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Abstract

Detail-and-geometry richness is essential to bas-relief modelling. However, existing image-based and model-

based bas-relief modelling techniques commonly suffer from detail monotony or geometry loss. In this paper,

we introduce a new bas-relief modelling framework for detail abundance with visual attention based mask

generation and geometry preservation, which benefits from our two key contributions. For detail richness, we

propose a novel semantic neural network of normal transfer to enrich the texture styles on bas-reliefs. For

geometry preservation, we introduce a normal decomposition scheme based on Domain Transfer Recursive

Filter (DTRF). Experimental results demonstrate that our approach is advantageous on producing bas-relief

modellings with both fine details and geometry preservation.

Keywords: Bas-relief modelling, normal transfer, image-based normal decomposition, detail transfer,

geometry preservation, visual attention

1. Introduction

Bas-relief, a special type of sculpture that figures are slightly emerged from a background, is a bridge

between 2D drawings and 3D sculptures. Bas-relief has received considerable attentions in recent years since

it can be viewed from many different angles without causing distortion of the figures. Due to this desirable

intrinsic nature, bas-reliefs as an art form has been very popular since prehistorical time [1]. They are now5

treated as either a single piece of artwork or decorations for walls, monuments, furniture, medals, potteries

etc. In recent years, more and more researchers in Computer Graphics have developed approaches to fulfill

the stylistic design purpose of bas-reliefs. Figure 1 shows a couple of real bas-relief examples designed by

artists and digital ones generated by the framework described in this paper. Please note the fine details of the

bas-relief examples in Figure 1.10
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Figure 1: The upper row shows artistic bas-relief works. The lower row shows our digital bas-relief results. We recommend

readers to view the electronic version for details.

Detail and geometry richness is an essential key to artistic creations. Missing any of them, the generated

bas-relief will be impossible to convey the ideas from the artists. For example, the relief in the right of Figure

1, the scaly textures and petal details present realistic fish and lotus flowers. The display of complex geometry

shapes and capture of such realistic fish in motion make them stand out artistically.

In general, digital bas-reliefs come from two types of sources: 2D images and 3D models. Methods based on15

natural images have ill-posed problems ([2][3]) in nature, and the approaches based on 3D models mainly focus

on designing sophisticated non-linear depth compression algorithms which typically incur a high computational

cost. Some recent works (e.g.,[4, 5, 6]) attempt to simplify the bas-relief modelling problem by working on the

normal images which contain both pixel-level detailed appearance (2D information) and the normal information

of the geometry leading to stereoscopic perception (3D look). The bas-reliefs are modelled in normal image20

space rather than in object space, which solves the ill-posed problems that other image-based approaches suffer

and removes the need of sophisticated depth compression algorithms.

Realistic bas-reliefs should present both detailed appearances and stereoscopic perception. For detail

transfer, existing works ([4, 5]) tend to rely on straightforward image processing techniques like cut-and-paste

and decompose-and-compose, which often lead to imperfect composition results. For example, the cut-and-25

paste operation cannot preserve the normals of the target. The decompose-and-compose [7, 8] operation

requires larger detail patches than target patches while it cannot manipulate target surfaces or cause scaling

issue for textures. For geometry preservation, existing methods (e.g., [6]) decompose the normal field into a
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base layer and a detail layer by directly subtracting the base normal value from the original normal, which

causes unexpected triangle distortions in the resultant bas-reliefs.30

In this paper, we present a novel bas-relief modelling method which is able to overcome the above-mentioned

issues, and produces bas-reliefs with rich details as well as preserving the geometry intact. Inspired by image

style transfer [9], we propose a semantic neural network of normal transfer which treats detail transfer as a

style transfer problem. The proposed network is capable of transferring the fine details from a source normal

image to the target normals in arbitrary shapes and scales. In addition, to generate transferred details on35

desired areas of the normal images, we adopt a visual attention mechanism [10, 11] and use object parsing

[12] to predict the corresponding masks. We extract rich texture areas and desired target areas from input

normals into masks, then these masks are used in the proposed semantic normal transfer network to produce

the transferred normals. For geometry preservation, we present a normal decomposition scheme based on

Domain Transfer Recursive Filter (DTRF) to enhance the geometry properties. We adopt the local shaping40

and global blending steps from [6] to construct the mesh of a bas-relief from detail and structure layers obtained

by normal decomposition.

The overview of our framework is shown in Figure 2. Our digital bas-relief modelling pipeline which

takes 3D models as inputs, manipulates normal fields and generates diverse visual effects of texture transfer,

structure and detail preservation. The proposed semantic neural network of normal transfer facilitates the45

design and texture transfer of bas-reliefs and makes the generation process in an efficient and intelligent way.

The main contributions of this paper are:

• Semantic neural network of normal transfer. Our proposed semantic neural network of normal

transfer learns the texture and structure representations, and then recombines them to generate a new normal

image which shows the similar texture patterns of the source normal image and similiar structure surface of50

the target normal image. It is capable of taking arbitrary sizes and shapes of normal images as inputs, and

then synthesizing them into a new texture.

• Geometry preservation without introducing artefacts. By considering the orientation of vector

rotations, our normal decomposition scheme obtains a structure layer and a detail layer with continuous and

more natural edges and shapes, which contribute to produce artefacts free bas-relief modellings.55

2. Related work

In the last two decades, generating digital bas-reliefs from 3D scenes or 2D images has been a thriving

subject in computer graphics. A detailed review work can be found in [13, 14], which classify methods into

direct modelling, image-based and shape-based modelling. Direct modelling involves experts’ laborious work.

Image-based 3D construction inherently has the ill-posed problem. Most 3D model-based works create bas-60

relief by either directly compressing the depth or by working in the gradient domain, where the final model

is obtained by solving a Poisson equation. Most cases aim to generate a reproducible and manipulable mesh,

which can later be used and enhanced with some more advanced graphical tools. As a result, specific colour

and texture of the relief are usually not considered in these previous research. Our work is designed to solve
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Figure 2: The overview of the proposed approach. Our approach contains three stages: normal transfer, normal decomposition

and bas-relief modelling. Normal transfer completes the task that transfers the fine details from source normal to target normal;

Normal decomposition creates structure normal and detail normal with enhanced geometry properties; Bas-relief modelling

constructs bas-reliefs from structure and detail normal obtained from normal decomposition.

this problem by using the learning scheme to transfer textures from 3D source models to 3D target models.65

The following review work focuses on bas-relief modelling, style transfer and learning techniques in recent

years.

2.1. Bas-relief modelling

2.1.1. 3D model-based methods

By applying feasible constraints on a given 3D shape or scene, Christian et al. [15] propose a novel view-70

dependent surface representation which allows us to cast the optimization as a quadratic program. Ji et al.

[16] propose a highly efficient two-scale bas-relief modelling method on GPU, in which the input 3D scene is

first rendered into two textures with depth information and normal information respectively. The depth map

is then compressed to produce a base surface with level-of-depth, and the normal map is used to extract local

details. Finally, the local feature details are added back to the base surface to produce the final result. Based75

on 3D models, Zhang et al. [17] propose a series of gradient-based algorithms which operates directly on a

triangular mesh and ensures that the mesh topology remains unchanged during geometric processing. They

also present two types of shape editing tools that allow the user to interactively modify the bas-relief and

exhibit a desired shape. Given target shapes, viewpoints and space restrictions, Zhang et al. [18] find a global

optimal surface that delivers the desired appearance when observed from the designated viewpoints, which80

could guarantee exact depth bounds of per-vertex. Zhang et al. [19] treat an input object as a continuous

relief depth map and use mesh intersection to paste the relief on the target object based on empirical mode

decomposition in multi-scale levels [20].

In contrast to model-based methods, we start from image normal operation to make the process conciser

and more efficient.85

2.1.2. Image-based methods

Generating bas-relief from natural images and photographs are intuitive. However, we all know that there

is an ill-posed problem to recover 3D shape from a single image, since colour, luminance and texture in an

image could not reflect the geometric attributes of the objects properly, especially for objects with complex

materials. To overcome this problem, some researches are restricted to some special types of bas-relief from90

certain images. For example, Wu et al.[21], Wu et al. [22], and B. Sohn [23] concentrate on bas-relief modelling
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from human face photographs. Zhang et al.[19] pay special attention to model Chinese calligraphy reliefs. Li

et al. [24] aim at restoring brick and stone alike relief from single rubbing image in a visually plausible manner.

Zhang et al. [25] concentrate on portrait relief modeling. Some researches are based on Shape From Shading

(SFS) which requires human interaction ([2][3][26]).95

Unlike generating bas-relief from natural images, some recent works start from normal images[27]. Ji et al.

[4] present a novel framework to design bas-relief in normal image space instead of object space which is capable

of producing different styles of bas-relief and allows intuitive style control. Their method generates high-quality

bas-relief which enables a variety of applications, such as the cut-and-paste operation and bas-relief modelling

on curved surface. Recently, Ji et al. [5] extend their previous work with a layer-based editing approach for100

normal images to generate more diversified styles of results, and is capable of transferring details from one

region to another. Similar to Ji et al.’s work [16] , Wei et al. [6] decompose image normal of an input 3D model

into a smooth base layer and a detail layer in order to contribute to both features of structure-preserving and

detail-preserving.

Inspired by these works, our method starts from normal images of 3D meshes, using detail transfer to105

achieve the detail-enriched relief model with a relatively conciser operation.

2.2. Detail transfer

With the growing availability of abundant 3D mesh collections, some research works attempt to transfer

textures [28] or details to geometric shapes.

Mitra et al. [29] propose an unsupervised learning method to transfer texture information from images of110

real objects to 3D models of similar objects by tackling the reconstruction problem of a set of base texture.

Huang et al. [30] present a novel user-assisted approach to extract a non-parametric appearance model from

a single photograph of a reference object (whose geometric structure roughly approximates that of the target

object). A novel alignment algorithm is proposed to enable accurate joint recovery of the geometric detail

and reflection. Berkiten et al. [31] propose a method which transfers details (specifically, displacement maps)115

from existing high-quality 3D models to simple shapes. They adopt metric learning to find a combination

of geometric features that successfully predict detail-map similarities on the source mesh; then they use the

learned feature combination to drive the detail transfer in texture space.

Compared to those mentioned detail transfer methods, our work aims to transfer high quality details to

arbitrary shapes and preserves those details for the purpose of bas-relief generation.120

2.3. Image Style Transfer

Recently, Convolutional Neural Network (CNN) shows its power as a rich feature provider in visual percep-

tion, which boosts several computer vision research areas such as image classification [32] and object detection

[33]. Inspired by the success of visual perception using CNN, Gatys et al. [9] initialize an artificial algorithm

for the creation of artistic images, which possesses the capability of learning and recombining feature repre-125

sentations of content and style images. Feeding images into the pre-trained CNN, they presented the semantic

structure representations of a photo as neural responses of CNN, and referred to the artistic style of an artwork
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Figure 3: The diagram of mask area extraction. The DVA network generates human eye attention area on elephant’s head which

is an identity region with richer details than its other parts, and the LG-LSTM network segments the elephant into various

regions based on object parts. Then we choose regions exclude head as our mask. In general, we choose areas without eye

attention for target normals but with highlight regions for source normals. To target normals, we always want areas with less

details in order to transfer rich textures into these areas. To source normals, however, areas with highlight attention are more

desired.

as its texture representations via the spatial summary statistic of neural responses. These high-level represen-

tations actually store the learned distribution of structure details in the content image and texture patterns

in the style image. By manipulating these high-level representations inside CNN, they are able to generate a130

new image which preserves the spatial structure details of a photo and artistic style of an artwork image.

3. Semantic Neural Normal Transfer

A point in a normal image indicates a normal vector, thus spatial structures and texture patterns are

actually the orientation differences between normal vectors. As far as we know, deep neural networks ([34,

32]) are capable of learning these structures and patterns from images, which indicates that the orientation135

differences of normal vectors can be captured and stored as neural responses in networks. Based on this, we

propose a semantic deep neural network of normal transfer which accomplishes the detail transfer task by

learning and recombining spatial structures and texture patterns from input normal images. In addition, we

adopt Deep Visual Attention Network (DVA) [10] and LG-LSTM Network [12] to generate our mask images.

Figure 3 illustrates the basic procedure of extracting areas for masks. The DVA network produces human140

eye attention areas for the input normal map, and LG-LSTM network generates parsing segmentations based

on object parts (e.g., head, body and legs etc). Since the attention areas usually lie on heads or faces [10]

which are identity areas with rich details, we utilize this feature to extract our masks. For example, DVA

network produces highlight area in the elephant normal on its head, while LG-LSTM network generates part

segmentations. To target normals, we always want areas with less details in order to transfer rich details into145

these areas, thus we choose segmented areas without attention areas (i.e., regions exclude head in Figure 3)

which consist of final target mask areas. To source normals, in constrast, we always want areas with rich

details, thus we choose segmented areas where highlight areas lie.

Figure 4 shows the architecture of the proposed semantic neural network of normal transfer. In this work,
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Figure 4: The overview of our proposed semantic neural normal transfer network. The network takes source/target normal

images and their corresponding masks as inputs, then computes a new generated normal image with transferred details from

source normal via an optimization process.

the source normal image provides the texture patterns, the target normal image provides the spatial structures150

and the pixel-level binary mask images indicate the regions that are valid for texture transfer. At the beginning

of the optimization process, the target normal image and its corresponding mask, the source normal image

and its corresponding mask are passed into the network and their features are learnt in the network. Then

our network starts from the target normal image and gradually syntheses it into a new normal result via

optimization iterations. This optimization process minimizes the Euclidean distance between texture and155

structure representations. For the given source normal image xtex, target normal image xstr and masks mtex

and mstr, the proposed network searches a new stylized normal image x̂ by minimizing the following loss term:

L(x̂, xstr, xtex,mstr,mtex) = αLstr(x̂, xstr,mstr) + βLtex(x̂, κ, xtex,mtex) + δRtv (1)

with:

Rtv =
∑
i,j

((x̂(i,j+1) − x̂(i,j))2 + (x̂(i+1,j) − x̂(i,j))2) (2)

where the structure loss Lstr penalizes the difference of valid structure representations between xstr and

x̂; the texture loss Ltex penalizes the difference of valid texture representations between xtex and x̂. To

encourage the spatial smoothness in the generated image x̂, we also add a total variation regularization in160

our network. α and β denote the weights to balance the structure component and texture component of the

stylized result x̂ while κ and δ respectively denote the weights of texture scales and smoothness.
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Let the matrix φj(·) ∈ RNj×Mj denotes the vectorized feature maps representing the neural responses in

a layer j where Nj is the number of channels and Mj is Height×Width of the corresponding feature maps,

and the mask mstr indicates the valid regions for structure preservation. The structure loss Lstr is defined as165

the mean square error between the two valid feature representations φj(xstr) and φj(x̂) in the masked area:

Lstr(x̂, xstr,mstr) =
∑
j∈Js

mstr · (φj(xstr)− φj(x̂))2 (3)

where Js denotes the set of layers in a pre-trained VGG-19 network [35] in which the structure loss is computed.

Gatys et al. [36] have discovered that the Gram-based correlations of neural responses can be exploited as the

texture representations. Hence, the texture loss Ltex is denoted as the squared Euclidean distance between

the scaled texture normal representation κ · xtex and the generated new normal representation x̂:170

Ltex(x̂, κ, xtex,mtex) =
∑
j∈Jt

κ ·mtex · (ψ(φj(κ · xtex))− ψ(φj(x̂)))2 (4)

where Jt denotes the set of layers in the pre-trained VGG network in which the texture loss is computed,

ψ(φj(·)) = φj(·) · φj(·)T ∈ RNj×Nj is the Gramian Matrix [36], which is used to represent the texture infor-

mation.

4. Image-based Normal Decomposition

Normal decomposition aims to extract a structure layer Ls and a detail layer Ld from the original normal175

field Lo. Generally, the structure layer Ls is achieved by applying a normal filtering to smooth Lo, and Ld is

obtained by subtracting Ls from Lo [6]. However, the detail layer actually presents the orientation differences

between normal vectors in structure Ls and Lo. Thus we adopt the idea [5] which takes the orientation

into account, and we propose a normal decomposition scheme based on an edge-preserving technique Domain

Transfer Recursive Filter [37]. Let P(i,j) and P(i,j−1) denote two adjacent points in a normal image I, the180

result J(P(i,j)) of DTRF in [37] is defined as:

J(P(i,j)) =
1

Kp

c∑
k=1

(1− ad) · Ik(P(i,j)) + ad · Jk(P(i,j−1)) (5)

where a = exp(−
√

2/σs) and d = 1 + σs

σr
|I(P(i,j))− I(P(i,j−1))|. σs and σr are respectively standard deviation

and deviation range. Kp denotes the scaling factor that normalizes J(P(i,j)) to a unit vector and c denotes

the channel index (e.g., RGB). To achieve a symmetric response of Equation (5), the DTRF filter is applied

twice: for a normal image I, Equation (5) is performed left-to-right (top-to-bottom) and then right-to-left185

(bottom-to-top). To simplify the user-specified parameters, we set σr to 1.0 which works well in all of our

experiments.

Figure 5 shows one example using our normal decomposition. We define our normal decomposition filter

based on an edge-preserving technique Domain Transform Recursive Filter (DTRF) [37] which is capable of

working on colour images at arbitrary scales without the need of resorting to subsampling or quantization.190
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Figure 5: One example of our normal decomposition results {σs = 10, σr = 1.0} and we enhance the detail normal in Photoshop.

Figure 6: Demonstration of DTRF and BF in computing values of edge points. The blue points are assumed as edge points

while other points are non-edge points. The point P(i,j) is the current point computed by Equation (5).

We now give the reason why DTRF is better than BF [38] for normal smoothing. To DTRF, the output of

Equation (5) tends to be I(P(i,j)) itself as increased d leading ad to zero, thus the value of a point on edge is

preserved well and barely affected by its neighbouring non-edge point. For example, non-edge point P(i,j−1)

(white color) in (b) of Figure 6 affects edge point P(i,j) much less than point P(i,j+1) (Equation (5) is applied

twice) as its weight ad of P(i,j−1) tends to be zero. In contrast, values of points on edges computed by BF can195

still be affected by non-edge points (i.e., points in white color in 5x5 window size (c)), and this influence could

be enhanced after a few iterations, especially when the neighbouring points of an edge point share similar

values. For example, in Figure 7, the edge of top-right corner in the zoom-in of structure normal (BF) is

almost wiped out and updated into the smiliar color of non-edge neighbouring points.

Detail enhancement. To demonstrate the effectiveness compared to value subtraction, we compare the200

detail enhancement results obtained by Wei et al. [6] and our normal decomposition in Figure 8. To achieve

detail enhancement effect, we simply enhance the detail layer via increasing brightness and contrast in Adobe

Photoshop CS6. Note that our detail layer looks much more natural than the result of Wei et al. [6] in

structure surface and boundaries between edge and surfaces.

Now we analyse the reason why our normal decomposition achieves more natural bas-relief modellings than205

Wei et al. [6]. We consider the orientation for the normal subtraction. Each point in the normal image indicates
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Figure 7: Structure Normals obtained by DTRF {σs = 4, σr = 0.7} and BF {σs = 3, σr = 0.3}. The zoom-ins of the red

rectangle areas indicate that DTRF preserves better edges than BF in normal smoothing application.

Figure 8: Comparison of normal decomposition between Wei et al. [6] and ours. Our normal decomposition {σs = 10, σr = 1.0}

extracts details based on normal orientations and structure surface information as well, while Wei et al. [6] only obtain details

which may damage the structure surface when detail enhancement is applied (see the zoom-ins of the red rectangle areas).
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a normal vector. Thus the normal differences between two points in base and original normal are actually

orientation differences which should follow the vector rotation. As the orientations of the corresponding points

in base and original normal field are continuous, the orientations of new vectors computed have the property

of continuity as well. Therefore, the detail layer containing those orientation differences gives continuous and210

reasonable edges and surfaces in image space. Wei et al. [6] perform normal decomposition on mesh level via

a vector length threshold θ which follows a certain Gaussian distribution, then the small triangles with points

having shorter vector length are remained in the detail layer (c.f. the orange rectangle shown in the bottom-

middle of Figure 8). However, the orientations between remained neighbour triangles are not continuous which

leads to unexpected triangle distortions and damages the structure surface in bas-relief modelling results when215

detail enhancement is applied (c.f. the red and green rectangles in Figure 8). Our normal decomposition has

no such damage.

5. Bas-relief Modelling

In this section, we construct the bas-relief model based on the decomposed structure normal map Ls and

detail normal map Ld. To generate the surface from decomposed normals, we adopt the idea from [6] which220

regards the mesh construction as an optimization problem. During each iteration, we utilize the generalized

SfG [39] technique to firstly split current mesh into quadrangular faces according to the normal orientation of

Ls and Ld, then stitch all the disconnected faces together to form a complete surface. The entire bas-relief

modelling is proceeded in two steps: local shaping (split) and global blending (stitch) (shown in Figure 9).

Let fo denotes the expected output mesh, fs and fd denote the desired structure and detail, and hf denotes225

the expected fixed overall height, then the total energy of bas-relief modelling is formed as:

E(fo, fs, fd, hu, hf ) = Es(fo, fs) + λaEd(fo, fd) + λbEf (fo, hf ) (6)

where Es(fo, fs) = ‖fo − fs‖2 is the energy function that minimizes the difference between output faces fo

and structure faces fs which aims to preserve the structure of transferred normal. Es(fo, fd) = ‖fo − fd‖2 aims

to preserve the details of transferred normal. Ef (fo, hf ) = ‖hfo − hf‖
2

is to control the overall fixed height

of relief. λa is the weight to recover the geometry details, and λb affects the style of the resulting bas-relief230

(roundness or flatness), and larger value of λb means flatter style.

6. Implementation Details

In this paper, the normal computation and bas-relief modelling is implemented using C++ and OpenGL,

and the normal transfer is implemented using Pytorch 1.3.1 with CUDA 10.0. All the experiments are per-

formed on a desktop PC with two 2.10GHz Intel(R) Xeon(R) Platinum 8160T CPU, 256 GB RAM and two235

NVIDIA TITAN RTX graphics card. The Adobe Photoshop version used in this work is Photoshop CS6. A

user-friendly GUI is created. We tested our method on a set of models with detail enhancement, and trans-

ferred texture details to various models in different scales and arbitrary shapes which demonstrate capability

and effectiveness of diverse styles.
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Figure 9: The overflow of bas-relief modelling. In the local shaping step, each face (represented with the same colour edges and

a normal vector) is projected according to its transferred normal vector. A vertex may be spit into two or four vertices, which

are represented in the same colour. In the global blending step, new vertex positions (marked as hollow circles) are calculated by

minimizing the total energy (Equation (6)). These vertices are re-organized in originally connected way to form an updated

surface. Then, we repeat the iteration on the updated surface until it is converged.

Parameters. For mask generation, we use the pretrained models of [10, 12] provided by authors. Since240

the pretrained model of [12] is only trained on images with entire animal bodies, the segmented results for our

source normals are not clear as target normals and could be arbitrary shapes like owl shown in Figure 2. For

normal transfer, our network has four parameters: {α, β, σ, κ} where they respectively control the structure

preservation, texture preservation, texture scales and smoothness. Specifically, the ratio α/β presents the

emphasis on either reconstructing the structures or the texture patterns. A larger ratio α/β indicates the245

structure identity of target normal in the synthesized result is strongly preserved, and a smaller ratio α/β

indicates the texture patterns of source normal are effectively presented in the synthesized result. For a specific

pair of source and target normals, user can adjust the trade-off between structure identity and texture patterns

to create visually desired styles. For normal decomposition, our method has one user-specified parameter σs

which is the weight of structure preservation.250

For bas-relief modelling, our method has three parameters: {λa, λb, hf} where they are the weights of

geometry preservation, flatness and fixed relief height, respectively. The normal image resolution for normal

transfer and bas-relief modelling is fixed to 700×700. To reduce the number of user-specified parameters, we fix

{α = 1e0, β = 1e6, σ = 1e−3} and place structure layers at {conv4 2} and texture layers at {conv1 1, conv2 1,

conv3 1, conv4 1 and conv5 1} which are default settings([9]) in normal transfer stage for all experiments.255

7. Results and Analysis

7.1. Detail transfer of Bas-relief Modelling

One advantage of our proposed method is the detail transfer on normal field, which is capable of transferring

vivid texture patterns from one normal image to another. Unlike existing cut-and-paste technology in [4], our

approach learns the texture patterns from target normal images and transfers them onto source normal images260

in arbitrary shapes and multiple scales.

Regular shapes. Figure 10 demonstrates that the proposed method transfers the partial texture details

of Turtle shell onto the round belly shape of Buddha and a rectangle-like shape of Pillow. The parameters are
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(a) Owl transfer on Bunny.

(b) Turtle transfer on Pillow.

Figure 10: Examples of transfer results based on regular shapes of source and target normal images.

(a) Turtle transfer on Buddha.

(b) Dragon transfer on Bunny.

Figure 11: Example of transfer results based on arbitrary shapes of source and target normal images.
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(a) Source normal and target normal.

(b) Turtle transfer on Elephant (κ = 1.0).

(c) Turtle transfer on Elephant (κ = 0.5).

(d) Turtle transfer on Elephant (κ = 0.25).

Figure 12: An example of detail transfer results with multi-scale texture features.
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Figure 13: Our normal decomposition results with different σs values. The first column is the original normal map as input.

Results from the second column show the structure normals (bottom row) and corresponding detail normals (top row).

{κ = 0.4, λa = 2, λb = 0.05, hf = 0.5}.265

Arbitrary shapes. Besides the regular shape, our method still deals with arbitrary shapes as shown in

Figure 11. The texture details of the Owl and the Dragon are transferred to the body of the Bunny without

any distortion. The parameters are {λa = 2, λb = 0.05, hf = 0.5 }. The masks of buddha and bunny are

extracted in photoshop.

Multiscales. Our work is able to transfer different scales of details to the same target model by simply270

tuning one hyperparameter κ for texture scales during optimization process as shown in Figure 12. The

parameters {λa = 2, λb = 0.05, hf = 0.5}.

7.2. Parameter σs for Normal Decomposition

In Figure 13, we show the influence of parameter σs on our normal decomposition. As can be seen, the

structure normal becomes smoother along with the increase of σs which preserves clearer details in detail275

normal. Thus, a larger σs value captures more details while preserving less structure information, and a lower

σs value ignores some details while preserving more structure information. We choose the σs values between

10 and 20 in all of our experiments.

7.3. Hyperparameters for Bas-relief Modelling

In Figure 14, we show how to tune the hyperparameters in our bas-relief modelling to get desired visual280

effects. For geometry preservation, a larger λa preserves surface details more clearly and even enhances it in

an over-compressed case. A larger λb value produces a flatter bas-relief while a smaller one generates a round

style of a model. Parameter hf determines the overall height of the produced bas-reliefs.

7.4. Comparisons to previous literature methods

Comparison to state-of-the-art methods with detail enhancement. For fair comparison of the285

bas-relief results, a linear scaling as post-processing step is adopted from [6], which aims to make sure the
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Figure 14: Analysis of parameters λa, λb and hf in Bas-relief modelling. In the left, the images are original normal map,

structure normal map and detail normal map enhanced by Adobe Photoshop in each column. The first row shows that a larger

λa value would enhance the detail preservation in relief result {λb = 0.5, hf = 0.1}. The second row shows that a larger λb value

would produce flatter relief results {λa = 1.5, hf = 0.3}. The bottom row shows that a larger hf value would increase the height

of relief results {λa = 2, λb = 1.0}.

generated bas-reliefs share same height since these approaches usually do not control their depth exactly.

Additionally, we also carefully fine tune the hyper-parameters for each method and show their best visual

appearance under the same lighting environment and height compression. We compare our approach with

five state-of-the-art bas-relief modelling methods in a flatten style. All the produced results share some290

similarities, and details on Feline model are preserved well, which are shown in Figure 15. However, our

approach {λa = 5, λb = 1.5, hf = 0.1} produces more continuous and obvious edges (c.f. red rectangles) and

natural shape surface (c.f. green rectangles) than others.

Comparison on detail transfer between Ji et al. [4] and our method. Figure 16 shows the detail

transfer comparison between Ji et al. [4] and ours. Ji et al. [4] proposed a normal-based model method which295

constructed reliefs from normal images as well. However, their method utilized the cut-and-paste operation

on the image domain to achieve detail transfer results which inevitably covered the original surface structures

and details of target normal images. Our approach transfers the texture patterns to target normals while

preserving original geometric property. As can be seen in Figure 16, our result not only preserves well in the

surface structures but also produces turtle textures spreading along with the detailed lines and surface of a300

human hand.

7.5. Time Consumption

In general, our approach contains three stages which are normal transfer, normal decomposition and bas-

relief modelling. The normal maps of 3D input meshes are fed into our semantic neural network in normal

transfer stage. This stage generates synthesized normal images by running on two NVIDIA TITAN RTX305
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Figure 15: Comparison to state-of-the-art methods with detail enhancement on standard thickness.The images in the first

column is the original Feline mesh and Feline normal field, then the bas-relief results on the right columns follow the order:

Weyrich et al. [40], Sun et al. [41], Ji et al. [4], Schüller et al. [15], Wei et al. [6] and ours {λa = 5, λb = 1.5, hf = 0.1}. We

recommend readers to view the electronic version for more clear details.

Figure 16: Comparison on detail transfer between Ji et al. and ours {λa = 5, λb = 0.05, hf = 3}.

17



Table 1: Time consumption (seconds). Here shows the time occupation for typical bas-relief results.

Models
Stage 1 Stage 2 Stage 3

Total
normal transfer normal decomposition bas-relief modelling

Buddha 110.78 16.36 47.98 175.12

Pillow 110.28 15.88 35.70 161.86

Bunny(Owl) 110.56 16.07 43.83 170.46

Bunny(Dragon) 109.08 16.15 43.86 109.09

Elephant(κ=1.0) 109.00 24.37 32.58 165.95

Elephant(κ=0.5) 109.57 19.58 36.25 165.40

Elephant(κ=0.25) 109.39 21.31 36.03 166.73

graphics card. Next, we decompose the transferred normal result into structure normal and detail normal via

our normal decomposition operator. Finally, the bas-relief modelling stage—surfaces are generated based on

the normal images produced by previous stage. For typical models in this work, we record the time performance

of three stages where stage 2 and 3 are implemented on CPU while stage 1 on GPU. Time cost of experiments

in figure 10, 11 and 12 can be found in Table 1.310

Limitation. Our current semantic normal transfer method is a CNN network which regards the texture

transformation as an online optimization problem (without any training process). It runs around 110 seconds

in execution time for two 700 × 700 normal images which is slow in practice. To speed up the process,

we recommend to replace the optimization process with feed-forward networks which may achieve real-time

performance. The details on feed-forward networks can be found in these related works ([42, 43, 44]).315

8. Conclusion

This paper presents a normal based bas-relief modelling method. To enrich the detailed features, we develop

a semantic neural network of normal transfer which learns distributions of texture patterns and structure

details from both source and target normal images respectively. Then a new normal image combining these

distributions is generated by an optimization process. Unlike previous normal editing methods, our work is320

capable of learning the texture patterns from the source normal images and transferring them onto the target

normal images in arbitrary shapes and multiple scales. To preserve geometric properties, we present a normal

decomposition scheme which contributes to the generation of bas-relief results free from artefacts. A number of

experimental results show that our method produces reasonable and pleasant bas-reliefs with enriched details

and preserved geometry. Our future work will focus on speeding up the pipeline as our current semantic normal325

transfer network uses a slow optimization process. A promising solution is to use feed-forward networks instead

of optimization process, which will save time for texture transformation.
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