proteinase K digestion, salting-out 155 

method (Aljanabi and Martinez 1997). Mitochondrial control region (D-loop) sequences were 156 

amplified by polymerase chain reaction (PCR) using D-loopsxF and D-loopdxR (Antognazza et al. 157 

2016) primer pairs, with an 869bp length fragment analysed. As Barbus species are tetraploid, we 158 

sequenced the nuclear DNA (nDNA) growth hormone paralog-2 (GH-2) using specific primers 159 

developed for other European species of Barbus and Luciobarbus (F- 160 

GTACTATAGTAAGCAGAAATGG and R- AGTGGSAGGGAGTCGTTC; Gante et al. 2011). The 161 

GH-2 locus was selected as it is polymorphic and suitable for phylogenetic and population genetic 162 

analyses (Moyer et al. 2009; Gante et al. 2011; Buonerba et al. 2015).  163 

 164 

Both PCR reactions were performed using Multiplex PCR kits (Qiagen) in 10 μl reaction volumes 165 

that contained approximately 10 ng of template DNA and 0.25 μM of each primer pair. Thermal 166 

cycling was performed as follows: denaturation of 15 minutes at 95 °C, followed by 30 cycles (D-167 

loop) and 35 cycles (GH-2) of 30 s at 94 °C, 90 s at 55 °C and the extension step at 72 °C for 90 s, 168 

with the final elongation at 72 °C for 10 min. PCR products were purified using ExoSAP-IT™ (USB) 169 

and directly sequenced by MACROGEN Inc (http://www.macro gen.org) using a 3730XL DNA 170 

Sequencer. The nucleotide sequences of mitochondrial D-loop haplotypes and nuclear GH-2 alleles 171 

were deposited in the GenBank database (Accession numbers: MT385872-MT385896 for the D-loop 172 

and MT385897-MT385938 for the GH-2). 173 

 174 
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Alignment of all sequences was carried out automatically by Clustal W (Thompson et al. 1994), as 175 

implemented in Bioedit software (Hall 1999), and further checked manually to eliminate remaining 176 

ambiguities. For the nuclear locus, the individual fish that were exclusively characterised by single 177 

nuclear polymorphisms (SNPs) (i.e. homozygotes for one barbel species) were solved by phasing the 178 

sequences using DNAsp (Librado and Rozas 2009), while specimens with alleles of different lengths 179 

due to insertions or deletions (indels) (i.e. interspecific heterozygotes) were manually phased by 180 

analysing the forward and reverse sequences, as detailed in Flot et al. (2006). Genetic variability was 181 

estimated for each species by calculating the number of haplotypes (h), the number of polymorphic 182 

sites (S), the haplotype diversity (H), and the mean number of nucleotide differences (π) for both D-183 

loop mtDNA and the GH-2 nDNA locus, using DNAsp software (Librado and Rozas 2009). 184 

 185 

Phylogenetic analyses 186 

Maximum likelihood (ML) and Bayesian inference (BI) methods were used for all phylogenetic 187 

analyses inferred on both the D-loop and GH-2 datasets. The best-fit nucleotide substitution model 188 

was selected by the corrected Akaike Information Criterion (AICc) in jModeltest 2.1.7 (Darriba et al. 189 

2012). For the D-loop dataset, the model used was HKY+I+G, while HKY+I was employed for the 190 

GH-2 dataset. ML analyses were performed using GARLI software (Zwickl 2006; Bazinet et al. 2014) 191 

with 1000 bootstrap replicates (i.e. btp). The BI was applied using MrBayes v.3.2.6 (Ronquist et al. 192 

2012), with four independent runs (106 generations with a sampling frequency of one tree for every 193 

100 generations), each with four chains (three hot and one cold). All runs reached convergence 194 

(average standard deviation of split frequencies below 0.01). The posterior distribution of trees was 195 

summarized in a 50% majority rule consensus tree (burn-in of 25%), with statistical support expressed 196 

as posterior probability (i.e. pp).  197 

 198 

To definitively establish the phylogenetic taxonomic attribution of the Barbus samples (i.e. 199 

differentiating the native and non-native individuals) (Tsigenopoulos et al. 2002), diagnostic 200 
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sequences of native B. plebejus and B. tyberinus (Buonerba et al. 2015; Zaccara et al. 2019b), and of 201 

the alien B. barbus (detected from pure allopatric populations from English basins (Antognazza et al. 202 

2016) and Italian basins (Zaccara et al. 2019b)) were retrieved from GenBank. These data were 203 

included in the analyses of both the mitochondrial and nuclear datasets (see supplementary material 204 

Table S1 and Table S2 for D-loop and GH-2 sequences used respectively). This step also enabled 205 

possible introgression between the endemic and invasive Barbus to be traced. Two rheophilic Barbus 206 

species were selected as outgroups: Barbus meridionalis Risso, 1827 (AJ388417) for D-loop and 207 

Barbus caninus Bonaparte, 1839 (KF963432) for GH-2. A minimum spanning network was also 208 

created from both D-loop and GH-2 multiple alignment using a statistical parsimony criterion, as 209 

implemented in PopART v 1.7 software (Leigh and Bryant 2015). 210 

 211 

Population genetic structure 212 

For each sampling site, allelic polymorphisms, expressed as nucleotide diversity index (π), were 213 

calculated for each species using DNAsp software. To compare the connectivity between populations 214 

within the Tyrrhenian and Adriatic basins (B. tyberinus and B. plebejus respectively), and between 215 

invaded Tyrrhenian and Adriatic sampling sites (B. barbus), the genetic differentiation was tested 216 

using the fixation index ΦST (Weir & Cockerham 1984). Its significance (p<0.05) was assessed by 217 

permuting haplotypes between populations 3,024 times, as implemented in Arlequin v 3.5 (Excoffier 218 

and Lischer 2010).  219 

 220 

Results 221 

 222 

Morphological analyses 223 

The canonical variate analyses (CVA) plot revealed the four populations clearly separated along the 224 

CV1 axis, with TLi individuals distinct from individuals in the other three groups (Fig. 2). This axis 225 

explained shape variations associated with the head, caudal fin and body depth. In TLi, the specimens 226 
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(identified genetically as hybrids B. tyberinus x B. barbus) had deeper bodies and longer snouts with 227 

a different mouth orientation (i.e. ventral) and longer tail lobes. Specimens from the pure B. plebejus 228 

and B. tyberinus populations (PVp and TLp, respectively) were separated along the CV2 axis, where 229 

shape variations were in head, caudal fin and body depth: TLp fish displayed more fusiform and 230 

slender bodies, smaller heads and caudal lobes both smaller and more rounded compared to PVp fish. 231 

Even here, the main source of variation referred to the fish head and caudal fin that was both shorter 232 

and more rounded in TLp than in PVp individuals. The group of fishes from PVi partially overlapped 233 

with the PVp group. The maximum Mahalanobis distance (9.4) was between the TLi and the other 234 

three populations, while the minimum value (6.6) was recorded between PVp and PVi populations.  235 

 236 

As morphometric traits, pre-orbital distance (POD) was significantly longer in PVi and TLi 237 

specimens than in fish from the other two sites (Tukey, p<0.05; Table 2). The length of ventral fin 238 

(LVF) and the height of the first dorsal fin ossified ray (HDOR1) differed significantly between all 239 

the four populations (Tukey, p<0.05), with increasing values from TLp, PVp, and PVi, up to TLi fish. 240 

The length of the pectoral fin (LPF) was significantly different in the TLp fish to the other sites 241 

(Tukey, p<0.05), except those from TLi. The number of scales on the lateral line (NSLL) and above 242 

the lateral line was significantly lower in TLp and TLi specimens (Tukey, p<0.05), while NSLL was 243 

significantly higher in the PVp specimens (Tukey, p<0.05) (Table 2).  244 

 245 

All of the fish from PVi and TLi had scales with pigmentation on the edge and most also had dots 246 

(Table 3). In contrast, some fish from TLp had spots on the body and with the ventral and anal fins 247 

being different colours (Table 3); along with almost half of the TLi specimens, they also had a grey 248 

dorsal fin. Moreover, the caudal fin was mostly grey/orange in these TLp individuals, while it was 249 

orange in individuals from PVp (Table 3). 250 

 251 

Phylogenetic attribution  252 
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The complete D-loop alignment, obtained from 102 barbels, consisted of a total length of 869 bp that 253 

identified 25 haplotypes. The multiple alignment of 188 GH-2 sequences, obtained from 94 barbels 254 

(GH-2 sequencing failed for 8 fish), identified 42 haplotypes. Sequence analyses of the GH-2 nuclear 255 

locus yielded a 1030 bp-long alignment, where several indels of different length (1 bp up to 95 bp) 256 

were assumed to maximize base identity in flanking conserved sequence blocks (see Table 4). The 257 

maximum likelihood and Bayesian phylogenetic analyses performed on the D-loop and GH-2 datasets 258 

(including ‘reference sequences’ from GenBank of the native and non-native species; Tables S1, S2), 259 

provided congruent tree topology. This revealed three evolutionary lineages that were attributed to B. 260 

plebejus, B. tyberinus and B. barbus (Fig. 3a, b) and  allowed the assignment of our novel sequences 261 

to native and non-native barbels. Specifically, the B. plebejus, B. tyberinus and B. barbus clades were 262 

largely supported by both the mtDNA and nDNA data (pp > 0.9) (Fig. 3a,b). Among the 25 263 

mitochondrial D-loop haplotypes, 7 and 3 haplotypes clustered as B. plebejus and B. tyberinus 264 

respectively, and 15 as B. barbus; among the 42 GH-2 haplotypes, 17 were B. plebejus, 8 were B. 265 

tyberinus and 17 were B. barbus .  266 

 267 

Genetic variability and Minimum spanning network 268 

The mitochondrial and allelic diversity varied considerably among the species; B. barbus had the 269 

highest levels of nuclear and mitochondrial polymorphism (H = 0.77 and π = 0.50%; H = 0.86 and π 270 

= 0.31 respectively), whereas the lowest levels were recorded in B. tyberinus (H = 0.57 and π = 271 

0.08%; H = 0.12 and π = 0.05 respectively) (Table 4). In the network analyses of B. barbus D-loop 272 

and GH-2 haplotypes (n = 15 and 17 respectively), the most frequent haplotypes (Bbar01 and HBB01, 273 

respectively) were shared in both the Adriatic (PVi) and Tyrrhenian (TLi) invaded sampling sites 274 

(Fig. 4). This pattern was also reflected in two more D-loop haplotypes (Bbar09 and Bbar23) (Fig. 275 

4). There were 4 and 5 private haplotypes detected at PVi in the GH-2 and D-loop dataset respectively 276 

(Fig. 4A), whilst 12 and 7 private haplotypes were detected in these at TLi, all separated by up to 15 277 

mutational steps (Fig. 4B).  278 
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 279 

Status of B. barbus invasion within Tyrrhenian and Adriatic basins  280 

The nuclear and mitochondrial genetic composition of each population are in Figure 1, with the 281 

haplotype distribution and frequencies provided in Supplementary material (Table S3 and Table S4 282 

for D-loop and GH-2 respectively). Mitochondrial and nuclear sequences obtained from PVp and 283 

TLp populations confirmed the absence of B. barbus haplotypes and the exclusive presence of B. 284 

plebejus and B. tyberinus haplotypes respectively (Fig. 1, Table S3, Table S4). In contrast, in the PVi 285 

and TLi populations, all of the D-loop sequences (i.e. 26 and 29 respectively) belonged to the B. 286 

barbus clade, while the allelic frequency of GH-2 B. barbus sequences ranged between 46 and 79 % 287 

respectively (Fig. 1, Table 5). The nuclear sequences thus revealed different admixture between 288 

native and alien species, from hybrids (34 % B. barbus x B. tyberinus in TLi; 62 % B. barbus x B. 289 

plebejus in PVi) to pure strains for B. barbus haplotypes (62 % and 15 % in TLi and PVi, 290 

respectively). Only 4 % and 23 % showed both GH-2 alleles for B. tyberinus and B. plebejus 291 

respectively (see Table 5).  292 

 293 

Values of molecular indices (haplotype and nucleotide diversity) were lowest in both native B. 294 

plebejus and B. tyberinus pure populations (i.e. PVp and TLp respectively), and were highest in mixed 295 

populations (PVi and TLi) for both native and exotic alleles (Table 6). Genetic differentiation 296 

between pure populations of the native species and introgressed populations were all significant: i) in 297 

B. plebejus between PVp and PVi (ΦST = 0.22; p<0.001); and ii) in B. tyberinus between TLp and 298 

TLi (ΦST = 0.24; p < 0.001). Major values of genetic differentiation were also recorded between B. 299 

barbus in PVi and TLi (ϕST=0.51; p<0.001). 300 

 301 

 302 

 303 

 304 
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Discussion 305 

 306 

The morphological and genetic results confirmed hybridization between the endemic and alien 307 

Barbus species in the main watercourses of both the Tyrrhenian and Adriatic basins of central Italy. 308 

However, in areas of these watercourses that were considered inaccessible to B. barbus due to 309 

structures in the river preventing their upstream movement, the results revealed the persistence of 310 

‘pure’ B. tyberinus and B. plebejus populations, so confirming the uninvaded status of these areas.  311 

 312 

A complex of cryptic species, the Barbus complex in Italy has high morphological similarity that 313 

prevents their straightforward taxonomic differentiation in the field (Geiger et al. 2016; Zaccara et al. 314 

2019a). This similarity is likely to have resulted from an evolutionary lack of divergence that was 315 

driven by the ecological uniformity of Italian rivers (Livi et al. 2013; Buonerba et al. 2015; Geiger et 316 

al. 2016; Zaccara et al. 2019b). Introductions of the ecologically analogous and alien B. barbus, which 317 

has high potential for genetic introgression with congeners, generated confusion in taxonomic 318 

identification, especially when their hybrid morphological traits are rarely described (see Geiger et 319 

al. 2016). While any descriptions of hybrid versus pure species morphologies should be treated 320 

cautiously, as they were based on just on a mitochondrial marker and one nuclear genetic locus, there 321 

was strong separation between the native fluvio-lacustrine barbel phenotypes that enabled an initial 322 

and tentative morphological description of the hybrids to be made. These revealed that the Barbus 323 

species inhabiting the Tyrrhenian slope (i.e. B. tyberinus in TLp) were characterized by more fusiform 324 

and slender bodies with a smaller head, different mouth orientation (sub-ventral) and shorter and 325 

more rounded tail lobes. These morphological variations also distinguished the hybrid phenotypes 326 

from the endemic morphotypes (i.e. B. tyberinus, B. plebejus), with differences more marked for 327 

hybrids in the Tiber River system than those inhabiting the Adriatic slope. Fish in TLi showed the 328 

greatest morphological differentiation from that of the reference native species (i.e. B. tyberinus in 329 

TLp), while barbels from PVi showed little differentiation from the corresponding endemic 330 



 14 

morphotype (i.e. B. plebejus in PVp). For the other morphological traits, the pre-orbital distance and 331 

the length of the first ossified dorsal ray and ventral fins were lower in B. tyberinus and B. plebejus, 332 

with the highest values measured in the hybrid morphotypes. Correspondingly, across this 333 

morphological gradient, the hybrids tended to have more extreme benthic specialized forms (e.g. 334 

having longer snouts and ventral mouths, deeper bodies and longer dorsal, ventral and caudal fins). 335 

Similarly, a cline was observed in the number of scales along the lateral line, a commonly used 336 

meristic trait for discriminating between Barbus species (Bianco 2003a,b; Lorenzoni et al. 2006; 337 

Kottelat and Freyhof 2007). The  lowest scale number was in the Tiber pure population (i.e. 53-59) 338 

and the highest in the B. plebejus populations (i.e. 61-67), with hybrids showing intermediate values 339 

that match those for invasive B. barbus (from literature 53-62; Kottelat and Freyhof 2007). Finally, 340 

hybrids were characterized by the pigmentation of the scale edge, a trait typical of the alien Barbus, 341 

but that was absent in the Italian endemics.  342 

 343 

The genetic pattern of both pure populations, characterised by low variability and dominated by just 344 

one haplotype, suggest recent periods of low effective population size, promoting local genetic drift 345 

(Grant and Bowen 1998). This is supported by general natural population reductions that have 346 

resulted from angler exploitation and, especially, from hydrological fluctuations in summer when 347 

scarce rainfall and excessive water abstraction cause widespread river droughts. Furthermore, the fish 348 

populations in the upstream areas have become increasingly isolated due to the construction of 349 

numerous barriers (mainly weirs) that impede their movements. This has limited their spawning 350 

migrations and restricted geneflow between downstream and upstream areas, reducing the dispersion 351 

of private haplotypes of native species that have remained confined to downstream populations, and 352 

generally reducing the genetic variability of upstream populations. Nevertheless, these barriers have 353 

also appeared beneficial by preventing the further upstream dispersal of B. barbus.  354 

 355 
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Conversely, the genetic signal of invasive B. barbus (high H and low π), which was similar in both 356 

Adriatic and Tyrrhenian populations, was consistent with a recent invasion history (started in the 357 

1990s) that started with several haplotypes. The invasion of both basins probably occurred as a result 358 

of the general practice of ‘multiple introductions’ of fish for angling (i.e. multiple founder events) 359 

(Meraner et al. 2013). Although these anthropogenic actions initially favored the fast spread of B. 360 

barbus, its more recent range expansions have been through natural diffusion in the downstream areas 361 

of these rivers. 362 

  363 

Although evidence for introgression does not necessarily mean that there has been displacement of 364 

one species by another one (or even that it shows the the ability to do so), we did detect that  B. barbus 365 

has invaded and largely displaced native congeners through introgression, and producing only small 366 

- but distinct - morphological changes in the invaded populations (as described above). In contrast to 367 

the Adriatic basin (i.e. Metauro River, PVi), B. barbus alleles in the Tyrrhenian basin (i.e. Paglia 368 

river, TLi) strongly outnumbered the native alleles that were detected exclusively in a low number of 369 

fishes. This nearly complete genotype and phenotypic displacement of the endemic Tiber barbel by 370 

B. barbus may be due to several factors. The first is the hydrographic structure. The Tiber River basin, 371 

for which Paglia (TLi) is one of the main tributaries, has a dendritic-shaped network extended on a 372 

large surface area (17375 km2). This configuration may have favored the natural diffusion of B. 373 

barbus by allowing the fish to spread more easily to large parts of the basin using the hydrographic 374 

connections. In contrast, the Metauro River basin (PVi) has a relatively limited hydrographic network 375 

(1325 km2) and, as with all Adriatic basins of central Italy, it flows independently to the sea, limiting 376 

the ability of invasive B. barbus to disperse naturally between Adriatic rivers. A second factor may 377 

relate to resident time of the alien B. barbus in the two basins. The higher number of introgressed fish 378 

in PVi population is indicative of the more recent hybridization - after 2005 - where first generation 379 

(F1) hybrids were dominant (Meraner et al. 2013), which tend to decrease in later hybrid generations 380 

(Baack & Rieseberg 2007). Indeed, we detected the highest proportion of pure B. barbus in the Paglia 381 
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River, where the first record of B. barbus dated back to 1998. The final factor may relate to degraded 382 

water quality and habitat alteration that impacted the sustainability of the natural B. tyberinus 383 

populations in TL, providing the ecological niche space for the invasive B. barbus to utilize. It should 384 

be noted that it is likely that it was the interaction of these factors that resulted in these outcomes, 385 

rather than one factor acting in isolation. 386 

 387 

In both the Tyrrhenian and Adriatic basins, introgression was skewed toward B. barbus mtDNA. This 388 

situation has been described as a ‘mother species’ effect (sensu Wirtz 1999), which can be explained 389 

by the unequal size between the invader and the native species, where the larger females (i.e. B. 390 

barbus) are favoured in spawning rather than smaller ones (B. plebejus and B. tyberinus). Indeed, in 391 

other hybrids of the Barbus genus, the prevalence of mtDNA was observed for the larger females (B. 392 

barbus x B. meridionalis (Chenuil et al. 2004); B. barbus x B. carpathicus (Lajbner et al. 2009). This 393 

might be a consequence of a sexual selection mechanism that allows only the larger females to be 394 

fecundated or also by a higher relative fecundity of the larger species, given B. barbus females may 395 

produce more eggs than the native species (Banarescu et al. 2003; Bianco 2003a,b; Meraner et al. 396 

2013).  397 

 398 

The pattern of hybridization that resulted from B. barbus invasion can lead to adaptation through the 399 

establishment of novel genotypes and morphologies, in which the hybrids (especially in Tyrrhenian 400 

basin) are showing phenotypic traits outside of the trait range of the endemic parental species, which 401 

can be a consequence of an adaptative allele introgression (Whitney et al. 2006), or a transgressive 402 

segregation that has resulted in new traits (Rieseberg et al. 1999). The observed morphological 403 

changes may be a response to different river characteristics (i.e. level of degradation, flow regime) 404 

(e.g. Corse et al. 2009; Samways et al. 2010; Corse et al. 2015) and might be indicative of different 405 

trophic resource and habitat uses (Costedoat et al. 2007; Cunha et al. 2009). This potentially results 406 

in introgressed Barbus populations having a greater adaptive capacity and higher resilience to the 407 
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anthropogenically altered rivers than the pure endemic fish, especially as the non-native genes are 408 

derived from an ecologically analogous congener. This could help ensure the Barbus genus can 409 

continue to persist in these modified rivers in future. Indeed, many recent studies allude to the 410 

adaptive role of hybridisation (Costedoat et al. 2007; Pfennig et al. 2007; Reyer 2008; Hayden et al. 411 

2010) that can drive biodiversity responses to environmental variation (Scribner et al. 2001). 412 

Therefore, it is also possible that the introgression is leading to a species erosion process where the 413 

phenotype and genotype of the alien are prevalent when compared to the native ones due to the higher 414 

fitness of the invader driving a species substitution process (Ward et al. 2012).  415 

 416 

In conclusion, our results emphasize the importance of combining morphological (both with 417 

traditional traits and using geometric morphometrics) and genetic (analyzing both mitochondrial and 418 

nuclear DNA) approaches in the analysis of cryptic species complexes of cyprinid taxa such as Barbus 419 

spp., especially when a co-generic invader is present. It was likely that the morphologies recorded in 420 

the two populations invaded by alien B. barbus (PVi and TLi) may reflect initial and final 421 

displacement stages of the endemic morphotypes and genotypes in the Adriatic and Tyrrhenian basins 422 

respectively. This suggests that reliance on using fish body shape to identify the initial invasion stages 423 

of B. barbus is insufficient, as phenotypic differences might not be evident until the later stages of 424 

the invasion. This has important implications for the effective management for this cryptic invasive 425 

species, as it suggests it requires the use of molecular tools for its detection in the early invasion 426 

stages. Future studies should always analyse the invasion mechanisms, as these shed light on the 427 

ecological and trophic factors which facilitate widespread hybridisation. Then, the improvement of 428 

detailed morphological and genetic studies should help in identifying the parental hybrid taxa and 429 

allow the mapping of the distribution of gene flow between the endemic species and invader. This 430 

knowledge could then provide the basis of an adaptive management tool to limit B. barbus invasion 431 

and contribute to the long-term conservation of endemic barbels. 432 

 433 
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Tables  631 

Table 1: Sampling sites of B. tyberinus (uninvaded TLp and invaded TLi) and B. plebejus (uninvaded 632 

PVp and invaded PVi) populations, collected in Tyrrhenian (TL) and Adriatic (PV) basins 633 

respectively (see Fig. 1). For each site, water course and geographic coordinates are reported.  Sample 634 

size for morphological and genetic (nDNA and mtDNA) analyses are also indicated.  635 

  636 

Basin 

 

 Water course 

Pop 

ID 

Geographic coordinates Morp

hology 

mtDNA nDNA 

Adriatic   

 

Metauro Bosso PVp 43°31'3.14"N 12°33'17.89"E 

 

41 

 

25 

 

25 

 

 

Metauro Candigliano PVi 43°38'8.59"N 12°42'41.32"E 

 

40 

 

26 

 

26 

Tyrrhenian  

 

Tevere Paglia TLi  42°43'38.88"N 12° 7'43.00"E 

 

42 

 

29 

 

29 

 

 

Tevere  Montacchione TLp 42°42'44.39"N 12° 5'37.88"E 

 

44 

 

22 

 

14 

Total     167 102 94 
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Table 2. List of the measured morphometric and meristic traits, and the mean (±standard deviation) 637 

values per site for the pure B. plebejus (PVp), pure  B. tyberinus (TLp) and their hybrids (B. barbus 638 

x B. tyberinus in TLi and B. barbus x B. plebejus in PVi). Sample size is reported. 639 

  PVp 
N=41 

PVi 
N=40 

TLi 
N=42 

TLp 
N=44 

Morphometric traits (cm)      

Total length TL 17.3±4.0 14.9±5.9 15.9±3.6 16.7±5.2 

Eye diameter ED 0.7±0.1 0.6±0.2 0.6±0.1 0.6±0.1 

Pre-orbital distance POD 1.3±0.3 1.3±0.5 1.4±0.3 1.3±0.4 

Mouth-operculum distance MOD 3.5±0.8 3.1±1.2 3.2±0.8 3.3±1.0 

Length of pectoral fin LPF 2.7±0.7 2.2±0.9 2.5±0.6 2.7±0.8 

Length of ventral fin LVF 2.1±0.5 1.9±0.7 2.1±0.5 1.9±0.6 

Length of anal fin LAF 2.3±0.7 2.1±0.8 2.2±0.6 2.5±1.0 

Height of the first dorsal fin ossified ray HDOR1 2.4±0.6 2.2±0.9 2.5±0.6 2.2±0.7 

Height of the third dorsal fin ossified ray HDOR3 1.9±0.4 1.5±0.6 1.7±0.4 1.7±0.5 

Meristic traits      

Number of dorsal fin branched rays NDBR 8±0 8±0 8±0 8±0 

Number of scales on the lateral line NSLL 64±3 60±4 56±2 56±3 

Number of scales above the lateral line NSALL 13±1 13±1 12±1 11±1 

Number of scales under the lateral line NSULL 9±1 9±1 8±1 8±1 

 640 

  641 
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Table 3. List of phenotypic characters concerning spot/dot/pigmentation presence and fin colour for 642 

the barbel populations of the four sites sampled, expressed as percentages (%). 643 

 644 

Phenotypic traits  PVp PVi TLi TLp 

Dots on body 
no 100 100 100 100 
yes 0 0 0 0 

Spots on body 
no 98 92 90 66 
yes 2 8 10 34 

Scale edge pigmentation 
no 100 0 0 100 
yes 0 100 100 0 

Dots on scales 
no 73 0 17 98 
yes 27 100 83 2 

Dots on dorsal fin 
no 17 35 45 89 
yes 83 65 55 11 

Dots on anal fin 
no 100 100 95 100 
yes 0 0 5 0 

Dots on caudal fin 
no 51 40 64 70 
yes 49 60 36 30 

Ventral fin colour 
orange 100 100 100 27 
grey 0 0 0 52 
orange/grey 0 0 0 21 

Anal fin colour 
orange 100 100 100 27 
grey 0 0 0 41 
orange/grey 0 0 0 32 

Dorsal fin colour 
orange 0 5 5 0 
grey 0 5 43 86 
orange/grey 100 90 52 14 

Caudal fin colour 
orange 80 70 57 11 
grey 0 0 0 5 

orange/grey 20 30 43 84 
 645 

 646 
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Table 4 Sequence polymorphism at mitochondrial and nuclear loci per species. N: number of 647 

sequences, h: number of haplotypes excluding gaps, H: haplotype diversity, π: nucleotide diversity 648 

(expressed in %), S: number of polymorphic sites, SD: standard deviation. 649 

 650 

 651 
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Table 5. Introgression pattern of invaded populations (TLi and Pvi) detailing the mitochondrial (D-loop) and nuclear (GH-2 allelles) combinations 652 

of each sample. Haplotypes, taxonomic attribution and GenBank accession number are provided.  653 

Population sample 
ID 

hap 
Dloop Dloop taxa GB code hap 

GH2_a GH2_a taxa GB code hap 
GH2_b GH2_b taxa GB code nDNA 

alleles  
PVi Mt1 Bbar09 B. barbus MT385886 HBP01 B. plebejus MT385915 HBP01 B. plebejus MT385915 Bp/Bp 
PVi Mt3 Bbar22 B. barbus MT385892 HBP03 B. plebejus MT385916 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt4 Bbar01 B. barbus MT385882 HBP15 B. plebejus MT385918 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt5 Bbar10 B. barbus MT385887 HBP03 B. plebejus MT385916 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt6 Bbar09 B. barbus MT385886 HBB07 B. barbus MT385915 HBB07 B. barbus MT385915 Bb/Bb 
PVi Mt8 Bbar10 B. barbus MT385887 HBP13 B. plebejus MT385926 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt9 Bbar10 B. barbus MT385887 HBP17 B. plebejus MT385930 HBB10 B. barbus MT385915 Bp/Bb 
PVi Mt10 Bbar01 B. barbus MT385882 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
PVi Mt11 Bbar03 B. barbus MT385883 HBP05 B. plebejus MT385918 HBB10 B. barbus MT385915 Bp/Bb 
PVi Mt12 Bbar23 B. barbus MT385893 HBP01 B. plebejus MT385915 HBP01 B. plebejus MT385915 Bp/Bp 
PVi Mt16 Bbar23 B. barbus MT385893 HBP06 B. plebejus MT385919 HBB01 B. barbus MT385897 Bp/Bb 
PVi Mt21 Bbar09 B. barbus MT385886 HBB02 B. barbus MT385914 HBB14 B. barbus MT385915 Bb/Bb 
PVi Mt24 Bbar09 B. barbus MT385886 HBP03 B. plebejus MT385916 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt25 Bbar15 B. barbus MT385890 HBP02 B. plebejus MT385915 HBB01 B. barbus MT385897 Bp/Bb 
PVi Mt26 Bbar22 B. barbus MT385892 HBP01 B. plebejus MT385915 HBP01 B. plebejus MT385915 Bp/Bp 
PVi Mt29 Bbar10 B. barbus MT385887 HBP03 B. plebejus MT385916 HBP07 B. plebejus MT385920 Bp/Bp 
PVi Mt30 Bbar15 B. barbus MT385890 HBP09 B. plebejus MT385922 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt31 Bbar22 B. barbus MT385892 HBP02 B. plebejus MT385915 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt32 Bbar10 B. barbus MT385887 HBP10 B. plebejus MT385923 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt33 Bbar24 B. barbus MT385894 HBP11 B. plebejus MT385924 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt34 Bbar01 B. barbus MT385882 HBP12 B. plebejus MT385925 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt36 Bbar22 B. barbus MT385892 HBP01 B. plebejus MT385915 HBP01 B. plebejus MT385915 Bp/Bp 
PVi Mt37 Bbar15 B. barbus MT385890 HBB01 B. barbus MT385897 HBB10 B. barbus MT385915 Bb/Bb 
PVi Mt38 Bbar22 B. barbus MT385892 HBP08 B. plebejus MT385921 HBP01 B. plebejus MT385915 Bp/Bp 
PVi Mt39 Bbar10 B. barbus MT385887 HBP14 B. plebejus MT385927 HBB02 B. barbus MT385914 Bp/Bb 
PVi Mt40 Bbar10 B. barbus MT385887 HBP16 B. plebejus MT385929 HBB02 B. barbus MT385914 Bp/Bb 
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TLi PA01 Bbar11 B. barbus MT385888 HBT01 B. tyberinus MT385931 HBB11 B. barbus MT385907 Bt/Bb 
TLi PA04 Bbar01 B. barbus MT385882 HBB04 B. barbus MT385900 HBB05 B. barbus MT385901 Bb/Bb 
TLi PA05 Bbar16 B. barbus MT385891 HBT01 B. tyberinus MT385931 HBB06 B. barbus MT385902 Bt/Bb 
TLi PA07 Bbar13 B. barbus MT385889 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA08 Bbar05 B. barbus MT385885 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA09 Bbar23 B. barbus MT385893 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA10 Bbar01 B. barbus MT385882 HBT01 B. tyberinus MT385931 HBB03 B. barbus MT385899 Bt/Bb 
TLi PA11 Bbar01 B. barbus MT385882 HBT05 B. tyberinus MT385935 HBB01 B. barbus MT385897 Bt/Bb 
TLi PA12 Bbar01 B. barbus MT385882 HBB08 B. barbus MT385904 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA13 Bbar25 B. barbus MT385895 HBB01 B. barbus MT385897 HBB09 B. barbus MT385905 Bb/Bb 
TLi PA15 Bbar04 B. barbus MT385884 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA16 Bbar01 B. barbus MT385882 HBT07 B. tyberinus MT385937 HBB08 B. barbus MT385904 Bt/Bb 
TLi PA17 Bbar01 B. barbus MT385882 HBB03 B. barbus MT385899 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA18 Bbar01 B. barbus MT385882 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA19 Bbar09 B. barbus MT385886 HBT04 B. tyberinus MT385934 HBB01 B. barbus MT385897 Bt/Bb 
TLi PA20 Bbar04 B. barbus MT385884 HBB17 B. barbus MT385934 HBB05 B. barbus MT385901 Bb/Bb 
TLi PA21 Bbar01 B. barbus MT385882 HBT04 B. tyberinus MT385934 HBB01 B. barbus MT385897 Bt/Bb 
TLi PA22 Bbar01 B. barbus MT385882 HBB04 B. barbus MT385900 HBB03 B. barbus MT385899 Bb/Bb 
TLi PA23 Bbar01 B. barbus MT385882 HBB15 B. barbus MT385911 HBB03 B. barbus MT385899 Bb/Bb 
TLi PA24 Bbar01 B. barbus MT385882 HBT08 B. tyberinus MT385938 HBB01 B. barbus MT385897 Bt/Bb 
TLi PA25 Bbar26 B. barbus MT385896 HBT01 B. tyberinus MT385931 HBT06 B. tyberinus MT385936     Bt/Bt 
TLi PA27 Bbar01 B. barbus MT385882 HBB16 B. barbus MT385912 HBB06 B. barbus MT385902 Bb/Bb 
TLi PA28 Bbar04 B. barbus MT385884 HBT01 B. tyberinus MT385931 HBB01 B. barbus MT385897 Bt/Bb 
TLi PA33 Bbar16 B. barbus MT385891 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA34 Bbar01 B. barbus MT385882 HBB12 B. barbus MT385908 HBB13 B. barbus MT385909 Bb/Bb 
TLi PA38 Bbar09 B. barbus MT385886 HBT05 B. tyberinus MT385935 HBB01 B. barbus MT385897 Bt/Bb 
TLi PA39 Bbar01 B. barbus MT385882 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA40 Bbar01 B. barbus MT385882 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 
TLi PA42 Bbar01 B. barbus MT385882 HBB01 B. barbus MT385897 HBB01 B. barbus MT385897 Bb/Bb 

654 
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Table 6 Molecular indices calculated for the nuclear GH-2 alleles for pure B. plebejus (PVp), B. 655 

tyberinus (TLp) and their hybrids (B. barbus x B. tyberinus in TLi and B. barbus x B. plebejus in 656 

PVi): haplotype diversity (H), nucleotide diversity (π, expressed in %), with relative standard 657 

deviations. N= number of total alleles for sampling sites; in brackets the number of alleles per species. 658 

Species Indices PVp 
N=50 

PVi 
N=52 

TLi 
N=58 

TLp 
N=28 

B. plebejus 
π (%) 0.02 ± 0.01 (50) 0.30 ± 0.05 (28)   

H 0.19 ± 0.01 (50) 0.88 ± 0.01 (28)   

B. tyberinus 
π (%)   0.16 ± 0.02 (12) 0.03 ± 0.01 (28) 

H   0.90 ± 0.01 (12) 0.27 ± 0.01 (28) 

B. barbus 
π (%)  0.43 ± 0.06 (24) 0.30 ± 0.06 (46)  

H  0.66 ± 0.01 (24) 0.69 ± 0.01 (46)  

  659 
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Figure captions 660 

 661 

Fig. 1. Sampling sites of B. tyberinus (uninvaded TLp and invaded TLi) and B. plebejus (uninvaded 662 

PVp and invaded PVi) populations, collected in Tyrrhenian (TL) and Adriatic (PV) basins 663 

respectively (see Table 1). Pie charts indicate the species frequency according to genetic attribution 664 

(mtDNA inner circle and ncDNA outer circle).  665 

 666 

Fig. 2. Canonical variate analysis (CVA) output of the body shape comparison between B. tyberinus 667 

(uninvaded TLp and invaded TLi) and B. plebejus (uninvaded PVp and invaded PVi) populations. 668 

Wireframe graphs indicate the shape changes along each axis (from grey to dashed black). 669 

 670 

Fig. 3 (a) Bayesian tree for D-loop mtDNA, and (b) Maximum likelihood tree for GH-2 nDNA 671 

haplotypes. Statistical support for the major clades is expressed as posterior probability (pp) and 672 

bootstrap (btp) values, indicated in bold and italic respectively. Colored bars indicate current species 673 

assignation. The haplotypes scored in this study are in bold, whereas the haplotypes retrieved from 674 

GenBank are indicated by their accession number (Supplementary material Table S1, S2); * indicates 675 

haplotypes previously recorded). Morphology of each lineage is reported (i.e. B. plebejus in PVp; B. 676 

tyberinus in TLp); B. barbus is represented by two hybrid forms with B. tyberinus and B. plebejus 677 

(i.e. in TLi and in PVi, respectively).  678 

 679 

Fig. 4. Minimum spanning networks of B. barbus mitochondrial (D-loop (A)) and nuclear (GH-2 (B)) 680 

recorded in Adriatic (PVi) and Tyrrhenian (TLi) invaded population. Circles represent haplotypes 681 

and size is proportional to the frequency of each haplotype. Black dots represent missing haplotypes. 682 

 683 


