
Resurrecting Anti-virtualization and Anti-debugging:

Unhooking your Hooks

Theodoros Apostolopoulosa, Vasilios Katosb, Kim-Kwang Raymond Chooc,
Constantinos Patsakisa,d,

aUniversity Piraeus, 80 Karaoli & Dimitriou str, 18534 Piraeus, Greece
bBournemouth University, Poole House P323, Talbot Campus, Fern Barrow, Poole,

Dorset, BH12 5BB, UK
cUniversity of Texas San Antonio, 1 UTSA Cir, San Antonio, Texas 78249, USA

dAthena Research Center, Artemidos 6, Marousi 15125, Greece

Abstract

Dynamic malware analysis involves the debugging of the associated binary
files and the monitoring of changes in sandboxed environments. This allows
the investigator to manipulate the code execution path and environment
to develop an understanding of the malware’s internal workings, aims and
modus operandi. However, the latest state of the art malware may incor-
porate anti-virtual environment (VM) and anti-debugging countermeasures
(i.e. to determine whether the malware is being executed in a VM or us-
ing a debugger prior to payload execution). We argue that for the malware
to be effective, it will need to support an array of anti-detection and eva-
sion mechanisms. In essence, from the malware’s perspective, it needs to
adopt a “defence in depth” paradigm to achieve its underlying business logic
functionality. Beyond the malicious uses, software vendors to preserve the
intellectual property rights of their products often resort to similar methods
to deter competitors from gaining intelligence from the binaries or prevent
customers from using their products in unauthorised hardware.

In this work, we illustrate how Windows architecture impedes the work
of debuggers when they analyse with armoured binaries. The debugger and
the malware have the same privileges, so the attacker may manipulate the

Email addresses: organ6667@gmail.com (Theodoros Apostolopoulos),
vkatos@bournemouth.ac.uk (Vasilios Katos), raymond.choo@fulbrightmail.org
(Kim-Kwang Raymond Choo), kpatsak@unipi.gr (Constantinos Patsakis)

Preprint submitted to Future Generation Computer Systems November 13, 2020

address space that the debugger operates and, e.g. bypass detection. We
showcase this by presenting a new framework (ANTI), which automates the
procedure of integrating anti-debugging and anti-VM in the binary. Specifi-
cally, ANTI introduces an anti-hooking method targeting Windows binaries,
where hooks applied by state of the art debuggers are removed and injects
its code in other processes. This significantly compounds the challenge of
binary analysis. Our extensive evaluation also demonstrates that ANTI
successfully circumvents detection from state-of-the-art detection methods.
Therefore, ANTI illustrates that current tools for dynamic analysis have
serious implementation gaps that allow for binaries to bypass them. More
alarmingly, ANTI shows how one can use well-known methods to “resurrect”
old attacks.

Keywords: Malware, Windows hooking, dynamic analysis, anti-debugging,
anti-virtualization

1. Introduction

Malicious application (malware) underpins many criminal activities, par-
ticularly financially-motivated criminal activities such as ransomware as well
as advanced persistent threats (APTs). In recent times, the number and
sophistication of malicious application (malware) are increasing significantly,
and the cybercrime economy was estimated to be worth 1.5 trillion dollars
[1].

Similarly, malware analysis is continuously evolving to mitigate detec-
tion techniques employed by malware designers/authors. For example, the
use of obfuscators and packers is currently a norm in malware development
[2, 3, 4, 5, 6], and this compounds the challenge of static analysis. An alterna-
tive approach is dynamic analysis, where malware is executed in a monitored
and controlled environment (sandboxing) or in debug mode. The latter pro-
vides the capabilities to step into the code while it is being executed, dump
the memory, or even alter the execution of the process. From a software
engineering perspective, the malware can be considered to champion best
practices for robust system development, as it is challenging to operate in
adverse conditions and “hostile” environments.

This paper focuses on establishing the extent and capabilities of dynamic
analysis evasion and particularly on how malware can render a debugger
incapable of tracing the malware’s execution flows, by presenting a proof of

2

concept to release the debugger hook attempts. Simultaneously, the same
method can be used for copyright protection as it can be used to prevent
competitors from reversing a binary or allow customers to execute a binary
on unauthorised devices. Nevertheless, we argue that the implications for
malware detection are more severe; therefore, we will mostly focus on this
aspect.

Most existing monitoring systems, security solutions or malware analysis
tools rely heavily on the modification of user-mode code in memory to ma-
nipulate code execution. This is typically performed by the interception of
function calls, known as API hooking. The latter has a two-faceted usage,
benign and malicious. For instance, if hooking is performed by a malware
analyst, it would allow the analyst to study several features and aspects of
the software (e.g. What are the API calls performed? What resources are
requested and used?). API hooking can also be used by an adversary to cre-
ate a keylogger by hooking the keyboard and intercept all keyboard events
across all applications.

Virtual machines (VMs), containers, and sandboxes can also be used to
facilitate malware analysis, for example by allowing analysts to execute a
collected binary in an isolated environment that is easy to set up, replicate
and then dispose of it.

To avoid detection, execution environment awareness is often built into
malware. In doing so, such malware can determine the presence of hooks,
etc., and adapt and possibly completely change their execution on-the-fly,
thus preventing their real-time, dynamic analysis. This can be performed
by monitoring “environmental artifacts” [7]. These environmental artifacts
range from unique characteristics of the environment they are executed in
(e.g. hardware identifiers, uptime, usernames, and number of CPUs) to
the identification of sensor changes (e.g. accelerometers), and from timing
discrepancies to the existence of “pills” [8, 9]. In other words, techniques such
as anti-debug and anti-VM can be abused by malware to bypass dynamic
malware analysis and detection [10, 3, 11].

1.1. Main contributions

Due to the large and increasing number of collected malware samples,
automated analysis of binaries is a common practice. Moreover, the use of
evasion methods from malware is a common practice. Therefore, to deter-
mine whether current security measures can counter such methods efficiently,

3

we need to assess whether they are detected and mitigated by state of the
art malware analysis tools.

In this paper, we develop a tool (hereafter referred to as ANTI), which
implements anti-debugging, anti-VM and process injection methods. ANTI
automates the addition of this functionality in existing executables and com-
bines it with a powerful unhooking technique that can bypass debugger hiding
tools. Specifically, we use known anti-debug and anti-VM techniques that
are based on Windows API functions and reinforce them via user-land un-
hooking functionality and process migration. Even though these methods
are well documented in the literature, we demonstrate that existing tools for
dynamic analysis fail to detect or prevent our approach. This deficiency can
be attributed to two key factors, the Windows architecture and the lack of
provisions for auxiliary entry points from the debuggers. The former forces
the analyst and the malware to “fight” with the same privileges, which clearly
facilitates the adversary, as she has the time to study the defence strategies
and mechanisms to devise one that bypasses or even disables them.

The practical implications of our research is that given the reliance
on automated dynamic analysis in such tools, many malware in the wild can
potentially circumvent these existing security mechanisms by using similar
methods and avoid detection. Our approach could also be used by soft-
ware vendors to safeguard their intellectual property rights. As highlighted
in the existing literature [12, 13], emulation techniques have been exploited
to infringe Intellectual Property (IP) rights. Hence, by using ANTI soft-
ware vendors may prevent the analysis of their binaries from a competitor
or prevent customers from executing the binary in unauthorised devices or
emulated proprietary hardware (also proposed by Jang et al. [14]). In fact,
the latter method is used by Samsung as a security enhancement in its mobile
devices.

1.2. Organization of this work

The remainder of this paper is organized as follows. The next section
reviews existing literature, focusing on anti-debug and anti-VM approaches
and their countermeasures. We also discuss several Windows-specific inter-
nal workings that are necessary to explain how ANTI works. Then, we
present our adversary model and in Section 4, we present ANTI, its scope,
its architecture, features and the underpinning methods. Section 5 presents
the evaluation of ANTI, in terms of its effectiveness in evading detection
by state-of-the-art analysis tools. In section 6, we discuss our findings along

4

with the ethical aspects of our work. Finally, Section 7 summarizes our
contributions and discusses ideas for future work.

2. Background and Related Work

In the following subsections, we briefly introduce the terminology and
relevant concepts.

2.1. Windows Internal Workings

In the context of cybersecurity, it is essential to define policies of whom is
allowed to perform specific actions, which can be defined by, e.g. white/black-
listing roles, users or actions depending on the needs of the system and the
organization. Therefore, in operating systems, we have to define which CPU
instructions are allowed to be executed or which resources can be used and
by whom and when. We conceptualize some nested rings which would enable
different access levels to the ones that can use them. These access levels are
numbered from 0 (highest privilege) to 3 (lowest privilege). Typically, in ring
0, we have the kernel and system drivers. In ring 1, we have device controllers,
etc. In ring 2, we have database management, device drivers, etc. Finally,
in ring 3 we have the so-called “User mode”, where actual applications are
executed.

Windows, like most modern x86 kernels, use only two privilege levels,
namely, rings 0 and 3. Therefore, we have the “kernel mode” (where one’s
code has complete and unrestricted access to the underlying hardware) and
the “user mode” (where the executed code does not have direct access to
hardware or referenced memory).

Due to their architecture, two of the most basic dynamically linked li-
braries are user32.dll and ntdll.dll. Both libraries serve as proxies be-
tween user-mode and kernel-mode. However, the latter allows direct com-
munication with the Windows’ kernel using system calls. Therefore, most
of the other Windows libraries would eventually end up calling APIs from
ntdll.dll [15]. A simplified overview of the Windows architecture is pre-
sented in Figure 1.

2.2. Portable Executable File Format

The standard executable format type in Windows is the so-called the
Portable Executable (PE) file format which is used in both x86 and x64
architectures. Common extensions of such files include .exe, .dll, and .sys.

5

 Hardware Abstraction Layer (HAL)

Executive
Kernel mode

User mode
ntdll.dll

Subsystem DLLs

Device DriversKernel

Windowing &
Graphics

User ProcessesService ProcessesSystem ProcessesEnvironment subsystems

Figure 1: Overview of Windows architecture.

In principle, a PE file follows a structured format (see Figure 2), which allows
Windows to execute the code it carries by providing the necessary information
in an easy-to-use format to the dynamic linker. In fact, PE files are mapped
in memory similarly to the way they are stored in media. In this regard, the
loader uses the memory-mapped file mechanism and maps the corresponding
parts of the file into the allocated virtual address space for the binary.

The basic structure of a PE file can be split into two substructures, one
containing the header (all technical information about the file needed to map
the file in memory and execute it), and one containing the different sections
of the file which are the actual code and all the information needed to be
stored in memory.

The DOS header consists of the first 64 bytes of a PE file, which allows
DOS to recognize it as a valid executable file. The first two bytes (e magic)
are set to 0x54AD, which is the ASCII representation of “MZ”. Anti-malware
software often use this signature when scanning memory to locate PE exe-
cutables. The final and most important field of this header is located at offset
0x3c (e lfanew), a 4-byte offset where the actual PE file header is located
from the beginning of the file. The only two important fields are e magic

and e lfanew. Most compilers and linkers will ignore all other fields of the

6

F
ig

u
re

2:
O

ve
rv

ie
w

of
P

E
fo

rm
a
t.

S
o
u

rc
e:

A
n

g
e

A
lb

er
ti

n
i
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
c
o
r
k
a
m
i
/

7

DOS structure. Malware may also alter its standard DOS structure in an
attempt to fool static analyzers [16, 17].

The PE header contains information such as “PE” signature, processor
for which the code is written for (e.g. ARM, Intel and MIPS), how many
sections the executable has, relative offset of the section table, and file types
(e.g. EXE and DLL).

The Optional header contains information on how the executable should
be mapped and executed. Such information includes the reference architec-
ture (32/64 bits), where execution starts (AddressOfEntryPoint), address
where the file should be mapped in memory (ImageBase), size of headers,
and memory required.

Then, we have the data structures which are pointers for other structures
such as import and exports of the executable. For instance, the Import
Address Table (IAT) is defined here, and it is used as a lookup table when
the application is calling a function in a different module. As the name
suggests, the Sections table contains information required for the sections of
the PE file that are followed.

Windows allows processes to have multiple threads of execution, and each
has different storage, called Thread Local Storage (TLS). This information
is stored in the .tls section, also described in the Sections table. What is
important about this section is that it is loaded and initialized before the
entry point is run. The latter is important as most analysts would start their
investigation by setting a breakpoint at the entry point of the executable.

Another important aspect related to PE executables, when loaded in
memory, is the Process Environment Block (PEB) structure. This is popu-
lated in user address space at runtime. The PEB contains various pieces of
information about the process such as BeingDebugged (a flag that indicates
that the process is debugged), SessionId (associated Terminal Services ses-
sion identifier) and ProcessParameters (information about the command
line and the path of the executable which the process is related to). It can
be accessed either via Windows API or directly from memory. More pre-
cisely, its address can be located at offset 0x30 (for 32-bit systems) from the
fs segment register. The fs segment register is a special register of Win-
dows for the x32 architecture and is used as a pointer to data structures and
information of an active thread. What is important about the PEB structure
is that among others it contains a pointer to PEB’s Loader Data structure
at offset 0x0c. This is where we can traverse the Loader Module structures
through the doubly linked lists to obtain useful information about the base

8

address of each loaded DLL, their entry point, their names, etc.
For more details regarding the PE format, the interested reader may refer

to [18].

2.3. Hooking

Hooking can be defined as the interception of specific functions or system
calls to monitor and/or alter its execution [19]. As previously discussed,
hooking can be undertaken in the event that one does not have the source
code, but there is a need to determine which API calls, subroutines are called
from a given process. By being able to monitor these calls, one can “detour”
these calls to alter the calls or the returned results, modifying in this regard
the code execution in a binary, or even the entire operating system (OS).
As such, hooking is widely used in malware analysis [20, 21, 22], software
testing [23, 24, 25], troubleshooting of application misconfigurations, and
manipulation of binaries to perform their analysis.

In general, hooks can be categorized into user and kernel-level hooks.
More precisely, the two primary user-level hooking methods are IAT and
inline hooking. In the former, one attempts to exploit the fact that an exe-
cutable is not aware of the memory addresses associated with the libraries it
depends on are loaded. Therefore, in IAT hooking, one usually injects a DLL
containing the hooking code in the target process. The DLL can then rewrite
the IAT entries and redirect them to handlers that it manages. Inline hook-
ing is a more straightforward approach, as practically one overwrites the first
bytes of the function (s)he wants to monitor by placing a jump that redirects
the execution to a custom function. Clearly, if there are recursive calls to
the function that is being investigated, this may create bottlenecks. Clearly,
due to their nature, user-level hooks can be easily removed as applications
can modify any memory page in their private allocated address space.

We refer readers interested in other methods for kernel-level hooking,
such as hooking the System Service Descriptor and the Interrupt Descriptor
Table, to existing literature such as [26, 27, 19, 28].

To provide malware protection, anti-malware software relies on API hook-
ing. In this regard, anti-malware software registers the API calls and mon-
itors the parameters of each process. In other words, they apply a mixture
of user and kernel-level hooks. Clearly, hooking every possible API func-
tion would incur significant overheads affecting the performance. Therefore,
anti-malware software hooks target specific userspace API functions, which

9

are known to be used by malware. This significantly reduces the associ-
ated overheads. To achieve this, anti-malware software usually places a hook
to all newly created processes before the initial execution of the underlying
main module. In this way, they divert the execution flow to their monitoring
library, which is appended to the address space of the new process.

While one would assume the prevalence of kernel hooks in Windows (due
to their low-level access), anti-malware software and debuggers heavily de-
pend on user-level access. The reason is that Windows has special mecha-
nisms to protect the integrity of the Windows kernel. One such mechanism
is PatchGuard, which is designed to prevent modification to the Windows
kernel and critical kernel data structures. Therefore, kernel-level hooks from
anti-malware software may result in severe usability issues after system up-
dates. This is also the reason to use third-party software for kernel-level
hooking, with the most common one being Detours1 from Microsoft. Finally,
to provide low-level input/output, Windows provides File System Minifilter
drivers2 that must be digitally signed.

2.4. Anti-debugging

Debuggers are key tools for malware analysis, enabling the study of the
software dynamically fashion, through a step-by-step execution of the code
to examine its internals and impact. Debuggers may also manipulate the
execution environment by altering, for instance, memory, registers, values
of variables, configurations, among others. Furthermore, they support the
disassembling of the binary code, tracing of system calls, capturing of ex-
ceptions, and so forth [29]. Therefore, they allow the analyst to inspect
the binary code in greater detail, compared to static analysis which can be
blinded by the use of packers, obfuscators etc. This is because debuggers
provide the analyst to manipulate the low-level runtime behaviours of the
malware being investigated. Thus, debugging facilitates the analyst in un-
derstanding in-depth the behaviour of malware, the mechanisms it uses, its
capabilities, and assess its possible impact.

However, malware authors have been known to use anti-debugging tech-
niques to obstruct malware analysis. Anti-debugging is the implementation

1https://github.com/microsoft/detours
2https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-

manager-concepts

10

of one or more techniques to hinder attempts at reverse engineering or de-
bugging a target binary [30]. Once the malware realizes that it is being
executed inside a debugger, it will attempt to deviate from its normal code
execution path or interrupt/crash the debugger. This prevents analysis from
being performed, introducing an additional time and cost for the analyst
when reverse-engineering the binary.

2.5. Anti-VM

To study malware and its behaviour, a common approach is to execute
the malware in a virtualized or sandboxed execution environment. This
allows an analyst to observe the behaviour of malware by monitoring the
system function calls and filesystem changes it performs, or even investigate
memory snapshots during its execution. When the analysis is completed,
the environment can be deleted, typically without affecting the host machine
[31]. Therefore, an analyst has a fast, disposable, and secure way to examine
malicious samples.

Not surprisingly, malware authors have started designing malware to de-
tect whether it is being executed in a VM or sandbox. Such malware will
then adjust their behaviour, usually by not executing the malicious activity
or stalling its execution, when it detects that it is being executed in a VM or
sandbox. In recent years, one observed trend is for malware to focus only on
the detection of a sandboxed environment rather than generic virtualized en-
vironment due to the popularity of production systems running in virtualized
cloud environments [32].

To facilitate the management and communication to the VM manager
(VMM), virtualized systems leave some artifacts in guest OS. These arti-
facts include among others processes, registry keys and values, loaded and
exported DLL’s, network artifacts (e.g. specific MAC addresses and adapter
name), file system artifacts (e.g. system32\vboxtray.exe), special direc-
tories that are created (e.g. %PROGRAMFILES%\VMWare), virtual devices (e.g.
\\.\\HGFS), and hardware label. Such artifacts also facilitate the malware’s
detection of a VM. For a brief overview of several such methods and their
efficacy, the interested reader may refer to [10, 33, 34, 35]. Further evasion
techniques are discussed in [36, 37] and more recently in a technical report
from Checkpoint research [38].

11

2.6. Countermeasures

To counter these anti-analysis methods, several methods have been pro-
posed in the literature.

MalGene [39] tries to abstract and not stick to the implementation
details as many variations of the code may bypass the checks. The concept is
to try to look at the end result by using data flow analysis and data mining
techniques on the system calls. Using them, MalGene tries to determine
whether the collected information from the binary could be used from an
evasion technique.

Identifying misconfigurations, as well as understanding differences in exe-
cution environments and how one would locate them, are also crucial counter-
measures. This observation also aligns with the proposed approaches, Apate
in [29] and VM Cloak in [40]. Apate attempts to hide the existence of the
debugger and sets breakpoint not only at the entry point but also in the TLS
callbacks. This allows one to identify one of the 79 attack vectors it supports.
TitanHide3 hides debuggers in radically modified Windows installations by
installing SSDT hooks. To allow such functionality, the machine must be
running with disabled PatchGuard. In VM Cloak, the researchers try to
identify CPU specifications that VMs fail to follow, and under-specifications
of processor’s instructions. They then monitor each malware command to
detect potential pills. Similarly, approaches such as the one of [41] attempt to
harden the sandbox environment to prevent its discovery from the malware.

One could also attempt to dynamically analyze the malware without in-
troducing any in-guest monitoring component into the malware execution
environment [42, 43, 44, 45, 46]. This approach prevents the malware from
fingerprinting the analysis environment as the analysis system does not try to
be indistinguishable from a real host, but is actually a host. These systems
operate in a host environment and have a special service that takes a mal-
ware sample, copies it locally and executes it, without leaving any trace of
its intervention. Then, changes on the system are monitored and compared
with the execution in other environments which can imply the existence of a
new evasion technique.

Finally, if there is kernel-level access, approaches such as Mac-A-Mal [47]
may efficiently detect evasion mechanisms. The corresponding system calls
can be captured and dealt with appropriately to prevent the malware from

3https://github.com/mrexodia/TitanHide

12

identifying the existence of a virtual environment or a debugger.

3. Adversary model

In our approach, we consider two adversaries. Adopting the model def-
inition of Do et al. [48], we consider that both adversaries have similar
assumptions and capabilities but eventually converge in terms of goals. In
essence, these adversaries can be associated by duality as elaborated below.

First, we assume that the adversary, Malory, has a binary, an x32 PE
executable, which is used in an attack vector to infect and eventually com-
promise a particular target. From a cyber kill chain perspective, ANTI is
introduced during the weaponization phase as the binary is processed by
Malory to deliver an armoured binary, denoted as B. We also make the as-
sumption of a secure target adhering to the principle of least privilege, so B
would only be executed in user level. In this case, this security assumption
would work on Malory’s advantage as the victim would not have in this case
complete access to the binary’s context. However, in the case of the target
being a security analyst with dynamic analysis capabilities, Malory’s goal is
to prolong the analysis time or even completely evade detection mechanisms.
Therefore, Malory expects that one of her potential victims might not trust
her and submit B for analysis to a service like VirusTotal4 which uses au-
tomated analysis systems like Cuckoo5 to determine whether the submitted
binary is malicious. Similarly, Malory expects that an analyst might try to
reverse engineer B and her goal is to dynamically alter the behaviour of B
once such potential analysis behaviour is detected, e.g. execution in debug
mode or within a VM. Hence, once executed, B initially has typical user-
level access and the capabilities of the corresponding user in the execution
environment.

With regards to the second adversary, we assume that organisation O
produced a binary B containing some Intellectual Property and is making it
available to another organization M. The goal of adversary M in this case
is to analyse the binary to bypass potential DRM controls, run it on non-
authorised hardware or to extract any industrial intelligence. From a security
standpoint, the adversary trusts the binary and may attempt to run the
code with any privileges, perform static or dynamic analysis. With regards

4https://www.virustotal.com
5https://cuckoosandbox.org/

13

to the former, the binary may already have further obfuscation techniques,
rendering static analysis impractical (comparable to a computationally secure
model). This would force the adversary to follow the dynamic analysis route.
In this case this adversary’s goal and approach would be equivalent to that
of Malory’s.

4. Methodology

We now present our approach, ANTI, with a proof of concept available
on GitHub6 under the MIT license. ANTI’s main purpose is the automated
integration of known anti-debug and anti-VM techniques in a PE executable.
At the time of writing, the anti-debug part is heavily based on approaches
described in [49]. However, it can easily be extended to integrate other meth-
ods. ANTI is designed for x32 PE executables and evaluated on Windows
10 machines. In this section, we will describe the functionality of ANTI and
the ways it fortifies malware.

A simple overview of how ANTI works is illustrated in Figure 3. Initially,
one would take an x32 PE executable and pass it to ANTI. ANTI will
reformulate the PE header and append the armouring functions at the end
of the file. Once the file is executed, ANTI will try to determine whether
it has been hooked and try to remove the hooks on DLLs that it supports.
Currently, it supports only ntdll.dll. Once the hooks are removed, ANTI
will try to detect whether it is being debugged or executed in a VM, and
once detected, ANTI would terminate the debuggee process or migrate to
another process.

Figure 3: An overview of how ANTI works.

6https://github.com/nihilboy/anti

14

4.1. Overview
To armour a binary, ANTI performs two steps. First, it appends a

new section at the end of the executable which contains all the necessary
functions to perform the checks for debuggers and VM. While this provides
some functionality, it cannot be executed timely. Therefore, the next step
is to scan the PE to identify the appropriate entry points and amend them
accordingly, so that the checks of the appended section will be performed
before any other action of the executable.

The above are realised by ANTI with two key functions. The first key
function is to create a new empty section to be appended at the end of
the executable. This functionality is similar to the conventional “backdoor-
ing” of binaries that malware infectors (also known as file or virus infectors)
use. While this version of ANTI does not yet support different methods
like code-cave jumping or appending at the end of the text section, they
will be included along with other stealth methods to ANTI in the near
future. This function firstly pre-processes the executable’s PE Header to ob-
tain information necessary for the addition of a new executable section with
a user-supplied name, before inserting the required information in the PE
Header fields (NumberOfSections, SizeOfImage, Characteristics, etc).

The second function is responsible for the actual insertion of the inline
assembly code. ANTI adds to the binary the ability to execute from dy-
namically created TLS Callbacks. First, it creates a TLS directory entry by
specifying its size (sizeof(IMAGE TLS DIRECTORY)) in the Size field and up-
dates its Virtual Address (TLS Directory RVA) field to point 4 bytes after
the start of our newly created section. At this location, we manually build
the TLS directory structure by adding the necessary fields (see also [50]). For
TLS Callbacks, Windows Loader reads Data Directories → TLS Directory.
If VirtualAddress is not zero, then the loader reads Address of Callbacks Ar-
ray, executes the first callback in the list and continues by reading the next
element of Address of Callbacks Array. In other words, we can dynamically
add and remove new TLS callbacks from another TLS callback. Moreover, it
is possible to register or unregister new TLS callbacks on-the-fly, even after
the file has been loaded since the Windows Loader re-reads PE-header and
the section where the callbacks are stored every time it needs the data. Thus,
we can change the TLS table while in TLS callback itself; those added will
normally execute since they are not cached by the Windows loader.

TLS callback is a powerful anti-debugging technique and a good place
to perform a debugger presence check since the Callback function will be

15

called before the executable reaches the main module entry point. As ANTI
makes the executable start execution from dynamically TLS Callbacks, the
AddressOfEntryPoint field in the Optional Header is overwritten with a
random value within the text section’s range since it is no longer needed.
The executable jumps to the original Entry Point after the unhooking/anti-
debug/anti-VM checks have been performed. Finally, the checksum of the
new executable is computed and corrected in the respective Checksum field
of the Optional Header. In case of debugging or virtualized environment
being detected, ANTI calls SwitchDesktop and NtTerminateProcess to
terminate the debuggee process. ANTI also has the ability to attempt to
migrate to a remote process once it detects a debugger. Migration works
using a standard process injection technique by creating a remote thread in
the target process specified by its PID given by the user. To be able to
migrate, the debugger must run as administrator or have the debug privilege
enabled.

4.2. Unhooking

ANTI manages to bypass security solutions due to its unhooking ca-
pabilities. It works, firstly, by mapping a view of ntdll.dll from the
disk using the standard sequence of Windows functions: CreateFileW(),
CreatFileMappingW(), MapViewOfFile(). This has the advantage of ac-
quiring a clean unhooked view of ntdll.dll.

A clean version of ntdll.dll can also be mapped in process address
space, more stealthily by loading the ntdll.dll from the KnownDlls global
section. This technique creates less noise as it does not interact with the
filesystem, and can also prevent fake/instrumented ntdll.dll copies of sys-
tem DLL’s being loaded from an applications folder.

Furthermore, after the unhooking process takes place, we can apply hooks
on all binary functions. The hook handler is responsible for performing anti-
debug/anti-VM checks each time a function is called. This way, malware
analysis checks can be active even after the execution passes the OEP; thus,
a manual approach is unavoidable.

Note that ntdll.dll is a library that has no import, and all its ex-
ported functions are basically wrappers for system calls; thus, it can di-
rectly communicate with the Windows kernel through system calls. Addi-
tionally, ntdll.dll contains Nt* counterparts of many functions exported
by Win32API, such as kernel32.dll, user32.dll, and gdi32.dll. These
will eventually call their corresponding Nt* function to implement a system

16

call. For instance, CreateFile will call NtCreateFile. We also posit the
importance of unhooking ntdll.dll, as it allows the interaction with the
NativeAPI at the lowest user-mode level.

The next step in our unhooking strategy is to parse the PE headers,
allocate space, and finally copy the DLL header and sections in our newly
allocated region of memory. Then, we implement a relocation procedure
where the delta of relocation is computed by subtracting the image base of
the copied ntdll located in the PE’s optional header from the base address
of the initial library. Finally, we compare the two images, namely: the image
from the disk and the already loaded image. Should modifications be found,
they are overwritten with the clean unhooked code.

Continuing this process for every loaded DLL, a binary that acquires the
aforementioned mechanism can easily detect and remove all user-mode hooks.
Monitoring can be easily bypassed for many standard security/analysis solu-
tions, since many antivirus engines, as well as instrumentation frameworks,
use DLLs injected to the binary’s process at runtime. For example, Frida
injects its own DLL, namely frida-agent-32.dll, to perform the instru-
mentation. Bitdefender uses its own DLL, named atcuf32.dll, which is
injected pretty early in the loading process, that contains hooks in functions
of many modules to perform its monitoring.

4.3. Anti-Debugging

To armour a binary against a debugger we consider two key strategies,
one static and two dynamic. In the static, we check for flags that denote
the presence of a debugger. The dynamic come in two flavours. First we
try to unhook the binary from possible hooks that have been made on a key
windows library. Then, we log timestamps during execution to identify lags
that can be attributed to debuggers.

More precisely, ANTI is designed to integrate existing anti-debug meth-
ods such as those reported in [49]. It also appends to a binary known flag
checks to infer the presence of a debugger. These checks include examining
if the BeingDebugged byte-field located at offset 0x02 in Process Environ-
ment Block is set or calling the equivalent IsDebuggerPresent() function.
This method is probably the most well-known and easy to bypass. Another
common method is the use of PEB’s NtGlobalFlag value at offset 0x68.
Normally, when a process is not being debugged, the NtGlobalFlag field
contains the value 0x0. On the contrary, if a program was launched from

17

a debugger, the following flags are set by the Windows heap manager in
PEB!NtGlobalFlags:

• FLG HEAP ENABLE TAIL CHECK (0x10),

• FLG HEAP ENABLE FREE CHECK (0x20),

• FLG HEAP VALIDATE PARAMETERS (0x40),

when a debugger creates a process. Therefore, checking for a combination of
the aforementioned flags (0x70) can help to detect the presence of a debug-
ger. At offset 0x18 in PEB we can find ProcessHeap field, which is a pointer
to the heap base. This is the first heap allocated by the loader, which can
also reveal if the process is running in debug mode. Specifically, the values
in fields Flags and ForceFlags at offsets 0x40 and 0x44, inside the heap’s
structure header can be compared to HEAP GROWABLE (2) and 0 respectively,
to detect a debugger. The ntdll RtlQueryProcessHeapInformation() func-
tion can also be used to read the heap flags of the current process. The
techniques described so far are based on simple process memory checks of
the fields holding standard values. These can be easily bypassed by patching
the aforementioned fields inside the debugger prior to their execution.

ANTI also implements API-based anti-debug methods based on
functions exported by ntdll.dll after it has reinforced them by re-
moving any detected hooks. One such technique is the call to
NtSetInformationThread() with ThreadInformationClass class value
equal to 0x11 (ThreadHideFromDebugger) on the current thread. Upon
calling the function, the debugger will no longer receive events from the
thread, and if that happens to be the main thread the process is termi-
nated [49]. NtQueryInformationProcess is another anti-debug method im-
plemented in ANTI that can be called in various ways to reveal the pres-
ence of a debugger. For instance, it can retrieve information about the port
number of the debugger by using the value 0x07 (ProcessDebugPort) of
ProcessInformationClass class on the current process. If the returned
value is not zero, then it implies the presence of a user-mode debugger. The
same approach can be used to retrieve the debug object handle if we pass
as input ProcessDebugObjectHandle (0x1e) on the current process. Addi-
tionally, we call NtQueryInformationProcess with the undocumented flag
ProcessDebugFlags (0x1f), which returns zero if a debugger is present.

Timing checks can also exploit the debugger’s single-stepping functional-
ity, which causes a delay compared to normal execution that can be measured

18

and used to stop the debugging session. This is accomplished in ANTI by
using the RDTSC instruction and the NtQueryPerformanceCounter Native
API function. The RDTSC (Read Time Stamp Counter) instruction re-
turns the current value of the timestamp counter from the processor, while
NtQueryPerformanceCounter retrieves the current value of the performance
counter. Both return high-resolution timestamps that can be used for time-
interval measurements, although the latter is suggested by Microsoft as being
more reliable.

4.4. Anti-VM

ANTI implements several techniques to detect a virtualized environ-
ment, such as calling NtCreateFile() function to determine whether
the device name maches commonly used names by VMs. Simi-
larly, accessing \\.\\HGFS or \\.\\vmci (VMware drivers) will return
INVALID HANDLE VALUE (0xffffffff) in eax in a host, which differs from
the value that would be returned inside VMWare.

Another approach to detecting execution within a virtual machine is to ex-
amine the machine’s number of processors. This can be accomplished either
by examining the Process Environment’s Block field NumberOfProcessors at
offset 0x64 or by using the Windows NtGetSystemInfo() function end ex-
amining its corresponding return value in the SYSTEM INFO structure. Should
ANTI determine that the number of processors is below three, it interrupts
the execution.

Additionally, we integrate a usual timing anti-sandbox technique that
is based on the NtGetTickCount() function. The output of this function
represents the milliseconds that the system has been alive, up to 49.7 days
approximately. This value informs the decision-making process of malware.
For example, a typical sandboxed malware analysis process involves starting
up the VM, copying the malicious binary, and executing it either inside a
debugger or through monitoring systems. Therefore, if the malware has a
timing check handle, then it can wait an extended period of time to infer
whether it is running inside a VM.

CPUID is an instruction for the x86 architecture, which allows executables
to retrieve various information about the CPU (e.g. vendor string and model
number, size of internal caches, and list of CPU features supported) that can
also be used to facilitate VM detection. Depending on the input values that
were initially used in the eax register, CPUID returns different results. For,
example when called with the eax register being 0x40000000, CPUID returns

19

the vendor ID string in ebx, ecx and edx registers. However, when this is
performed inside a VM, it reveals the corresponding virtual machine vendor.
For instance, in VMware, it returns VMawareVMaware. Additionally, when
executed with input 1 in eax, it returns the processor’s features. Thus, we
can infer the existence of VM since the 31st bit value in ecx will be 0 when
it is in the host, unlike guest where the same bit will be equal to 1.

5. Evaluation

Our evaluation methodology aims to assess whether ANTI manages to
bypass state of the art analysis tools and what is the additional overhead that
it introduces. To this end, we first perform some statistical tests to quantify,
e.g. how many extra bytes are appended, what is the processing overhead etc.
Then, we test the armoured binaries in a virtual machine to verify that they
can detect the execution within a virtual environment. Finally, we examine
the armoured binaries against state of the art debuggers fully equipped with
plugins and standalone tools to determine whether ANTI manages to trick
them and bypass their methods.

We evaluated ANTI by conducting experiments on all major Win-
dows debuggers, a number of anti-anti plugins (plugins that counter anti-
debug/VM methods) and stand-alone detectors. All evaluations were per-
formed on a fully updated clean install of Windows 10 system, 64-bit operat-
ing system (version 1803) as host, and on an up-to-date VMWare Worksta-
tion 12.5.2 running snapshot containing Windows 10 Enterprise Evaluation
(version 1709), 32 and 64-bit as guests. We evaluated ANTI with the de-
buggers, debugger plugins, and standalone tools listed in Tables 1, 2, and 3,
respectively.

Experiments were conducted on various checksum verified PE executables
randomly chosen (e.g. Putty) and simple executables specifically developed
for evaluation purpose. The evaluation was performed in all steps of our
approach to assess and demonstrate its efficacy. In essence, the evaluation
consisted of the following steps. First, we executed the executables within a

7https://github.com/brock7/xdbg
8https://https://github.com/stonedreamforest/NaiHeQiao
9https://github.com/x64dbg/ScyllaHide

10https://steel.isi.edu/Projects/apate/
11https://github.com/secrary/makin

20

Debugger Version

IDA pro debugger 7, 5
Immunity Debugger v1.85
OllyDebugger v1.10, v2
CheatEngine v6.8.1
x64dbg Build Aprl 5 2018
Windbg 10
Obsidian debugger v0.11
Microsoft Visual Studio Debugger v15.4.0

Table 1: Debuggers and their versions that were used in the evaluation.

VM and then through a debugger to determine whether they have inherent
mechanisms preventing their execution. All executables that contained such
mechanisms were pruned from the test dataset. Then, we used ANTI with
different configurations to inject the proposed analysis of evasion controls.
For instance, we disabled the anti-debugging or anti-hooking methods on the
armoured binary.

5.1. Statistical properties

To evaluate the impact of using ANTI on a binary, we performed several
tests and compared the original and armoured binaries. To this end, we
calculated the average bytes difference in virtual memory, the time to start
overhead, and the average entropy of file differences on a dataset consisting
of 40 executables. One can observe from the values reported in Table 4 that
ANTI’s overhead is minimal, in terms of time and entropy. However, the
memory footprint is as expected considerably higher, although acceptable in
practice.

5.2. Anti-VM evaluation

For the anti-VM evaluation, we first executed each of the binaries both
inside VMware and on the host to verify that they have not previously imple-
mented anti-VM functionality. All binaries were executed normally. Then,
we executed ANTI against each binary and re-executed them. When inside
the VM, the execution stopped by switching desktops as a proof of concept;
execution on the host was normal as expected by the program.

21

Debugger Plugins Version

PhantOm (OllyDbg) v1.85
StrongOD (OllyDbg) v0.4.8.892
OllyAdvanced (OllyDbg) v1.27
SharpOD (x64dbg) 0.6
aadp (OllyDbg,Immunity) v0.2
HideDebugger (OllyDbg) v1.2.4
Ida Stealth (Ida pro debugger) v1.3.3
OllyExt (OllyDbg) v1.8
Stealth64 (OllyDbg) v1.3
HideOD (OllyDbg) v0.181
xdbg7 (x64dbg, cheatengine) n/a
NaiHeQiao8 (x64dbg) v2017-3-15
ScyllaHide9 (x64dbg, IDA, Olly, standalone) v2019-05-24
Apate10 (WinDbg) n/a

Table 2: Debugger plugins and their versions (where available) that were used in the
evaluation.

Standalone tools Version

makin11 n/a
ApiMonitor v2

Table 3: Standalone tools and their versions (where available) that were used in the
evaluation.

Property (∆) Value (mean) Standard Deviation

Memory footprint 1,22 MB 0.49
Time overhead 2.21 ms 1.27

File entropy -5.71 bits 125.84
Added code file ratio 1.32% 0,31

Table 4: Statistical properties. The difference refers to value of the patched binary minus
the corresponding value of the original binary.

Since malware analysis from Cuckoo12, a widely used tool for malware

12https://cuckoosandbox.org/

22

Property Value

File size overhead 10240 bytes
Contains TLS callbacks True (dynamically added)
Added section entropy 7.293
Entry Point randomized
Checksum corrected
ASLR Disabled

Table 5: Static analysis properties. The values refer to elements of the patched binary
that have changed.

mov dword ptr ss:[ebp-204],eax [ebp-204]:ZwQueryInformationProcess

xor ebx,ebx

push ebx

mov ebx,esp

push 0

push 4

push ebx

push 7

push FFFFFFFF

call dword ptr ss:[ebp-204] [ebp-204]:ZwQueryInformationProcess

pop ebx

inc ebx

cmp ebx,0

je putty.4C3AEE

Listing 1: Dissasembly of NtQueryInformationProcess anti-debug method.

analysis, is performed inside a VM, we opted to test the implications that a
binary armoured with ANTI could introduce. In our evaluation, we used the
2.0.6 version of Cuckoo. As in the previous case, we created an executable
armoured with ANTI to shut down a machine when it detects virtualization.
The latter opens a door opportunity for the adversary. Practically, the VM
is shut down once ANTI detects virtualisation. However, because of not
proper communication between the host and the guest, Cuckoo enters an
infinite loop. The latter is a crucial issue since the main Cuckoo process
must be restarted to operate again properly. This is a manual process which
is not foreseen in an automated malware analysis environment. Therefore,
ANTI bypasses automatic analysis with Cuckoo creating further issues for
the analysis of other binaries, if we consider it in a batch process. Moreover,

23

it should be noted that no anti-VM or anti-debug signatures where flagged
in the static analysis of the binaries armoured by ANTI.

5.3. Anti-debugging evaluation

For the anti-debugging evaluation, we executed the same clean executa-
bles inside the aforementioned debuggers and stand-alone detectors until they
reached their entry point. All executions proceeded as intended. Next, we
ran ANTI against all binaries, but we commented out the unhooking part
of the code and kept only the anti-security methods. When inside the de-
bugging environment, all executables crashed upon switching to the desktop
environment. In the case of makin, the tool for revealing anti-debug attempts
in executables, we noted that it stopped as it does not support TLS Call-
backs. Finally, we executed the same binaries with ANTI anti-debugging
plugins installed, and all checks turned on. We found that all debuggers
remain hidden and as a result, binaries executed normally and reached their
entry point. In Figure 6 the call to NtSetInformationThread is caught by
ScyllaHide’s hook handler when unhook functionality is off.

Figure 4: Bypassing fully activated ScyllaHide on x64dbg.

24

Figure 5: Disrupting debugger by prompting a Message Box.

5.4. Unhooking evaluation

For the final evaluation, we ran ANTI on all binaries with the unhook
functionality turned on. The debuggers and plugins used in the evaluations
failed, and the system has switched desktop and successfully hid the pre-
viously active desktop, thus validating our proof of concept. We can only
return by killing the debugging process. No debugger remained hidden even
with the respective plugins activated. Through debugging the binaries, we
infer that all API based anti-debug methods that used ntdll.dll functions
remain hidden. On the contrary, all methods based on specific flag checks of
Process Environment Block failed (e.g.IsDebuggerPresent).

Listing 1 shows the NtQueryInformationProcess() method with the
ProcessDebugPort value as the input, which is executed in the current pro-
cess. This was executed normally and the jump to switch desktop was taken

25

Figure 6: Jumping to ScyllaHide’s hook handler.

when inside x64dbg under ScyllaHide fully activated. Figure 4 illustrates the
NtSetInformationThread() method during single-stepping debugging ses-
sion. Due to singe-stepping and the NtSetInformationThread() call on the
main thread, the execution terminates before reaching the SwitchDesktop()
implementation. In Figure 5, we changed the switching of desktops imple-
mentation with an error message box to demonstrate the validity of ANTI.

6. Discussion

To address the above challenges and risks, as the first line of defence,
the malware analyst would need to establish the existence of anti-detection
techniques. This could be potentially achieved by reverse-engineering the
packing and armouring process by identifying suitable Indicators of Com-
promise (IoCs). In the context of this domain problem, these would most
likely be in the form of patterns described, for example as YARA rules. An-
other future work on malware analysis evasion is to assess the extent of the

26

unhooking techniques with obfuscator classes, fuzzing capabilities, return-
oriented programming and the resulting complexity and overheads incur by
these additional operations.

The aforementioned approaches may render existing static analysis tools
ineffective. Therefore, by combining such methods and based on the results
of using ANTI, we argue that we may need to fundamentally change the
way we perform virtualization, debugging and hooking to analyse malware
as many of our existing malware detection approaches fail to reach their goal.
Especially for the case of debuggers, the main issue that is highlighted by our
work is that they rely on user-mode hooks that are known to be malleable by
any executable. The main reason is that they share the same address space
that they are allowed to tamper with, creating a race condition of who will
manage to do it first. Moreover, one needs to consider that while a malware
analyst would try to investigate TLS callbacks, this is not the case of most
dynamic analysis tools. The dynamic analysis tools are highly dependent on
the entry point, omitting checks for other alternatives. Therefore, malware
may evade many security checks. Finally, there is a need to provide more
effort in virtualizing operating systems to impede the task of differentiating
them from actual hosts.

We believe that the above is rather alarming since they imply that meth-
ods that were considered to be easily traced by modern tools are not handled
appropriately and may allow binaries to pass below the radars of modern
automated tools. We need to understand that having security mechanisms
at the same execution level that the malware is executed ends up to an end-
less game to catch the dog’s tail. The authors of malicious software will
simply deactivate the mechanisms once their binary is executed as they have
the same permissions to modify the address space. Inevitably, the security
mechanisms have to be integrated deeper. Therefore, despite the Windows
kernel’s security measures, we should reconsider the case of having kernel-
level tools that could provide an environment immune to user-level tampering
of address space.

ANTI and its evaluation showcase that the aforementioned arguments
are more than valid. However, the goal of ANTI is not be used maliciously;
therefore, we opted not to further armour it with, e.g. encryption or section
randomisation and the like. Moreover, to avoid possible exploitation on the
wild, we have created a simple YARA rule (Listing 2) to locate it in binaries.
The YARA rule is based on a pattern and fragments of strings used by ANTI
to find and load specific API functions in memory used to load ntdll from

27

disk.
While ANTI is a proof of concept, it manages to efficiently bypass dy-

namic analysis through sandbox environments (e.g. Cuckoo, execution in
virtual machines etc.) and debuggers. However, a simple static analysis, as
with the YARA rule above, illustrates its limitations. In this regard, ANTI
lacks the randomisation aspect of a full-fledged tool to bypass static checks.
This could be resolved by splitting the appended section into other sections,
adding a packer, exploiting code caving, etc. Finally, since ANTI was cre-
ated as a proof of concept to showcase the deficiencies of the current methods
through the use of old yet well-known techniques, one could further extend
its arsenal by adding more recent anti-debug and anti-VM methods or by
unhooking other libraries beyond ntdll.

7. Conclusions

In order for malware to efficiently evade dynamic analysis, it would need
to support a range of diverse anti-detection capabilities. While key analysis
approaches (i.e., sandboxes and debuggers) are effective tools for studying
a piece of software in runtime, they suffer from a number of limitations
due to the way they are developed and the way they operate. Specifically,
we demonstrated that a given malware could circumvent the analysis tools
using our proof of concept through the use of well-known methods. Further-
more, the ever-increasing rate of new malware and the trend of substantial
code reuse in many malware families may result into increased risk, should
an approach exists to incorporate the dynamic analysis evasion capabilities
automatically. In a recent incident that targeted a number of Australian
entities, for example, it was reported13 that

“We found in analysing the code itself ... the attackers had reused
a lot of the code that had been used by other people in the past,”
Duca said. “And one particular tool that was used was a tool that
was actually used in the February 2019 attack against Parliament
House.”

As shown in this paper, the proposed approach can be streamlined and
automated to armour any software with no built-in integrity checks. These

13https://www.canberratimes.com.au/story/6800107/china-says-not-behind-

australia-cyber-hits/, last accessed June 20, 2020

28

findings are concerning, particularly when the methods that we used are
known and well-documented. For example, in the June 2020 advisory14 re-
leased by the Australian Cyber Security Centre’s (ACSC) investigation of a
cyber campaign targeting Australian networks revealed that

The actor has been identified leveraging a number of initial access
vectors, with the most prevalent being the exploitation of public-
facing infrastructure primarily through the use of remote code
execution vulnerability in unpatched versions of Telerik UI. Other
vulnerabilities in public-facing infrastructure leveraged by the ac-
tor include exploitation of a deserialisation vulnerability in Mi-
crosoft Internet Information Services (IIS), a 2019 SharePoint
vulnerability and the 2019 Citrix vulnerability. The actor has
shown the capability to quickly leverage public exploit proof-of-
concepts to target networks of interest and regularly conducts re-
connaissance of target networks looking for vulnerable services,
potentially maintaining a list of public-facing services to quickly
target following future vulnerability releases. The actor has also
shown an aptitude for identifying development, test and orphaned
services that are not well known or maintained by victim organi-
sations.

In other words, the methods we used in this paper can also be used by
cyber attackers to bypass state of the art tools, where many malware can
potentially go undetected or escape the detailed analysis since the tools do
not provide the needed functionality or do not have the necessary privileges
to do so. We argue that the latter aspect is crucial as leaving the security
mechanisms to have the same privileges as malware is a potential attack
vector that can be exploited.

There are a number of potential future research directions. For example,
we plan to assess further the malware detection mechanisms that are widely
used, as well as investigating malware evasion methods and using machine
learning to identify such malware evasion methods in a timely manner.

14https://www.cyber.gov.au/threats/advisory-2020-008-copy-paste-

compromises-tactics-techniques-and-procedures-used-target-multiple-

australian-networks, last accessed June 20, 2020

29

import "pe"

rule YARA_ANTI {

meta:

description = "YARA_ANTI"

strings:

$op0 = { 58 8B D8 83 E8 2D 83 C0 24 83 C3 0F 89 18 C3 }

$op1 = { 81 3E 43 72 65 61 ?? ?? ?? ?? 81 7E 07 69 6C 65 57 }

$op2 = { 81 3E 43 72 65 61 ?? ?? ?? ?? 81 7E 0E 69 6E 67 57 }

$op3 = { 81 3E 4D 61 70 56 ?? ?? ?? ?? 81 7E 0A 69 6C 65 00 }

$op4 = { 81 3E 56 69 72 74 ?? ?? ?? ?? 81 7E 09 6C 6F 63 00 }

$op5 = { 81 3E 6D 65 6D 63 ?? ?? ?? ?? 81 7E 03 63 70 79 00 }

$op6 = { 81 3E 6D 65 6D 63 ?? ?? ?? ?? 81 7E 03 63 6D 70 00 }

$op7 = { 81 3E 56 69 72 74 ?? ?? ?? ?? 81 7E 0B 65 63 74 00 }

$op8 = { 64 A1 30 00 00 00 8B 40 0C 8B 40 14 8B 00 8B 00 8B

40 10 8B D8 8B 43 3C 8B 7C 03 78 03 FB 8B 4F 18

8B 57 20 03 D3}

condition:

uint16(0) == 0x5a4d and (all of ($op*))

}

Listing 2: YARA rule to detect ANTI.

Acknowledgments

This work was supported by the European Commission under the Horizon
2020 Programme (H2020), as part of the project YAKSHA (Grant Agreement
no. 780498) CyberSec4Europe (https://www.cybersec4europe.eu) (Grant
Agreement no. 830929), LOCARD (https://locard.eu) (Grant Agreement
no. 832735), and ECHO, (https://echonetwork.eu) (Grant Agreement no
830943).

The content of this article does not reflect the official opinion of the
European Union. Responsibility for the information and views expressed
therein lies entirely with the authors.

30

References

[1] N. Ismail, Global cybercrime economy generates over $1.5tn, ac-
cording to new study, https://www.information-age.com/global-

cybercrime-economy-generates-over-1-5tn-according-to-new-

study-123471631/ (2018).

[2] B. Lau, V. Svajcer, Measuring virtual machine detection in malware
using DSD tracer, Journal in Computer Virology 6 (3) (2010) 181–195.

[3] R. R. Branco, G. N. Barbosa, P. D. Neto, Scientific but not academi-
cal overview of malware anti-debugging, anti-disassembly and anti-vm
technologies, in: Blackhat USA, 2012.

[4] J. Calvet, F. L. Lévesque, J. M. Fernandez, J. Marion, E. Traourouder,
F. Menet, Waveatlas: surfing through the landscape of current malware
packers, in: Proceedings of Virus Bulletin Conference, 2015.

[5] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, P. G. Bringas, Sok: Deep
packer inspection: A longitudinal study of the complexity of run-time
packers, in: 2015 IEEE Symposium on Security and Privacy, IEEE,
2015, pp. 659–673.

[6] G. Suarez-Tangil, G. Stringhini, Eight years of rider measurement in
the android malware ecosystem: Evolution and lessons learned, CoRR
abs/1801.08115.

[7] A. Bulazel, B. Yener, A survey on automated dynamic malware analysis
evasion and counter-evasion: PC, mobile, and web, in: Proceedings
of the 1st Reversing and Offensive-oriented Trends Symposium, ACM,
ACM, New York, NY, USA, 2017, p. 2.

[8] L. Martignoni, R. Paleari, G. F. Roglia, D. Bruschi, Testing CPU em-
ulators, in: Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, ISSTA ’09, ACM, New York, NY, USA,
2009, pp. 261–272.

[9] H. Shi, A. Alwabel, J. Mirkovic, Cardinal pill testing of system virtual
machines, in: 23rd USENIX Security Symposium (USENIX Security
14), San Diego, CA, 2014, pp. 271–285.

31

[10] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, J. Nazario, Towards an un-
derstanding of anti-virtualization and anti-debugging behavior in mod-
ern malware, in: 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN), IEEE, IEEE, 2008,
pp. 177–186.

[11] P. Chen, C. Huygens, L. Desmet, W. Joosen, Advanced or not? A
comparative study of the use of anti-debugging and anti-vm techniques
in generic and targeted malware, in: J.-H. Hoepman, S. Katzenbeisser
(Eds.), ICT Systems Security and Privacy Protection, Springer Interna-
tional Publishing, Cham, 2016, pp. 323–336.

[12] J. Conley, E. Andros, P. Chinai, E. Lipkowitz, D. Perez, Use of a game
over: Emulation and the video game industry, a white paper, North-
western Journal of Technology and Intellectual Property 2 (2) (2004)
1.

[13] C. Collberg, The case for dynamic digital asset protection techniques
(2011).

[14] D. Jang, Y. Jeong, S. Lee, M. Park, K. Kwak, D. Kim, B. B. Kang, Re-
thinking anti-emulation techniques for large-scale software deployment,
Computers & Security 83 (2019) 182 – 200.

[15] P. Yosifovich, D. A. Solomon, A. Ionescu, Windows Internals, Part
1: System architecture, processes, threads, memory management, and
more, 7th Edition, Microsoft Press, 2017.

[16] R. Mario Vuksan, Tomislav Pericin, Constant insecurity: Things
you didn’t know about (pe) portable executable file format,
https://media.blackhat.com/bh-us-11/Vuksan/BH_US_11_

VuksanPericin_PECOFF_WP.pdf (BlackHat USA 2011, Las Vegas).

[17] Solar Eclipse, Tiny pe - creating the smallest possible pe ex-
ecutable, https://web.archive.org/web/20120121050913/http://

www.phreedom.org:80/solar/code/tinype/ (2006).

[18] Microsoft, Pe format, https://docs.microsoft.com/en-us/windows/
win32/debug/pe-format (2019).

32

[19] J. Lopez, L. Babun, H. Aksu, A. S. Uluagac, A survey on function
and system call hooking approaches, Journal of Hardware and Systems
Security 1 (2) (2017) 114–136.

[20] M. Egele, T. Scholte, E. Kirda, C. Kruegel, A survey on automated dy-
namic malware-analysis techniques and tools, ACM computing surveys
(CSUR) 44 (2) (2012) 6.

[21] Y.-s. Jeong, H.-t. Lee, S.-j. Cho, S. Han, M. Park, A kernel-based mon-
itoring approach for analyzing malicious behavior on android, in: Pro-
ceedings of the 29th Annual ACM Symposium on Applied Computing,
SAC ’14, ACM, New York, NY, USA, 2014, pp. 1737–1738.

[22] N. Totosis, C. Patsakis, Android hooking revisited, in: IEEE Interna-
tional Conference on Dependable, Autonomic and Secure Computing
(DASC), IEEE, 2018.

[23] M. Musuvathi, S. Qadeer, T. Ball, M. Musuvathi, S. Qadeer, T. Ball,
Chess: A systematic testing tool for concurrent software, Tech. Rep.
MSR-TR-2007-149, Microsoft Research (2007).

[24] T. Kim, N. Zeldovich, Practical and effective sandboxing for non-root
users, in: Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13), USENIX, San Jose, CA, 2013, pp. 139–
144.

[25] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, T. Kim, Cab-
fuzz: Practical concolic testing techniques for COTS operating systems,
in: 2017 USENIX Annual Technical Conference (USENIX ATC 17),
USENIX Association, Santa Clara, CA, 2017, pp. 689–701.

[26] H. Greg, J. Butler, Rootkits - Subverting the Windows Kernel, Addison-
Wesley, 2005.

[27] S. Kim, J. Park, K. Lee, I. You, K. Yim, A brief survey on rootkit tech-
niques in malicious codes, Journal of Internet Services and Information
Security 2 (3/4) (2012) 134–147.

[28] E. Rudd, A. Rozsa, M. Gunther, T. Boult, A survey of stealth malware:
Attacks, mitigation measures, and steps toward autonomous open world

33

solutions, IEEE Communications Surveys & Tutorials 19 (2) (2017)
1145–1172.

[29] H. Shi, J. Mirkovic, Hiding debuggers from malware with apate, in:
Proceedings of the Symposium on Applied Computing, SAC ’17, ACM,
New York, NY, USA, 2017, pp. 1703–1710.

[30] T. Shields, Anti-debugging - a developers view, technical report, vera-
code (2009).

[31] P. Ferrie, Attacks on virtual machine emulators (2011).
URL \url{http://pferrie.host22.com/papers/attacks.pdf}

[32] A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yoshioka, T. Matsumoto,
T. Kasama, D. Inoue, M. Brengel, M. Backes, et al., Sandprint: finger-
printing malware sandboxes to provide intelligence for sandbox evasion,
in: International Symposium on Research in Attacks, Intrusions, and
Defenses, Springer, Springer International Publishing, Cham, 2016, pp.
165–187.

[33] A. Issa, Anti-virtual machines and emulations, Journal in Computer
Virology 8 (4) (2012) 141–149.

[34] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, S. Ioan-
nidis, Rage against the virtual machine: Hindering dynamic analysis of
android malware, in: Proceedings of the Seventh European Workshop
on System Security, EuroSec ’14, ACM, New York, NY, USA, 2014, pp.
5:1–5:6.

[35] J. Uitto, S. Rauti, S. Laurén, V. Leppänen, A survey on anti-honeypot
and anti-introspection methods, in: World Conference on Information
Systems and Technologies, Springer, 2017, pp. 125–134.

[36] C. S. Veerappan, P. L. K. Keong, Z. Tang, F. Tan, Taxonomy on malware
evasion countermeasures techniques, in: 2018 IEEE 4th World Forum
on Internet of Things (WF-IoT), IEEE, 2018, pp. 558–563.

[37] A. Afianian, S. Niksefat, B. Sadeghiyan, D. Baptiste, Malware dynamic
analysis evasion techniques: A survey, arXiv preprint arXiv:1811.01190.

34

[38] Checkpoint Research, Evasion techniques, https://evasions.

checkpoint.com/ (2020).

[39] D. Kirat, G. Vigna, Malgene: Automatic extraction of malware analysis
evasion signature, in: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, ACM, ACM, New York,
NY, USA, 2015, pp. 769–780.

[40] H. Shi, J. Mirkovic, A. Alwabel, Handling anti-virtual machine tech-
niques in malicious software, ACM Transactions on Privacy and Security
(TOPS) 21 (1) (2017) 2:1–2:31.

[41] Y. Leguesse, M. Vella, J. Ellul, Androneo: Hardening android malware
sandboxes by predicting evasion heuristics, in: IFIP International Con-
ference on Information Security Theory and Practice, Springer, Springer
International Publishing, Cham, 2017, pp. 140–152.

[42] D. Kirat, G. Vigna, C. Kruegel, Barebox: efficient malware analysis
on bare-metal, in: Proceedings of the 27th Annual Computer Security
Applications Conference, ACM, ACM, New York, NY, USA, 2011, pp.
403–412.

[43] L. Guan, S. Jia, B. Chen, F. Zhang, B. Luo, J. Lin, P. Liu, X. Xing,
L. Xia, Supporting transparent snapshot for bare-metal malware anal-
ysis on mobile devices, in: Proceedings of the 33rd Annual Computer
Security Applications Conference, ACM, ACM, New York, NY, USA,
2017, pp. 339–349.

[44] D. Kirat, G. Vigna, C. Kruegel, Barecloud: Bare-metal analysis-based
evasive malware detection, in: USENIX Security Symposium, USENIX
Association, Berkeley, CA, USA, 2014, pp. 287–301.

[45] S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Ki-
rat, C. Kruegel, G. Vigna, Baredroid: Large-scale analysis of android
apps on real devices, in: Proceedings of the 31st Annual Computer Secu-
rity Applications Conference, ACM, ACM, New York, NY, USA, 2015,
pp. 71–80.

[46] X. Deng, J. Mirkovic, Malware analysis through high-level behavior, in:
11th USENIX Workshop on Cyber Security Experimentation and Test
(CSET 18), USENIX Association, Baltimore, MD, 2018.

35

[47] D.-P. Pham, D.-L. Vu, F. Massacci, Mac-a-mal: macos malware analysis
framework resistant to anti evasion techniques, Journal of Computer
Virology and Hacking Techniques (2019) 1–9.

[48] Q. Do, B. Martini, K.-K. R. Choo, The role of the adversary model in
applied security research, Computers & Security 81 (2019) 156–181.

[49] P. Ferrie, The “ultimate” anti-debugging reference, http://pferrie.
host22.com/papers/antidebug.pdf (2011).

[50] Microsoft, Pe format - the .tls section, https://docs.microsoft.

com/en-us/windows/desktop/debug/pe-format#the-tls-section

(2018).

36

