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Abstract

Sketch-based modelling (SBM), dating back to 1980s, has attracted a lot

of researches’ attention due to its easy-to-use features and high efficiency

in generating 3D models. However, existing sketch-based modelling ap-

proaches are incapable in creating detailed and realistic 3D character mod-

els. This project aims to propose new techniques which can create more

detailed 3D character models with easiness and efficiency. The basic idea is

to fit primitives to the sketches consisting of front view contours, side view

contours and cross-section curves to obtain more detailed shape, propose

ODE (ordinary differential equation) driven deformation to create more re-

alistic shapes, and use surfaces defined by cross-sectional curves to repre-

sent sketch-based and ODE-driven 3D character models.

In order to achieve the above aim, this thesis firstly investigates curve

fitting of cross-sectional shapes and solved the problem of representing

cross-sectional curves with generalized ellipses or composite generalized

elliptic segments. Then, this thesis proposes a new mathematical formula

for defining a surface from the cross-sectional curves. A new sketch-guided

and ODE-driven character modelling technique is proposed, consisting of

two main components: primitive deformer and detail generator. With such

a technique, I first draw 2D silhouette contours of a character model. Then,

I select proper primitives and align them with the corresponding silhouette

contours. After that, I develope a sketch-guided and ODE-driven primitive

deformer. It uses ODE-based deformations to deform the cross-section

curves of the primitive to exactly match the generated 2D silhouette con-

tours in one view plane and with the curve-fitting method and surface re-

construction method mentioned above, a base mesh of a character model
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consisting of deformed primitive is obtained. In order to add various 3D

details, I develop a local shape generator which uses sketches in different

view planes to define a local shape and employs ODE-driven deformations

to create a local surface passing through all the sketches. The experimental

results demonstrate that the proposed approach can create 3D character

models with 3D details from 2D sketches easily, quickly and precisely.

Cross-section contours are important in defining cross-section shapes

and creating detailed models. In order to develop a cross-section contour-

based modelling approach, how to mathematically represent cross-section

curves must be first solved. The second aim of this project is to propose

composite generalized elliptic curves and introduce them into character

modelling to achieve an analytical and compact mathematical representa-

tion of cross-section contours.

Current template-based character modelling which creates 3D charac-

ter models from sketches retrieves and then uses 3D template models di-

rectly. Since retrieving 3D models from sketches is not an easy task, the

third aim of this project is to extract 2D cross-section contours from tem-

plate models and use the extracted 2D cross section contours as templates

to assist the creation of 3D character models for simplifying and accelerat-

ing the modelling process. Although there are many different approaches

to interpret shapes with sketch strokes, but to our knowledge, no one utilises

2D template cross-section contours to quickly generate the shapes of hu-

man characters in a sketch-based system, which is one of the contributions

of this project.
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Thesis Outline

This thesis is structured by seven chapters.

• Chapter 1 - Introduction: In this chapter, a brief overview of 3D

character modeling technologies, including their strengths and weak-

nesses, their applications and limitations is introduced. Followed by

how sketch-based modeling approach can help to tackle the prob-

lems mentioned above. Then the contribution of this research is pro-

vided.

• Chapter 2 - Related Work: This chapter gives a literature review of

sketch-based modeling system, modeling from geometric primitives

and shape construction by cross-section curves that are related to

this research.

• Chapter 3 - Curve Fitting for Cross-Section: This chapter presents

a method to approximate a cross-section curve as a generalized el-

lipse or a group of end-to-end generalized elliptic segments with a

parametric formula.

• Chapter 4 - Cross-section Defined Surface Modeling This chapter

presents a surface reconstruction method. In addition, this method

is extended to a surface blending method that maintains a set conti-

nuity between two primary surfaces whose edges are cross-sectional

curves created by the method introduced in Chapter 3.

• Chapter 5 - Primitive Generator: In this chapter, an ODE-driven

sketch-based modeling method for generating a primitive and de-

forming its cross-section curves so that the primitive’s projected sil-

houette can fit the input sketch silhouette. This deformation ap-
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proach can also be extended to further deform the primitive by fit-

ting its cross-section contour(s) to the reference cross-section con-

tour(s) extracted from reference meshes. Afterward, the deformed

cross-sectional curves are represented by trigonometric series with

the algorithm introduced in Chapter 3 and then the new surface is

created with these cross-sectional curves by the method proposed in

Chapter 4.

• Chapter 6 - Free-form Patch Generator: In this chapter, an ODE-

driven sketch-based modeling method for generating a free-form patch

is proposed. With this detail generator, details such as accessories

and clothes can be added on human character models.

• Chapter 7 - Conclusion and Future Work: This chapter sums up the

conclusion of this research and discusses the limitation of this work,

and how to take this research to the next level.

xiv



Chapter 1

Introduction

1.1 Overview

Human character modeling is one of the central task in creative industries

and medical simulation, such as film/animation/game industry and visual

surgery for decades. However this task still remains very tedious, time-

consuming and requires a lot of training time for novice users to become

proficient modellers.

In most cases, modellers will import reference images from the con-

cept artists, and then begin the modelling and sculpting operations. Those

reference images, sometimes called model sheets, are the profiles from T-

pose or A-pose in front view, side view and back view respectively, or var-

ious arbitrary poses in arbitrary perspective views. According to Hoffman

& Singh [1997], for human vision systems, silhouettes alone are efficient

for recognising everyday objects, by indexing their shapes in human mem-

ory. Also, I noticed that the most natural way for both novice modellers

and veteran modellers is to generate a new shape is to sketch freehand
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strokes with paper-pen-like graphic input tablets, so does the shape modi-

fication. In addition, the recent surge of painting or modelling applications

in virtual reality such as Arora et al. [2017], Gravity Sketch [2017], Tilt Brush

Google Inc [2017], Quill Facebook [2019], Medium Oculus [2019] and A-

Painter Mozilla [2019] also show it’s viable for artists to sketch in 3D canvas.

Therefore, modeling from the sketches, due to its intuitiveness and user-

friendliness, becomes a promising research area and has attracted many

researchers’ interests for decades.

However, there are still challenges in current sketch-based modeling

systems. First of all, they are mainly designed for modeling simple shapes

such as rotund toys(Igarashi et al. [1999]; Yang & Wünsche [2010]; Nealen

et al. [2007a]) and Constructive Solid Geometry (Shtof et al. [2013]; Trimble

Inc. [2019]). To fill the gap of modeling complex and more detailed organic

or human characters with SBM is the main challenge. Sketch-based edit-

ing technology like Nealen et al. [2005] doesn’t support accurate editing.

This research will address this issue so that the new mesh’s projected con-

tour can fully and accurately match the input sketch strokes. In addition to

modeling the overall shape, functions of adding details to the organic and

human characters such as accessories should be also supported. Finally,

computational efficiency and storage cost should be taken into considera-

tion as well as visual fidelity.

1.2 Research Objectives

In order to tackle the challenges mentioned above, following objectives

should be obtained:
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• Literature Review: Investigate existing researches on sketch-based

modeling system, ODE-based geometric processing, and shape edit-

ing technology.

• Propose a new curve and a new surface representation to efficiently

reconstruct a 3D shape from cross-sectional curves.

• Introduce a new sketch-based modelling technology to control the

overall shape. Since ODE are widely used in simulating physic phe-

nomenon, we’ll introduce an ODE driven mesh editing technology

which generates plausible skin deformations with tolerable compu-

tation costs.

• Integrate the local detail generation into the SBM system.

1.3 Contribution

A sketch-based modeling system is proposed in this research. This research

not only focuses on the base mesh modelling phase, but also the edit-

ing/sculpting phase by deforming the shapes according to cross-sectional

contours and silhouette contours. By inventing an ordinary differential

equation (ODE) driven surface deformation technology, my research re-

duces the computational cost compared with the state-of-art physics-based

surface deformation methods, meanwhile achieve a better physical plau-

sibility than purely geometric shape deformation methods. The main con-

tributions to the sketch-based modeling technique are listed as follows:

• Reconstruct the 3D shape by interpolating cross-sectional contours

that are extracted from 3D template models: Extract (and edit if re-

quired) cross-sectional contours of template 3D models and curve
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fitting them with trigonometric series. Afterward, reconstruct 3D shapes

based on the cross-sectional contours.

• Shape deforming technology: Find an efficient physical-based mesh

deformation algorithm which works well on quadrilateral meshes.

Deform the initial primitive according to the input sketch silhouette.

If more silhouettes or cross-sectional contours are provided for local

shape editing, edit the primitives by deforming the primitive so that

the new shape can exactly match the input sketch strokes. Moreover,

based on other sets of curves from the input sketches, generate de-

tails like nose, eyes, and ears on the base mesh.

• Sketch-based modeling system: Equipped with the primitive deformer

and detail generator methods, develop a user-friendly human char-

acter sketch based modelling system.
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Chapter 2

Literature Review

In this project, an ODE-driven sketch-based modelling system specialized

in human character models is proposed. To be more exact, the data ex-

tracted from matching template 3D model are cross-sectional contours which

contains critical shape information of human body. The actual shape gen-

eration and shape manipulations will be under an interactive sketch-based

interface; and the shape deformation algorithms are the cornerstone of the

whole modelling and editing system. Hence, this literature review will be

divided into three parts: human character modelling related basic knowl-

edge, overview of sketch-based modelling systems and shape deformation

technologies.
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2.1 Human Character modelling

2.1.1 Shell surface modelling vs Volumetric modelling

Shell surface modelling has been widely used and a large amount of re-

searches have investigated into this realm. There are four types of shell

surface presentations: polygon mesh, parametric surfaces (eg. nonuni-

form rational B-splines (Piegl & Tiller [2012]), Coons patch (Coons [1967]),

etc), implicit surfaces (for example, metaball), and subdivision surfaces.

Volumetric modelling is very computational expensive. Unlike shell sur-

faces which only store surface data, it also stores interior space data un-

der the surfaces. In spite of this, the volumetric modelling meets the re-

quirement of medical research(Gibson et al. [1998]) where the underly-

ing anatomy are important and hence worth keeping, as such, volumetric

modelling is optimal for soft-tissue deformation and tissue cutting.

As computational cost and visual quality are often inversely proportional,

in film and animation industry, NURBS surfaces are commonly used, given

that high-end render package will render the smooth surface off-line, while

in game industry, relatively low-resolution polygon mesh is the format to

ensure real-time rendering but sometimes compromise the image quality

(Parent [2012]).

As discussed above, shell surface modelling is most widely applied and

volumetric modelling is very computationally expensive. My work will in-

vestigate shell surface modelling only.
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2.1.2 Anatomy-based Human Character modelling

Good human character models should meet two requirements: they should

look believable and have no weird artifacts when animating. By taking cues

from the knowledge of human anatomy, a new genre of humanoid mod-

elling encompassing skeleton, muscles, viscera, fat tissues, and skins has

emerged, creating ready-to-animated models suitable for simulation.

A number of anatomy-based human character modelling techniques

follow the paradigm of dividing a human representation into three differ-

ent layers: the skeleton, the intermediate tissues like muscles, fat, fascia,

and the external skin surface. Scheepers et al. [1997] considered the influ-

ence of the musculature on the exterior form, developed anatomy-based

models of muscles which responds to the changes of the posture of an un-

derlying articulated skeleton, and applied them to the torso and arm of a

human figure. Jane & Allen [1997] proposed an improved, anatomically

based approach to modelling and animating animals. It models muscles,

bones, and generalized tissue as triangle meshes or ellipsoids, treats mus-

cles as deformable discretized cylinders whose shapes change as the joints

move, and finally creates polygonal isosurface for external skin by voxeliz-

ing, filtering and extracting from the underlying components. Nedel &

Thalmann [1998], Porcher Nedel & Thalmann [2000], and Aubel & Thal-

mann [2001] presented the force exerted from muscles to bones as action

lines, introduced a mass-spring system with angular springs to deform the

action lines so as to physically simulate muscle deformations, and used

ray-casting on semi-regular cylindrical grids to get the sample points which

are later used directly as cubic B-spline control points to smoothen the skin

surface.
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Some anatomy-based modelling researches, on the other hand, model

the internal anatomy elements based on physiological and bio-mechanical

principles. Yang & Zhang [2006] presented a method to automatically ex-

tract major muscles from already modelled or scanned human characters.

By using the constrained delaunay triangulation, the closed area formed by

a cross-sectional curve is triangulated and then the triangles of the bulge

region along the cross-sectional curve indicating the possible muscles will

be collapsed with the method used in Igarashi et al. [1999]. Later the mus-

cle’s cross-section curves will be approximated by ellipses. With all the

muscles’ cross-sectional curves, the muscle shape can be lofted. Ali-Hamadi

et al. [2013] proposed a method to transfer a template anatomical model

with bones, muscles and fat tissues to a realistic or catoony target char-

acter, which is without anatomy elements yet. The template model skin

and the target model skin are firstly registered, then the fat distribution,

which is designed in a semi-automatic way: fat thickness information ex-

tracted and retargeted from MRI data, or the user can tune the fat tissues

of the target character, erode the volume bounded by the skin to generate

the fat tissue under the skin. Next, bone of the target model is interpolated,

and is used as an attractor for constrained registration to get the correct

bone shape for target model. Internal soft organs like viscera and mus-

cles is then automatically created by volumetric interpolation between the

bone and fat tissue. Saito et al. [2015] proposed a physical based muscle

growth model and a fat growth model respectively for human characters,

ready for simulation, with interactive performance and support extreme

cases of hypertrophy and atrophy human characters. It takes into account

volume conservation(plasticity), and uses Lagrangian approaches to solve

the elasticity.
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Other auxiliary researches concentrate on the topology and data struc-

ture for anatomical data. Like in the work of Beylot et al. [1996], topolog-

ical modelling is introduced to address the issues of structural manipula-

tion of the data acquired from medical imaging. Its main contribution is a

new method called topological modelling which contains a new data struc-

ture storing information of structural, physical, geometrical and mechani-

cal attributes for different organs, and 3D interactive tools for manipulate

bones, joints and muscles to get motion simulation and dynamic analysis

of the biomedical imaging data. Zou et al. [2015] presented the first sur-

face reconstruction algorithm from an input set of planar cross-sections

that allows global topology (genus) control. They proposed a definition

of the function based on random walks, present algorithms for enumer-

ating and scoring distinct level set topologies, and a bottom-up dynamic-

programming algorithm to find the optimal solution meeting the topology

constraint.

Although anatomy-based human character modelling can create real-

istic appearance, detect collision and dynamically correct, the computa-

tional cost of simulation the skin wrapped underneath anatomy elements

is expensive.

2.2 Sketch-Based Modelling Systems Overview

Over the past several decades, sketch-based-modelling (SBM) has been

widely studied in the computer graphic community (Olsen et al. [2009]).

This section will firstly investigate the theories that prove sketches con-

tain a good amount of 3D shapes’ geometrical properties, therefore they
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can be used to reconstruct 3D shapes sufficiently. Then this section will

dive into some typical and representative state-of-art sketch-based mod-

elling systems that can be broadly divided into direct shape generation and

template-based mesh creation.

2.2.1 Sketch Is a Reliable Source to Deduce 3D Shapes

Human’s 2D and 3D pattern-recognition abilities allow us to perceive and

process pictorial data rapidly and efficiently. Therefore it is necessary to

learn from human vision systems to improve the performance in com-

puter graphic applications. DeCarlo et al. [2003] discovered that there are

many other indicators for shape representations of organic objects include

smooth feature curves, suggestive contours, etc. According to the research

by Cole et al. [2008], human line drawings are quite consistent with each

other. Lines drawn by artists largely overlapped one another, particularly

along the occluding contours of the object. Most lines that do not overlap

contours will overlap large gradients of the image intensity (as measured by

image-space gradient magnitude) and correlate strongly with predictions

made by recent line-drawing algorithms in computer graphics (CG). Those

two kinds of locations mentioned above can be described by well-known,

simple mathematical properties (Cole et al. [2008]). Moreover, their re-

search shows that current non-photo-realistic-rendering technology has

reached a state where most of the lines drawn by human can also be calcu-

lated by math algorithms. Their analysis lay the theoretical foundation that

shapes can be deducted from lines drawing by human users when choose

the appropriate line-drawing algorithms in SBM system.
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2.2.2 Direct shape generation

In the category of direct shape generation, several systems have been pro-

posed to generate organic models. Mainly, there are three types of mesh:

geometric primitives, inflating surface and layered surface.

Geometric Primitive

An interesting phenomena is that many modelling systems’ building bricks

are geometrical primitives of all sorts.

To understand why geometrical primitives are chosen to be the starting

points of modelling a figure, we must first know how human vision system

understands figures and interprets their shapes.

Hoffman & Singh [1997] presented a theory of part salience. The theory

builds on the minima rule for defining part boundaries. According to this

rule, human vision defines part boundaries at negative minima of curva-

ture on silhouettes, and along negative minima of the principal curvatures

on surfaces. They propose that the salience of a part depends on (at least)

three factors: its size relative to the whole object, the degree to which it

protrudes, and the strength of its boundaries. Based on this rule, a human

character has many component parts which are often differ in their visual

salience. For example, those sizes relative to the whole object is substan-

tial, like torso; those protrude much from the main shape, like head, limbs

and foot; and those have boundaries of sharp curvature changes, like neck.

They present the evidence to show that these factors influence visual pro-

cesses which determine the choice of figure and ground. Hence, I divide

human figure into different parts based on these factors.
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Primitives-based systems decompose the modelling task as a process of

creating a certain set of geometry primitives and further editing the prim-

itives (Shtof et al. [2013]; Chen et al. [2013]; Xu et al. [2016]). The idea of

assembling simple geometric primitives to form 3D models is very com-

mon in CSG (Constructive Solid Geometry) modelling. Shtof et al. [2013]

introduced a snapping method to detect the feature curves and silhouette

curves of both 2D sketches and 3D simple geometric primitives, i.e. box,

sphere, cylinder, cone. Then automatically determined the core parame-

ters of these simple geometric primitives so as to fit the 2D sketches, and

then improved the model globally by inferring geosemantic constraints that

define the relationship between different parts. The relationship includes:

parallelism, orthogonality, collinear centers, concentric, and coplanar. In

the work of Chen et al. [2013], the researchers proposed a tool to generate

a cylinder from only 3 strokes: the first two strokes define the 2D profile

and the last stroke defines the axis along which the profile curve sweeps.

Copies of the profile are not only perpendicularly aligned to the axis, but

also resized to snap to the input outlines. However, their work is only de-

signed for man-made objects, where simple sweeping surfaces can meet

the quality requirements of the modelling task.

Structured annotations for 2D-to-3D modelling (Gingold et al. [2009]),

on the other hand, focus on organic modelling. It uses two sets of prim-

itives. One is generalized cylinders, created by the input of a single open

sketch stroke represented as a spline, and then modified by using simple

gestures such as tilting cross sections, scaling local radius, rotating sym-

metrical plane, and changing cap size. The other is ellipsoids, generated

according to the drawn closed ellipse sketch stroke. As its name indicates,

there exist a set of annotation tools to further edit the surface shape using
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annotations such as same lengths, same angles, alignments, and mirror

symmetries. Its main contribution is providing a solution to the problem

of semantic information such as symmetric, equal length and angle, and

alignment, which are quite obscure in the single view modelling system

with only one arbitrary angled guide image.

Surface Inflation

Another way to generate a shape is inflating a surface represented by a

closed 2D region/sketch to give it a volume (Kazmi et al. [2014]). The sur-

face inflation technique extrudes a polygonal mesh from a given skeleton

outwards and does a good job in modelling stuffed toys. One trend is to

inflate free-form surfaces to create simple stuffed animals and other ro-

tund objects in a SBM fashion (Igarashi et al. [1999]; Nealen et al. [2007a];

Karpenko & Hughes [2006]). The pioneering Teddy system (Igarashi et al.

[1999]) takes closed curves as inputs, finds their chordal axes as the spines,

then wraps the spines with a polygonal mesh.

Later, FiberMesh (Nealen et al. [2007a]) enriches editing operations for

the inflated base mesh. This approach also presents two types of the con-

trol curves: smooth and sharp. A smooth curve constrains the surface

to be smooth across it, while a sharp curve only places positional con-

straints with C 0 continuity. Sharp control curves appear when operations

like cutting, extrusion, and tunnel take place. They also serve the creation

of creases on the surface. The SmoothSketch system (Karpenko & Hughes

[2006]) supports the creation of cusps and T-junctions, which Teddy and

its successors fail to address. In addition, SmoothSketch extended Teddy’s

work to an extent that the strokes do not need to be closed.
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Although the surface inflation approach is good at creating stuffed ani-

mals and simple toys, it is not versatile enough to express geometrical de-

tails on the surface. BendSketch(Li et al. [2017]) offers a technique which

enables complex curvature patterns existing on surfaces. In order to give

the bending information, users need to draw a set of lines that comply

with what the BendSketch system has specified, which mimics the hatch-

ing technique artists often utilise to express the sense of volume and cur-

vature information on the surfaces.

Layered modelling

From the observations of a large amount of sketching and concept art pro-

cedures, layered structure, defining by geometric dependence of layers on

underlying layers, are commonly used in both organic and man-made ob-

jects.

SecondSkin (De Paoli & Singh [2015]) proposed a creation method for

layered structure in a multi-view interactive fashion. They found that 91%

of sketch strokes fall into these four curve-type categories: shell contour,

projection, tangent and normal. Hence they developed an algorithm to

identify the input sketch strokes’ curve-type, and interpreted them as 3D

curves on and around underlying 3D geometry, using other connected 3D

curves for context. Curve loops are automatically surfaced and turned into

volumes bound to the underlying layer, if necessary, additional curves and

surfaces are created as well. This work assumes input sketched strokes

are around the underlying object, rather than curves lying on the objects.

Treating inputted sketches as curves on base mesh has been well investi-

gated in prior works (Takayama et al. [2013]; Nealen et al. [2007a]; Kara &
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Shimada [2007]).

Skippy (Krs et al. [2017]) is another sketch-based curve modelling sys-

tem that predicts the depth information of 2D sketched curves by lever-

aging the existing geometries as guides. It works with a single-view. Like

De Paoli & Singh [2015] it also recognises curve segments occluded by the

existing geometries.

Others

There are other works about SKM don’t fit in the aforementioned three

catogories but still worth noting.

A set of intuitive creation rules help improve the easiness for end-users.

ILoveSketch (Bae et al. [2008]) improved the gesture vocabulary, especially

the roll-back gesture was added into the interaction gesture set, which is

very inspiring. As a CAD tool, ILoveSketch provides smooth curve approx-

imation to the input sketch stokes. It also addresses the problem of over-

sketch by develop a multi-stroke NURBS curve creation workflow.

Buchanan et al. [2013] presents a method for automatically constructing

rigged, skinned and textured low-polygonal 3D meshes from a single piece

of concept artwork, which can work in real-time graphic applications. This

SBM system doesn’t require any manual operations from 3D artists. Their

algorithm casts several requirements to the input image: character is ori-

ented in general towards the front; minimal occlusion or touching. By

adapting the medial transform skeletonization method, they came up with

a point contraction algorithm. They also proposed an algorithm to gener-

ate a swept shell from the cross-sectional slices which are also generated by

computer. Based on their observation, concept artists draw a lot of pictures
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in three quarters view, so their orientation establishing has a promising ap-

plications.

There are certain limitations of the existing sketch-based-modelling tech-

nologies. For example, when creating complex organic character models,

the geometric primitive method has the tendency of over-simplifying the

initial form of the target shape with simple primitives like cube, cylinder,

cone and sphere, which will cause more editing operations afterward to

achieve the final shape. Moreover, the existing geometric primitive SKM

systems offer few parameters for the primitives, which are mostly radius,

rotation, and scale, as such, it limits the flexibility in the primitive cre-

ation process. As for the surface inflation methods, they only works when

the input sketch curve is closed. My research will overcome this by intro-

ducing an ODE-based primitive deformer to automatically enable the sil-

houettes of primitive to exactly match the input sketches. I also propose

an ODE-based detail generator to generate surfaces from both open and

closed curves.

2.2.3 template-based mesh creation

Using geometric primitives to align 2D sketches provides an easy and effi-

cient approach to generate rough base models. However, manipulating the

generated rough base models in one image plane only is difficult to create

detailed 3D models.

For template-based mesh creation, an elegant technique for sketch-based

modelling has been proposed in Kraevoy et al. [2009] to find precise cor-

respondences, which can be seen as an optimisation problem and can be

solved by a hidden Markov model(HMM), and then an alternating correspond-
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and-deform process determines the mesh deformations with mean-value

encoding as the deformation method. Kazmi et al. [2015] proposed a real-

time template-based SBM method. Their method finds the correspondence

vertices between the input sketch contours and template model by KD-tree

algorithm, which is faster than HMM. Then, by combining skeleton-based

deformation and Laplacian mesh editing, an efficient approach quickly de-

forms a 3D template model to fit the user’s drawn sketches.

Among various approaches of Direct shape generation from user-drawn

sketches, a variety of sketch-based modelling tools are based on a “sketch-

rotate-sketch" workflow. Such a workflow requires users to draw sketches

from many views, causing the difficulties in matching input strokes with a

guidance image and finding a good view (Gingold et al. [2009]).

2.3 Sketch-based Deformation

Deformation tools provide the interface for users to interact and modify

mesh surfaces. A good deformation tool should meet the following princi-

ples (Botsch & Sorkine [2008]):

• Flexibility: permit users to change the mesh surface as they wish,

meanwhile reserve correct modelling constraints.

• Shape quality: aesthetically pleasing

• Intuitive result: conform to the morphing happening in real world

with real physical material, which makes no recognition confusion

for users when they modify the shape. In other words, physically cor-

rect.
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Sketch-based shape editing like Teddy and others (Karpenko & Hughes

[2006]; Fleisch et al. [2004]; Terzopoulos et al. [1987]) featured inflation ap-

proaches use smooth silhouettes, thus they create only smooth shapes. In

order to create aesthetically pleasing details on meshes, SBM should be

equipped with shape editing method supporting inserting feature curves

while preserve the global and local geometry.

Geometry-based editing system is based on the energy in a form of ge-

ometrical traits. A popular geometry-based frame is Laplacian/Poisson

model, which represent the differential traits of the surface in various ways

depending on how they are employed. In the discrete Laplacian/Poisson

models, it is easy to displace a set of edges (e.g., sketch a new position of

an identified contour) while preserving the geometric details of the sur-

face as much as possible (Nealen et al. [2007b]). In order to address the

problem that feature lines’ differential properties are related to the viewing

direction, and the feature lines are not coincide with edges on the mesh,

Nealen et al. [2007a] extends the framework of Laplace/Poisson mesh mod-

elling in 3 ways: (a) accommodate constraints on the normals and the cur-

vature; (b) allow constraints to be placed on virtual vertices, i.e. vertices

placed on edges that only serve to implement the constraints but are never

added to the mesh. The virtual vertices are linearly interpolated on the

edge between 2 vertices; (c) incorporate a tangential mesh regularization,

which moves edges onto sharp features while ensuring well-shaped trian-

gles. Their method supports to change the moderate noisy silhouette con-

tours, to edit the sharp feature lines like ridge, ravine and crease, and to

edit smooth features and suggestive contours.

Apart from deformation based on differential surface representations
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discuss in last paragraph. Another family make use of multi-resolution or

subdivision editing as a way to perform global surface deformation while

preserve local surface details. Subdivision mesh is firstly decomposed into

a low-frequency base surface and a high-frequency detail information. Then

after deforming the base surface, the detail information is added on the

deformed base surface. In the case of interactive shape editing by means

of manipulating control handles with 3 degrees of freedom for translation

and 3 degrees of freedom for rotation, define the displacement vector as

the change of position and orientation of the control handles. The final

shape can be seen as the outcome of adding a basis function of displace-

ment vector to the origin shape. The requested displacement has to be

translated into coefficients of this basis functions. These coefficients in-

clude but not limited to smoothness, stiffness (order of energy function),

fullness, etc. Besides, the basis functions require pre-computed inverse

matrix to speed up the surface updating (Botsch & Kobbelt [2004]), which

is another hint that these approaches are very computational-expensive.

Compared to the geometry-based technology, physic-based editing tech-

nology simulates the physical principle through physical energy function.

It is more comply with the real-world physical fidelity. However, it is less

flexible if the 3D artists want to achieve very drastic effects because the

penalty of stretching or bending forces on the energy function will be very

big. Another challenge of physically based skin deformation methods is

that they are computationally expensive, at least they are not as efficient

as geometry based approaches. Hence, my object is to improve the per-

formance and efficiency of physical-based editing scheme by decreasing

the 2-dimentional partial differential equation to 1-dimentional ordinary

differential equation. Finite element method and finite difference method
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can be used to solve the partial derivative equation in this scenario. For the

concern of computation efficiency, I choose the Finite Difference Method

even though Finite Element Method produce more accurate approxima-

tion. And the obtained curve can be in the form of silhouettes and cross-

sectional contours. Besides, it overcomes the shortage of geometry-based

deformation method that the region affected by the geometry-based edit-

ing is limited (often within several rings) or defined by user as region of

interesting. Whereas, the physical-based editing method this thesis pro-

poses impacts the whole cross-sectional contour.

2.4 ODE-based geometric processing

Ordinary differential equations (ODEs) have been applied in 3D surface

modelling, skin deformation and shape manipulation due to its high effi-

ciency and physical-based nature.

You et al. [2007] introduced an ODE-based sweeping technology called

boundary constrained swept surface(BCSS) to formulate the profile curves

of a swept surface, and unlike usual sweeping surface which only has one

trajectory and the generator is invariable, BCSS allows two trajectories and

variable generator, and the result surface will meet the tangent conditions

at both trajectories. Compares to ordinary modelling method, BCSS has

the advantages of light weight in storage and computational cost, easy global

shape manipulation, physically-based local shape manipulation, and has

the potential to converting the complex models so that they become easier

to be animated afterward.
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You et al. [2008] deployed ODE in deforming the characters skin com-

bining both the strength of physic-based and example-driven skin defor-

mation. They first represent the surface by 3D curve network and represent

the curves with time-dependent trigonometric series, and then construct-

ing a deformation equation deriving from elastic beam bending, finally

using the input poses from the examples, the the unknown constants of

the equation can be found and the mathematical description of the time-

dependent trigonometric series of the surface is determined. Chaudhry

et al. [2013] simplified the formula of the external force that leads to the

skin deformation into an ordinary differential equation that relates the po-

sition of point on open curve, the physical and geometric properties of the

curve, to the external force. They calculated the forces for two consecu-

tive poses, and interpolate the force for the in-between frames, finally get

the positions for frames between the two input poses by solving the ODE.

Since their model doesn’t contain time variables, they call it static skin de-

formation. Based on the model describing the homogeneous elastic beam’s

bending behaviour provided by Ebrahimi [2011], Chaudhry et al. [2015] de-

veloped a dynamic deformation model with boundary conditions and us-

ing finite difference solution to solve the ordinary differential equation of

this dynamic deformation model. Bian et al. [2018] introduced an auto-

matic rigging system for curve-based skin deformation method proposed

by Chaudhry et al. [2015] where the skeletons are created automatically.

Liang et al. [2015] also uses elastic beam deformation model to approxi-

mate the shape of Chinese Marionette character’s head. To solve the high

order linear homogeneous ordinary differential equation with boundary

constraints, they use complementary function to find the analytical solu-

tion of the profile curve mathematical description. Furthermore, they pro-
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vided an editing technique by subdividing existing surface along with local

refinement functions to maintain the positional and tangential constraints.

Together, this editing and refinement method can refine the shape locally

within a patch or close to a boundary region. Bian et al. [2019] proposed

a example-driven, PDE-based physics model to describe the skin defor-

mation in animation. They invented an extract isoparametric curves from

trianglated model of pose 0 and use Fourier series representation for the

extracted curve network, followed by applying Linear Blending Skinning to

deform the model from input pose 0 to input pose 1. Then, by analysing

the difference between the mesh after LBS to the mesh directly from in-

put pose 1, the force that drives the deformation can be calculated. Finally,

with the PDE-based physics model, the frames between pose 0 to pose 1

can be obtained.

To sum up the above discussion, differential equations are widely used

to describe the physics model of geometric processing, both statically and

dynamically. In addition, to facilitate the computational efficiency, one op-

tion is to choose the proper mathematical form for the geometry, to get an-

alytical solution to the physics model is possible and the other is to take

advantages of the light weightness of ODE to achieve real-time numeri-

cal solutions. Inspired by the state-of-art ODE-based geometric process-

ing approaches, I introduce a new sculpting force as the disturbance to the

physical system which balances the equation, and propose a new ODE-

based FDM deformer to refine the course base mesh to accurately fit the

input sketch silhouettes. To my knowledge, this is the first time ODE has

been applied to solve a static (a.k.a. no time-related parameter is involved

in the equation) modeling task.
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Chapter 3

Curve Fitting for Cross-Section

The study of how cross-sectional contours help to define the human body

can date back to 1500s. A German painter and artist Albrecht Dürer Dürer

[1534] attempted to apply a selection of cross-sectional contours of human

body to study human figures in his publications Four Books on Human

Proportion (Vier Bücher von Menschlicher Proportion) of 1528. For the

last two decades, the advances of medical imaging applications have en-

couraged the development of techniques for reconstruction digital human

organ models from cross-sectional curves obtained by MRI, CT, and other

medical scanning devices (Boissonnat & Memari [2007]). In this chapter,

I will investigate a new approach to get the approximation mathematical

formation of a given cross-section point list.

3.1 Generalized ellipses

In the work of Hyun et al. [2005], sweep surfaces with elliptic cross section

have been used to approximate human arms, legs, torso and neck, and
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carry out human modelling and deformation. In their work, the mathe-

matical description of sweep surfaces has the form of

S(u, v) = R(u)Eu(v)+C (u)

=


r11(u) r12(u) r13(u)

r21(u) r22(u) r23(u)

r31(u) r32(u) r33(u)

×


a cos v

b sin v

0

+


x(u)

y(u)

z(u)


(3.1)

where S(u,v) is a sweep surface, R(u) and C (u) stand for rotation and trans-

lation, respectively, and Eu(v) is a standard ellipse of variable size.

Since the cross sections of most parts of human body are irregular curves.

Using standard ellipses to approximate these cross sections will bring in

large differences leading to unrealistic human modelling.

Fig. 3.1 gives some cross-sectional curves of legs, arms, and torso from

a human model built with the polygon modelling approach and those ap-

proximated by elliptic cross sections: Fig. 3.1a is taken from human right

leg, Fig. 3.1b is from human left arm, and Fig. 3.1c is from human torso. It

can be seen for these images that there are noticeable differences between

the real cross sections and elliptic ones.

In addition, for a certain value of the parametric variable , Eq.(3.1) can

be written as the following form

Sx(u0, v) = r11(u0)cos v + r12(u0)sin v +x(u0)

Sy (u0, v) = r21(u0)cos v + r22(u0)sin v + y(u0)

Sz(u0, v) = r31(u0)cos v + r32(u0)sin v + z(u0)

(3.2)

The above equation indicates that at the plane determined by a point C (u0)
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(a) Cross section curves of left leg

(b) Cross section curves of right arm

(c) Various cross section curves of torso

Figure 3.1: Comparison between scanned real human cross sections and ap-
proximated ellipses
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and a unit normal vector N (u0) = [
r13(u0),r23(u0),r33(u0)

]T , the cross sec-

tion of the sweep surface is still a simple curve which is described with two

trigonometric functions cos v and sin v .

In order to characterize the cross sections of human body more accu-

rately, I introduce the conception of generalized elliptic curves which con-

sist of a number of trigonometric functions cos j v and sin j v ( j = 0,1, . . . ,2J ).

With the application of more trigonometric functions, the cross sections of

human body can be approximated very accurately.

Generalized elliptic curves can be divided into two classes: generalized

ellipses and composite generalized elliptic segments. The former is used

for the approximation cross section curves with a simple shape, and the

latter aims at those with very complicated shapes. In the following, I will

introduce the construction of generalized ellipses. The generation of com-

posite generalized elliptic segments will be discussed in Section 3.2.

In the work of You et al. [2004], trigonometric series of two parametric

variables has been applied to describe blending surfaces. By degenerating

two dimensional problems to one dimensional ones, the trigonometric se-

ries in You et al. [2004] can be modified to represent cross section curves

of human body. Assuming that a generalized ellipse is lying on one of x-y,

x-z and y-z plane, with the centre C = [
xc , yc , zc

]
, and taking the one lying

on x-y plane as an example, the mathematical equation of the generalized
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ellipse can be written as

x(v)−xc = a0 +
J∑

j=1

(
a2 j−1 cos( j × v)+a2 j sin( j × v)

)
y(v)− yc = b0 +

J∑
j=1

(
b2 j−1 sin( j × v)+b2 j cos( j × v)

)
z(v)− zc = 0

(3.3)

where a j and b j ( j = 0,1,2,3, . . . ,2J ) are unknown constants.

If there is a cross section curve represented by a number of discrete

points (xi , yi , zc )(i = 1,2,3, . . . , I ), the centre of the generalized ellipse can

be determined by the average value of each component x and y . That is

xc = 1

I

I∑
i=1

xi

yc = 1

I

I∑
i=1

yi

(3.4)

Then, I use curve fitting and the least square algorithm to determine the

unknown constants in Eq. (3.3). To this aim, I calculate the squares sum

of the errors between the curve and the generalized ellipse at the points

(xi , yi , zc )(i = 1,2,3, . . . , I ) for x and y position components, respectively.

Theoretically the distance error should calculate the distance between the

point and the curve. But practically, it does not make much difference.

Hence, here the distance is calculated between corresponding points.

Ex =
I∑

i=1

[
xi −xc −a0 −

J∑
j=1

(
a2 j−1 cos( j × vi )+a2 j sin( j × vi )

)]2

Ey =
I∑

i=1

[
yi − yc −b0 −

J∑
j=1

(
b2 j−1 sin( j × vi )+b2 j cos( j × vi )

)]2
(3.5)

where vi (i = 1,2,3, . . . , I ) is the angle of point pi on the curve. And the pro-
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cedure of calculating vi is like the following: 1. find the center of the curve;

2. draw a line li starts from the the center and directs to point pi ; 3. get the

cosine value ai of the angle vi between li and the x-axis; 4. based on differ-

ent quadrant the angle vi belongs to, decide the value of vi by calculating

the arc cosine of ai .

ai = pi .y − center.y√
(pi .y − center.y)2 + (pi .x − center.x)2

vi = arccos(ai )

(i = 1,2,3, . . . , I )

(3.6)

The errors in Eq. (3.5) are minimized by setting the derivatives of the square

sums with respect to the unknown constants to zero

∂Ex

∂a j
= 0

∂Ey

∂b j
= 0

( j = 0,1,2,3, . . . ,2J )

(3.7)

which leads to the following linear algebraic equations

I∑
i=1

(xi −xc )−
I∑

i=1
a0 −

J∑
j=1

I∑
i=1

a2 j−1 cos( j × vi )−
J∑

j=1

I∑
i=1

a2 j sin( j × vi ) = 0

I∑
i=1

(xi −xc )cos(k × vi )−a0

I∑
i=1

cos(k × vi )−
J∑

j=1

I∑
i=1

a2 j−1 cos( j × vi )cos(k × vi )

−
J∑

j=1

I∑
i=1

a2 j sin( j × vi )cos(k × vi ) = 0
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I∑
i=1

(xi −xc )sin(k × vi )−a0

I∑
i=1

sin(k × vi )−
J∑

j=1

I∑
i=1

a2 j−1 cos( j × vi )sin(k × vi )

−
J∑

j=1

I∑
i=1

a2 j si n( j × vi )sin(k × vi ) = 0

(k = 1,2,3, . . . , J )

(3.8)

and

I∑
i=1

(yi − yc )−
I∑

i=1
b0 −

J∑
j=1

I∑
i=1

b2 j−1 sin( j × vi )−
J∑

j=1

I∑
i=1

b2 j cos( j × vi ) = 0

I∑
i=1

(yi − yc )sin(k × vi )−b0

I∑
i=1

sin(k × vi )−
J∑

j=1

I∑
i=1

b2 j−1 sin( j × vi )sin(k × vi )

−
J∑

j=1

I∑
i=1

b2 j cos( j × vi )sin(k × vi ) = 0

I∑
i=1

(yi − yc )cos(k × vi )−b0

I∑
i=1

cos(k × vi )−
J∑

j=1

I∑
i=1

b2 j−1 sin( j × vi )cos(k × vi )

−
J∑

j=1

I∑
i=1

b2 j cos( j × vi )cos(k × vi ) = 0

(k = 1,2,3, . . . , J )

(3.9)

The matrix equations for (3.8) and (3.9) are presented in Appendix E.

Solving those two equation systems, we determine all unknown constants

and obtain the mathematical representation of the generalized ellipse.

For the curve which is not perpendicular to any coordinate planes, we
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must carry out the coordinate transformation and find the mathematical

description of the curve in the local coordinate system where one of the

coordinate axes is perpendicular to the curve plane.

For some representative curves taken from human leg and torso, we use

the generalized ellipse Eq. (3.3) and standard ellipse to regenerate them

and the obtained results were depicted in Fig. 3.2 where J is defined in

Eq.(3.3), the curve in red is the original one, the one in green is from the

algorithm of the generalized ellipse, and that in blue is created with the

equation of the standard ellipse.

(a) J = 2 (b) J = 3 (c) J = 4

(d) J = 3 (e) J = 7 (f ) J = 10

Figure 3.2: Curve generation with different approaches, with original cross
section curve in red, standard ellipse in blue and generalized ellipse pro-
duced by Eq.(3.3) in green where (a), (b), and (c) show the cross section curves
calculated by Eq.(3.3) with J = 2,3,4, respectively, and (d), (e), and (f) shows
the cross section curves calculated by Eq.(3.3) with J = 3,7,10, respectively

It can be seen from these figures that the algorithm of the generalized

ellipse can approximate the cross section curves of human body quite well

and the approximation can be greatly improved by increasing the terms

of the generalized ellipse. Since most cross section curves of human body
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have the similar complexity to those in this figure, the proposed approach

can use few terms - most human body cross-sectional curves can be rep-

resented by this trigonometric series with less than 30 terms (J < 15) in-

volved, while using polygonal points it needs more than 50 sampled points

for the simplest cross-sectional curve - to achieve high accuracy of curve

modelling.

Due to different shapes of cross-sectional curves, different terms in Eq.(3.3)

will be used to achieve the required accuracy. Too few terms in Eq.(3.3) will

cause too large errors. Too many terms will increase the computational

cost and slow down the human modelling process. Therefore, suitable

terms should be used. However, in the situation of interactive modelling, it

is inconvenient to find out which value of the term J is the best. In order to

tackle this issue, I here propose the following strategy, and the results were

shown in Fig.3.4.

First, I define an average error Ea and a maximum error Em below, with

the help of D - the diagonal distance of the curve’s bounding box. The for-

mer is used to measure the global approximation of the generalized ellipse

to the original curve and the latter quantifies the maximum difference be-

tween the generalized ellipse and the original curve.

Ea = 1

I

I∑
i=1

di

D
(3.10)
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where

X = xi −xc −a0 −
J∑

j=1

(
a2 j−1 cos( j × vi )+a2 j sin( j × vi )

)
Y = yi − yc −b0 −

J∑
j=1

(
b2 j−1 sin( j × vi )+b2 j cos( j × vi )

)
di =

√
X 2 +Y 2

(3.11)

and

Em = max
{d1

D
,

d2

D
,

d3

D
, . . . ,

d J

D

}
(3.12)

Then, I can set different errors to determine the required terms in Eq.(3.3).

For example, I take the average error and maximum error not more than 1%

and 2.5%, respectively. That is

Ea ≤ 1%

Em ≤ 2.5%
(3.13)

Fig. 3.3 illustrates the procedure of finding a proper J: A linear inter-

polation operation is employed to find out the suitable terms efficiently.

Initially, take J = 3 and J = 10, and calculate the average errors Ea3 and

Ea10 and the maximum errors Em3 and Em10 where the subscripts 3 and 10

stands for the values of J . If both Ea3 and Em3 have met Eq. (3.13), or one of

Ea10 and Em10 does not satisfy Eq. (3.13), a linear extrapolation operation is

used to find a smaller J1 for the former and a larger J1 for the latter. Other-

wise, a linear interpolation is applied to calculate the J1 between J = 3 and

J = 10. The obtained J1 is usually not an integer. Round off it to the nearest

integer. With J1, calculate the average errors Ea J1 and the maximum errors

Em J1 and examine whether they have met Eq. (3.13). If both Ea J1 and Em J1
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Figure 3.3: Program flowchart of finding a proper J

have met Eq. (3.13) and J1 < 3, J is between J1 and J = 3. If one of Ea J1 and

Em J1 does not satisfy Eq. (3.13) and J1 > 10, J is between J = 10 and J1. If

both Ea J1 and Em J1 have met Eq. (3.13) and 3 < J1 < 10, J is between J = 3

and J1. If one of Ea J1 and Em J1 does not satisfy Eq. (3.13) and 3 < J1 < 10,

J is between J1 and J = 10. It is worth to be noted that, since the human

body cross-sectional curves in this study aren’t very complicated, I found

that after the first linear interpolation or extrapolation operation, it’s more

efficient if using J = J +1 or J = J −1 to reach the result, as shown in Fig.3.3.

Since there are two quantities Ea and Em which can be employed for the

interpolation, which one should be used must be determined. Obviously,

if only one of Ea and Em does not meet Eq. (3.13), this error is used for

the interpolation. If both of them do not satisfy Eq. (3.13), always use the
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average error for the interpolation since the average error is a global mea-

surement of the difference between the original curve and the generalized

ellipse.

(a) head cross-section
J=7,

Ea=0.93%,
Em=2.45%

(b) neck cross-section
J=6,

Ea=0.79%,
Em=2.15%

(c) arm cross-section
J=4,

Ea=0.70%,
Em=1.18%

Figure 3.4: Head, neck and arm cross-sectional curves in red, and their
correspondent generalized ellipses produced by Eq.(3.3) with optimised J in
green

This trigonometric series representation is not only suitable for closed

curves but also capable of representing open curves, as shown in Fig. 3.5.

(a) J=10
Ea=0.19%,

Em=2.24%

(b) J=6
Ea=0.29%,
Em=1.82%

(c) J=8
Ea=0.08%,

Em=0.70%

(d) J=6
Ea=0.46%,

Em=2.00%

Figure 3.5: Open curves in red, and their correspondent generalised curves
produced by Eq.(3.3) with optimised J in green
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3.2 Split generalized ellipse into smoothly con-

nected segments

A complete curve representation method should support curve segmenta-

tion. Hence, in this section, I will discuss the approach to split a general-

ized ellipse into multiple curve segments with the aforementioned trigono-

metric series representation discussed in Section.3.1 with C 1 continuity

between adjacent segments.

A generalized ellipse can be decomposed into several simpler ones. In

order to approximate these decomposed curve segments, let’s still use Eq.

(3.3) to represent new curve segments and call them generalized elliptic

segments. The curve consisting of these generalized elliptic segments is

named a composite generalized elliptic curve.

To guarantee two adjacent generalized elliptic segments are smoothly

connected together, I investigate the continuity between these two seg-

ments.

As an example, let’s consider how to use three generalized elliptic seg-

ments to approximate a closed cross section curve (Fig.3.6) with a compli-

cated shape and how to guarantee the tangential continuity between the

two adjacent generalized elliptic segments. For the curves consisting of

more than three generalized elliptic segments and with higher order conti-

nuity between connected generalized elliptic segments, the basic principle

is the same.
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Figure 3.6: Three segments of a randomly selected curve

3.2.1 Connection of two adjacent generalized elliptic seg-

ments

Apart from the curve shown in Fig.3.6 which is the same as that in Fig.3.7,

let’s also consider a curve shown in Fig.3.9 and a cross section curve from

human hip shown in Fig.3.10. Firstly, divide a cross section curve from hu-

man hip into three separate curve segments ÙAB , ÙBC and ÙC A as indicated

in Fig. 3.10. With Eq. (3.3) and curve fitting algorithm Eq. (7.1) and Eq.

(7.2), the first generalized elliptic segment corresponding to the curve seg-

ment ÙAB which is defined within the region of the parametric variable v

from v = v0 to v = v1 can be determined, see Fig.3.7a.

The next task is to determine the second generalized elliptic segment

corresponding to the curve segment ÙBC which is defined in the region of

the parametric variable v from v = v1 to v = v2. Using a bar to indicate the

second elliptic segment, the positional values of the first generalized ellip-

tic segment at v = v1, as stated in Eq.(3.14), should be equal to that of the

second generalized elliptic segment at v = v1. Therefore, we have the fol-

lowing positional continuity conditions Eq.(3.15) for the x and y position

functions. Note that since the first segment is already generated, Px , Py ,
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Tx , Ty are known constants.

Px = xc +a0 +
J∑

j=1
a2 j−1 cos( j × v1)+a2 j sin( j × v1)

Py = yc +b0 +
J∑

j=1
b2 j−1 sin( j × v1)+b2 j cos( j × v1)

Tx =
J∑

j=1
−a2 j−1 × j × sin( j × v1)+a2 j × j ×cos( j × v1)

Ty =
J∑

j=1
b2 j−1 × j ×cos( j × v1)−b2 j × j × sin( j × v1)

(3.14)

Px = x̄c + ā0 +
J̄∑

j=1
ā2 j−1 cos( j × v1)+ ā2 j sin( j × v1)

Py = ȳc + b̄0 +
J̄∑

j=1
b̄2 j−1 sin( j × v1)+ b̄2 j cos( j × v1)

Tx =
J̄∑

j=1
−ā2 j−1 × j × sin( j × v1)+ ā2 j × j ×cos( j × v1)

Ty =
J̄∑

j=1
b̄2 j−1 × j ×cos( j × v1)− b̄2 j × j × sin( j × v1)

(3.15)

Re-arrange Eq.(3.15), we can get the formula for ā0, ā1, b̄0 and b̄1 as

follows. Since the denominator cannot be zero, we specify that v1 6= 0 and

v1 6= π, so that sin v1 doesn’t equal zero. As for the cases when v1 = 0 and

37



v1 =π, I will discuss both scenarios later in this section, respectively.

ā0 =P̄x − x̄c +Tx × cos v1

sin v1
+

J̄∑
j=2

ā2 j−1 ×
[

j × sin( j × v1)

sin v1
×cos v1 −cos( j × v1)

]
+

J̄∑
j=1

ā2 j ×
[

j × cos( j × v1)

sin v1
×cos v1 − sin( j × v1)

]
ā1 =− T̄x

sin v1
−

J̄∑
j=2

ā2 j−1 × j × sin( j × v1)

sin v1
+

J̄∑
j=1

ā2 j × j × cos( j × v1)

sin v1

b̄0 =P̄y − ȳc −Ty × sin v1

cos v1
+

J̄∑
j=2

b̄2 j−1 ×
[

j × sin v1 × cos( j × v1)

cos v1
− sin( j × v1)

]
−

J̄∑
j=1

b̄2 j ×
[

j × sin( j × v1)

cos v1
× sin v1 +cos( j × v1)

]
b̄1 =

T̄y (v1)

cos v1
−

J̄∑
j=2

b̄2 j−1 × j × cos( j × v1)

cos v1
+

J̄∑
j=1

b̄2 j × j × sin( j × v1)

cos v1

(3.16)

Substituting Eq.(3.16) into Eq.(3.3), x̄ and ȳ become functions of ā2,
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ā3,. . .,ā2 J̄ and b̄2, b̄3,. . .,b̄2 J̄ , respectively.

x̄(v) =P̄x + T̄x × cos v1 −cos v

sin v1

+
J̄∑

j=1
ā2 j−1 ×

[
j × sin( j × v1)

sin v1
× (cos v1 −cos v)−cos( j × v1)+cos( j × v)

]
+

J̄∑
j=1

ā2 j ×
[

j × cos( j × v1)

sin v1
× (cos v −cos v1)+ sin( j × v)− sin( j × v1)

]

ȳ(v) =P̄y + T̄y × sin v − sin v1

cos v1

+
J̄∑

j=2
b̄2 j−1 ×

[
j × cos( j × v1)

cos v1
× (sin v1 − sin v)− sin( j × v1)+ sin( j × v)

]
+

J̄∑
j=1

b̄2 j ×
[

j × sin( j × v1)

cos v1
× (sin v − sin v1)−cos( j × v1)+cos( j × v)

]
(3.17)

Since the first point of generalized elliptic segment is fixed, the Ēx and

Ēy can be defined as the squared sum of the errors between the curve and

the generalized elliptic segment from the second point to the last point (i =
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2,3, . . . , Ī ) for x and y position components, respectively.

E x̄ =
Ī∑

i=2

[
Ḡx(i )+

J̄∑
j=2

ā2 j−1 × M̄x( j , v̄i )+
J̄∑

j=1
ā2 j × N̄x( j , v̄i )

]2

E ȳ =
Ī∑

i=2

[
Ḡy (i )+

J̄∑
j=2

b̄2 j−1 × M̄x( j , v̄i )+
J̄∑

j=1
b̄2 j × N̄y ( j , v̄i )

]2

where

Ḡx(i ) = P̄x + cos v1 −cos v̄i

sin v1
× T̄x − x̄i

M̄x( j , v̄i ) = j × sin( j × v1)

sin v1
× (cos v1 −cos v̄i )−cos( j × v1)+cos( j × v̄i )

N̄x( j , v̄i ) = j × cos( j × v1)

sin v1
× (cos v̄i −cos v1)− sin( j × v1)+ sin( j × v̄i )

Ḡy (i ) = P̄y + sin v̄i − sin v1

cos v1
× T̄y − ȳi

M̄y ( j , v̄i ) = j × cos( j × v1)

cos v1
× (sin v1 − sin v̄i )− sin( j × v1)+ sin( j × v̄i )

N̄y ( j , v̄i ) = j × sin( j × v1)

cos v1
× (sin v̄i − sin v1)−cos( j × v1)+cos( j × v̄i )

(3.18)

The errors in Eq.(3.18) are minimized by setting the derivatives of the

squared sums with respect to the unknown constants to zero

∂E x̄

∂ā j
= 0

∂E ȳ

∂b̄ j
= 0

( j = 2,3, . . . ,2J )

(3.19)

which leads to the following linear algebraic equations
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Ī∑
i=2

[
Ḡx(i )+

J̄∑
j=2

ā2 j−1 × M̄x( j , v̄i )+
J̄∑

j=1
a2 j × N̄x( j , v̄i )

]× M̄x(
k +1

2
, v̄i ) = 0

(k = 3,5, . . . ,2 J̄ −1)

Ī∑
i=2

[
Ḡx(i )+

J̄∑
j=2

ā2 j−1 × M̄x( j , v̄i )+
J̄∑

j=1
ā2 j × N̄x( j , v̄i )

]× N̄x(
k

2
, v̄i ) = 0

(k = 2,4, . . . ,2 J̄ )

Ī∑
i=2

[
Ḡy (i )+

J̄∑
j=2

b̄2 j−1 × M̄y ( j , v̄i )+
J̄∑

j=1
b2 j × N̄y ( j , v̄i )

]× M̄y (
k +1

2
, v̄i ) = 0

(k = 3,5, . . . ,2 J̄ −1)

Ī∑
i=2

[
Ḡy (i )+

J̄∑
j=2

b̄2 j−1 × M̄y ( j , v̄i )+
J̄∑

j=1
b̄2 j × N̄y ( j , v̄i )

]× N̄y (
k

2
, v̄i ) = 0

(k = 2,4, . . . ,2 J̄ )

(3.20)

Solving the above Eq.(3.20), we can get ā2, ā3, . . . , ā2 J̄ and b̄2, b̄3, . . . , b̄2 J̄ ,

with which we obtain the mathematical description of the second gener-

alized elliptic segments required by Eq.(3.17), and then draw the segment

accordingly (Fig.3.7b).
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(a) original curve (b) first segment (c) second segment

Figure 3.7: The generation of two adjacent segments

Special case 1: Connection of two adjacent generalized elliptic segments

at the joint point v=0

When the second segment ÙBC starts at v1 = 0 ( Fig.3.8), where P̄x , P̄y , T̄x

and T̄y can be calculated as Eq.(3.21). And the positional and tangential

constraints becomes Eq.(3.22)

Figure 3.8: Two adjacent segments connected at v1 = 0

P̄x = xc +a0 +
J∑

j=1
a2 j−1

P̄y = yc +b0 +
J∑

j=1
b2 j

T̄x =
J∑

j=1
a2 j × j

T̄y =
J∑

j=1
b2 j−1 × j

(3.21)
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P̄x = x̄c + ā0 +
J̄∑

j=1
ā2 j−1

P̄y = ȳc + b̄0 +
J̄∑

j=1
b̄2 j

T̄x =
J̄∑

j=1
ā2 j × j

T̄y =
J̄∑

j=1
b̄2 j−1 × j

(3.22)

Re-arranging Eq.(3.22), we can get the formula for ā0,ā2,b̄0 and b̄1 as

follows

ā0 = P̄x − x̄c −
J̄∑

j=1
ā2 j−1

ā2 = T̄c −
J̄∑

j=2
ā2 j × j

b̄0 = P̄y − ȳc −
J̄∑

j=1
b̄2 j

b̄1 = T̄y −
J̄∑

j=2
b̄2 j−1 × j

(3.23)

Substitute Eq.(3.23) into Eq.(3.3), x̄ and ȳ should become

x̄(v) = P̄x + T̄x +
J̄∑

j=1
ā2 j−1 × [cos( j × v)−1]+

J̄∑
j=2

ā2 j [sin( j × v)− j × sin v]

ȳ(v) = P̄y + sin v × T̄y +
J̄∑

j=2
b̄2 j−1 × [sin( j × v)− j × sin v]+

J̄∑
j=1

b̄2 j × [cos( j × v)−1]

(3.24)

As mentioned before, E x̄ and E ȳ are the squared sums of errors between

the original curve and the generalized elliptic segment from the second
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point to the last point. Since the first point position serves as boundary

constraint, it should not contribute to errors.

E x̄ =
Ī∑

i=2
[x̄i − x̄(v̄i )]2 =

Ī∑
i=2

[Ḡx(i )+
J̄∑

j=1
ā2 j−1M̄x( j , v̄i )+

J̄∑
j=2

ā2 j × N̄x( j , v̄i )]2

E ȳ =
Ī∑

i=2
[ȳi − ȳ(vi )]2 =

Ī∑
i=2

[Ḡy (i )+
J̄∑

j=2
b̄2 j−1M̄y ( j , v̄i )+

J̄∑
j=1

b̄2 j × N̄y ( j , v̄i )]2

wher e

Ḡx(i ) = P̄x + T̄x × sin v̄i − x̄i

M̄x( j , v̄i ) = cos( j × v̄i )−1

N̄x( j , v̄i ) = sin( j × v̄i )− j × sin v̄i

Ḡy (i ) = P̄y + T̄y × sin v̄i − ȳi

M̄y ( j , v̄i ) = sin( j × v̄i )− j × sin v̄i

N̄y ( j , v̄i ) = sin( j × v̄i )− j × sin v̄i

(3.25)

In order to minimize the E x̄ , we take the partial derivative of E x̄ with

respect to every ā j , ( j = 1,3,4, . . . ,2 J̄ ) to be zero. The same goes with ȳ ,

i.e. the partial derivative of E ȳ with respect to every b̄ j , ( j = 2,3,4, . . . ,2 J̄ )

should be zero, too.

∂Ex

∂a j
= 0

( j = 1,3,4, . . . ,2 J̄ )

∂Ey

∂b j
= 0

( j = 2,3,4, . . . ,2 J̄ )

(3.26)
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which leads to the following linear algebraic equations

Ī∑
i=2

[Ḡx(i )+
J̄∑

j=1
ā2 j−1 × M̄x( j , v̄i )+

J̄∑
j=2

ā2 j × N̄x( j , v̄i )]× M̄x(
k +1

2
, v̄i ) = 0

(k = 1,3,5, . . . ,2 J̄ −1)

Ī∑
i=2

[Ḡx(i )+
J̄∑

j=1
ā2 j−1 × M̄x( j , v̄i )+

J̄∑
j=2

ā2 j × N̄x( j , v̄i )]× N̄x(
k

2
, v̄i ) = 0

(k = 4,6, . . . ,2 J̄ )

Ī∑
i=2

[Ḡy (i )+
J̄∑

j=1
b̄2 j−1 × M̄y ( j , v̄i )+

J̄∑
j=2

b̄2 j × N̄y ( j , v̄i )]× M̄y (
k +1

2
, v̄i ) = 0

(k = 3,5, . . . ,2 J̄ −1)

Ī∑
i=2

[Ḡy (i )+
J̄∑

j=1
b̄2 j−1 × M̄y ( j , v̄i )+

J̄∑
j=2

b̄2 j × N̄y ( j , v̄i )]× N̄y (
k

2
, v̄i ) = 0

(k = 2,4, . . . ,2 J̄ )

(3.27)

Eq.(3.27) determines ā1,ā3,ā4,ā5,. . .,ā2 J̄ and b̄2,b̄3,b̄4,. . .,b̄2 J̄ . Solving it,

we get the mathematical description of the composite generalized segment.

Its one end connected with the preceding segment at v1 = 0, see Fig.3.9.

(a) original curve (b) first segment (c) second segment

Figure 3.9: Two adjacent segments connected at v = 0
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Special case 2: Connection of two adjacent generalized elliptic segments

at the joint point v =π

When the second segment ÙBC starts at v1 =π ( Fig.3.10), the positional and

tangential constraints becomes

Figure 3.10: Three segments of a hip cross-sectional curve

P̄x = xc +a0 +
J∑

j=1
a2 j−1 × (−1) j

P̄y = yc +b0 +
J∑

j=1
b2 j × (−1) j

T̄x =
J∑

j=1
a2 j × j × (−1) j

T̄y =
J∑

j=1
b2 j−1 × (−1) j × j

(3.28)

46



P̄x = x̄c + ā0 +
J̄∑

j=1
ā2 j−1 × (−1) j

P̄y = ȳc + b̄0 +
J̄∑

j=1
b̄2 j × (−1) j

T̄x =
J̄∑

j=1
ā2 j × j × (−1) j

T̄y =
J̄∑

j=1
b̄2 j−1 × (−1) j × j

(3.29)

Re-arranging Eq.(3.29), we could get the formula for ā0,ā2,b̄0 and b̄1

ā0 = P̄x − x̄c −
J̄∑

j=1
ā2 j−1 × (−1) j

ā2 =−T̄x −
J̄∑

j=2
ā2 j × j × (−1) j

b̄0 = P̄y − ȳc −
J̄∑

j=1
b̄2 j × (−1) j

b̄1 =−T̄y +
J̄∑

j=2
b̄2 j−1 × j × (−1) j

(3.30)

Substitute Eq.(3.30) into Eq.(3.3), x̄(v) and ȳ(v) now become functions

of ā1,ā3,ā4,ā5,. . .,ā2 J̄ and b̄2,b̄3,b̄4,. . .,b̄2 J̄ , respectively.

x̄(v) =P̄x − T̄x × sin v +
J̄∑

j=1
ā2 j−1 × [cos( j × v)− (−1) j ]

+
J̄∑

j=2
ā2 j [sin( j × v)− j × (−1) j × sin v]

ȳ(v) =P̄y − sin v × T̄y +
J̄∑

j=2
b̄2 j−1 × [sin( j × v)+ (−1) j × j × sin v]

+
J̄∑

j=1
b̄2 j × [cos( j × v)− (−1) j ]

(3.31)
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Similar to Eq.(3.25), the derivative of E x̄ with respect to ā j ( j = 1,3,4,5, . . . , J̄ )

equals zero. So is the derivative of E ȳ with respect to b̄ j ( j = 2,3,4, . . . , J̄ ).

Which lead to the following equations

Ī∑
i=2

[Ḡx(i )+
J̄∑

j=1
ā2 j−1 × M̄x( j , v̄i )+

J̄∑
j=2

ā2 j × N̄x( j , v̄i )]× M̄x(
k +1

2
, v̄i ) = 0

(k = 1,3,5, . . . ,2 J̄ −1)

Ī∑
i=2

[Ḡx(i )+
J̄∑

j=1
ā2 j−1 × M̄x( j , v̄i )+

J̄∑
j=2

ā2 j × N̄x( j , v̄i )]× N̄x(
k

2
, v̄i ) = 0

(k = 4,6, . . . ,2 J̄ )

Ī∑
i=2

[Ḡy (i )+
J̄∑

j=1
b̄2 j−1 × M̄y ( j , v̄i )+

J̄∑
j=2

b̄2 j × N̄y ( j , v̄i )]× M̄y (
k +1

2
, v̄i ) = 0

(k = 3,5, . . . ,2 J̄ −1)

Ī∑
i=2

[Ḡy (i )+
J̄∑

j=1
b̄2 j−1 × M̄y ( j , v̄i )+

J̄∑
j=2

b̄2 j × N̄y ( j , v̄i )]× N̄y (
k

2
, v̄i ) = 0

(k = 2,4, . . . ,2 J̄ )

Ḡx(i ) = P̄x − T̄x × sin v̄i − x̄i

M̄x( j , v̄i ) = cos j × v̄i − (−1) j

N̄x( j , v̄i ) = j × (−1) j × sin v̄i + sin j × v̄i

Ḡy (i ) = P̄y − T̄y sin v̄i − ȳi

M̄y ( j , v̄i ) = (−1) j × j × sin v̄i + sin j × v̄i

N̄y ( j , v̄i ) = cos j × v̄i − (−1) j

(3.32)

By solving the above equations, we could get the mathematical descrip-

tion for generating the composite generalized elliptic segment, see Fig.3.11b
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(a) original curve (b) first segment

(c) second segment

Figure 3.11: Two adjacent segments connected at v = pi

3.2.2 Connect the last generalized elliptic segment with its

two adjacent segment

For the last segment ÙC A defined within the region of the parametric vari-

able v from v = v2 to v = v0 (see Fig.3.12), using a double bar to indicate

this elliptic segment, the positional values of the last generalized elliptic

segment at v = v2 and v = v0 should be equal to that of the second gen-

eralized elliptic segment ÙBC at v = v2 and to that of the first generalized

elliptic segment ÙAB at v = v0, respectively. Use Px ,Py ,Tx ,Ty to denote the

Figure 3.12: last segment with both ends connected with others

x component and y component of position and tangent of point A, and

¯̄Px , ¯̄Py , ¯̄Tx , ¯̄Ty to denote the x component and y component of position and
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tangent of point C , we can get the value of these constants.

Px = xc +a0 +
J∑

j=1

[
a2 j−1 ×cos( j × v0)+a2 j × sin( j × v0)

]
Py = yc +a0 +

J∑
j=1

[
b2 j−1 × sin( j × v0)+b2 j ×cos( j × v0)

]
Tx =

J∑
j=1

[−a2 j−1 × j × sin( j × v0)+a2 j × j ×cos( j × v0)
]

Ty =
J∑

j=1

[
b2 j−1 × j ×cos( j × v0)−b2 j × j × sin( j × v0)

]
and

¯̄Px = x̄c + ā0 +
J̄∑

j=1

[
ā2 j−1 ×cos( j × v2)+ ā2 j × sin( j × v2)

]
¯̄Py = ȳc + b̄0 +

J̄∑
j=1

[
b̄2 j−1 × sin( j × v2)+ b̄2 j ×cos( j × v2)

]
¯̄Tx =

J̄∑
j=1

[− ā2 j−1 × j × sin( j × v0)+ ā2 j × j ×cos( j × v0)
]

¯̄Ty =
J̄∑

j=1

[
b̄2 j−1 × j ×cos( j × v0)− b̄2 j × j × sin( j × v0)

]

(3.33)

Since the last segment ÙC A should connect smoothly to its adjacent seg-

ments ÙAB and ÙBC at Point A and Point C , the position and tangent of the

last segment at Point A and Point C should be equal to those of ÙAB at Point

A and ÙBC at Point C , we have the following positional continuity condi-
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tions for the ¯̄x and ¯̄y , respectively

¯̄x ¯̄I
= Px = ¯̄xc + ¯̄a0 +

J∑
j=1

[
¯̄a2 j−1 ×cos( j × v0)+ ¯̄a2 j × sin( j × v0)

]
¯̄x0 = ¯̄Px = ¯̄xc + ¯̄a0 +

J∑
j=1

[
¯̄a2 j−1 ×cos( j × v2)+ ¯̄a2 j × sin( j × v2)

]
Tx =

J∑
j=1

[− ¯̄a2 j−1 × j × sin( j × v0)+ ¯̄a2 j × j ×cos( j × v0)
]

¯̄Tx =
J∑

j=1

[− ā2 j−1 × j × sin( j × v2)+ ā2 j × j ×cos( j × v2)
]

and

¯̄y ¯̄I
= Py = ¯̄yc + ¯̄b0 +

J∑
j=1

[ ¯̄b2 j−1 × sin( j × v0)+ ¯̄b2 j ×cos( j × v0)
]

¯̄y0 = ¯̄Py = ¯̄yc + ¯̄b0 +
J∑

j=1

[ ¯̄b2 j−1 × sin( j × v2)+ ¯̄b2 j ×cos( j × v2)
]

Ty =
J∑

j=1

[ ¯̄b2 j−1 × j ×cos( j × v0)− ¯̄b2 j × j × sin( j × v0)
]

¯̄Ty =
J∑

j=1

[
b̄2 j−1 × j ×cos( j × v2)− b̄2 j × j × sin( j × v2)

]

(3.34)

The sum of squared errors between the ÙAC of original curve and the gener-

alized elliptic segment ÙAC at all points except the first point (Point C ) and

the last point (Point A) because at these two points, the x,y components

are fixed: ¯̄x1 = ¯̄Px , ¯̄y1 = ¯̄Py , ¯̄x ¯̄I
= Px , ¯̄y ¯̄I

= Py , according to Eq.(3.34). Hence,

E ¯̄x and E ¯̄y are defined as

E ¯̄x =
¯̄I−1∑
i=2

[ ¯̄xi − ¯̄x( ¯̄vi )]2 =
¯̄I−1∑
i=2

[
¯̄xi − ¯̄xc − ¯̄a0 −

¯̄J∑
j=1

[
¯̄a2 j−1 cos( j × ¯̄vi )+ ¯̄a2 j sin( j × ¯̄vi )

]]2

E ¯̄y =
¯̄I−1∑
i=2

[ ¯̄yi − ¯̄y( ¯̄vi )]2 =
¯̄I−1∑
i=2

[
¯̄yi − ¯̄yc − ¯̄b0 −

¯̄J∑
j=1

[ ¯̄b2 j−1 sin( j × ¯̄vi )+ ¯̄b2 j cos( j × ¯̄vi )
]]2

(3.35)
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To minimize the errors between the generalized elliptic segment and

the original curve segment subject to the boundary constraints specified in

Eq.(3.34) is a typical nonlinear programming problem. I choose to use a se-

quential least squares programming algorithm named SLSQP proposed by

Kraft [1988] to solve this minimization problem, because SLSQP supports

constrained minimization problem and is well-developed by a Python Li-

brary called Scipy, and get the variables ¯̄a j ( j = 0,1,2, . . . ,2 ¯̄J ) and ¯̄b j ( j =
0,1,2, . . . ,2 ¯̄J ). The results are shown in Fig.3.13.

(a) original curve (b) first segment and
in-between segment

combined

(c) add the last segment

Figure 3.13: add the last segment

Special case: when the last segment starts at 180 degree and ends at 0

degree

Although in preceding Subsection.3.2.2 SLSQP optimizer can find the solu-

tion of minEx and minEy subject to different equality constraints, the con-

vergence of SLSQP is relatively slow. In order to improve the computational

efficiency, it’s better to detect special cases before resorting to SLSQP. One
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special case, for example, as shown on Fig.3.14, when the curve splits into

two segment with the last segment starts from v1 =π and ends at v0 = 0.

Figure 3.14: three segments of a closed curve where its last segment starts
from v2 =π and ends at v0 = 0

Using a bar and a double bar to indicate the first and second elliptic

segments respectively, the positional values of the first generalized elliptic

segment at v = 0 and v =π should be equal to those of the second general-

ized elliptic segment at v = 2π and v = π, respectively. Therefore, we have

the following positional continuity conditions for the x position function

¯̄xc + ¯̄a0 +
J∑

j=1
(−1) j ¯̄a2 j−1 = x̄c + ā0 +

J∑
j=1

(−1) j ā2 j−1

¯̄xc + ¯̄a0 +
J∑

j=1

¯̄a2 j−1 = x̄c + ā0 +
J∑

j=1
ā2 j−1

¯̄yc + ¯̄b0 +
J∑

j=1
(−1) j ¯̄b2 j = ȳc + b̄0 +

J∑
j=1

(−1) j b̄2 j

¯̄yc + ¯̄b0 +
J∑

j=1

¯̄b2 j = ȳc + b̄0 +
J∑

j=1
b̄2 j

(3.36)

Similarly, the tangential values of the first generalized elliptic segment at

v = 0 and v = π should be equal to those of the second generalized elliptic
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segment at v = 2π and v = π, respectively, which leads to the following

tangential continuity conditions

J∑
j=1

(−1) j j ¯̄a2 j =
J∑

j=1
(−1) j j ā2 j

J∑
j=1

j ¯̄a2 j =
J∑

j=1
j ā2 j

J∑
j=1

(−1) j j ¯̄b2 j−1 =
J∑

j=1
(−1) j j b̄2 j−1

J∑
j=1

j ¯̄b2 j−1 =
J∑

j=1
j b̄2 j−1

(3.37)

From the first two of Eqs. (3.36) and (3.37), we can determine four un-

known constants ¯̄a1, ¯̄a2 , ¯̄a3 and ¯̄a4 for x position component, as are shown

in Eqs.(3.38). To be more specifical, if we subtract first two of Eqs. (3.36),

we can get the formula for ¯̄a1. By subtracting the first two of Eqs. (3.37),

we can get the formula for ¯̄a2. Substituting ¯̄a1 from Eqs.(3.38) into the first

equation in Eqs.(3.36) and we get the formula for ¯̄a3. Adding the first two

of Eqs.(3.37), we can get the formula for ¯̄a4.

¯̄a1 = 1

2

{ J∑
j=1

[1− (−1) j ]ā2 j−1 −
J∑

j=3
[1− (−1) j ] ¯̄a2 j−1

}
¯̄a2 = 1

2

{ J∑
j=1

[1− (−1) j ] j ā2 j −
J∑

j=3
[1− (−1) j ] j ¯̄a2 j

}
¯̄a3 = x̄c − ¯̄xc + ā0 − ¯̄a0 + 1

2

{ J∑
j=1

[1+ (−1) j ]ā2 j−1 −
J∑

j=3
[1+ (−1) j ] ¯̄a2 j−1

}
¯̄a4 = 1

4

{ J∑
j=1

[1+ (−1) j ] j ā2 j −
J∑

j=3
[1+ (−1) j ] j ¯̄a2 j

}
(3.38)

From the last two of Eqs.(3.36) and (3.37) , we can obtain four unknown

constants ¯̄b0, ¯̄b1, ¯̄b2, . . . , ¯̄b2J for y position component, as listed in Eqs.(3.39).
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More specifically, subtracting the last two of Eqs.(3.36), we can get the ¯̄b2;

subtracting the last two of Eqs.(3.37), we can get the ¯̄b1; adding the last two

of Eqs.(3.37), we can get the ¯̄b3; adding the last two of Eqs. (3.36), we can

get ¯̄b4.

¯̄b1 = 1

2

{ J∑
j=1

[1− (−1) j ] j b̄2 j−1 −
J∑

j=3
[1− (−1) j ] j ¯̄b2 j−1

}
¯̄b2 = 1

2

{ J∑
j=1

[1− (−1) j ]b̄2 j −
J∑

j=3
[1− (−1) j ] ¯̄b2 j

}
¯̄b3 = 1

4

{ J∑
j=1

[1+ (−1) j ] j b̄2 j−1 −
J∑

j=3
[1+ (−1) j ] j ¯̄b2 j−1

}
¯̄b4 = ȳc − ¯̄yc + b̄0 − ¯̄b0 + 1

2

{ J̄∑
j=1

[1+ (−1) j ]b̄2 j −
J∑

j=3
[1+ (−1) j ] ¯̄b2 j

}
(3.39)

Substituting Eqs. (3.38) and (3.39) into Eq. (3.3), the x and y compo-

nents of the positional function for the second generalized elliptic segment

are changed into

¯̄x(v) = (x̄c + ā0)cos2v + 1

2

J∑
j=1

[
D1( j , v)ā2 j−1 + j D2( j , v)ā2 j

]
+ ( ¯̄xc + ¯̄a0)(1−cos2v)

+ 1

2

J∑
j=3

{[
2cos j v −D1( j , v)

]
¯̄a2 j−1 +

[
2sin j v − j D2( j , v)

]
¯̄a2 j

}
¯̄y(v) = (ȳc + b̄0)cos2v + 1

2

J∑
j=1

[
j D2( j , v)b̄2 j−1 +D1( j , v)b̄2 j

]
+ ( ¯̄yc + ¯̄b0)(1−cos2v)

+ 1

2

J∑
j=3

{[
2sin j v − j D2( j , v)

] ¯̄b2 j−1 +
[
2cos j v −D1( j , v)

] ¯̄b2 j

}

(3.40)

where D1( j , v) = [1− (−1) j ]cos v + [1+ (−1) j ]cos2v , and D2( j , v) = [1−
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(−1) j ]sin v + 1
2 [1+ (−1) j ]sin2v .

Using Eq. (3.40) we can perform curve fitting for the curve segment

ÚC D A. Firstly, construct similar Errors for ¯̄x and ¯̄y as that in Eqs.(3.4), (3.5)

and (3.7). Then by setting the derivatives of the Errors to zero, we can get

the following equations involving 2J −3 items ¯̄a0, ¯̄a5, ¯̄a6,. . ., ¯̄a2J−1, ¯̄a2J as un-

known variables for x position, and another 2J −3 items ¯̄b0, ¯̄b5, ¯̄b6,. . ., ¯̄b2J−1,

¯̄b2J for y position

Ca(i ) = xi − (x̄c + ā0)cos2vi − ¯̄xc (1−cos2vi )

− 1

2

J∑
j=1

[D1( j , vi )ā2 j−1 + j D2( j , vi )ā2 j ]

A(i ) = ¯̄a0(1−cos2vi )+
J∑

j=3
[cos j vi − 1

2
D1( j , vi )] ¯̄a2 j−1

+
J∑

j=3
[sin j vi − j

2
D2( j , vi )] ¯̄a2 j

P1(k, i ) = cos(
k +1

2
× vi )− 1

2
D1(

k +1

2
, vi ), (k = 5,7,9, . . . ,2J −1)

P2(k, i ) = sin(
k

2
× vi )− k

4
D2(

k

2
, vi ), (k = 6,8,10, . . . ,2J )

I∑
i=1

(1−cos2vi )× A(i ) =
I∑

i=1
(1−cos2vi )×Ca(i )

I∑
i=1

P1(k, i )× A(i ) =
I∑

i=1
P1(k, i )×Ca(i ), (k = 5,7,9, . . . ,2J −1)

I∑
i=1

P2(k, i )× A(i ) =
I∑

i=1
P2(k, i )×Ca(i ), (k = 6,8,10, . . . ,2J )

(3.41)

and

Cb(i ) = yi − (ȳc + b̄0)cos2vi − ¯̄yc (1−cos2vi )

− 1

2

J∑
j=1

[ j D2( j , vi )b̄2 j−1 +D1( j , vi )b̄2 j ]
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B(i ) = ¯̄b0(1−cos2vi )+
J∑

j=3
[sin j vi − j

2
D2( j , vi )] ¯̄b2 j−1

+
J∑

j=3
[cos j vi − 1

2
D1( j , vi )] ¯̄b2 j

P3(k, i ) = sin(
k +1

2
× vi )− k +1

4
D2(

k +1

2
, vi ), (k = 5,7,9, . . . ,2J −1)

P4(k, i ) = cos(
k

2
× vi )− 1

2
D1(

k

2
, vi ), (k = 6,8,10, . . . ,2J )

I∑
i=1

(1−cos2vi )×B(i ) =
I∑

i=1
(1−cos2vi )×Cb(i )

I∑
i=1

P3(k, i )×B(i ) =
I∑

i=1
P3(k, i )×Cb(i ), (k = 5,7,9, . . . ,2J −1)

I∑
i=1

P4(k, i )×B(i ) =
I∑

i=1
P4(k, i )×Cb(i ), (k = 6,8,10, . . . ,2J )

(3.42)

These two systems of linear equations Eqs.(3.41) and Eqs.(3.42) can be

represented in matrix form, as in Appendix F. With the solution of these two

systems of equations, we obtain all 2J−3 unknown variables ¯̄a0, ¯̄a5, ¯̄a6, ¯̄a7, . . . , ¯̄a2J

and ¯̄b0, ¯̄b5, ¯̄b6, ¯̄b7, . . ., ¯̄b2J . We then achieve the mathematical description of

the last generalized elliptic segment according to Eqs.(3.40). We generate

the composite generalized elliptic segments depicted in the right column

of Fig. 3.15 and the original curves are shown in the left column.
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(a) original curve (b) composite generalized elliptic
segments

(c) original curve (d) composite generalized elliptic
segments

Figure 3.15: Two composite generalized elliptic segments meets at 0 and π

58



Chapter 4

Cross-Section Defined Surface

Modeling

In chapter 3, I investigated curve fitting of cross-section shapes and solved

the problem of representing cross-sectional curves with generalized ellipses

or composite generalized elliptic segments. The remaining problem is how

to mathematically define surface models from these cross-sectional curves.

In this chapter, a modelling method of 3D models is presented. A 3D

model is divided into different parts. For each part, characteristic cross

section curves are generated and approximated by generalized ellipses and

composite generalized elliptic segments. The parts are constructed from

these generalized elliptic curves assembled together to create the 3D model.

With the approach presented in this chapter, different orders of the con-

tinuities between adjacent curve segments and surface patches are well

maintained. Since surface creation of 3D models is transformed into gen-

eration of cross-sectional curves and few unknown constants are required

to describe these cross-sectional curves accurately, this approach can re-
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duce data size of surface modeling.

4.1 Introduction

Since standard ellipses can only give a very rough approximation of the

cross section curves of human body, the sweep surface of a moving ellipse

is far from the practical shape of the human body. In order to remedy this

shortcoming, sweep-based human deformation introduces the concept of

displacement map (Hyun et al. [2005]).

For most cases, the vertex of human body is not exactly located on an

ellipse. Therefore, the algorithm of the displacement map first brings the

vertex back to the coordinate system of the ellipse. Then, the relative dis-

placement of the vertex from the moving ellipse is measured and a contin-

uous displacement map is constructed by approximating or interpolating

a set of sampled relative displacements.

Although the introduction of the displacement map can improve the re-

alism of human modeling, it can be observed from the above discussion

that such a method is also a approximation and requires more computer

storage and additional computational cost.

Since generalized ellipses and composite generalized elliptic segments

can represent the cross section curves of human body very exactly, the ac-

curacy improvement using the displacement map or other approaches is

not required. Therefore, the method proposed in this chapter can signifi-

cantly reduce the computer storage and obviously increase modelling effi-

ciency.

First, this research uses the 3D models from Autodesk [2015] Charac-
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ter Generator dataset, and creates skeleton for the models. The benefits of

this dataset is that the models are all in A-pose, which makes little to none

mesh distortion compared to human character meshes in arbitrary poses.

Next, I automatically extract the cross-sections on the template model by

casting a ray from a bone, and getting the intersection position of the cast-

ing ray and the surface of template model with Maya’s closestIntersection

function. Later use the techniques in Chapter 3 to transform these cross-

sectional curves into parametric curves. Then, repeat the last step for dif-

ferent part of the same bone, and organize the extracted cross-sections in

a sequence and finally, a new surface is generated from the cross-sectional

contour sets by the algorithm in this chapter. Motivated by the work of

Hyun et al. [2003, 2005] but without using standard ellipses and displace-

ment map, I will introduce generalized ellipses and composite general-

ized elliptic segments to approximate the cross-sectional curves of human

body, and present a simple and efficient method with small data storage to

build human models in this chapter.

4.2 3D models defined with generalized ellipses

In order to build a 3D model, the first step is drawing some cross-sectional

curves which define the 3D model. Then approximate the original cross-

sectional curves with the generalized ellipses. After that, surface patches

can be constructed from these generalized ellipses with the following method.

As mentioned in Tokuyama [2000], among three surface interpolation

methods, i. e., interpolating through distinct point data, skinning over

a family of curves and interpolating the surface simultaneously over two
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families of intersection curves, the skinning method is generally consid-

ered to be the most frequently used technique for surface construction .

Here I use this skinning method to construct surface patches of human

parts.

If a surface patch(shown in Fig. 4.1) will be constructed from K gen-

eralized ellipses
(
cxk (v), cyk (v),czk (v)

)
(k = 0,1,2, . . . ,K − 1) where cxk (v),

cyk (v) and czk (v) are determined by Eq. (3.3), one can use the following

equation to describe the surface to be constructed

t (u, v) =
K−1∑
m=0

um ftm(v)

ftm(v) = Ftm ∗ [1,cos(v), si n(v),cos(2v), si n(2v), ...,cos(J v), si n(J v)]T

(t = x, y, z)

(4.1)

where Ftm(m = 0,1,2,3, . . . ,K −1) are row vectors, and each contains 2J +1

unknown constants.

Uniformly dividing the region u = 0 to u = 1 into K − 1 equal intervals

which gives the interval length to be du = 1
K−1 , we have uk = k ×du (k =

0,1,2,3, . . . ,K −1). The unknown constants Ftm (m = 0,1,2,3, . . . ,K −1) can

be determined by solving the following linear algebraic equations

ctk (v) =
K−1∑
m=0

um
k ftm(v),

(k = 0,1,2,3, . . . ,K −1; t = x, y, z)

(4.2)

where ctk (v) is the functions obtained in Eq.(3.3).

Rewriting Eq. (4.2) into the form of matrix, we obtain the following
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Figure 4.1: Illustration of surface designed with generalised ellipses

mathematical expression

Rt (ukm)Ft = Ct

(t = x, y, z)
(4.3)

where Rt (ukm) is a K×K square matrix with the elements ukm = um
k , Ft (v) =[

Ft0,Ft1,Ft2, . . . ,FtK−1
]T and Ct =

[
Ct0,Ct1,Ct2, . . . , Ct (K−1)

]T are two ma-

trices with K vectors, each vector has 2J +1 elements. Ctm consists of the

constants of the mth generalized ellipse in Eq.(3.3) and Ftm is the unknown

constants that defines the surface patch needed to be solved.

Using Rt (ukm)−1 to indicate the inverse matrix of Rt (ukm) and left multi-

plying both sides of Eq. (4.2) by this inverse matrix, we obtain the unknown

functions with the following equation

Ft (v) = Rt (ukm)−1 ×Ct (v) (4.4)
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(a) (b) (c)

Figure 4.2: Human forearm, neck and hip created from generalized ellipses.
Cross-sectional curves described as generalized ellipses are in red.

Substitute Ft (v) into Eq.(4.1), we generate the 3D models defined with

generalized ellipses. Some examples are shown in Fig. 4.2.

At the boundary curves where two different surface patches are to be

connected together, we must consider the continuity between the two sur-

face patches. For an existing surface patch indicated by Eq. 4.1, different

order continuities such as the boundary tangents and boundary curvature

etc. at its boundaries can be determined from the different orders of partial

derivatives (n = 1,2,3, . . .) of the surface patch with respect to the paramet-

ric variable u. By introducing these partial derivatives into the above oper-

ation, different order continuities between two connected surface patches

can be obtained.

For example, if we intend to connect two surface patches with the tan-

gent continuity at u = 1 of the existing surface patch t̄ (u, v), we obtain
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the mathematical expressions of the first partial derivative
[∂t̄ (u,v)

∂u

]
u=1 =∑K−1

m=1 m f̄tm(v) of the existing surface patch t̄ (u, v) and
[∂t (u,v)

∂u

]
u=0 = ft1(v)

of the unknown surface patch t (u, v) with respect to the parametric vari-

able u from Eq. 4.1, respectively. Then the following tangential continuity

constraint is added to Eq. 4.2.

ft1(v) =
K̄−1∑
m=1

m f̄tm(v)

(t = x, y, z)

(4.5)

Rewriting Eq.(4.5) into the form of vector, we have the following mathe-

matical expression

[0,1,0,0, . . . ,0] · [Ft0,Ft1,Ft2, . . . ,FtK ]T =
K̄−1∑
m=0

mF̄tm

(t = x, y, z)

(4.6)

Add Eq.(4.6) into Eq. (4.4) as a new row. Since one more linear algebraic

equation is introduced, the unknown functions ftm(v) in Eq. 4.1 should be

increased from ftK−1(v) to ftK (v) and all K in Eq. 4.1 and thereafter will

be replaced by (K + 1) in order to form an invertible square matrix. The
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expanding equation system in matrix form is as follow

 Ct∑K̄−1
m=1 mF̄tm

=



u0
0 u1

0 u2
0 u3

0 . . . uK
0

u0
1 u1

1 u2
1 u3

1 . . . uK
1

u0
2 u1

2 u2
2 u3

2 . . . uK
2

. . .

u0
K−1 u1

K−1 u2
K−1 u3

K−1 . . . uK
K−1

0 1 0 0 . . . 0


∗



Ft0

Ft1

Ft2

. . .

Ft (K−1)

FtK


(t = x, y, z)

(4.7)

Solve the above equations, we get the constants in Ftm(m = 0,1,2, . . . ,K ).

Therefore, the mathematical description of a surface with one shared edge

with existing surface is obtained.

t (u, v) =
K∑

m=0
um ×Ftm × [1,cos v, sin v, . . . ,cos(J v),sin(J v)]T

(t = x, y, z)

(4.8)

Some examples of a surface shares one edge with another surface patch are

shown in Fig.4.3

If both opposite edges of a surface patch t (u, v) will be connected to two

separate surface patches t̄ (u, v) and ¯̄t (u, v), the continuity at the boundary

curve u = 0 of the exiting surface patch ¯̄t (u, v) should also be considered.

Similar to the above treatment, the following boundary condition for the

tangential continuity will be added to Eq. 4.2

K−1∑
m=1

m ftm(v) = ¯̄ft1(v)

(t = x, y, z)

(4.9)
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(a)

(b)

Figure 4.3: A human torso which shares a boundary with hip and an upper
arm shares a boundary with a forearm are created from generalized ellipses.
Cross-sectional curves described as generalized ellipses are in red.
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and the unknown functions ftm(v) in Eq. 4.1 will be increased from ftK (v)

to ftK+1(v) and all (K+1) in Eq. 4.1 and thereafter will be replaced by (K+2).

Rewrite Eq.(4.9) into a vector form, we get

¯̄ft1 = [0,1,2, . . . ,K ]∗ [Ft0,Ft1,Ft2, . . . ,FtK ]T

(t = x, y, z)
(4.10)

Add Eq.(4.10) into Eq.(4.3), we have the following matrix equations


Ct∑K̄

m=1 mF̄tm

¯̄Ft1

=



u0
0 u1

0 u2
0 u3

0 . . . uK+1
0

u0
1 u1

1 u2
1 u3

1 . . . uK+1
1

u0
2 u1

2 u2
2 u3

2 . . . uK+1
2

. . .

u0
K−1 u1

K−1 u2
K−1 u3

K−1 . . . uK+1
K−1

0 1 0 0 . . . 0

0 1 2 3 . . . K +1



∗



Ft0

Ft1

Ft2

. . .

Ft (K−1)

FtK

Ft (K+1)


(t = x, y, z)

(4.11)

With the above constructed surface function, we create a human knee

which shares two boundaries with a thigh and a calf from generalized el-

lipses as demonstrated in Fig.4.4
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Figure 4.4: A human knee shares two boundaries with a thigh and a calf,
respectively, created from generalized ellipses. Generalized ellipses are illus-
trated in red.

4.3 Surfaces defined with composite generalized

elliptic segments

With the introduction of composite generalized elliptic segments, human

parts can be constructed from these segments and the combinations of

these segments and generalized ellipses in addition to those created from

the generalized ellipses only.

Whether the curves are generated from composite generalized elliptic

segments or generalized ellipses, they must have the same curve segments

if a surface is to be constructed from these curves. Therefore, when some

generalized ellipses are to be combined with other composite generalized

elliptic segments to generate a surface, these generalized ellipses should be

firstly divided into the same segments as those of composite generalized

elliptic segments. For example, if we are required to construct a surface

from three composite generalized elliptic segments and a closed general-

ized ellipse where the three composite generalized elliptic segments are

connected together at v = v0, v = v1 and v = v2, respectively, we simply
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divide the generalized ellipse into v = v0 to v = v1, v = v1 to v = v2, and

v = v2 to v = v0.

The continuity of different surface patches along the v parametric direc-

tion can be achieved by taking the mathematical expressions for u para-

metric variable of the adjacent two surface patches to be the same form. In

the following, we indicate that the surface patches constructed in this way

can maintain the required continuity.

For I +1 generalized elliptic curves each of which consists of J +1 com-

posite generalized elliptic segments or parts of a generalized ellipse, we use

vector-valued position functions Xi j (i = 0,1,2,3, . . . , I ; j = 0,1,2,3, . . . , J ) to

represent the j th generalized elliptic segment or the corresponding seg-

ment of a generalized ellipse for the i th generalized elliptic curves. Here

Xi j has the three components xi j , yi j and zi j . Since zi j takes an identical

value for all segments of the same generalized elliptic curve, the continuity

for this component is always ensured. Therefore, the following treatment

is for x and y components. Here I only consider positional and tangential

continuities. Of course, the treatment discussed here is also applicable to

the higher order continuities.

If up to tangential continuity is taken into account, both positional and

tangential continuities at the joint between the j th and ( j +1)th segments

should be achieved when constructing these curve segments. That is

Xi j (v = vi j ) = Xi j+1(v = vi j )[∂Xi j

∂v

]
v=vi j

=
[∂Xi j+1

∂v

]
v=vi j

(i = 0,1,2,3, . . . , I ; j = 0,1,2,3, . . . , J −1)

(4.12)
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If the generalized elliptic curves are closed, the positional and tangential

continuities at the closure should also be introduced which leads to the

additional equations below

Xi J (v = 2π) = Xi 0(v = 0)[∂Xi J

∂v

]
v=2π

=
[∂Xi 0

∂v

]
v=0

(i = 0,1,2,3, . . . , I )

(4.13)

If (J +1) surface patches are constructed from the above generalized el-

liptic curves, we take their surface functions to be

S j (u, v) =
I∑

m=0
umX̄m j (v)

( j = 0,1,2,3, . . . , I )

(4.14)

where X̄m j (v)(m = 0,1,2,3, . . . , I ; j = 0,1,2,3, . . . , J )) are unknown functions.

At the position ui of the i th generalized elliptic curve segment, the j th

and ( j+1)th surface patches should pass through the j th and ( j+1)th curve

segments, respectively, i. e.,

I∑
m=0

um
i X̄m j (v) = Xi j (v)

I∑
m=0

um
i X̄m j+1(v) = Xi j+1(v)

(i = 0,1,2,3, . . . , I )

(4.15)

Using the same treatment given in Section 4.2, we can determine X̄m j (v)
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and X̄m j+1(v) using the following matrix equations

X̄ j (v) = R j (ui m)−1X j (v)

X̄ j+1(v) = R j+1(ui m)−1X j+1(v)

( j = 0,1,2,3, . . . , J )

(4.16)

where X̄l (v) = [
X̄0l , X̄1l , X̄2l , . . . , X̄I l

]T and Xl (v) =
[

X0l ,X1l ,X2l , . . . ,XI l

]T
(l =

j , j +1) are two column vectors.

According to Eq. (4.15), we know that R j (ui m)−1 and R j+1(ui m)−1 are

identical which can be written as

R = R j
(
ui m

)−1 = R j+1
(
ui m

)−1 = Ri j (4.17)

where Ri j (i = 0,1,2,3, . . . , I ; j = 0,1,2,3, . . . , I ) are the elements of the square

matrix R.

With Eq. (4.17), we can obtain the mathematical expressions of the ele-

ments in vectors X̄ j (v) and X̄ j+1(v)

X̄l j (v) =
I∑

i=0
Rl i Xi j (v)

X̄l j+1(v) =
I∑

i=0
Rl i Xi j+1(v)

(l = 0,1,2,3, . . . , I )

(4.18)

Substituting Eq.(4.18) into Eq.(4.14), the position functions of the j th
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and ( j +1)th surface patches are found to be

S j (u, v) =
I∑

m=0
um

I∑
i=0

Rmi Xi j (v)

S j+1(u, v) =
I∑

m=0
um

I∑
i=0

Rmi Xi j+1(v)

(4.19)

From Eq. (4.19), we can calculate the first partial derivatives of the j th

and ( j + 1)th surface patches with respect to the parametric variable v .

Taking into account the positional and tangential continuity conditions

Eq.(4.12) of Xi j (v) and Xi j+1(v) at their joint vi j , we find

S j (u, vi j ) = S j+1(u, vi j )[∂S j (u, v)

∂v

]
v=vi j

=
[∂S j+1(u, v)

∂v

]
v=vi j

(4.20)

Equation (4.20) indicates that along the shared boundary curve between

the j th and ( j +1)th surface patches, both positional and tangential conti-

nuities are guaranteed.

With the same method given in Section 4.2, the continuity of surface

patches at u = 0 and u = 1 along u parameter direction can also be tackled.

Fig. 4.5 gives an example of generating composite generalised elliptic

surface segments: original cross-sectional curves in Fig. 4.5(a) are splited

into four parts and then transformed into composite elliptic curve seg-

ments in Fig. 4.5(b) with the methods discussed in Chapter 3, each seg-

ment is highlighted with a different color. Finally I deal with the composite

elliptic curve segments using the approach introduced in this chapter and

then build composite elliptic surface segments shown in Fig. 4.5(c).
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(a) (b) (c)

Figure 4.5: Generation of surface patches from composite generalized ellip-
tic segments

4.4 Conclusions

Detailed character models can be defined by cross-sectional curves. These

cross-sectional curves can be mathematically represented with general-

ized ellipses and composite generalized elliptic segments. In this chapter,

I have presented a method to create surface patches from cross-sectional

curves represented with generalized ellipses and composite generalized el-

liptic segments.

The method starts from some characteristic cross-sectional curves of

human body. With introduction of generalized elliptic curves, these cross

sectional curves are approximated very accurately with generalized ellipses

or composite generalized elliptic segments. Then human parts are con-

structed from these generalized elliptic curves. This chapter presented the

algorithms to determine generalized ellipses and composite generalized

elliptic segments, investigate the continuity between two adjacent segments

of a generalized elliptic curve. This chapter examined how to construct hu-

man parts from the generalized ellipses and composite generalized elliptic

segments and demonstrated that surface patches produced from gener-

alized elliptic curves can maintain the required continuities between two

adjacent patches.

Fig. 4.6 gave a human model built with my proposed approach. The left
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image contains the cross-sectional curves of a human body and the right

image is the assembled human body made up of various generalized ellip-

tic surfaces. The approach presented in this paper greatly lowers the com-

puter storage. For the human body given in the following figures, the mod-

elling with the polygon approach uses 12,426 vertices to keep the informa-

tion of the human body. With my method, only 7530 constants are required

to build the human body. The number of constants sorely depends on

the cross-sectional curves that are fed into the algorithms as inputs. To be

more specific, the amount of constants in Ftm (m = 0,1, . . . ,K −1; t = x, y, z)

depends on the number of cross-sections(K ) and the accuracy of cross-

sectional curves as discussed in Chapter 3. Hence, this method can be

used in the scenarios where LOD(level of detail) is applied. For example

in games and animated films, the characters far from the viewers do not

require high visual quality can be modeled with lower number of cross-

sections(K ) and less accuracy of cross-sectional curves to increase ren-

dering computational efficiency. For now the optimal number of cross-

sectional curves required to represent a surface is still a result of manual

trials. It is recommended that those going through critical parts of the body

(e.g. places with radical curvature changes, etc.) should be added to the

cross-section set.

Unlike sweep-based human modelling, my method can represent cross-

sectional curves of human body very accurately. Due to this reason, the ad-

ditional operations of improving modelling realism using some approaches

such as displacement map (Hyun et al. [2005]) are not necessary.
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(a) (b)

Figure 4.6: Human model assembled from different human parts: a) orig-
inal cross-sectional curves sampled from base mesh, b) various generalised
elliptic surfaces are generated from the cross-sectional curves
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Chapter 5

Primitive Generator

This chapter presents a novel sketch-guided and ODE-drive primitive de-

former to address the thin-shell energy function algorithm described by

Terzopoulos et al. [1987], with the implementation of the Finite Difference

Method as numerical solution.

5.1 Pipeline Overview

As shown in the Fig.5.1, the first step of my proposed approach is to gen-

erate 2D sketches. Two methods are included in my developed system to

generate 2D images. They are manually drawing without a reference im-

age and extracting a 2D sketch from a reference image. After users extract

2D silhouette contours from sketches, or directly draw 2D silhouette con-

tours, they put the super-ellipsoid at the place of the input sketch silhou-

ette and set proper parameters of the super-ellipsoid. The input sketch can

be messy and there may be problems like over-sketch, so the sketch strokes

need to be pre-processed which includes stroke grouping and curve beau-
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tification. However the pre-processing of the sketches is beyond this the-

sis’s scope, so here refer the readers to more specialized literature on these

topics (Douglas & Peucker [1973]; Bae et al. [2008]). Afterward, an ODE-

based deforming method will deform the cross-section curves of super-

ellipsoid primitives so that the projection of deformed cross-section curves

exactly matches the input sketch silhouette. Finally, the deformed cross-

section curves will be fitted with the method introduced in Chapter 3 and

new surface constructed from these cross-section curves will be created

with the technique described in Chapter 4.

Figure 5.1: pipeline overview.

5.2 User Interface of Primitive Deformer

The user interface of my developed primitive deformer uses four windows

as shown in Figure 5.2. The upper left window is used to display 3D base
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mesh without primitive deformations in the front view. The upper right

window is used to draw and edit 2D silhouette contours for the primitive.

The bottom left window is used to deform the primitive in the front view.

The bottom right window is used to deform the primitive in the side view so

that the 3D model obtains its realistic shape with its projected silhouettes

exactly matching the input sketched silhouettes.

Figure 5.2: Interface for primitive deformer: (a) 3D base mesh of the left
leg of the female warrior without primitive deformations, (b) 2D silhouette
contours of the female warrior leg sketch and primitive, (c) and (d) front
view and side view of the 3D left leg base mesh after primitive deformations
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5.3 Thin Shell Deform Energy

After 3D primitives have been placed and aligned with the generated 2D

silhouette contours, these 3D primitives should be deformed so that their

2D silhouette contours can match the generated 2D silhouette contours

exactly. Here we use the example shown in Figure 5.3 to demonstrate the

algorithm of my proposed primitive deformer and how it deforms a 3D

primitive to match the 2D silhouette contours.

(a) (b)

Figure 5.3: Primitive deformer: a) female warrior torso represented with a
cylinder and its 2D silhouette contour, b) deformed shape of the cylinder

Figure 5.3a depicts a torso model of the female warrior represented with

a cylinder-shaped superellipsoid. The 2D silhouette contour to be matched

is also shown in the image. Figure 5.3b shows how the cylinder is deformed

with the algorithm developed below to match the 2D silhouette contour

exactly.

To tackle the above problem, we propose a sketch-guided and ODE-

drive primitive deformer. It is developed from a simplified version of the

Euler-Lagrange PDE (partial differential equation) which is widely used in

physical-based surface deformations and briefly introduced below.

As discussed in Botsch & Sorkine [2008], the main requirement for physically-

based surface deformations is an elastic energy which considers the local
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stretching and bending of two-manifold surfaces called thin-shells. When

a surface S ⊂ R3, parameterized by a function P(u, v) :Ω ⊂ R2 7→S ⊂ R3, is

deformed to a new shape S′ through adding a displacement vector d(u, v)

to each point P(u, v), the change of the first and second fundamental I (u, v),

Π(u, v) ∈R2×2 forms in differential geometry (Do Carmo et al. [2017]) yields

a measure of stretching and bending, as described in Terzopoulos et al.

[1987]:

Eshel l (S′) =
∫
Ω

ks‖I ′− I‖2
F +kb‖Π′−Π‖2

F du dv (5.1)

where I ′ and Π′ are the first and second fundamental forms of the surface

S′, ‖.‖ indicates a (weighted) Frobenius norm, and the stiffness parameters

ks and kb are used to control the resistance to stretching and bending.

Generating a new deformed surface requires the minimization of the

above Equation (5.1), which is non-linear and computationally expensive

for interactive applications. In order to avoid the nonlinear minimization,

the change of the first and second fundamental forms is replaced by the

first and second order partial derivatives of the displacement function d(u, v)

(Celniker & Gossard [1991]; Welch & Witkin [1992]), i. e.,

Ẽshel l (d) =
∫
Ω

ks(‖du‖2 +‖dv‖2)+kb(‖duu‖2 +2‖duv‖+‖dv v‖2)du dv,

(5.2)

where dx = ∂
∂x d , dx y = ∂2

∂x∂y d and dxx = ∂2

∂x2 d. The minimization of the

above equation can be obtained by applying variational calculus, which

leads to the following Euler-Lagrange PDE:

−ks4d+kb42d = 0, (5.3)
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where 4 and 42 are the Laplacian and the bi-Laplacian operators, respec-

tively,

4d =∇·∇d = duu +dv v ,

42d =4(4d) = duuuu +2duuv v +dv v v v

(5.4)

Up till now, the minimization of the thin-shell deform energy is described

in a continuous space which depicts the physical phenomenon happening

in real world. In next section, we will discrete Eq. (5.3) for computers to

simulate.

5.4 Finite Difference Method for Geometric Pro-

cessing

In this section, a discretized ODE-driven and sketch-guided primitive de-

formation method is proposed. For a long time, ODEs have been widely

applied in scientific computing and engineering analyses to describe the

underlying physics. For example, fourth-order ODEs have been used to

describe the lateral bending deformations of elastic beams. Introducing

ODEs into geometric processing can create physically realistic appearances

and deformations of 3D models. ODE-based sweeping surfaces (You et al.

[2007]), ODE-based surface deformations (You et al. [2010]; Chaudhry et al.

[2013]), and ODE-based surface blending (You et al. [2014]) have also been

developed previously.

Although researchers studied ODE-based geometric surface creation and

deformations, how to use ODE-based modelling to deform geometric prim-

itives and create new shapes from the user’s drawn sketches has been under-

explored to date.
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The work presented in this chapter falls within the category of direct

mesh generation from sketches. It integrates quick creation of primitive-

based base meshes, efficient ODE-driven primitive deformations, and shape

generation from sketches in three orthographic views, in order to create

detailed 3D models.

Using the sketched 2D silhouette contours shown in Fig. 5.5 to change

the shape of the primitive can be transformed into the generation of a

sweeping surface which passes through the two sketched 2D silhouette

contours. The generator that creates the sweeping surface is a curve of the

parametric variable u only, and the two silhouette contours are trajectories.

If Equation (5.3) is used to describe the generator, the parametric variable

v in Equation (5.3) drops, and we have dv v = 0 and dv v v v = 0. Substituting

dv v = 0 and dv v v v = 0 into Equation (5.4), we obtain the following simpli-

fied version of the Euler-Lagrange PDE, seen as (5.5), which is actually a

vector-valued ODE.

kb
∂4d

∂u4
−ks

∂2d

∂u2
= 0. (5.5)

As pointed out in Chaudhry et al. [2013] and Chaudhry et al. [2015], the

finite difference solution to ordinary differential equations is very efficient,

we here investigate such a numerical solution to Equation (5.5).

Figure 5.4: Typical node i for the finite difference approximations of deriva-
tives

For a typical node shown in Figure 5.4, the central finite difference ap-
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proximations of the second and fourth order derivatives can be written as

Chaudhry et al. [2013]:

∂2d

∂u2
|i = 1

4u2
(di+1 −2di +di−1),

∂4d

∂u4
|i = 1

4u4
[6di −4(di−1 +di+1)+di−2 +di+2].

(5.6)

Introducing Equation (5.6) into Equation (5.5), the following finite dif-

ference equation at a representative node i can be written as:

(6kb +2ksh2)di +kbdi−2 +kbdi+2 − (4kb +ksh2)di−1 − (4kb +ksh2)di+1 = 0.

(5.7)

5.5 Algorithm for Primitive Deformer

For character models, the 3D shape defined by two silhouette contours is

closed in the parametric direction u as indicated in Figure 5.5b. Therefore,

we can extract some closed curves each of which passes through the two

corresponding points on the two silhouette contours. Taking the silhou-

ette contours in Figure 5.5a as an example, we sample the two curves ac-

cording to arc-length and find two corresponding points c13 and c23 (points

with the same index) on the original silhouette contours c1 and c2, and two

corresponding points c′13 and c′23 on the deformed silhouette contours c′1

and c′2 as shown in Figure 5.5b. Then, we extract a closed curve c(u) pass-

ing through the two corresponding points c13 and c23 from the 3D model

in Figure 5.5a and depict it as a dashed curve in Figure 5.5b. Assuming that

the deformed shape of the closed curve c(u) is c′(u), the displacement dif-
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ference between the original closed curve and the deformed closed curve

is d(u) = c′(u)− c(u). My task is to find the displacement difference d(u)

and generate the deformed curve c′(u) = d(u)+c(u).

(a) side view (b) top view

Figure 5.5: Finite difference nodes for local shape manipulation from
sketches in different view planes.

In order to use the finite difference method to find the displacement

difference d(u), we uniformly divide the closed curve into 2N equal inter-

vals as indicated in Figure 5.5b. The displacement difference at node 0 and

node N is known, i. e. d0 = c′13 −c13 and dN = c′23 −c23.

We take the deformation of node 0 and node N as a consequence of

applying external force f0 and fN and as such we invent a term for force f

and add it to the right side of Eq.(5.7) as follows:

(6kb +2ksh2)di +kbdi−2 +kbdi+2 − (4kb +ksh2)di−1 − (4kb +ksh2)di+1 = fi .

(5.8)

When we write the finite difference equations for the nodes 1, 2, 2N −2

and 2N − 1, the node 1 will be involved, and we have d0 = c′13 − c13. The

finite difference equations at these points can be derived from Equation

(5.7). Substituting d0 = c′13 − c13 into these equations, we obtain the finite
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difference equations for the nodes 1, 2, 2N−2 and 2N−1, and present them

in Appendix A.

When we write the finite difference equations for the nodes N −2,N −1,

N +1 and ,N +2 the node N will be involved, and we have dN = c′23 −c23.

Once again, the finite difference equations at these points can be derived

from Equation (5.7). Substituting dN = c′23 − c23 into these equations, we

obtain the finite difference equations for the nodes N −2, N −1, N +1 and

N +2, and present them in Appendix A as well.

For all other nodes 3, 4, 5,. . . , N −4 , N −3 and N +3,N +4 ,. . . , 2N −4,

2N −3, the finite difference equations are the same as Equation (5.7). For

these nodes, there are 2N −8 finite difference equations. Plus the 8 finite

difference equations at node 1, 2, N−2 , N−1 , N+1 , N+2 , 2N−2 and 2N−
1, we get 2N linear algebra equations which can be solved to determine

the 2N unknown constants f0, d1, d2 , . . . ,dN−2, dN−1 , fN , dN+1 , dN+2 ,. . . ,

d2N−1, and d2N . Adding di ( i = 0,1, . . . ,2N −2,2N −1) to the original curve

c(u), we obtain the deformed curve c′(u), and depict it as a solid curve in

Figure 5.5b. Repeating the above operations for all other points on the two

silhouette contours, we obtain all deformed curves. These curves together

describe a new 3D deformed shape.

Finally, we need to reconstruct the 3D model from these deformed curves.

With the curve fitting method introduced in Chapter. 3, these deformed

curves are now represented with trigonometric series and can be seen as

cross-sectional curves. Using the algorithm in Chapter. 4, we create a new

3D deformed shape from these deformed curves.

Other applications of this method other than human character model-

ing include more generic organic objects, and deformations responding to
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free form curves. Fig 5.6a has shown this ODE-driven deforming method

has good performance when it is used to create a sea-star shaped organic

object. One can also use this deformer for multiple times to obtain the

ideal shape if once is not enough. One such example is shown in Fig 5.6b

where the leg has been deformed responding to the free form curves after

initially deformed by single-view sketch strokes. A few more words for why

not let one curve cover the whole sketch instead of splitting the whole sur-

face into multiple sections: because the demand for 3D branching struc-

tures in human body(shoulder vs. arms, torso vs. legs), in this research

multiple sections are needed.

(a) the deformation process of an organic shape represented by an ellipsoid and its
2D silhouette contour, and the deformed shape of the ellipsoid

(b) a leg that has been deformed by single-view sketch strokes before, now get further
deformed in accordance with the free form red-colored curves

Figure 5.6: Additional applications of ODE-driven Sketch-based deforma-
tions

However, since the cross-section shape of a superellipsoid lacks varia-

tions and cannot capture the complexity of actual objects, deforming from
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a superellipsoid primitive alone is not ideal. In such cases, we edit the

cross-section first (Fig.5.7b), and then deform the shape again with the fol-

lowing treatment.

When a cross-sectional contour is used to modify the cross-section shape,

the influence range of the cross-sectional contour is first specified to gener-

ate two boundary curves. The cross-sectional contour and the two bound-

ary curves are parameterized to find the corresponding points. If only the

position continuity is required, the three corresponding points: two are on

each of the two boundary curves and the third is on the cross-sectional

contour, are taken to be the nodes of the finite difference calculations and

introduced into Equation (5.7) to reduce three unknown constants. If both

position and tangent continuities are required, the first partial derivatives

at the boundary curves are obtained from the original model and intro-

duced into Equation (5.7) to reduce two more unknown constants.

With the above ODE-driven deformations, realistic cross-section shapes

are created. Taking the vest created in Chapter 6.3 and shown in Figure

5.7a as an example, one original cross-section curve of the vest is an el-

lipse highlighted in blue in Figure 5.7b, and the real cross-section curve of

the vest on a female body should be the red one shown in the same fig-

ure. The real cross-section curve in red and the two boundary curves high-

lighted in blue are depicted in Figure 5.7c. The cross-section shape within

the boundary curves is modified and shown in Figure 5.7d.
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(a) (b)

(c) (d)

Figure 5.7: Cross-section shape modifications by cross-section contours: a)
vest, b) the origin cross section contour (in blue) and a modified cross section
contour (in red), c) the modified cross section is in place, d) 3D shape after
cross section contour modifications.

5.6 Conclusion

By now, we’ve achieved the goal of generate primitives from silhouette sketches

in two orthogonal view-planes by solving an ODE equation with a finite dif-

ferent method. As shown in Fig. 5.8, the deformed primitives have matched

the generated 2D silhouette contours exactly.
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(a) (b)

(c) (d)

Figure 5.8: Examples of the primitive deformation method
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Chapter 6

Free-form Patch Generator

The mesh generated from the deformed primitives described in Chapter 5

only represents a base mesh. Therefore, we need to add 3D details to the

base mesh to generate a detailed 3D model. In this section, I will develop

ODE-driven shape generators to create various local shapes from the user’s

drawn sketches in different view planes. These sketches can be divided into

the following cases: (i) two open sketches in two different view planes, (ii)

one open and one closed sketches in two different view planes, and (iii)

two open and one closed sketches in three different view planes. In the

following, I will describe the algorithms to create 3D shapes from the three

different cases of sketches.

6.1 Two Open Silhouette Contours in Two Differ-

ent View Planes

For the creation of a local 3D model from two open silhouette contours

in two different view planes, we use the intersecting point P to segment
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each of the two sketched 2D silhouette contours obtained from the front

view and the side view into two curves and denote all the four segmented

curves with c1, c2 , c3 and c4. Then, we find the four corresponding points

on the four curves, and denote them with c1 j , c2 j , c3 j and c4 j , respectively

as shown in Figure 6.1. Since the four points are on the two sketched 2D

silhouette contours in the front view and the side view, their coordinate

values are known.

(a) sketched contours (b) generator to be created

Figure 6.1: The finite difference nodes used in the algorithm in the case of
two open silhouette contours in two different view planes.

The 3D model to be created from the two sketched 2D silhouette con-

tours can be regarded as a sweeping surface whose generator is a closed

curve c(u), shown in Figure 6.1b, passing through the four corresponding

points c1 j , c2 j , c3 j and c4 j (shown in Figure 6.1a and b). We uniformly di-

vide the domain of the parametric variable u corresponding to the closed

curve (generator) c(u) into 2N equal intervals. The nodes corresponding

to c1 j , c2 j , c3 j and c4 j are 0, N /2, N , and 3N /2, respectively, as illustrated

in Figure 6.1b. Here N ≥ 4 is an even number.

At the nodes 0, N /2, N , and 3N /2, the coordinate values are known, i.e.,

d0 = c1 j , dN /2 = c2 j , dN = c3 j , and d3N /2 = c4 j , but the sculpting forces f0,

fN /2, fN , and f3N /2 are unknown. At all of the other nodes shown in Figure

6.1b, there are no sculpting forces, but the displacements at these nodes
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are unknown.

Writing the finite difference equations for all the nodes from 0 to 2N −1

and considering the known displacements at nodes 0, N /2, N , and 3N /2

, we obtain 2N linear equations. Solving the 2N linear equations, we can

obtain the generator consisting of the points di (i = 0,2,3, . . . ,2N −1).

Repeating the above process for all other points on the four curves c1

, c2, c3 and c4, we can obtain the generators at the other positions. With

these generators and the method described in Chapter 4, we can create

local 3D shapes.

(a) (b) (c) (d)

Figure 6.2: Shape generators: a) 2D silhouette contours of a male head in
front view, b) 2D silhouette contours of the male head in side view, c) cross-
sections of the male head, d) creating the male head model from the cross-
section curves.

A head model shown in Figure 6.2 is used to demonstrate the above

method. Figure 6.2a and Figure 6.2b show two open head silhouette con-

tours in two different view plans. Figure 6.2c shows the cross section for

each discrete parameter ui . Figure 6.2d depicts the created 3D head model.

The above method can be directly extended to deal with local shape cre-

ation from four disconnected silhouette contours. The silhouette contours

of a leg model in the front and side views are shown in Figure 6.3a and Fig-

ure 6.3b, respectively. The corresponding four points on the four silhouette

contours are used to define a cross-section curve. All of these cross-section
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curves are used to generate a 3D leg model with the front and side views in

Figure 6.3c and Figure 6.3d, respectively.

Another example given in Figure 6.3 is a neck model. Figure 6.3e shows

the 4 disconnected contours, Figure 6.3f shows the cross-section curves,

and the final mesh is shown in Figure 6.3g.

(a) (b) (c) (d)

(e) (f ) (g)

Figure 6.3: Generation of 3D shapes from two open silhouette contours in
two different view planes. a) contours in front view, b) contours in side view,
c) leg mesh by using my method in front view, d) leg mesh in side view, e)
contours of a neck, f) cross sections of a neck generated by my method, g)
final neck mesh.

6.2 One Open and One Closed Silhouette Contours

in Two Different View Planes

For the creation of a local 3D model from one open and one closed sil-

houette contours in two different view plans as shown in Figure 6.4, the

intersecting points P1 and P3 between the open silhouette contour and
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the closed silhouette contour divide the closed silhouette contour into two

curves. Then we find the middle points P2 and P4 of the two curves. These

four points P1, P2, P3 and P4 divide the closed silhouette contour into four

curves c1, c3, c4, and c6. Next, we find the middle point P of the open sil-

houette contour, which divides the open silhouette contour into two curves

c2 and c5. With this treatment, the creation of the local 3D detail model is

changed into creation of two sweeping surfaces: one is defined by c1, c2,

and c3, and the other is defined by c4, c5, and c6.

Since the creation processes of the two sweeping surfaces are the same,

we take the creation of the sweeping surface defined by c1, c2, and c3 to

illustrates the process. For each of c1, c2, and c3, we uniformly divide it into

2N equal intervals, and use c1 j , c2 j , and c3 j ( j = 1,2, . . . , J ) to respectively

indicate the nodes on the three curves.

The sweeping surface can be generated by sweeping a generator c(u)

passing through the points c1 j , c2 j , and c3 j . Based on this consideration,

the creation of the sweeping surface is transformed into the determination

of the generator at different positions along the curve.

Figure 6.4: Finite difference nodes for one open and one closed silhouette
contours.
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In order to create the generator c(u) passing the points c1 j , c2 j and c3 j ,

we uniformly divide the domain of the parametric variable u correspond-

ing to the generator c(u) into 2N equal intervals, and obtain the nodes 1,

2, . . . , 2N −1 , 2N and 2N +1. Since the nodes 1, N +1, and 2N +1 are on

the curves c1, c2, and c3, respectively, their values are known, i. e., d1 = c1 j ,

dN+1 = c2 j , and d2N+1 = c3 j . When writing the finite difference equations

for the node 2 and the node 2N , the node 0 beyond the boundary node 1

and the node 2N + 2 beyond the boundary node 2N + 1 will be involved.

They can be determined below:

If the created local 3D model is to be smoothly connected to another 3D

model, we can obtain a closed curve close to the closed silhouette contour

from another 3D model. Then, the vector-valued first derivative T1 j on the

curve c1 and T3 j on the curve c3 can be calculated from the closed curve

and the closed silhouette contour.

Otherwise, if the created local 3D model is to be connected to another

3D model with positional continuity only, the vector-valued first derivative

T1 j on the curve c1 and T3 j on the curve c3 can be estimated from the three

points c1 j , c2 j , and c3 j by first constructing a curve passing through the

three points and then calculating the vector-valued first derivative of the

constructed curve at the points c1 j and c3 j . Once the vector-valued first

derivatives T1 j and T3 j are obtained, the nodes 0 and 2N +2 can be deter-

mined by the following finite difference approximation:

T1 j = d2 −d0

24u
,

T3 j = d2N+2 −d2N

24u
.

By solving the above equation, we can obtain the nodes 0 and 2N + 2 as
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follows:

d0 = d2 −2T1 j4u,

d2N+2 = d2N +2T3 j4u.

At the nodes 1, N +1, and 2N +1, the coordinate values are known, i. e.,

d1 = c1 j , dN+1 = c2 j and d2N+1 = c3 j . The sculpting forces f at nodes 0, 2,

3, . . . , N , N +2, . . . , 2N , 2N +2 equal zero, but the sculpting forces f1 , fN+1

and f2N+1 are unknown.

Writing the finite difference equations for all the nodes from 2 to 2N ,

we obtain 2N − 1 linear equations given in Appendix C. Taking the four

boundary conditions d1 = c1 j , d2N+1 = c3 j , d0 = d2 −2T1 j4u, and d2N+2 =
d2N +2T3 j4u into consideration, we can obtain 2N +3 linear equations.

Solving the 2N + 3 linear equations, we can determine the 2N + 3 un-

known constants d0, f1, . . . , dN , fN+1, dN+2, . . . , d2N , f2N+1, and d2N+2. Us-

ing d1 = c1 j , dN+1 = c2 j , and d2N+1 = c3 j to replace f1 , fN+1, and f2N+1, re-

spectively, we obtain the generator consisting of the points di (i = 1,2,3, . . . ,

2N +1).

Using the same process, we can obtain the generator at the other posi-

tions. From these obtained generators, a detailed 3D model can be created

(an example is shown in Figure 6.5).
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(a) front (b) top (c) side (d) perspective

Figure 6.5: The shape creation from one open and one closed silhouette con-
tours in two different view planes.

6.3 Two Open and One Closed Silhouette Contours

in Three Different View Planes

The algorithms given in Subsections 6.1 and 6.2 enable users to create local

3D shapes from the sketches in two orthographic view planes. By adding

one or more silhouette contours in the third orthographic view plane, users

can further control the shape of 3D models. In this subsection, I’ll describe

how to construct a 3D detailed model from two open and one closed sil-

houette contours in three orthographic view planes.

As shown in Figure 6.6, the task of creating a local 3D shape passing

through two open and one closed silhouette contours can be transformed

into constructing four sweeping surfaces encircled by the curves c1c6c5,

c2c7cc6, c3c8c7, and c4c5c8, respectively.

Since the construction algorithms for the four sweeping surfaces are the

same, without the loss of generality, we take the sweeping surface encir-

cled by the three curves c1, c6 and c5 as an example to demonstrate the

construction algorithm.

The construction algorithm for the curve c6 is exactly the same as that of

the curve c5. Here we take the reconstruction of the curve c5 as an example
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Figure 6.6: Finite difference nodes in the algorithm for the case of two open
and one closed silhouette contours.

to demonstrate the algorithm.

Similar to the previous treatment, we uniformly divide the domain of

the parametric variable u for the curve c5(u) into N −1 equal intervals. The

vector-valued first derivatives of the curves c5(u) at the node 1 and N can

be determined from the curve c5(u) and indicated by T5,0 and T5,1.

When writing the finite difference equations for the inner nodes 2, the

node 0 beyond the boundary node 1 will be involved. We can use the

method given in Subsection 6.2 to determine the nodes 0 from the vector-

valued first derivatives T5,0 through

d0 = d2 −2T5,04u. (6.1)

For each of the inner nodes 2, 3, . . . , N −1, N , we can write a finite differ-

ence equation. Since the coordinate values for all the nodes on the curve c5

are known, we can calculate the sculpting force fi from Equation (5.8). We

denote these sculpting forces as f5,i = fi (i = 2,3, . . . , N−1, N ). With the same
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method, we can obtain the sculpting forces f6,i = fi (i = 2,3, . . . , N−1, N ) act-

ing on the curve c6.

The curves c5 and c6 can be regarded as generators. The generation of

the sweeping surface defined by c1, c6 and c5 is to sweep the generator

from c5 to c6 along c1 and the point P. In order to determine the shape of

the generator at different positions along c1, we uniformly divide c1 into J

equal intervals and obtain the nodes j = 1,2,3, . . . , J −2, J −1, J , where j = 1

and j = J are the intersecting points between c5 and c1 and between c6

and c1. Then we determine the shape of the generator between the node

j ( j = 2,3, . . . , J −2, J −1) and the point P.

With the same treatment, we divide the domain of the parametric vari-

able u for the generator between the node j and the point P into N equal

intervals (the node j on c1 is the node 0 on the generator between the node

j and the point P). When sweeping c5 along c1 to c6, the sculpting force

f5,i acting at the node i of c5 is gradually changed to the sculpting force f6,i

acting at the node i of c6. Here we use a linear interpolation to describe the

gradual change and obtain the sculpting force fi below acting at the node i

of the generator between the node j and the point P:

fi = f5,i +
L j

L
(f6,i − f5,i ), (6.2)

where L j is the length from the point P1 to the node j and L is the length

from the point P1 to the point P2.

When sweeping c5 along c1 to c6, the vector-valued first derivatives of

c5 at the points P and P1 are also gradually changed to the vector-valued

first derivatives of c6 at the points P and P2. The same linear interpolation

is used to describe such a gradual change and determine the vector-valued
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first derivatives T0 and T1 of the generator at the node j and the point P:

T0 = T5,0 +
L j

L
(T6,0 −T5,0),

T1 = T5,1 +
L j

L
(T6,1 −T5,1).

(6.3)

Having known the sculpting forces at all the inner nodes 2, 3, . . . , N −1,

N , and the coordinate values at the boundary nodes 1 and 2N +1 and the

nodes 0 and N +1 beyond the boundary nodes by Equation (6.1), we can

write the finite difference equations for all the inner nodes where the finite

difference equations for the nodes 4, 5, . . . , N − 3, N − 2 are the same as

Equation (5.8) with the sculpting force being calculated by Equation (6.2),

and the finite difference equations for the nodes 2, 3, N −2, and N −1 are

given in Appendix D

Solving all the finite difference equations, we can obtain all the unknown

constants d2, d3, . . . , d2N−1, and d2N . They together with the two known

points d1 and P are used to create the generator.

Using the same treatment, we can obtain all the curves of the gener-

ator at the positions j = 1,2,3, . . . , J − 2, J − 1, J . They are used to create

the sweeping surface. With the above method, we draw a closed lip con-

tour and two open curves, as shown in Figure 6.7a and 6.7b. The two open

curves divide the mouth into four regions. One surface is created for each

of the four regions. Figure 6.7c depicts the mouth model consisting of the

four surfaces.

The above method can also be extended to deal with the situations where

the two open curves do not intersect. For such situations, the intersect-

ing point of the two open curves becomes the upper closed curve as in-
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(a) front (b) side (c) perspective

Figure 6.7: A mouth model creation from two open and one closed silhouette
contours in three different view planes.

Figure 6.8: Finite difference nodes for the algorithm for four open and two
closed silhouette contours.
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dicated in Figure 6.8, and a sweeping surface is encircled by four curves.

When writing the finite difference equations for the inner nodes N −1, the

node N + 1 beyond the boundary node N will be involved. We can use

the method given in Subsection 6.2 to determine the nodes N +1 from the

vector-valued first derivatives T5,1 through

dN+1 = dN−1 +2T5,14u. (6.4)

With this extension, we can create a 3D vest model and an eye socket model,

as shown in Figure 6.9a and Figure 6.9b, respectively.

(a) vest (b) eye socket

Figure 6.9: Vest and eye socket creation from four open and two closed sil-
houette contours.

The extended algorithm is not only applicable to top and bottom closed

curves, but also top and bottom open curves. Figure 6.10 gives such an

example where the three curves in red are open as shown in Figure 6.10a.

The generated 3D model is depicted in Figure 6.10b.

6.4 User Interface for the Detail Generator

Fig.6.11 shows the user-interface of the proposed sketch-based modelling

system, where four split viewports are on Fig.6.11a with the front view dis-
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(a) contours (b) mesh

Figure 6.10: Creation of a thin sheet on the left forearm.

plays the reference image on the background, while the node-based pipeline

is displayed on Fig.6.11b. As shown on Fig.6.11b, this system firstly let the

user to draw sketched curves and then resample node samples the input

sketched stroke to find the discrete points to feed the algorithm of de-

tail generators. Then sort node will appoint the points with correct in-

dex. Later, the detail generator node is responsible for creating the sur-

face, in this case, it’s a vest from five rails, one top curve, and one bottom

curve. If later, another cross-sectional curve is provided to guide the de-

forming step, deform by cross-section curve node will deform the whole sur-

face based on the curve and the deforming method described in Chapter.5.

Finally, surface from cross-section curves node will take the cross-sectional

curves calculated from the previous steps and turn them into a surface with

the method in Chapter.4.

6.5 Experiments and Comparisons

This section presents the experiments to validate that my approach can

create more realistic shapes and use the creation of a 3D facial model to
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(a)

(b)

Figure 6.11: The user-interface of the sketch-based modelling system
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demonstrate that my approach can create detailed 3D models more effi-

ciently. The experiment is to deform a plastic ruler and compare its ground-

truth deformations with those determined by my ODE-driven deformation

approach.

(a)

(b)

Figure 6.12: Deformation comparisons: (a) deform a plastic ruler by fix-
ing one end of the ruler and putting a heavy weight on the other free end of
the ruler, (b) deform a plastic ruler by placing a load at the midpoint of a
plastic ruler, with the two ends of the ruler simply supported by two identi-
cal objects. Red curves are the simulated results and the gray rulers are the
ground-truths.

As shown in Figure 6.12a, the plastic ruler is fixed at one end and its
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other end is tied with a heavy weight, like a cantilever beam. Therefore, the

ruler is bent towards the ground by 7.2cm at its free end with a force equal

to the gravity of the heavy weight acting on it. The setup of my ODE-driven

deformations is: the displacement differences d0 = 0 and dN+1 = 7.2cm,

the rotation of the fixed end ∂d0
∂u = 0, and the third derivative of displace-

ment at the free end is proportional to the force applied to it ∂3dN+1
∂u3 = f

kb
. I

use the bend modulus of PP plastics to approximate the bending stiffness

kb = 0.5, and set the stretching stiffness ks = 1.4 . The red curve in Figure

6.12a shows its simulation, which is very close the ground-truth (the ruler

itself).

In another experiment shown in Figure6.12b, two identical objects sim-

ply supported a ruler at its two ends, and a load was put at the midpoint

of the ruler. Since we did not fix the two ends of the ruler, no bending

moment M results in zero curvature at the two ends ∂2d0
∂u2 = M

E I = 0
E I = 0,

∂2d2N−1
∂u2 = M

E I = 0
E I = 0. Together with the displacement differences at the

two ends d0 = d2N−1 = 0, and at the midpoint dN−1 = 1.06cm, the simula-

tion by my ODE-driven deformation technique is shown as the red curve in

Figure6.12b, which is also very close to the ground-truth (the gray curve).

By comparing the red curves and the real deformed rulers in (a) and (b)

of Figure 6.12, the red curves are very close to the real deformed rulers.

It indicates that ODE-driven deformations are able to depict real shape

changes.

Human faces have the most details among various virtual characters.

With the algorithms developed in this paper, a detailed human face can be

easily and efficiently created.

Next we use 3D face creation as a specific application to demonstrate
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that my approach can efficiently add 3D details to the created 3D models.

Taking the female warrior face shown in Figure 6.13a as an example, I com-

pare 3D face generation between the traditional polygon modelling and

my sketch-based, ODE-driven shape modelling. With the Maya-provided

polygon modelling, it took an invited user about 40 hours to create a de-

tailed facial model in Figure 6.13b. With my sketch-based, ODE-driven

shape modelling approach, a curve network shown in Figure 6.13c which

defines the female warrior face is first generated. Then, the curve network

is decomposed into different groups of sketches and my ODE-driven de-

formations are used to automatically create surface patches from different

groups of sketches. The created surface patches are smoothly connected

to generate the detailed facial model shown in Figure 6.13d. The total time

of obtaining the detailed facial model in Figure 6.13d including generating

the facial curve network in Figure 6.13c was about 5 hours by the same user.

(a) (b) (c) (d) (e)

Figure 6.13: Comparison of creating 3D facial details with the polygon mod-
elling and sketch-based and ODE-driven shape generator. a) sketch of a fe-
male character, b) traditional polygon modelling result, c) input contours
for face reconstruction, d) result of the proposed sketch-based modelling e)
result of the proposed sketch-based modelling superimposed on the input
sketch.

My approach was developed in python on the Houdini FX Education

Edition 16.5.323 package, and ran on a dual boot Linux PC with 23GB mem-

ory and 64 bits Intel(R) Xeon(R) CPU E5-1650 0 @ 3.20GHz CPU. The aver-

age time for deforming a primitive is 0.17 seconds and the average time for
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detail generators is 0.09 seconds, which ensures a smooth real-time mod-

elling user experience.

6.6 Conclusion

In this chapter, a free-form patch generator is developed. It involves a force

field into the ODE equation in Chapter 5 and utilises the boundary tangent

as boundary constraints to solve the equations. The example shown in Fig.

6.14 to demonstrate the outcome of the proposed free-form patch genera-

tor.
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(a) (b) (c)

(d) (e) (f )

Figure 6.14: a) Creation of character models with my proposed approach a)
sketch of a male character. Image retrieved from: www.wolfiesden.com, b)
3d model of a male character by using my method with the sketched strokes
that define the shape, c) 3d model of a male character by using my method.
d) sketch of a female character. Sketch by ©EngKit Leong, e) 3d model of a
female character by using my method with the sketched strokes that define
the shape, f) 3d model of a female character by using my method.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Virtual characters are widely applied in various situations such as com-

puter games, virtual reality and digital films. As pointed out by Magnenat-

Thalmann & Thalmann [2005], in order to create realistic and believable

virtual humans, three techniques should be developed, they are realistic,

smooth and flexible motion modelling and realistic high-level behaviour

modelling. Among them, realistic appearance modelling consisting of hu-

man modelling and deformation has attracted a lot of research attention.

Many modeling technologies are proposed during the past two decades,

and sketch-based modeling (SBM) in particular is popular with the model-

ing community by its user-friendly and intuitive interface. However, exist-

ing sketch-based modelling approaches are incapable in creating detailed

and realistic 3D character models. In order to tackle this problem, I have

added cross-section curves to define local shapes which cannot be defined

by the sketches in front and side views, formulated analytical mathematical
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representations of cross-section curves and surfaces interpolating cross-

section curves, developed an ODE-defined primitive generator from the

sketches in front and side views and cross-section curves to generate more

detailed and realistic base models, and invented an ODE-driven free-form

patch generator to add local shapes to base models.

Firstly this research introduced generalized elliptic curves to approxi-

mate the cross section curves of human body in Chapter 3. This curve-

fitting method achieves very good accuracy and the function is continuous

everywhere. This generalized elliptic curves can greatly improve the ac-

curacy of cross-sectional contours of human body compared with simply

represent the cross-sectional contours with standard ellipses without trad-

ing off the computational cost and storage.

Secondly this thesis proposed a surface modeling technique customized

for the cross-section contours represented by trigonometric series, so as to

construct human body parts from the cross sectional curves, presented in

Chapter 4. This simple and efficient method to build human models from

the cross-section curves obtained in Chapter 3 is very light in data stor-

age which overcomes the limitation of the work of Hyun et al. [2003, 2005]

where sweeping standard ellipses is used to approximate the base shape

and a displacement map is used to restore the original shape’s details. My

proposed surface modeling technique also supports LOD(level of detail)

and is efficient in computational cost, as such, this technique is suitable

for games where the characters far from viewer can be modeled with less

details and accuracy.

In Chapter 5, a new ODE-based modeling method to deform the base

mesh to exactly match the input complex sketch strokes is developed. There-
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fore, the result mesh of my method is more detailed and suitable for gener-

ating complex organic character models than existing sketch-based mod-

eling method such as Igarashi et al. [1999] which generates simple toy-like

shapes. This thesis also provide a novel pipeline consisting of the follow-

ing steps. Step 1. To take the easiness and efficiency advantages of primi-

tives in representing rough 3D models, this research choose superellipsoid

primitives to quickly obtain an initial 3D mesh. Step 2. All the cross-section

contours of this superellipsoid primitive are deformed such that the new

surface’s projected silhouette fits the input sketched stroke exactly. Step

3. Using trigonometric series algorithm proposed in Chapter 3 to fit the

new cross-section contours, we got the parametric representation of the

cross-sectional curves. Step 4. Obtain the final shape with the surface re-

construction method in Chapter 4. This method not only can deform the

base mesh longitudinally, but also works in an attitudinal fashion: if user

sketches a new cross-sectional curve, my method can deform the mesh

to follow the sketched cross-sectional curve exactly and this mesh editing

method is more accurate than Gingold et al. [2009] where the later only al-

lows scale and rotate of the cross-sectional curve or the simple arbitrary

cross-sectional curve.

Finally in Chapter 6, I invented a new free-form patch generating method

to take a network of sketched curves as the input and then solve an ODE to

get each of the vertex’s position information within the span. This method

gives the users enough control over the shape. In addition, to our best

knowledge, it is the first free-form modeling tool that can create a dome-

shaped surface without revolting a profile curve along an axis or a rail, fur-

thermore, it supports multiple profile curves so that user can obtain the

idea shape on one go, rather than using basic modeling tools to get an ini-
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tial base mesh and editing handles on base mesh little by little.

7.2 Future Work

Though the curve-fitting method in Chapter 3 fulfills the demand of fitting

the curve with generalized ellipse accurately and efficiently, when it comes

to splitting the curve into composite generalized elliptic segments, depend

on the SLSQP optimiser’s performace, the computational time grows as the

complexity of the segment grows. Hence, this technique can be further

improved if a more suitable optimiser is employed.

As for the surface reconstruction method in Chapter 4, more auxiliary

tools should be developed and more geometrical features of the method

should be studied, if this surface representation wants to be added as a

new standard mathematical model like NURBS modeling.

One possible future work may investigate the potential of the proposed

the sketch-based and ODE-driven deformation technology from Chapter 5

in terms of changing the way of animating characters by integrating ODE-

driven deformations and keyframes. With this new technique, animators

don’t have to manipulate the bones and repaint the weight or fine-tune

the mesh little by little any more, all they need to do is generating shapes

at keyframe poses. Then ODE-driven deformations are used to determine

the shapes between two keyframe poses.

Another topic to be investigated in the future is cross-sectional curve-

based local shape retrieval. This PhD thesis has proposed cross-sectional

curve-based local shape creation. In order to generate more realistic local

shape from cross-sectional curves, it is necessary to retrieve a local shape
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from user-drawn cross-sectional curves with machine learning technology,

and add the retrieved local shape to base meshes to create more realistic 3D

models.
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Appendix A: Finite difference equations for primi-

tive deformer

The finite difference equations at the nodes 0 and N can be formulated as

below.

For node 0,

− f0 +kbd2N−2 +kbd2 − (4kb +ks4u2)d2N−1

−(4kb +ks4u2)d1 =−(6kb +2ks4u2)(C ′
13 −C13)

For node N ,

− fN +kbdN−2 +kbdN+2 − (4kb +ks4u2)dN−1

−(4kb +ks4u2)dN+1 =−(6kb +2ks4u2)(C ′
23 −C23)

(A1)

The finite difference equations at the nodes 1, 2, 2N −2 and 2N −1 can be

formulated as below.

For node 1,

(6kb +2ks4u2)d1 +kbd2N−1 +kbd3

−(4kb +ks4u2)d2 = (4kb +ks4u2)(C ′
13 −C13)

For node 2,

(6kb +2ks4u2)d2 +kbd4 − (4kb +ks4u2)d1
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−(4kb +ks4u2)d3 =−kb(C ′
13 −C13)

For node 2N −2,

(6kb +2ks4u2)d2N−2 +kbd2N−4 − (4kb +ks4u2)d2N−3

−(4kb +ks4u2)d2N−1 =−kb(C ′
13 −C13)

For node 2N −1,

(6kb +2ks4u2)d2N−1 +kbd2N−3 +kbd1

−(4kb +ks4u2)d2N−2 = (4kb +ks4u2)(C ′
13 −C13)

(A2)

The finite difference equations at the nodes N −2, N −1, N +1 and N +2

are

For node N −2,

(6kb +2ks4u2)dN−2 +kbdN−4 − (4kb +ks4u2)dN−3

−(4kb +ks4u2)dN−1 =−kb(C ′
23 −C23)

For node N −1,

(6kb +2ks4u2)dN−1 +kbdN−3 +kbdN+1

−(4kb +ks4u2)dN−2 = (4kb +ks4u2)(C ′
23 −C23)
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For node N +1,

(6kb +2ks4u2)dN+1 +kbdN+3 +kbdN−1

−(4kb +ks4u2)dN+2 = (4kb +ks4u2)(C ′
23 −C23)

For node N +2,

(6kb +2ks4u2)dN+2 +kbdN+4 − (4kb +ks4u2)dN+3

−(4kb +ks4u2)dN+1 =−kb(C ′
23 −C23)

(A3)

The finite difference equation for the rest of the nodes i (i =3, 4, . . . , N −3,

N +3, N +4, . . . , 2N −3) is

For nodes i in 3, 4, . . . , N −3, N +3, N +4, . . . , 2N −3,

(6kb +2ks4u2)di +kbdi−2 +kbdi+2

−(4kb +ks4u2)di−1 − (4kb +ks4u2)di+1 = 0

(A4)
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Appendix B: Finite difference equations for two open

silhouette contours in two different view planes

The finite difference equations at the nodes 0, N /2, N and 3N /2 can be

formulated as below. For node 0,

− f0 +kbd2N−2 +kbd2 − (4kb +ks4u2)d2N−1

−(4kb +ks4u2)d1 =−(6kb +2ks4u2)C1 j

For node N
2 ,

− fN /2 +kbdN /2−2 +kbdN /2+2 − (4kb +ks4u2)dN /2−1

−(4kb +ks4u2)dN /2+1 =−(6kb +2ks4u2)C2 j

For node N ,

− fN +kbdN−2 +kbdN+2 − (4kb +ks4u2)dN−1

−(4kb +ks4u2)dN+1 =−(6kb +2ks4u2)C3 j

For node 3N
2 ,

− f3N /2 +kbd3N /2−2 +kbd3N /2+2 − (4kb +ks4u2)d3N /2−1

−(4kb +ks4u2)d3N /2+1 =−(6kb +2ks4u2)C4 j
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(B1)

The finite difference equations at the nodes 1, 2, 2N − 1, and 2N − 2 can

be obtained by replacing c ′13−c13 in Equation(A2) with c1 j and those at the

nodes N −2, N −1, N +1 and N +2 can be achieved by replacing c ′23 − c23

in Equation(A3) with c3 j .

The finite difference equations at the nodes N /2−2, N /2−1, N /2+1, and

N /2+2 can be written as

For node N
2 −2,

(6kb −2ks4u2)dN /2−2 +kbdN /2−4 − (4kb +ks4u2)dN /2−3

−(4kb +ks4u2)dN /2−1 =−kbC2 j

For node N
2 −1,

(6kb +2ks4u2)dN /2−1 +kbdN /2−3 +kbdN /2+1

−(4kb +ks4u2)dN /2−2 = (4kb +ks4u2)C2 j

For node N
2 +1,

(6kb +2ks4u2)dN /2+2 +kbdN /2 +kbdN /2+4

−(4kb +ks4u2)dN /2+3 = (4kb +ks4u2)C2 j

For node N
2 +2,

(6kb +2ks4u2)dN /2+2 +kbdN /2+4 − (4kb +ks4u2)dN /2+1
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−(4kb +ks4u2)dN /2+3 =−kbC2 j

The finite difference equations at the nodes 3N /2−2, 3N /2−1, 3N /2+1

and 3N /2+2 are

For node 3N
2 −2

(6kb +2ks4u2)d3N /2−2 +kbd3N /2−4

−(4kb +ks4u2)d3N /2−3 − (4kb +ks4u2)d3N /2−1 =−kbC4 j

For node 3N
2 −1

(6kb +2ks4u2)d3N /2−1 +kbd3N /2−3 +kbd3N /2+1

−(4kb +ks4u2)d(3N /2−2) = (4kb +ks4u2)C4 j

For node 3N
2 +1

(6kb +2ks4u2)d3N /2+1 +kbd3N /2−1 +kbd3N /2+3

−(4kb +ks4u2)d3N /2+2 = (4kb +ks4u2)C4 j

For node 3N
2 +2

(6kb +2ks4u2)d3N /2+2 +kbd3N /2+4

−(4kb +ks4u2)d3N /2+1 − (4kb +ks4u2)d3N /2+3

=−kbC4 j
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(B2)

For nodes in 3, 4, . . . , N /2−3, N /2+3, N /2+4, . . . , N −4, N −3, N +3, N +4,

. . ., 3N /2−4, 3N /2−3, 3N /2+3, 3N /2+4, . . ., 2N −4, 2N −3, same as that

in Equation(A4).

Appendix C: Finite difference equations for one open

and one closed silhouette contours in two differ-

ent view planes

The finite difference equations at the nodes N −2, N −1, N +1 and N +2

can be obtained by replacing c ′23 − c23 in Equation (A2) with c2 j .

The finite difference equations at the nodes 2 and 3 can be written as

For node 2,

(7kb +2ks4u2)d2 − (4kb +ks4u2)d3 +kbd4

= 2kbT1 j4u + (4kb +ks4u2)C1 j

For node 3,

(6kb +2ks4u2)d3 − (4kb +ks4u2)d2 +kbd5

−(4kb +ks4u2)d4 =−kbC1 j

(C1)

The finite difference equations at the nodes N −1, N , N +2 and N +3 can

be written as
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For node N −1,

(6kb +2ks4u2)dN−1 +kbdN−3 − (4kb +ks4u2)dN−2

−(4kb +ks4u2)dN =−kbC2 j

For node N ,

(6kb +2ks4u2)dN +kbdN+2 − (4kb +ks4u2)dN−1

= (4kb +ks4u2)C2 j

For node N +2,

(6kb +2ks4u2)dN+2 +kbdN +kbdN+4

−(4kb +ks4u2)dN+3 = (4kb +ks4u2)C2 j

For node N +3,

(6kb +2ks4u2)dN+3 +kbdN+5 − (4kb +ks4u2)dN+2

−(4kb +ks4u2)dN+4 =−kbC2 j

(C2)

The finite difference equations at the nodes 2N −1 and 2N can be written

as
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For node 2N −1,

(6kb +2ks4u2)d2N−1 +kbd2N−3 − (4kb +ks4u2)d2N−2

−(4kb +ks4u2)d2N =−kbC3 j

For node 2N ,

(7kb +2ks4u2)d2N +kbd2N−2 − (4kb +ks4u2)d2N−1

= (4kb +ks4u2)C3 j −2kbT5 j4u

(C3)

For nodes in 4, 5, . . . , N −2, N +4, N +5, . . . , 2N −2, the formula is the same

as that in Equation(A4).

Appendix D: Finite difference equations for two open

and one closed silhouette contours in three differ-

ent view planes

Sculpting force at node 2 on curve C5

f5,2 = 1

4u4
[(6kb +2ks4u2)C5,2 +kb(C5,2 −2T5,04u)

+kbC5,4 − (4kb +ks4u2)C5,1 − (4kb +ks4u2)C5,3]
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Sculpting force at node 2 on curve C6

f6,2 = 1

4u4
[(6kb +2ks4u2)C6,2 +kb(C6,2 −2T6,04u)

+kbC6,4 − (4kb +ks4u2)C6,1 − (4kb +ks4u2)C6,3]

The finite difference equations at the nodes 2 and 3 can be written as

For node 2,

(7kb +2ks4u2)d2 +kbd4 − (4kb +ks4u2)d3

=4u4[ f5,2 +
L j

L
( f6,2 − f5,2)]

+2kb4u[T5,0 +
L j

L
(T6,0 −T5,0)]+ (4kb +ks4u2)P1

For node 3,

(6kb +2ks4u2)d3 +kbd5 − (4kb +ks4u2)d2

−(4kb +ks4u2)d4 =4u4[ f5,3 +
L j

L
( f6,3 − f5,3)]−kbP1

(D1)

The finite difference equations at the nodes N −1 and N are

For node N −1,

(6kb +2ks4u2)dN−1 +kbdN−3 +kbdN+1

−(4kb +ks4u2)dN−2 =

4u4[ f5,N−1 +
L j

L
( f6,N−1 − f5,N−1)]+ (4kb +ks4u2)P
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For node N ,

(6kb −2ks4u2 +kb)dN +kbdN−2 +kbdN+2

−(4kb +2ks4u2)d2N−1 =4u4[ f5,N + L j

L
( f6,N − f5,N )]

+(4kb +ks4u2)P

(D2)

For nodes in 4, 5, . . . , N −3, N −2, the formula is as follow

(6kb +2ks4u2)di +kbdi−2 +kbdi+2

−(4kb +ks4u2)di−1 − (4kb +ks4u2)di+1

= 1

4u4
[ f5,i +

L j

L
( f6,i − f5,i )]

Appendix E: Matrices for generalized ellipses

Each of the equation sets (3.8) and (3.9) has 2J +1 equations, correspond-

ing to 2J +1 unknown parameters a0, a1, . . . , a2J and b0,b1, . . . ,b2J , respec-

tively. Reformat them into two matrices of linear equations, we can get

the following coefficient matrices and ordinate vectors for solution vector
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[a0, a1, . . . , a2J ]T and [b0,b1, . . . ,b2J ]T , respectively.

A =



1 1 . . . 1 1

cos(1v1) cos(1v2) . . . cos(1v I−1) cos(1v I )

sin(1v1) sin(1v2) . . . sin(1v I−1) sin(1v I )

cos(2v1) cos(2v2) . . . cos(2v I−1) cos(2v I )

sin(2v1) sin(2v2) . . . sin(2v I−1) sin(2v I )

. . . . . . . . . . . . . . .

cos
(
(J −1)v1

)
cos

(
(J −1)v2

)
. . . cos

(
(J −1)v I−1

)
cos

(
(J −1)v I

)
sin

(
(J −1)v1

)
sin

(
(J −1)v2

)
. . . sin

(
(J −1)v I−1

)
sin

(
(J −1)v I

)
cos(J v1) cos(J v2) . . . cos(J v I−1) cos(J v I )

sin(J v1) sin(J v2) . . . sin(J v I−1) sin(J v I )



A×AT ×
[

a0 a1 a2 . . . a2J−1 a2J

]T

=



∑I
i=1(xi −xc )∑I

i=1(xi −xc )cos(1vi )∑I
i=1(xi −xc )sin(1vi )∑I

i=2J−1(xi −xc )cos(2vi )∑I
i=2J−1(xi −xc )sin(2vi )

. . .∑I
i=2J (xi −xc )cos(J vi )∑I
i=2J (xi −xc )sin(J vi )


(7.1)
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and

B =



1 1 . . . 1 1

sin(v1) sin(v2) . . . sin(v I−1) sin(v I )

cos(v1) cos(v2) . . . cos(v I−1) cos(v I )

sin(2v1) sin(2v2) . . . sin(2v I−1) sin(2v I )

cos(2v1) cos(2v2) . . . cos(2v I−1) cos(2v I )

. . . . . . . . . . . . . . .

sin(J v1) sin(J v2) . . . sin(J v I−1) sin(J v I )

cos(J v1) cos(J v2) . . . cos(J v I−1) cos(J v I ),



B×BT ×
[

b0 b1 b2 . . . b2J−1 b2J

]T

=



∑I
i=1(yi − yc )∑I

i=1(yi − yc )sin(vi )∑I
i=1(yi − yc )cos(vi )∑I

i=1(yi − yc )sin(2vi )∑I
i=1(yi − yc )cos(2vi )

. . .∑I
i=2J (yi − yc )sin(J vi )∑I
i=2J (yi − yc )cos(J vi )


(7.2)

Solving equations (7.1) and (7.2), respectively, we determine all unknown

constants and obtain the mathematical representation of the generalized

ellipse.
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Appendix F: Matrices for composite generalized el-

liptic segment that links two other segments

Eqs. (7.3) and Eqs. (7.4).

Ma =



1−cos2v1 1−cos2v2 . . . 1−cos2v I

cos3v1 − 1
2 D1(3, v1) cos3v2 − 1

2 D1(3, v2) . . . cos3v I − 1
2 D1(3, v I )

sin3v1 − 3
2 D2(3, v1) sin3v2 − 3

2 D2(3, v2) . . . sin3v I − 3
2 D2(3, v I )

cos4v1 − 1
2 D1(4, v1) cos4v2 − 1

2 D1(4, v2) . . . cos4v I − 1
2 D1(4, v I )

sin4v1 − 4
2 D2(4, v1) sin4v2 − 4

2 D2(4, v2) . . . sin4v I − 4
2 D2(4, v I )

cos5v1 − 1
2 D1(5, v1) cos5v2 − 1

2 D1(5, v2) . . . cos5v I − 1
2 D1(5, v I )

sin5v1 − 5
2 D2(5, v1) sin5v2 − 5

2 D2(5, v2) . . . sin5v I − 5
2 D2(5, v I )

. . . . . . . . . . . .

cos J v1 − 1
2 D1(J , v1) cos J v2 − 1

2 D1(J , v2) . . . cos J v I − 1
2 D1(J , v I )

sin J v1 − J
2 D2(J , v1) sin J v2 − J

2 D2(J , v2) . . . sin J v I − J
2 D2(J , v I ),



Ma ×MT
a ×



¯̄a0

¯̄a5

¯̄a6

¯̄a7

. . .

¯̄a2J−1

¯̄a2J



= Ma ×



Ca(1)

Ca(2)

Ca(3)

Ca(4)

. . .

Ca(I −1)

Ca(I )


(7.3)
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and

Mb =



1−cos2v1 1−cos2v2 . . . 1−cos2v I

sin3v1 − 3
2 D2(3, v1) sin3v2 − 3

2 D2(3, v2) . . . sin3v I − 3
2 D1(3, v I )

cos3v1 − 1
2 D1(3, v1) cos3v2 − 1

2 D1(3, v2) . . . cos3v I − 1
2 D1(3, v I )

sin4v1 − 4
2 D2(4, v1) sin4v2 − 4

2 D2(4, v2) . . . sin4v I − 4
2 D2(4, v I )

cos4v1 − 1
2 D1(4, v1) cos4v2 − 1

2 D1(4, v2) . . . cos4v I − 1
2 D1(4, v I )

sin5v1 − 5
2 D2(5, v1) sin5v2 − 5

2 D2(5, v2) . . . sin5v I − 5
2 D2(5, v I )

cos5v1 − 1
2 D1(5, v1) cos5v2 − 1

2 D1(5, v2) . . . cos5v I − 1
2 D1(5, v I )

. . . . . . . . . . . .

sin J v1 − J
2 D2(J , v1) sin J v2 − J

2 D2(J , v2) . . . sin J v I − J
2 D2(J , v I )

cos J v1 − 1
2 D1(J , v1) cos J v2 − 1

2 D1(J , v2) . . . cos J v I − 1
2 D1(J , v I )



Mb ×MT
b ×



¯̄b0

¯̄b5

¯̄b6

¯̄b7

. . .

¯̄b2J−1

¯̄b2J



= Mb ×



Cb(1)

Cb(2)

Cb(3)

Cb(4)

. . .

Cb(I −1)

Cb(I )


(7.4)
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