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Abstract
For hundred years, artists engage into art creation to present their understanding of sub-

jective and objective world, and their style representations can be inspired from other art-

works and followed by other people. To grasp the spirit and styles from artworks, followers

have to practice for years even for professional artists. In the past two decades, researchers

in computer science have dedicated to propose automatic techniques to create paintings in

different artistic styles, which gradually forms a research area Artistic Style Transfer (AST).

The breakthrough on Convolutional Neural Network (CNN) recently drives the AST into a

new era called Neural Style Transfer (NST).

Since born as a new technique, NST has been researched as a powerful tool to benefit

other areas such as colour transfer, video temporal consistency and geometry detail transfer

etc. However, applying NST directly into different research fields often causes unexpected

artefacts. For example, the distortion artefacts in stylized results is inevitable especially

when the content and style inputs are both photographic, the flickering artefacts existing in

video style transfer methods, and the mismatching of geometric inputs in geometry detail

transfer.

To address those challenges, this thesis aims to leverage NST to develop new techniques

for the related research fields. A new photo style transfer method is proposed to prevent dis-

tortion artefacts and preserve style and photorealism simultaneously. To enhance the tem-

poral consistency in consecutive frames, a stable video style transfer method is proposed to

mitigate flickering artefacts by a set of masking techniques and multi-frame coherent losses.

Furthermore, a semantic neural normal transfer network is proposed to match desired tex-

ture patterns from style reference input onto content inputs by an automatically attention-

based mask technique.
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Chapter 1

Introduction

Figure 1.1: Examples of Non-photorealistic Rendering. The upper and lower examples
are from Curtis et al. [23] and Hertzmann et al. [52], respectively.

1.1 Background

Painting has been an essential form of art to record the human perception of the world for

thousands of years. There are dozens of representative painting styles around the world,

such as "Impressionism", "Surrealism", and "Modernism" etc. And many other kinds of

styles presented by special brush strokes or texture patterns in paintings. These stylistic

presentations from either masterpieces or ordinary paintings have inspired generations to

engage in the art creation. However, it takes really long time for followers to learn and

grasp the spirit of one specific style, not even mention universal styles before the digital

era. Therefore, researchers in computer science constantly propose algorithms or techniques

to automate the learning process, help people easily create paintings in any desired styles.

Hence, a research field Artistic Style Transfer comes into being.

Starting from the 1990s, algorithms like painterly renderings in Non-Photorealistic Render-

ing (NPR) [40, 123, 138] firstly succeed in transforming images with a few specific art styles

[23, 52, 123] like watercolor and brush strokes. For example, Curtis [23] proposed a tech-

nique to repaint the source image with simulated watercolor style (e.g., the upper row in
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Figure 1.2: Examples of style transfer based on texture features extracted from gradient
domain. All examples are from Zhang et al. [175]

Fig. 1.1). Hertzmann [52] proposed a painterly rendering method by simulating multi-size

curved brush strokes to create "Impressionist" stylized images (e.g., the lower row in Fig.

1.1). These techniques are limited by certain simulated artistic styles, and lack the capability

of transferring images into any other artistic styles. For computer vision researchers, the

transformation process is studied as a generalization of texture synthesis, which seeks to ex-

tract texture representations from artistic paintings and transfer them to target images. For

example, Zhang et al. [175] proposed an example-based image stylization method which ex-

tracts paint component in YIQ colour space to be texture representation (e.g., Fig. 1.2). Before

the neural networks are applied, the above mentioned methods can only extract features in

colour space to form certain style representations, which leads to unsatisfactory results and

limitations on artistic style numbers that one method can learn.

Recently, Convolutional Neural Network (CNN) shows its power as a rich feature provider

in visual perception, which boosts several computer vision research areas such as face and

object recognition [24]. Inspired by the visual perception success [11, 18, 29, 81, 107] using

CNN, Gatys et al. [36] initialize an artificial algorithm for the creation of artistic images,

which separates and recombines content and style of images. Feeding images into the pre-

trained CNN, they present the semantic content of a photo as neural responses of CNN, and

refer to the artistic style of an artwork as its texture representations via the spatial summary

statistic of neural responses. Their experiments visualize the capability of separating and re-

organizing of content and style representations, which indicates the possibility of re-drawing
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Figure 1.3: Examples of Neural Artistic Style Transfer in [37]. The artworks are “Seated
Nude”–Pablo Picasso (top middle) and “The Scream”–Edvard Munch (bottom middle)

a new image preserving both spatial semantic content of a photo and artistic style of an art-

work. Based on this finding, Gatys et al. [37] firstly propose a technique that is capable of

automatically recreating images in as many artistic styles as possible, which creates a path

to universal style transfer. Their proposed approach formulates style transformation as an

optimization problem, which generates from white noise to a new image containing similar

neural activations as the content image and similar stylistic correlations as the style image.

Without explicit constraints on style types, their artificial algorithm produces visual appeal-

ing results in universal artistic styles. Two examples of artistic stylized result are shown in

Fig. 1.3. The image style transformation method proposed by Gatys et al. [37] opens up a

new era called Neural Style Transfer (NST) in computer vision community.

This NST field have been given wide attention in both academic and industrial areas. In

academia, a surge of recent works [17, 19, 37–39, 59, 66–68, 77, 79, 91, 94, 98, 99, 115, 130,

134, 144, 148, 149, 155, 168] address the problem of style transfer using deep neural net-

works. These methods are proposed to either improve the quality [91, 93, 144] of the Gatys

et al’s algorithm [36] or extend its applications like style transfer for photos [97, 108] and

videos [5, 16, 124, 126]. In this thesis, the prior proposed improvement methods are called

Neural Artistic Style Transfer (NAST), and the prior proposed extension methods for pho-

tos and videos are called Neural Photo/Video Style Transfer. In industrial applications, many

follow-up algorithms [17, 59, 68] have been adopted successfully in social Mobile Apps such

as Prisma, Ostagram, DeepArts etc. In addition, NST has also been proved to be useful in

other research areas: image super-resolution [68, 154], image-to-image translation [62, 87,
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185], image synthesis [70, 71], normalization in neural networks [145], domain adaptation

[13, 55], image inpainting [105], neural differentiable renderer [72], 3D motion transfer [56]

etc. This thesis further extends the application of NST onto digital bas-relief generation by

synthesizing novel textures on geometry surfaces. Therefore, I call this extension branch as

Neural Geometry Texture Synthesis (NGTS).

In the academic extension branch of NST, for example Neural Photo Style Transfer, re-

searchers pursue to obtain faithful and photorealistic stylized results when both the content

and style images are photographic. In the extension branch like Neural Video Style Transfer,

research studies focus on developing algorithms which not only process videos faster, but

also produce coherent stylized results. As a further extension, Neural Geometry Texture Syn-

thesis aims to synthesize new textures on 3D surfaces, which enriches geometry details for art

design. Neural Artistic Style Transfer methods are capable of creating satisfactory artistic im-

ages, however, in extension research areas they often fail for certain purposes and need to be

improved. For example, in NPST, NAST methods fail to preserve the photorealism because

of the content-mismatching and distortions which produce the painting look of results. In

NVST, NAST methods process video frame-by-frame and cause flickering artefacts. As for

NGTS, there is few researches performing texture synthesis based on NST onto geometry

surfaces. To address these challenges, this research develop new methods in the extension

branches of NST: Neural Photo Style Transfer (NPST), Neural Video Style Transfer (NVST) and

Neural Geometry Texture Synthesis (NGTS).

1.2 Motivation

As a popular social activity, photo sharing and exchanging in social media like Instagram,

Twitter and Facebook have great impact and strong appeal in people’s daily life. To en-

rich the photo sources for social media, photo editing tools especially photo style transfer

makes it easy for people to create beautiful pictures with desired colour styles. Though

softwares like Photoshop are powerful tools to do photo style transfer work, it still needs

professional skills to create natural and wonderful result. To make it easier, researchers have

proposed many methods from the perspectives of colour [47, 116, 121, 162] and texture [175].

However, these techniques are limited by either failing to transfer faithful colour between

sophisticated images or highly depend on the similar scenes with different colours, views

and illumination.

Gatys et al.’s method produces impressive artistic stylized results, but it fails to trans-

fer the photorealistic style when both the content and style images are photographic due to
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content-mismatching and distortions. To address these problems, Luan et al. [108] propose a

two-stage Deep-Photo-Style-Transfer (DPST) method, which utilizes semantic segmentation to

avoid the content-mismatching problem in its first stage, and add a photorealism regulariza-

tion term based on locally affine colour transformations to prevent distortions in its second

stage. However, in the first stage, semantic segmentation masks for both content and style

images consume lots of computation time even for low resolution images. In the second

stage, the content spatial structures are preserved in many situations, but details especially

the exact edges are erased when semantic segmentation is inaccurate or contains overlap-

ping areas. In addition, the added photorealism regularization term using Matting Lapacian

matrix also causes posterization artefacts.

For Neural Photo Style Transfer, hence, the challenges are:

• CHAL 1 The photorealism loss of stylized results.

• CHAL 2 Slow execution time for effective neural photo style transfer.

Artistic video stylization by manually re-drawing requires a large amount of time and

human labour. Benefit from the speedup of Neural Artistic Style Transfer methods [19, 68,

144], now it is possible that the whole video stylization processing can be done automati-

cally. So far, the Neural Artistic Style Transfer methods can be divided into two groups: meth-

ods based on gradient descent optimization networks (e.g., [37, 91]) and methods based on

feed-forward networks (e.g., [68, 146]). However, naively extending these techniques into

video stylization may produce new issues. For example, processing a video sequence via

per-frame stylization often leads to flickering and incoherence between adjacent frames. The

cause of this problem is the unstable solution for style transfer task. For methods based on

optimization process, the random initialization and non-convex nature leads to the instabil-

ity and local minima of style transfer. For methods based on feed-forward networks, slight

changes of illumination, view and movement in adjacent frames may cause large variations

in stylized results. Hence, temporal consistency of consecutive frames should be considered

for neural video style transfer.

Anderson et al. [5] and Ruder et al. [124] introduce a temporal consistency term into

Gatys et al.’s optimization-based network, and apply optical flow estimation to constrain

the initial image and consistency loss function. Their methods give stable stylized videos but

their methods produce ghost arefacts and slows in run time (several minutes for per frame).

Searching for a fast and stable solution for video stylization, Huang et al. [57] and Gupta et

al. [46] train their feed-forward networks with temporal consistency loss function and give

stable stylized videos without optical flow at test time. Chen et al. [16] present a fusion
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stylization network, which also applies optical flow into temporal coherence loss. Ruder et

al. [125] formulate video stylization as a learning problem. Their proposed network-based

approach stylizes arbitrary-length videos in a stable and coherent way, which clearly out-

performs independent per-frame processing baselines (e.g., [68]). Lai et al. [85] proposes a

blind video processing technique which is capable of preserving temporal consistency. Their

method processes the per-frame stylized results and achieves real-time execution time as no

optical flow needed in testing time. However, the blurriness artefacts of Lai et al.’s method

can accumulate along with processing time. Besides, the aforementioned stable video styl-

ization methods above still suffer from some incoherency where motions and occlusions are

too large for the flow to track object correctly. Li et al. [95] proposes a new linear transfor-

mation matrix to minimize the difference between covariance of content features and style

features, which keeps temporal consistency by propagating the computed matrix from the

beginning of frame to the rest of them. Their method sacrifices diverse stylistic outputs for

temporal consistency. In addition, most of these fast methods need to be trained for only

one style, which means they present a per-style-per-network solution for Neural Video Style

Transfer task. And usually, the training time for each style needs around several hours, which

makes it less practical in real applications.

For Neural Video Style Transfer, hence, the challenges are:

• CHAL 3 Unstable artefacts produced by fast methods based on feed-forward net-

works.

• CHAL 4 Slow performance of optimization-based networks.

• CHAL 5 Less practical solution as per-style-per-network needs much more time for

training.

Bas-relief, a special type of sculpture that figures are slightly emerged from a background,

is a bridge between 2D drawings and 3D sculptures. Considerable attentions have been

received in recent years since it can be viewed from many different angles without causing

distortion of the figures.

Realistic bas-reliefs should present both detailed appearances and stereoscopic percep-

tion. For detail transfer, existing works ([63, 64]) tend to rely on straightforward image

processing techniques like cut-and-paste and decompose-and-compose, which often lead to

imperfect composition results. For example, the cut-and-paste operation cannot preserve

the normals of the target. The decompose-and-compose [131, 132] operation requires larger

detail patches than target patches while it cannot manipulate target surfaces or cause scal-

ing issue for textures. In addition, these methods are only able to copy details from other
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sources without creation ability. Thus they are less practical for applications as their limita-

tions mentioned above. For geometry preservation, existing methods (e.g., [156]) decompose

the normal field into a base layer and a detail layer by directly subtracting the base normal

value from the original normal, which causes unexpected triangle distortions in the resultant

bas-reliefs.

Traditional texture synthesis on geometry surfaces usually requires low-distortion map-

ping [90] between the source surface and the target surface via parameterization [129, 137].

Texture synthesis based on parameterization inevitably produces visible seams between

boundaries as mapping topological discs with boundaries onto a manifold without bound-

aries forms boundary discontinuities. A few following works [2, 3, 15, 76] propose frame-

works to deal with symmetrical textures and obtain seamless mapping between closed sur-

faces with compatible genus.

Generation and synthesis of irregular structures, particularly meshes, is still a open prob-

lem in computer graphics. To synthesize 3D textures of surfaces, Lefebvre et al. [88] encode

colour neighbourhoods of a 2D texture examplar into appearance-space vector, which is able

to synthesize 3D textures on surface by using radiance transfer texture. More recently, Liu

et al. [106] leverage 2D image processing filters via multi-view rendering onto 3D surface

by a gradient-based optimization. It constructs a differentiable renderer which can back

propagate changes in the image domain to the 3D mesh vertex positions. In this way, their

method is capable of synthesizing 3D textures on surfaces through the gradients computed

from Neural Style Transfer methods. However, their method takes a few hours to complete

the operations. Hertz et al. [51] propose to learn deep features of geometric texture statistics

from local neighbourhoods on a single reference 3D model, which is used to generate offsets

of mesh vertices to form desired textures on the target mesh. It completes the task without

parameterization and facilitates texture transfer between shapes of different genus. How-

ever, none of aforementioned methods is capable of transferring texture features like non-

stationary textures (large-scale structures and spatially variant textures) as these approaches

are based on local neighbourhoods of either a reference model or examplar.

For Neural Geometry Texture Synthesis, hence, the challenges are:

• CHAL 6 Lack of geometry detail creation for digital bas-relief design.

• CHAL 7 Less practical detail transfer for bas-relief modelling.

• CHAL 8 Lack of efficient technique to synthesize geometric textures with non-stationary

features.
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1.3 Research Questions

For Neural Photo Style Transfer, this research attempts to answer the following questions:

• Q1 Without semantic segmentation, how to solve the content-mismatching problem?

• Q2 How to improve the photorealism of stylized results by preventing distortions?

• Q3 How to speedup of the proposed method for fast neural photo style transfer?

For Neural Video Style Transfer, this research attempts to answer the following questions:

• Q4 How to improve the stability of the stylized videos produced by fast methods based

on feed-forward networks?

• Q5 How to propose a practical optimization-based method with arbitrary-style-per-

network solution?

For Neural Geometry Texture Synthesis, this research attempts to answer the following

questions:

• Q6 How to enrich detail appearances for digital bas-relief design?

• Q7 How to achieve efficient geometry detail transfer via NST?

1.4 Aims and Objectives

This thesis mainly aims at applying Neural Style Transfer scheme for images, videos and

geometry data. To achieve this aim, the specific objectives are as followed:

• OBJ1 Review current state-of-the-art methods on Neural Style Transfer. Compare and

analyze the pros and cons of existing approaches and identify the factors that influence

the performance on different extension branches, e.g., photorealism of NPST, stability

of NVST and capability of NGTS.

• OBJ2 Design the loss functions to solve the content-mismatching problem.

• OBJ3 Design a feasible operator or post-processing step to prevent distortions.

• OBJ4 Develop an efficient technique for faster photo style transfer.

• OBJ5 Develop a stable technique for video style transfer even in large motions and

strong occlusion cases.
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• OBJ6 Develop techniques to speed up optimization-based video style transfer method

for an arbitrary-style-per-network fashion.

• OBJ7 Develop a texture synthesis technique to enrich digital bas-relief generation.

1.5 Contributions

For Neural Photo Style Transfer, this research dedicates to improve the photorealism of styl-

ized images. It focuses on solving content-mismatching and photorealism problems, and

proposes a solution for speeding up the proposed method. Without semantic segmentation,

this research introduces a similarity loss function to solve the content-mismatching prob-

lem, and a post-processing technique to reduce potential distortion and noise arefacts. The

similarity loss function reconstructs finer details of content image and constrains the content

match between reference style and content images. The post-processing refinement tech-

nique extracts the colour without the details from stylized result and combines it with the

details of content input. Distortion and noise arefacts will be eliminated after the refinement

step. Compared to the second stage of Luan et al. [108], the post-processing step is much

faster, and it avoids unexpected posterization arefacts. Integrating the above mentioned

methods into prior Neural Artistic Style Transfer methods, the proposed methods improve

the photorealism of stylized results. And the proposed NPST methods also achieve almost

real-time performance by integrating similarity loss function and post-processing step into

NAST methods based on feed-forward networks.

Hence, the contributions for NPST are:

• CTRB1 Compared to the semantic segmentation, the proposed similarity loss function

is capable of solving content-mismatching problem without extra computation time.

• CTRB2 Distortion and noise arefacts are eliminated effectively by the post-processing

refinement step, and it successfully avoids the posterization effect of prior state-of-the-

art methods.

• CTRB3 Compared to previous NPST methods, the proposed method is capable of

transforming representative prior Neural Artistic Style Transfer methods into Neural

Photo Style Transfer methods.

• CTRB4 The proposed NPST methods achieve almost real-time performance by inte-

grating the proposed similarity loss and post-processing step into prior NAST methods

based on feed-forward networks.
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For Neural Video Style Transfer, this work makes attempts to reduce flow errors via a

set of mask techniques and a new initialization for optimization-based video style transfer.

These mask techniques reduce significantly both the flow untraceable errors and flow trace-

able errors (ghosting artefacts). The new initialization contributes to produce stable video

stylization results even in large motions and strong occlusion cases, and it also speeds up

the optimization process from minutes per frame to around seconds per frame. Multi-frame

Coherent Losses are proposed to preserve the temporal consistency between consecutive

frames, and Sharpness Losses proposed effectively mitigate the image blurriness artefacts

during the entire video stabilization process.

Hence ,the contributions for NVST are:

• CTRB5 Compared to feed-forward based NVST methods, the proposed method pro-

duces stable video style transfer results even for large motions and strong occlusion

cases.

• CTRB6 A speed-up optimization-based NVST is proposed for arbitrary styles in one

network.

For Neural Geometry Texture Synthesis, this work proposes a semantic neural normal trans-

fer network, which is capable of learning the texture patterns from the source normal images

and transferring them onto the target normal images in arbitrary shapes and multiple scales.

To preserve geometric properties, this research presents a normal decomposition scheme

which contributes to the generation of bas-relief results free from artefacts. The contribu-

tions for NGTS are:

• CTRB7 Prove that NST can be applied to geometry texture synthesis on 2.5D surfaces.

• CTRB8 Normal images can be the intermediate representation of geometry surface for

NST to synthesize new texture patterns on 2.5D surfaces.

1.6 Thesis Outline

This thesis mainly focuses of the research on NPST, NVST and NGTS .The proposed methods

have been published on peer-reviewed international journals and conferences. For NGTS,

this thesis will further discuss the texture synthesis on geometry mesh in Chapter 7 Future

Work. This thesis is organized into 7 chapters with the research challenges, questions, objec-

tives and contributions which are shown in Fig. 1.4.
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Figure 1.4: Thesis outline.

In Chapter 2, a literature review on Artistic Style Transfer and Neural Artistic Style Trans-

fer, Colour Style Transfer and Neural Photo Style Transfer methods and their related com-

puter vision researches have been made. It gives the overview of current state-of-the-art

NAST and NPST methods on their advantages and drawbacks, and summarizes the key

factors that influences the photorealism of stylized results [OBJ1]. In addition, the related

computer vision researches are also detailed reviewed which include image reconstruction

via CNN and edge-preserving image filter.

In Chapter 3, inspired by the ideas of other computer vision tasks, a new pipeline for

solving content-mismatching [OBJ2] and distortion problems [OBJ3] have been proposed.

It also gives the detailed system design and implementations. [Publications [1] of Journals].

In Chapter 4, as an important media tool in social life, a fast solution for Neural Photo

Style Transfer has been proposed [OBJ4]. In addition, it also shows that the prior Neural

Artistic Style Transfer methods are successfully transformed to Neural Photo Style Transfer

methods. [Publications [2] of Conferences]

In Chapter 5, in NVST field, a novel framework is proposed for video style transfer,

which is capable of generating stable video stylization results in large motions and strong

occlusion cases [OBJ5], and reduces execution time of optimization-based NVST methods

from minutes per frame to seconds per frames in an arbitrary-style-per-network fashion

[OBJ6]. [Publications [3] of Journals]

In Chapter 6, a digital bas-relief modelling method is proposed which applies neural

style transfer on geometry texture via a semantic normal transfer network. This network

synthesizes new textures on normal images and reconstructs them on 2.5D surfaces in order

to enrich geometry details for bas-relief design [OBJ7]. [Publications [2] of Journals]

In Chapter 7, a further step has been made to synthesize 3D textures on geometry mesh.

And a potential solution with application of NST is discussed as future work.
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Chapter 2

Related Works

Figure 2.1: Artistic Style Transfer Before Neural Style Transfer Era. From top to bottom,
the examples are from Hertzmann et al. [52], Winnemöller et al. [161], and Elad and

Milanfa [30].

2.1 Artistic Style Transfer Before Neural Style Transfer Era

The desire for easy and practical media editing tools has motivated the development of

artistic style transfer for over two decades. Before the appearance of Neural Style Transfer,

the related works are called Non-Photorealistic Rendering (NPR) and Texture Synthesis in

computer graphics and computer vision community, respectively. In this section, a brief

review of these style transfer algorithms will be made.



2.1. Artistic Style Transfer Before Neural Style Transfer Era 13

2.1.1 Artistic Style Transfer using Computer-generated Styles

Previous Non-Photorealistic Rendering methods [23, 52] model several particular artistic

strokes (e.g., brush strokes, tiles and stipples) to render an image with hand-painted appear-

ance from a photograph. The process is generally starting from a given source image, then

matches brush strokes to the colours in the source image, and finally composites the strokes

to the photo and produces a non-photorealistic image. The final image contains the rough

spatial contents of the source image but in an particular artistic style. This process is ac-

complished by iterative placement of strokes onto the source image (refer to Fig. 1.1). Such

methods usually follow per-method-per-style pattern and need to pre-simulate a particular

artistic style, for example, oil paintings, watercolour and sketches etc. The pre-simulated

requirement of these methods limits the extension of style transfer.

2.1.2 Artistic Style Transfer using Image Analogy

Image analogy [53] is a technique proposed to learn an "analogous" filter from a pair of

images which are one photograph and one image purported to be a stylized version of the

other. The learned filter is then applied to a given target photo and create a new image with

the similar style of the stylized image. Such technique computes a new "analogous" image

B’ that relates to B, in the upper row of Figure 2.1, which should be in "the same way" as

A’ relates to A. A, A’ and B are input images and B’ is the output image. The stylization

process is under a supervised manner, and the training images are A and A’. In general,

image analogy is capable of stylizing arbitrary artistic styles, and it also can be extended

for portrait painting rendering (e.g., [183]). However, the training pairs like A and A’ are

usually unavailable in practice.

2.1.3 Artistic Style Transfer using Image Filtering

Based on the spatial content of the source photo, creating an artistic image is a process of

abstracting and modifying the contrast of visually important features (e.g., luminance and

colour). Based on this, Winnemöller et al. [161] initialize an automatic style transfer tech-

nique which adopts and combines image processing filters, such as bilateral filter [143] and

difference of Gaussian edges [41], to produce cartoon-like effects (c.f. the middle row in Fig.

2.1). This algorithm is highly parallel and can achieve real-time performance when imple-

mented using GPU. Compared to image analogy, style transfer methods based on image

filtering are more efficient and practical in the real world. However, the limitation is also

obvious that they lack the diversity of styles.
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2.1.4 Artistic Style Transfer using Texture Synthesis

In computer vision community, style transfer is researched as a generalization problem of

texture synthesis, which grows the similar visual texture patterns learned from a source

image onto a target image. The texture pattern is learned from the texture instance xs, for

example, given the distribution d(xs), texture synthesis seeks to generate a new image x̂

which should have the similar texture distribution as d(xs):

x̂ ∼ d(x̂|xs) (2.1)

The style transfer process is very similar as algorithms transforming certain texture from

a given source image to a target image when the style of the source image is considered to

be a kind of texture. From this perspective, style transfer is regarded as a process of texture

transfer. The generalized new image x̂ is constrained by both the content of one image xc

and the distribution of another image xs, which means x̂ should meet the distributions of xc

and xs:

x̂ ∼ d(x̂|xc, xs) (2.2)

Efros and Leung [28] for the first time propose a texture synthesis method in this way,

and many other works [25, 27] follow this route. For example, Efros and Freeman propose

a simple image-based texture transfer method [27] which synthesizes a new image based on

patch matching and quilting. More recently, Frigo et al. [31] propose an unsupervised style

transfer method based on local texture transfer and global colour transfer. This algorithm

first decomposes an image into an adaptive partition of the source image which divides im-

age into suitable regions, and searches optimal maps from reference style image which are

matched for the adaptive partition. Then it exploits bilinear blending and colour transfer to

produce the final stylized result. Elad and Milanfar [30] propose a style transfer based on

traditional texture synthesis theory which includes multiple steps to stylize images such as

patch matching, patch aggregation, content fusion and colour transfer, etc. Such style trans-

fer methods using texture synthesis can be performed in an unsupervised manner, however,

only low-level image features (e.g., pixel intensity and gradient orientation in RGB domain)

are considered during the process which lead to unsatisfactory stylized results (c.f. the bot-

tom row of Fig. 2.1) to Neural Style Transfer.

This section briefly review the style transfer methods proposed in both computer graph-

ics and vision community, respectively. For more detailed information, please refer to [83,

123, 128].
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2.2 Colour Style Transfer before Neural Style Transfer Era

As an essential element of visual world, colour is one of the most essential features that are

widely used in different visualization areas such as art, photography to relay information.

Recolouring images is able to change the illumination conditions of a scene, or transfer to-

tally different style effects between images. Therefore, Colour Style Transfer methods are

proposed to recolour a given image by mapping the colour distribution from a reference

style image. Due to the wide applications in social media, the Colour Style Transfer field

receives constantly attention from both academic and industry. Based on region correspon-

dence, the Colour Style Transfer methods can be divided into two different groups: Global

Colour Style Transfer and Local Colour Style Transfer.

2.2.1 Global Colour Style Transfer Methods

In early years, colour style transfer methods [47, 117, 121] tend to explore a global colour

transformation between images. A spatial-invariant transfer technique is applied to handle

simple cases, such as global colour move (e.g., sepia) and tone curves (e.g., low or high

contrast). Reinhard et al. [121] propose the earliest colour style transfer method to achieve

the characteristic transfer between the input image and reference image. Since the RGB

colour space is highly correlated, the proposed method chooses a colour space called lαβ

which is a less correlated space. Then they convert image values from RGB space to lαβ

space, and match the mean and standard deviation of one image to those of another image

in the lαβ space. Their method successfully alters the colour distributions from one image

to the desired reference style image. However, it is limited to linear transformations. To

handle non-linear colour mapping, Pitié et al. [117] propose a continuous transformation

that is capable of mapping a N-dimensional distribution to another. Their method treats

colour transfer as the transfer of the whole Probability Density Function (PDF) of the samples

in both input images. And they iteratively use one-dimensional PDF transfer to achieve

exact transfer of a PDF, which is proved to be effective and less computational for non-linear

colour transfer.

The aforementioned methods are based on statistic properties transfer, another branch of

colour style transfer is recently using the correlations of dense correspondence. One of the

representative method is proposed in [47]. Their method is a global non-linear parameteric

colour transformation, which uses Generalized PatchMatch algorithm [8] to extract reliable

dense correspondence patches from two input images. The nearest-neighbour field compu-

tations are interleaved with aggregating consistent matching regions using locally adaptive
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constraints. Their results are compelling but the method is limited to pairs of images de-

picting similar scenes under different illumination and views. In addition, there are three

drawbacks: (1) their method can not find reliable correspondences in very large smooth re-

gions, (2) their approach can not match accurate object regions when an object appears over

a different background in the two input images, (3) their technique can not handle two or

more different colour models.

2.2.2 Local Colour Style Transfer Methods

Local Colour Style Transfer Methods are capable of being more expressive and handling

complex applications such as season and weather change[33, 84], and time-of-day halluci-

nation [33, 135]. Taking season change as an example, these methods change the leaves of

trees from green colour (spring) to red color (autumn) or snowwhite (winter).

Gardner et al. [33] investigate how to make meaningful distribution changes between

source and target domain. Inspired by [9], they exploit a deep convolutional network to

simplify the manifold of natural images to a linear feature space. Their method utilizes

kernel Maximum Mean Discrepancy (MMD) [43] in convolutional feature space to match

the distributions of source and target images. The proposed data-driven method is applied

to change the appearance of faces, city skylines or nature scenes. However, the requirement

of memory storage is large as holding thousands of 964x540 image feature extracted from

the pre-trained VGG-19 networks requires over 128 GB of main memory.

Such spatial colour mapping based methods highly rely sparse correspondence guidance

from either user input [4, 158] or image segmentation [6, 141, 162, 169]. Results of these

algorithms are not precise enough because some pixels can be transformed into inaccurate

colours.

For matching sophisticated colour appearances between image pairs, Shih et al. [135]

propose a local colour style transfer technique based on additional pair of well-aligned im-

ages. For example, given a source image and a target image, their method first finds an ad-

ditional reference image which is the same scene of the target image but with a well-aligned

colour distribution to the source image. Then their method utilizes the reference image as

the bridge for the transfer process. To be precise, they estimate a locally linear colour model

and then apply it to perform linear colour transfer.
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Figure 2.2: A taxonomy of NST. Columns from left to right and rows from top to
bottom: Gatys et al.’16[37], Li and Wand’16 [91], Risser et al.’17[122], Li et al.’17[93],
Kolkin et al.’19[78], Luan et al.’17[108], Liao et al.[103], Mechrez et al.’17[111], Ander-
son et al.’16[5], Ruder et al.’16[124], Ulyanov et al.’16[146], Johnson et al.’16[68], Li and
Wand’16(b)[92], Ulyanov et al.’17[144], Gupta et al.’17[46], Huang et al.’17[57], Chen et
al.’17(a)[16], Ruder et al.’18[125], Dumoulin et al.’16[26], Chen et al.’17(b)[17], Zhang
and Dana’17[174], Li et al.’17(a)[98], Chen and Schmidt’16[19], Ghiasi et al.’17[39],
Huang and Belongie’17[59], Li et al.’17(b)[99], Sheng et al.’18[134], Li et al.’19[95],
Zhang et al.’19[181], Wang et al.’20[155], Li et al.’18[97], He et al.’19[49], Yoo et

al.’19[170], Lai et al.’18[85], Li et al.’19[95]

2.3 Neural Artistic Style Transfer in Neural Style Transfer

For the style transfer task, there are generally three issues need to be considered: 1. how to

build a model to present style information of a given reference style image; 2. how to build

a model to present content information of a content image; 3. how to reconstruct a new im-

age which should have spatial content information of the content image while preserving

texture of the reference style image. As mentioned in Section 2.1.4, the style of an image

can be regarded as a form of texture, a simple and effective way is to model texture by cap-

turing image statistic from a sample texture and exploiting the summary statistic property.

Julesz [69] first describes this idea via modeling textures as pixel-based N-th order statistic.

After that, Heeger and Bergen [50] utilize filter responses to analyze textures rather than

pixel-based measurement. Later work [119] further models textures based on multi-scaled

orientated filter responses and uses gradient descent to improve the synthesis results.

2.3.1 Basis of Neural Artistic Style Transfer

Different from previous methods [50, 119], Gatys et al. [35] for the first time propose to mea-

sure summary statistics in the domain of CNN. They discover that the summary statistic, the

correlations of multi-level neural responses of a texture image, can be used to model textures

from low-level features to high-level features. And it succeeds to solve the first issue. To ad-

dress the second issue, Gatys et al. find that hierarchy image information encoded in CNN

layers can also be presented by the neural responses in different layers (before the softmax is
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Figure 2.3: The representations of the content and style images in CNN.

applied) of a pre-trained image classification network (e.g., AlexNet [80]) [110]. As an exam-

ple, Fig. 2.3 shows the representations of content and style images extracted from different

level of a pre-trained VGG network. To address the third issue, there are two most common

ways to reconstruct the new image, which exactly categorise Neural Style Transfer meth-

ods into two groups: gradient descent optimization networks and feed-forward networks.

For clarity of these methods and their extensive branches, a taxonomy of NST algorithms is

described in Fig. 2.2.

2.3.2 Methods based on gradient descent optimization networks

The first category of Neural Style Transfer methods is based on gradient descent optimiza-

tion process which iteratively synthesizes a new image matching the content representation

of one photograph and the style representation of one artistic image. Gatys et al. [37] observe

that the semantic image content and some artistic appearance can be extracted from arbitrary

content photograph and an artwork, respectively. And these representations are encoded in
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the neural responses of a deep neural network. Based on this observation, they propose an

artificial algorithm that generates a new stylized image, starting from white noise, by pe-

nalizing the difference of hierarchy content representations between the content image and

stylized image, and hierarchy style representations between the reference style image and

stylized image.

For the given content photograph xc and artistic image xs, the algorithm in [37] searches

a new stylized image x̂ by minimizing the following loss function:

Ltotal(x̂, xc, xs) = αLcontent(x̂, xc) + βLstyle(x̂, xs) (2.3)

where the content loss Lcontent penalizes the difference of content representations between

the content image xc and the stylized image x̂, and the style loss Lstyle penalizes the differ-

ence of style representations between the artistic image xs and the stylized image x̂. α and β

are the weights to balance the content component and style component of the stylized result

x̂.

Let the matrix φj ∈ RNj×Mj denote the vectorized feature maps representing the neural

responses in a layer j, then the content loss Lcontent is defined as the squared Euclidean

distance between the two feature representations φj(xc) and φj(x̂):

Lcontent(x̂, xc) = ∑
j∈Jc

‖φj(xc)− φj(x̂)‖2 (2.4)

where Jc denotes the set of layers in a pre-trained VGG network in which compute the con-

tent loss. The style loss Lstyle is denoted as the squared Euclidean distance between the two

style representations of xs and x̂:

Lstyle(x̂, xs) = ∑
j∈Js

‖ψ(φj(xs))− ψ(φj(x̂))‖2 (2.5)

where Js denotes the set of layers in the pre-trained VGG network in which the style loss

is computed, ψ(φj(·)) = φj(·) · φj(·)T is the Gramian Matrix, which is used to represent

the style information. According to [35], lower layers in a pre-trained image classification

network tend to preserve the lower-level image features (e.g., colours and contrast), and

higher layers tend to reserve high-level image features (e.g., semantic image spatial struc-

tures). Therefore, the lower layers usually are chosen for the style loss functions, and the

higher layers usually compute the content loss functions. In [37], Gatys et al. choose the

set of lower layers in {relu1_1, relu2_1, relu3_1, relu4_1, relu5_1} for the style reconstruction

and the set of high layers in {relu4_1} for the content reconstruction. In general, the choice of
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Figure 2.4: The Neural Style Transfer algorithm.

pre-trained image classification networks can be diverse, for example, the Resnet is used to

perform the similar results in [68].

For implementing the style transfer method, Gatys et al. [37] propose an optimization

process based on gradient descent to minimize the Equation 2.3. As the Equation 2.4 and

2.5 are differentiable, the proposed algorithm [37] starts with a random white noise as the

initialization image x̂, then iteratively generates a new image x̂ by using gradient descent

backpropagation to produce the final stylized result. The total process is shown in Fig. 2.4.

In [68], Johnson et al. add a total variation term to encourage the smoothness of the stylized

results in practical.

Inspired by the Gram-based representation, Li et al. [91] prove that the style transfer

problem can be solved by separately matching the distribution of style representations and

content representations. Hence, they consider style transfer as domain adaption, which

seeks a method to match samples in the source domain to that in the target domain. In

other word, the methods minimizing the distribution discrepancy of two domains are also

suitable to style transfer. Inspired by [43], Li et al. choose the Maximum Mean Discrepancy
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(MMD) with a quadratic polynomial kernel (e.g., linear kernel, polynomial kernel and Gaus-

sian kernel) to measure the style distribution discrepancy of the stylized image and the style

image. In addition, they also use mean and standard deviation of feature maps, which is

referred to BN statistic representations in a pre-trained VGG layer to model the style:

Lstyle(x̂, xs) = ∑
j∈Js

1
Nj

Nj

∑
i=1

(‖µ(φi
j(xs))− µ(φi

j(x̂))‖2 + ‖σ(φi
j(xs))− σ(φi

j(x̂))‖2) (2.6)

where Js denotes the set of layers in VGG network computing the style loss, i denotes the

i-th feature channels and Nj denotes the total number of channels in the j-th layer. µ(φi
j·)

and σ(φi
j(·)) denote the mean and standard deviation of the corresponding feature maps.

Despite the visually appealing results, the methods based on Gram-based style repre-

sentation are limited by the nature of instability, which are easily stuck at local minima of

the style loss function. Moreover, the manually tuning of the hyperparameters is quite te-

dious. Risser et al. [160] observe that the Gramian Matrix of feature map activations is

non-sensitive to their mean and variance. To be precise, if the Gramian matrix is constant

(e.g., the style image is fixed), then the variance of the stylized results can be freely change

with corresponding changes to the mean, and vice versa. In other words, there will be infi-

nite number of potential stylized results have the same Gramian matrix of the style image,

which causes the instability of style transfer process. Based on this finding, Risser et al.

[160] propose to preserve the entire histogram of the feature maps by adding an extra his-

togram loss, which guarantees the mean or variance of the Gram Matrix is preserved during

optimization process. In addition, they also provide an automatic tuning process which is

designed for preventing extreme values of gradients during the optimization process.

For abstract styles, Gatys et al.’s method has already shown impressive results. For pho-

torealistic styles, however, the limitation of the Gram-based methods [35] is obvious. For

example, Gatys et al.’s method lack photorealistic details and strong smears in their results.

Li and Wand [91] discover that Gram-based style representations are absent of the spatial

content layout by only capturing the per-pixel feature correlations. Based on this finding,

they introduce a new loss function with a patch-based MRF prior:

Lstyle(x̂, xs) = ∑
j∈Js

m

∑
i=1
‖ψi(φj(xs))− ψNN(i)(φj(x̂))‖2 (2.7)

where Js denotes the set of layers computing style loss, ψ(φ(·)) denotes the list of all local

patches extracted feature maps φ(·). For each patch ψi(φ(·)), a best matching style patch

ψNN(i)(φ(·)) is pursued by using normalized cross-correlation over all the style patches in
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xs. Due to the match of content and style on a patch-level, their method produces much

better results than Gatys et al.’s [37] method especially for the photorealistic styles.

The aforementioned stylization networks mainly focus on the improvement of the style

reconstruction aspect while the loss of content low-level details during the content recon-

struction is barely noticed. In the traditional optimization objective, the content details like

exact edges are lost as only high-level layers are used to constrain the content reconstruction

process, which causes inconsistent and unexpected artefacts appear in the stylized results.

To address this problem, Li et al. [93] introduce an extra loss function named Laplacian loss,

which measures the difference of the Laplacians computed by Laplacian filter operating on

the feature maps of the content image and the stylized result in VGG layers.

Kolkin et al. [77] propose a new optimization-based style transfer algorithm, which re-

places second order summary statistic widely used in prior works with an efficient approx-

imation of the Earth Movers Distance initially proposed in the Neural Language Processing

community [82]. The proposed objective function is denoted as:

L(x̂, xc, xs) =
αLc + Lm + Lr +

1
αLp

2 + α + 1
α

(2.8)

where the content loss Lc aims to minimize the normalized cosine distance between fea-

ture vectors extracted from any pair of coordinates, the moment matching loss Lm aims to

prevent over/under-saturation artefacts, the relaxed earth movers distance Lr aims to trans-

fer the structural forms of the source image to the target, and the color matching loss Lp

encourage output and the style image to have a similar palette. Their method also pro-

vides user control by region-to-region and point-to-point masks. The proposed approach

preserves better stylistic patterns with respect to the spatial structures in content inputs, but

the execution time is around 4 times than Gatys et al.’s method.

2.3.3 Methods based on Feed-forward networks

The second category of Neural Style Transfer methods is based on feed-forward networks,

which is proposed to address the efficiency issue. Motivation: As mentioned in Section 2.3.2,

prior optimization process has one most concerned problem that they need several minutes

to reconstruct the stylized result for single pair of still images even though the algorithms are

implemented in high parallel platforms i.e., GPU-based Torch [22] and Tensorflow [1] with

CUDA [113]. To speedup the reconstruction process, a feed-forward or generative network

Ω is trained in advance by a large set of images xc and one or multiple style images xs,

which seeks Weights to minimize the similar loss functions to [37]. The energy objective for
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this process is formulated as:

W∗ = arg min
W∗

Ltotal(ΩW∗(xc), xc, xs) (2.9)

So far, these feed-forward methods are categorised by the number of styles that Ω is able

to produce. To be precise, they are named Per-Style-Per-Network, Multiple-Style-Per-Network

and Arbitrary-Style-Per-Network.

Per-Style-Per-Network (PSPN) Methods Ulyanov et al. [146] and Johnson et al. [68]

are the first to propose fast neural artistic style transfer methods with the similar idea, which

utilizes a pre-trained feed-forward network with one artistic texture to stylize still images

by a single forward pass at the test stage. The main difference of their methods is the ar-

chitecture of feed-forward network. Ulyanov et al. [146] exploit a generator network with

multi-scale architecture which is trained by the backpropagation of Gatys et al.’s [35] loss

functions inside the pre-trained VGG network [136]. Inspired by the network architecture in

[120], Johnson et al. [68] follow their network design but with residual blocks and fraction-

ally strided convolutions.

Ulyanov et al. [144] further explore that a simple normalization over each single image

rather than a batch of images during the training process is capable of significantly strength-

ening the stylization quality. The proposed normalization on each image is referred as In-

stance Normalization (IN). In fact, the IN is the special case of Batch Normalization when

the batch size is equivalent to 1. For style transfer networks with IN, a fast converge and

better visual quality is obviously shown. One of reasonable explanations for the improve-

ment of IN is that the normalization enforces the style of each training image to the desired

style [59]. Hence, the energy objective is much easier to learn as the network only needs to

focuses on the learning of content reconstruction.

Li and Wand [92] propose another efficient network based on the patch-based MRF

method mentioned in [91]. Their method pre-computes a feed-forward and strided con-

volutional network via adversarial training, which captures the style feature statistics of

Markovian patches and is capable of stylizing image in nearly real-time performance. Com-

pared to [68, 146], their method produces more coherent synthesis results. Their novel patch-

based design directly inspires the first work in the subgroup: Arbitrary-Style-Per-Network

Method.
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Multiple-Style-Per-Network (MSPN) Methods Per-Style-Per-Network methods already

produce stylized results in two orders of magnitude faster speed than the previous gradient-

based methods, however, the limitation is that the feed-forward network can only be trained

to stylize images in single artistic style, and the training procedure costs hours to learn one

style. An early work studied by [26] demonstrates that many artistic paintings actually share

one common style (e.g., ’Expressionism’) with similar visual elements (e.g., brush strokes)

but in different colour palette. Hence, a true stylizing network should be able to exploit

and learn from such regularities, which means one single separate feed-forward network

would be capable of stylizing multiple styles. Inspired by this discovery, many following

methods [17, 26, 98, 174] are proposed for the purpose that embeds multiple style paintings

into one single network. In general, there are two different paths to accomplish the MSPN

purpose: (1) learn an affine transformation from a small number of parameters in a network

to each style (e.g., [17, 26]) and (2) train a single network like [68] but with multiple styles

and contents as inputs [98, 174].

(1) learn an affine transformation from a small number of parameters in a network to

each style. Dumoulin et al. [26] observe that it is sufficient enough to specialize scaling and

shifting parameters after Instance Normalization mentioned in PSPN to each specific style,

and propose a conditional instance normalization for the training process. Hence, their feed-

forward network is called Conditional Style Transfer (CST) network, which is denoted by:

CST(φ(xc), s) = γs(
φ(xc)− µ(φ(xc))

σ(φ(xc))
) + βs (2.10)

where φ(·) denotes the feature maps, and µ(φ(·)) and σ(φ(·)) denote the mean and standard

deviation of feature maps. For each style index s, the network learns an affine transforma-

tion from a combination of γs and βs to single specific style, therefore, choosing different

combination of γs and βs leads to stylized results in corresponding desired style.

Chen et al. [17] also propose a MSPN method which follows the idea of [26]. Their main

contributions are exploring an explicit representation of styles which can be stored in a par-

ticular mid-level layer called ’StyleBank’ layer and each style is tied to a set of parameters

in the ’StyleBank’ layer. In addition, they also propose an encoder-decoder network which

learns to reconstruct semantic content information. Their method further allows flexible

training, for example, the encoder-decoder component can be fixed while only the ’Style-

Bank’ layer is trained for new styles.

(2) train a single network with multiple style and content as inputs Though the first
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path discovers that the affine transformation from parameters in a particular layer to the spe-

cific desired style, the network would become larger along with the increasement of learned

styles. To address this issue, the second path MSPN methods propose to expand the ability

of a single network by fusing both styles and contents for style identification.

Li et al. [98] are the first to propose a multi-texture synthesis network which aims to learn

multiple textures in one single network. To achieve this goal, they propose an incremental

training strategy which makes sure that the single network can learn a new texture without

forgetting previous learned textures. Then they apply the learned multi-texture synthesis

network for multi-style transfer task. They propose a selector network which establishes

a one-to-one mapping between noise maps and correspondence styles. Then they build a

style transfer network with encoder-decoder architecture. The selector network generates

a corresponding noise map ψ(xs) and concatenates (⊕) the map with encoded features ex-

tracted from the content Enc(xc), then the concatenated result is fed into the decoder to get

the stylized result. The formula is put as :

x̂ = Dec(ψ(xs)⊕ Enc(xc)) (2.11)

where the encoder-decoder network is similar to the feed-forward proposed in [68].

Zhang and Dana [174] propose Inspiration Layers in a generator network in which two

inputs (encoded content and style representations) are fed into these layers. The Inspiration

Layers match multi-scale summary statistic of content and style representations to complete

the style transfer task. During the training stage, the generator network seeks a direct solu-

tion x̂ in each layer j ∈ J, the formula is denoted as:

x̂ = arg min
x̂

∑
j∈J

(‖φ(x̂j)− φ(xj
c)‖2

F + α‖ψ(x̂j)− ψ(φ(xj
s))‖2

F) (2.12)

where J denotes the set of layers where Inspiration Layers located in a pre-trained 16-layer

VGG network[136]. φ(·) and ψ(·) denote separately the encoded content representations

and Gram-based style representations as mentioned in Section 2.3.2. α is the interpolation

weight for content-style trade-off.

Arbitrary-Style-Per-Network (ASPN) Methods The MSPN methods have already shown

the potential capability of integrating multiple styles into one single network with nearly

real-time performance, but the limited number of styles is still undesired. Motivated by this,

the ASPN methods are proposed in more recent.
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Chen and Schmidt [19] propose the first ASPN method, which follows the patch-based

style transfer path in [91]. They propose an Encoder-Decoder network in which their al-

gorithm seeks the closest match between the encoded content and style representations and

then swaps them in the patch level. The Encoder part consists of several convolutional layers

from a pre-trained VGG network [136], and the match and swap procedures are proceeded

in the latent space. Then the swap result (activations in CNN) is passed through an De-

coder to reconstruct the stylized result. The Decoder can be a gradient descent optimization

process proposed in [37] or a trained feed-forward network proposed in [68].

The affine transformation discovered in [26] using a few parameters to corresponding

styles already shows the potential ability for multiple style transfer. Based on this finding,

Ghiasi et al. [39] learn a prediction network which is capable of tuning parameters (γs and

βs) through the affine transformation to the arbitrary desired styles. Huang and Belongie

further expand this idea to suit arbitrary styles by proposing an adaptive instance normal-

ization(AdaIN), the AdaIN transfers the mean and variance of content representations to

those of style representations in the channel-wise way. The Adaptive Instance Normaliza-

tion is formulated as:

AdaIN(φ(xc), φ(xs)) = σ(φ(xs))(
φ(xc)− µ(φ(xc))

σ(φ(xc))
) + µ(φ(xs)) (2.13)

where φ(·) denotes the extracted feature activations in an Encoder which consists of the

first few layers in a pre-trained VGG network. Then a Decoder produces a stylized result

from the reconstruction of AdaIN result. This Decoder is trained by a large set of style and

content images so that it is capable of decoding precisely feature activations after AdaIN to

the transferred result: x̂ = Dec(AdaIN(φ(xc), φ(xs))). The method of Huang and Belongie

[59] is data-driven and not able to transform content inputs into unseen styles. It’s hard to

synthesize the complicated texture patterns with rich details by simple adjustment of mean

and variance of feature statistic.

Li et al. [99] propose another effective path to accomplish arbitrary style transfer tasks.

They discovered that feature transforms such as whitening and colouring transform (WCT)

are capable of removing style information from content representations and inversing the

step of whitening. To be precise, the whitening step removes the style information from

the content representations and obtains an intermediate result φc which only contains the

content information, then the colouring step recombines the style representations φs and φc

and obtains an intermediate result φcs = WCT(φc, φs) which has the desired correlations
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between content and style representations. The stylized result is finally obtained by decod-

ing φcs: x̂ = Dec(φcs) . The Encoder and Decoder are fixed when processing arbitrary style

transfer. Also, they extend their single-level to multi-level stylization in order to match the

statistic of the style at all levels.

Sheng et al. [134] propose a high quality arbitrary style transfer with real-time exe-

cution time which combines style-swap from [19] and whitening/coloring transformation

from [99]. They investigate into the trade-off between the generalization and efficiency, and

propose patch-based a style decorator that makes up the content features by semantically

aligned style features from an arbitrary style image. The style decorator makes sure that

it maximally aligns the distributions of Enc(x̂) and Enc(xs) and the detailed style patterns

are semantically perceptible in Enc(x̂). The style decorator is achieved by three steps: 1.

Projection. Enc(x̂) and Enc(xs) are projected onto the same space by subtracting their mean

features then convolution operation by whitening kernels; 2. Matching and Reassembling.

This patch matching between the projected of Enc(x̂) and Enc(xs) ensures they have the

maximal overlap with each other via the help of normalized cross-correlation; 3. Recon-

struction. The patch-matched result will be reconstructed into feature domain via coloring

transformation.

Li et al. [94] propose a learnable linear transformation matrix which is capable of transfer-

ring arbitrary stylistic patterns from a reference style input onto a content input efficiently at

140 fps. The proposed approach consists of an encoder-decoder image reconstruction mod-

ule and a transformation learning module. The transformation matrix is proved that it is

only determined by the covariance of the content and style image feature vectors, which is

learnable by a light-weighted CNN network. In addition, they also present a linear propa-

gation module to correct distortion artefacts in contours and textures, which obtains photo-

realistic stylization results. Moreover, the proposed linear transformation method is able to

preserve feature affinity across content frames and finally outputs stable video style transfer

results.

Zhang et al. [181] point out that prior works treat the semantic patterns of style image

uniformly, which leads to unpleasing results on complex styles. To address this problem,

they introduce a multimodal style transfer algorithm following patch-based methods (e.g.,

[45, 91, 134]) that the style image features are clustered into sub-style components, which

are matched with local content features under a graph cut formulation. Specifically, their

approach formulates style-content matching as energy minimization problem with a graph

and solve it via graph cuts. Style clusters are adapted to content features regarding to the

content spatial structures.
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Wang et al. [155] propose a simple and effective arbitrary style transfer method that has

more advantages like generalized, diverse and scalability than previous works. They intro-

duce a Deep Feature Perturbation (DFP), an orthogonal random noise matrix, which perturbs

the deep image feature maps while keeps the original style information unchanged. The

proposed DFP operation is easily integrated into many existing WCT-based methods (e.g.,

[99, 134]), and empower them to output more diverse results with arbitrary styles.

2.4 Neural Photo Style Transfer in Neural Style Transfer

Neural Photo Style Transfer methods aim to transfer the style of colour distributions from

photorealistic style images to content images. So far, the common path to do so is using

segmentation masks to accurately match the regions from a photorealistic style image to a

content image. To be precise, the NPST methods need two segmentation masks, one mask

labels the desired regions of a photorealistic style image in specific colours (i.e., blue and

black) and the other mask labels the expected corresponding regions of a natural content

image also in corresponding colours. By the end of May 2020, there are in total two different

NPST methods are proposed. The earliest method [108] is based on the first NAST algorithm

proposed by Gatys et al.[37], and the recent approach [97] is based on the WCT algorithm

proposed by [99] in two steps.

Gatys et al. [37] discover that the photorealistic style transfer between photos using their

method produces unexpected distorted stylized image with characteristic noise artefacts. To

address this problem, Luan et al. [108] propose the first NPST method which uses Mask-

based style representations encoded in a pre-trained VGG network [136] for colour distribu-

tion match and adds a photorealism regularization based on Laplacian matrix to eliminate

distortions as a post-processing step. Since their method is built upon Gatys et al.’s method

[37], thus the proposed method has computational optimization burden and needs several

minutes to generate a stylized result. Moreover, the stylized results processed by this ap-

proach also exists posterization artefacts, which harms the photorealism.

Li et al. [97] propose a fast NPST method which proceeds photorealistic style transfer

within two steps: the stylizing step and smoothing step. Inspired by the success of the un-

pooling layers [114, 171] , Li et al. [97] propose a stylizing step by using the improved WCT

algorithm [99] which replaces upsampling layers with unpooling layers. After first step,

the stylized result still lacks of photorealism due to the stylized regions are not inconsis-

tent. Hence, a smoothing step is applied to preserve the consistent stylized regions with the
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balance of local pixel colour and global stylization effects. Except those two methods men-

tioned above, another work [111] propose to utilize Screened Poisson Equation as additional

post-processing step to handle the posterization artefacts introduced by Luan et al. [108]. He

et al. [49] propose a more accurate color transfer method which jointly optimize semantical

matching between images and color transfer by a local linear model with satisfying both lo-

cal and global constraints of deep features. The proposed method also can be extended from

“one-to-one” to “many-to-many” color transfer. More recently, Yoo et al. [170] present a

wavelet transforms (WCT2) that allows features to preserve their structural information and

statistical properties of VGG features space during stylization. Their method gives a pleas-

ing photorealistic output without any post-processing and is able to stylize a 1024× 1024

resolution image in 4.7 seconds.

The aforementioned methods follow directly from corresponding NAST methods (e.g.,

[37] and [99]). Different from above methods, Liao et al. [103] utilizes the maintained dense

correspondence of feature representations between input images, which exploits the Patch-

Match algorithm [8] to match the nearest neighbour field between two dense correspon-

dence. Their method not only handles "photo to artistic" transfer well but also performs

good photo style transfer results. Since their method is inspired by "Image Analogy" men-

tioned in Section 2.1.2, it requires strict size and similar semantic structures of the source and

target image.

Based on the above analysis of NPST methods, the content mismatching and slow speed

performance are the main concerns in this research field. To address these issues, Chapter

3 and 4 will illustrate the reasons behind them by a deeper investigation and propose new

methods to better match spatial structures of input images and boost speed performance

into near real-time.

2.5 Neural Video Style Transfer in Neural Style Transfer

Neural Video Style Transfer methods extends NAST to video applications, which transform

an entire video into a specific artistic style. In the early stage of NVST, the proposed meth-

ods usually naively apply per-frame stylization methods such as Fast-Neural-Style [68] and

AdaIN Style Transfer [59] to process all the frames of a video, however, the flickering arte-

facts causes unpleasant outputs, in which the stylistic texture appearances are not consistent

between consecutive frames. By the end of May 2020, there are two branches of NVST meth-

ods in total. The earliest methods [5, 124] are developed on optimization-based network
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which is the very first of Neural Style method [37], the following works [16, 46, 57, 85, 95,

125] are based on feed-forward networks.

Anderson et al. [5] and Ruder et al. [124] follow Gatys et al.’s optimization-based ap-

proach [37] and directly use it to perform artistic video stylization. Gatys et al’s method is

utilized to independently stylize video sequences frame-by-frame. However, the flickering

artefacts between coherent frames lead to unappealing results. To improve the temporal

consistency between adjacent frames, Anderson et al. [5] proposed a NVST method that

integrates optical flow into Gatys et al.’s method, and a warped image using flow as an

initialization is fed into the optimization-based network. They also incorporate flow explic-

itly into a temporal consistency loss function. However, the ghosting artefacts occur due to

flow errors. To reduce the ghosting artefacts, Ruder et al. [124] introduce masks to filter

out the low flow confidences via forward-backward check. Their approach gives stable and

consistent stylized videos even in large motion and occlusion cases. However, the ghosting

artefacts still exist in their methods. To remove these artefacts, simple strategy like adopting

original content into occlusion regions may work in some cases, but this can also raise an-

other problem that contents warped from a previous frame may not be consistent with the

context in the current frame due to flow errors. In other words, some original contents from

previous frames copied into wrong positions as flow errors cause masks to filter out wrong

low flow confidence regions. Moreover, the heavy iterative optimization process still costs

minutes to stylize one frame. It’s less practical for video style transfer.

Johnson et al. [68] propose the very first feed-forward networks for video stylization

task in real time. Their approach trains a feed-forward network via gradient computed by

a perceptual loss in a loss network which approximates the optimum of Gatys et al.’s loss

functions. And at test time, one forward pass is able to complete the style transformation.

It is three orders of magnitude faster without optimization process, however, this per-style-

per-network approach is still less practical for image and video processing. To extend feed-

forward networks for arbitrary styles, Chen et al. [19] present an approach based on patch

matching strategy, which replaces the content image patch-by-patch from the style image

on a single style swap layer in deep neural networks. To further reduce the time consump-

tion, Huang et al. [59] replace the style swap layer by an adaptive instance normalization

layer, which aligns the means and variance of the content features with stylistic features.

These methods mentioned above are fast enough for video style transfer, but the incoher-

ence problem is not yet solved.

To address the incoherence problem, Gupta et al. [46] and Huang et al. [57] improve
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Johnson et al.’s feed-forward networks by introducing the temporal consistency loss dur-

ing training time, while still obtain stable outputs in real-time. Chen et al. [16] assemble a

stylization sub-network, a flow sub-network and a mask sub-network to a fusion network,

which considers propagates a short-term coherence to long-term by a recurrent convolu-

tional network strategy. Recently, Ruder et al. [125] propose a network-based approach

which stylizes arbitrary-length videos in a stable and coherent way. However, their network

still follows the pattern of per-style-per-network. More recently, Lai et al. [85] proposes a

blind video processing technique which is capable of preserving temporal consistency. Their

method processes the per-frame stylized results and achieves real-time execution time as no

optical flow needed at test time. Li et al. [95] proposes a new linear transformation ma-

trix to minimize the difference between covariance of content features and style features,

which keeps temporal consistency by propagating the computed matrix from the beginning

of frame to the rest of them.

This section analysizes that NVST methods concern most the following issues for prac-

tical applications: the temporal consistency among consecutive stylized frames, speed per-

formance, style numbers that a single method can transfer and diverse results. Chapter 5

proposes a new method with a set of mask technique and coherent losses to address these

issues.

2.6 Digital Bas-relief Modelling

In the last two decades, generating digital bas-reliefs from 3D scenes or 2D images has been

a thriving subject in computer graphics. A detailed review work can be found in [73, 180],

which classify methods into direct modelling, image-based and shape-based modelling. Di-

rect modelling involves experts’ laborious work. Image-based 3D construction inherently

has the ill-posed problem. Most 3D model-based works create bas-relief by either directly

compressing the depth or by working in the gradient domain, where the final model is ob-

tained by solving a Poisson equation. Most cases aim to generate a reproducible and ma-

nipulable mesh, which can later be used and enhanced with some more advanced graphical

tools. As a result, specific colour and texture of the relief are usually not considered in these

previous research. Our work is designed to solve this problem by using the learning scheme

to transfer textures from 3D source models to 3D target models.
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2.6.1 3D model-based methods

By applying feasible constraints on a given 3D shape or scene, Christian et al. [127] propose

a novel view-dependent surface representation which allows us to cast the optimization as

a quadratic program. Ji et al. [65] propose a highly efficient two-scale bas-relief modelling

method on GPU, in which the input 3D scene is first rendered into two textures with depth

information and normal information respectively. The depth map is then compressed to

produce a base surface with level-of-depth, and the normal map is used to extract local

details. Finally, the local feature details are added back to the base surface to produce the

final result. Based on 3D models, Zhang et al. [177] propose a series of gradient-based

algorithms which operates directly on a triangular mesh and ensures that the mesh topology

remains unchanged during geometric processing. They also present two types of shape

editing tools that allow the user to interactively modify the bas-relief and exhibit a desired

shape. Given target shapes, viewpoints and space restrictions, Zhang et al. [176] find a global

optimal surface that delivers the desired appearance when observed from the designated

viewpoints, which could guarantee exact depth bounds of per-vertex. Zhang et al. [179]

treat an input object as a continuous relief depth map and use mesh intersection to paste the

relief on the target object based on empirical mode decomposition in multi-scale levels [173].

2.6.2 Image-based methods

Generating bas-relief from natural images and photographs are intuitive. However, we all

know that there is an ill-posed problem to recover 3D shape from a single image, since colour,

luminance and texture in an image could not reflect the geometric attributes of the objects

properly, especially for objects with complex materials. To overcome this problem, some re-

searches are restricted to some special types of bas-relief from certain images. For example,

Wu et al.[163], Wu et al. [164], and B. Sohn [142] concentrate on bas-relief modelling from hu-

man face photographs. Zhang et al.[179] pay special attention to model Chinese calligraphy

reliefs. Li et al. [100] aim at restoring brick and stone alike relief from single rubbing image

in a visually plausible manner. Zhang et al. [178] concentrate on portrait relief modeling.

Some researches are based on Shape From Shading (SFS) which requires human interaction

([172][42][140]).

Unlike generating bas-relief from natural images, some recent works start from normal

images[109]. Ji et al. [63] present a novel framework to design bas-relief in normal image

space instead of object space which is capable of producing different styles of bas-relief and

allows intuitive style control. Their method generates high-quality bas-relief which enables
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a variety of applications, such as the cut-and-paste operation and bas-relief modelling on

curved surface. Recently, Ji et al. [64] extend their previous work with a layer-based editing

approach for normal images to generate more diversified styles of results, and is capable of

transferring details from one region to another. Similar to Ji et al.’s work [65] , Wei et al. [156]

decompose image normal of an input 3D model into a smooth base layer and a detail layer

in order to contribute to both features of structure-preserving and detail-preserving.

2.6.3 Detail transfer

With the growing availability of abundant 3D mesh collections, some research works attempt

to transfer textures [133] or details to geometric shapes.

Mitra et al. [150] propose an unsupervised learning method to transfer texture informa-

tion from images of real objects to 3D models of similar objects by tackling the reconstruction

problem of a set of base texture. Huang et al. [58] present a novel user-assisted approach

to extract a non-parametric appearance model from a single photograph of a reference ob-

ject (whose geometric structure roughly approximates that of the target object). A novel

alignment algorithm is proposed to enable accurate joint recovery of the geometric detail

and reflection. Berkiten et al. [10] propose a method which transfers details (specifically,

displacement maps) from existing high-quality 3D models to simple shapes. They adopt

metric learning to find a combination of geometric features that successfully predict detail-

map similarities on the source mesh; then they use the learned feature combination to drive

the detail transfer in texture space.

This section reviews the literature works on bas-relief modelling, and analysizes that

modelling based on normal images could be more promising than 3D-modelling as it solves

the ill-posed problems that other image-based approaches suffer and removes the need of

sophisticated depth compression algorithms. In addition, for detail transfer, previous meth-

ods transfer textures between pairs of images and 3D models sharing similar objects which

limits their applications. Chapter 7 proposes a new texture transfer algorithm using nor-

mal images, which is capable of transferring high quality details between arbitrary pairs of

inputs and enrich the detail design for bas-relief modelling.
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Chapter 3

Neural Photo Style Transfer

Figure 3.1: Given a reference style image and a content image as inputs, photographic
style transfer seeks to generate output with photorealistic attribute, which should pre-
serve both the context of content and style of reference. Gatys et al. [37] succeed in
transferring style colour but introducing distortions to the context of output. In com-
parison, the proposed method transfers faithful style colour meanwhile also preserves

the photorealistic attribute.

A neural artistic style transformation method (Neural-Style, NS) proposed by Gatys et

al.[37] has achieved great success with Convolutional Neural Networks, which is followed

by many works [17, 19, 39, 59, 91, 122, 146, 153, 174] recently. They produce convincing vi-

sual results by transferring artistic features from reference painting onto the content photo-

graph. However, these artistic style transfer methods suffer from visual distortion problem,

and make the results have a painting-like looking, especially when both of the content and

reference style images are photographic.

To solve this problem, this chapter introduces a similarity layer with correspondence

loss function to constrain both content preservation and style transformation processes. This

similarity layer is added into several places of the Convolutional Neural Network to prevent

distortions by minimizing a similarity loss function together with other loss functions pro-

posed in Fast Neural Style algorithm [68]. To further enhance the photorealism, this chapter

also introduces a Style Fusion Model (SFM) as a post-process step. The model extracts the

colour information from style transformation output and the detail information from content

preservation process, then combine together these information to generate a new output.



3.1. The photorealism loss of NAST 35

Figure 3.2: Distortions occur at both content preserving and style transformation pro-
cess. (c-i) contains the zoom-in insights of input content . (c-ii) shows that (a) intro-
duces distortions into reconstructed content details, and (c-iii) shows that (b) distorts

details of (a).

3.1 The photorealism loss of NAST

Luan et al. [108] point out that the distortions appear only at style transformation process,

they thus propose a two-stage photo style transfer method. The first stage (Seg-NS) inte-

grates semantic segmentation masks to Neural-Style method [37] to avoid the unexpected

geometric matching problem, and the second stage (Mat-NS) uses a photorealism regular-

ization term based on Lapacian Matting to reconstruct fine content details. Although the

content spatial structures are preserved in many situations, details and exact shapes of struc-

tures are erased when semantic segmentation is inaccurate or contains overlapping areas.

And the computation of matting laplacian matrix and semantic segmentation consumes

much extra time for high quality output. Moreover, Luan et al.’s method also suffers from

the posterization artefacts [103]. After investigating the style transformation procedure , this

work discovers the distortions occur at two stages: the spatial structures of content image

may loss during content preserving process and the unexpected geometric matching can be

introduced during style transformation process. Fig. 3.2 illustrates the distortions occur at

both content preserving and style transformation process. As shown in (c-ii), the buildings

of content image are obviously distorted by content preserving process. Also as shown in

(c-iii), the buildings are also distorted after style transformation process. Buildings of (c-iii)

hold different shapes and edges from (c-ii) from content preserving process, which means

the buildings are distorted twice.

3.2 The Proposed NPST Method

The entire style transfer pipeline consists of two stages: detail reconstruction process and

style transfer process. The proposed framework has two key components: a dual-stream

deep convolution network as Loss Network and edge-preserving filters as Style Fusion

Model (SFM). The edge-preserving filter is used to extract details and colour information
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of the outputs from the loss network, which means the proposed scheme combines the de-

tails without colour from content and the colour without details from reference style. During

the optimization process, the content and style features are captured first by the additional

layers in the Loss Network, then a random white noise image X is passed through both

detail reconstruction and style transfer networks. The final output of SFM is the stylized

result.

The main contributions of this chapter: 1. this work investigates the problem of Gatys et

al.’s method (Neural-Style, NS), and find out that the lost photorealism of stylized result is

caused by distortions occurring at both content preservation and style transformation stages;

2. this work proposes a neural photographic style transfer (NPST) method which is capable

of improving the photorealism of stylized results. A similarity loss function using L1-norm

is applied for reconstructing finer content details and preventing geometric mismatching

problem (CTRB1 Answering to Q1). To further enhance the photorealism, a Style Fusion

Model using edge-preserving filter is proposed to reduce artefacts (CTRB2 answering to Q2).

3. this work prevents the posterization artefacts of Luan et al.’s method by replacing Luan

et al.’s second stage (Mat-NS) with the proposed SFM.

3.2.1 Architecture of Neural Photo Style Transfer

Gatys et al.[37] propose an image transformation network with convolutional neural net-

works to accomplish the task that an input image is transformed into an output image. The

network architecture of Gatys et al. [37] includes a pre-trained VGG-19 network [136] and

two loss layers. The layers learn feature representations of input images and compute the

representation differences between a generated image and inputs. Their algorithm adds two

additional layers: content layer and style layer, which capture and store feature represen-

tations of inputs. Then a random white noise image initialized as the same size of content

input is fed into the network. The loss functions compute the distance of feature repre-

sentations between the generated image with respect to content and reference style inputs

separately. The derivatives of loss terms are propagated back to the loss network for next

iteration until the maximum iteration number is reached. Similar to this optimization-based

approach, the proposed work in this chapter also uses the pre-trained VGG-16 network [136]

as the loss network, the content loss function and perceptual loss functions in [68]. In ad-

dition, this work adds another layer with pixel-level loss function into the network, and a

Style Fusion Model as the post-processing step to reduce artefacts. The proposed method

is an optimization-based approach which is designed for arbitrary style and content image

pairs.



3.2. The Proposed NPST Method 37

Figure 3.3: Framework Overview. This work uses the Loss Network to preserve con-
tent and transfer style from inputs to outputs. The loss functions are added into the
pre-trained VGG-16 network [136], which are computed at certain layers and back
propagated to the Loss Network during optimization process. For example, Lrelu1_2

style
computes the feature representation differences between random white noise image
X and style image Is, where relu1_2 denotes the placement for style layer in VGG-16

network. Then the deviation of Lrelu1_2
style is propagated back to ST Network.

As shown in Fig. 3.3, the proposed framework consists of two components: a dual-

stream convolution network consisting of a Loss Network and a Style Fusion Model. The

Loss Network is composed by two parallel deep convolution networks and several addi-

tional layers. A scalar value Łi(y, yt) of loss function at layer i is computed to measure the

Euclidean distance between the output image y and target image yt (yt can be content image

and reference style image). For the dual-stream loss network, this work refers the upper

deep convolution network as Detail Reconstruction network (DR Network), which is designed

for preserving the content details. Meanwhile, the lower convolution network is referred as

Style Transfer Network (ST Network), which aims to transfer style information, mainly colour,

from reference style image to content image. As shown on the right side of Fig. 3.3, the Style

Fusion Model (SFM) also has two components: a detail filter and a style filter, which take the

outputs of two parallel deep networks as their inputs separately.

Inputs and Outputs: For the DR Network, the inputs are one photograph as content

image Ic and one random white noise image XDR with the same size of Ic, and the output

is one image Oc . For the ST Network, the inputs are one photograph as content image Ic
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Figure 3.4: The similarity function for reconstructing finer content details. Left: the
input content image. (a) and (c) are the reconstructed results through the DR Network
without and with similarity loss respectively. (b) shows two insights of (a) and (c) (in
that order) respectively. it is noticeable that (c) preserves more precise context of input

than (a).

, one random white noise image XST with the same size of Ic and one photograph as style

image Is. The output is one image Os. The XDR and XST are initialized by random white

noise image X. For the detail filter, the input is the output Oc of DR Network, and the input

of style filter is the output Os of ST Network. The output of entire SFM is one image O f usion.

Additional Layers: There are three different layers in total: content layer, style layer and

similarity layer. The content and similarity layers carry loss functions for the purpose of

preserving content features from Ic onto Oc. And the style layers hold the loss functions to

transfer stylistic features from Is to Os.

3.2.2 Loss Functions

In general, this work defines three different loss terms for two purposes: 1. preserve the

content feature information F as structure details and reconstruct them on XDR; 2. learn the

reference style features and correctly match them to XST .

Layers in Convolutional Neural Network define non-linear filter banks to encode input

image. Hence, the representations of features in a neural network actually are the filter

responses to input image [110]. We assume that a layer has D different filters, and each filter

has a size M, where M is height times width. For the reconstruction of feature, let φi be

the feature representations captured at ith activation layer of the DR Network when Ic is on

processing. Then φi is a feature map with the size of Di × Mi. The feature reconstruction

loss is the squared and normalized Euclidean distance between the feature representations

of XDR and target Ic:

L f eat(XDR, Ic) = ∑
i∈L

1
Di ×Mi

‖φi(XDR)− φi(Ic)‖2
2 (3.1)

where L denotes the set of activation layers containing feature loss. This term helps to

minimize the visual distinguishability between the random image XDR and target image Ic.
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Figure 3.5: The similarity function for preventing geometric mismatching problem. (a)
is the stylized result without similarity loss, and (b) is the stylized result with similarity
loss. Note that the zoom-in regions show that the similarity loss effectively prevents

the unexpected geometric matching.

However, as this reconstruction operates on high layers [110], the rough spatial structure of

content image can be preserved but details especially exact shapes of the structure are lost.

For the same convolutional neural network architecture, Zhao et al. [182] demonstrate

using L1-norm loss in the spatial constraint better preserves the spatial structures as com-

pared to using L2-norm for image restoration task. Hence, another similarity loss Lsimi is

introduced based on mean absolute error (L1-norm) into the Loss Network. It is found that

the L1-norm loss on RGB domain makes the style transformation output lose the colour

information from style image as the loss also reconstructs colour of the content image to out-

put. Hence, we add L1-norm loss in feature domain. Similar to the definition of L f ea, Lsimi

is denoted as L1 loss of the feature representations of XDR and Ic at jth activation layer of

the Loss Network, then the similarity loss is defined as:

Lsimi(XDR, Ic) = ∑
j∈L

1
Di ×Mi

‖φj(XDR)− φj(Ic)‖1 (3.2)

where L and Di ×Mi separately denote the set of activation layers and feature size. The

purpose of this loss term is to measure how much information of target Ic is lost by XDR,
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which contributes to reconstruct exact pixels of Ic into XDR as many as possible by minimiz-

ing this term. As mentioned above, reconstructing content features with only L f eat is not

enough to preserve precise details, especially the exact edges inside structures. Fig. 3.4 and

Fig. 3.5 demonstrate the effect of Lsimi.

For the transformation of style, an effective representation of style in the reference image

is needed. According to [36], the correlations of feature space is chosen to be the representa-

tion of style. And these feature correlations can be given by Gramian Matrix. Let ψk be the

Gramian Matrix of vectorized feature map φk at kth activation layer of ST Network when

the input XST is on processing, and the vectorized feature map φk is reshaped to Dk × HkWk,

then the Gramian Matrix is defined as:

ψk(XST) =
1
N

φk(XST)· φk(XST)
T (3.3)

where N is the total number of pixels of φk(XST). The Gramian Matrix is the dot product

between feature maps at kth activation layer, which gives the feature correlations. Then the

style loss is the squared Frobenius norm of the difference between the Gramian Matrices of

the random image XST and the target Is:

Lstyle(XST , Is) = ∑
k∈L
‖ψk(XST)− ψk(Is)‖2

F (3.4)

where L denotes the set of activation layers holding style loss. The style loss is well-

defined even for different sizes of XST and Is since the ψk(·) always has the same Dk × Dk

size. As demonstrated in [36], the generated output will only preserve the stylistic feature

from style image, which means the spatial structure of target image can not be preserved by

minimizing the style loss.

In this chapter, the L f eat and Lsimi are used to constrain the detail reconstruction proce-

dure, which produces output Oc with preservation of the spatial structures inside content

image such as exact details like shapes and edges (shown as (a) in Fig. 3.6). These two

loss terms forms LDR, the joint loss of DR Network. The Lstyle, L f eat and Lsimi constrain

the style transformation procedure, which generates the output Os with stylistic features

mainly colour information from reference image and detailed features from content image.

The combination of three loss terms forms LST , the joint loss of ST Network. Therefore, the

two final joint loss terms are defined as:

LDR = α fL f eat + αdLsimi (3.5)
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Figure 3.6: The Style Fusion Model for reducing noise artefacts and avoiding distor-
tions. (a) is the reconstructed content output of the DR Network, and (b) is the extracted
details (white points) of content without colour from (a). (c) is the stylized output of
the ST Network, and (d) is the extracted colour without details from (c). (e) is the fu-
sion stylized result from SFM. it is noticeable that (c) still exists noise (red rectangles)
and distortion (green rectangles) arefacts due to content-style trade-off (please refer to

Fig 3.8. However, the final stylized result (e) is free of noise and distortion artefacts.

Figure 3.7: The effect of parameter αd for the DR Network. Note that the reconstructed
content result achieves the highest PSNR at αd = 103. The lower and larger values de-
crease the accuracy of reconstructed result. Hence, this work finds the best parameter
αd = 103 for the DR network, and use it to produce all the other results in this chapter.

and

LST = β fL f eat + βdLsimi + βsLstyle (3.6)

where α f and αd denote the weights of content layers and similarity layers in DR Net-

work, and β f , βd and βs denote the weights of three corresponding layers in ST Network.

All the implementation details of these parameters are introduced in Section 3.3.

In previous researches [60, 117], the output of prior process contains stylistic features

from reference style, and these features are distributed according to the semantic structures

of content input. Hence, the style transformation procedure in the ST Network learns stylis-

tic features and also distributes them into the semantic structures, which needs both style

loss term and detail reconstruction loss terms.

3.2.3 Style Fusion Model

Section 3.1 mentions that the distortions are introduced by both detail preservation and

style transformation procedures. This work uses Lsimi to prevent geometric mismatching,

however, the output of ST Network may still exist distortion and noise artefacts due to the
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Figure 3.8: The effect of parameter βd for content-style trade-off. A lower βd value can
not prevent unexpected geometric matching. For example, the regions of tower tops
(green rectangles) in (a) and (b). A larger βd value loses the style of reference image. For
example, the buildings (red rectangles) in (d) and (e) have undesired dark colour style,
which should be in the golden light style. Note that the stylized result at βd = 1× 101

still exists some distortion and noise artefacts but they will be eliminated by SFM. This
work thus chooses βd = 1× 101 to produce the style transformation result of the ST

Network and all the other results in this chapter.

Figure 3.9: The effect of parameter σr for SFM. Note that a lower σr value can not
prevent noise artefacts, for example, red rectangles in (a) and (b), and a larger σr value
suppresses the transferred style, for instance, green rectangles in (d) and (e). This work
found the best parameter σr = 1 to produce the result and all the other results in this

chapter.

content-style trade-off (shown in Fig. 3.8). To reduce the artefacts, this work applies a refine-

ment technique Style Fusion Model (SFM) into the proposed approach. The edge preserv-

ing filter (Recursion Filter) proposed by Gastal et al.[34] is capable of effectively smoothing

aways noise or textures while retaining sharp edges, which is a suitable technique for reduc-

ing artefacts. This work thus uses the edge preserving filter (Recursion Filter) [34] to smooth

both output image Oc and Os with joint image Oc. In this chapter, this work refers Detail Fil-

ter and Style Filter as the smooth process of Oc and Os respectively. The final result O f usion

is defined as:

O f usion = (Oc − RF(Oc, σs, σr, Oc)) + RF(Os, σs, σr, Oc) (3.7)

where σs denotes the spatial standard deviation and σr denotes the range standard de-

viation for the edge-preserving filter [34].As shown in Fig. 3.6 (e), the clear stylized result

O f usion obtained by the proposed SFM are free from the artefacts.

3.3 Implementation Details

This section describes the implementation details for the proposed approach. This work

chooses the pre-trained VGG-16 network [136] as the basic architecture of the DR Network

and ST Network. The content layer with L f eat is added into the activation layer of {relu3_3},

and the style layers with Lstyle are added into {relu1_2,relu2_2,relu3_3 relu4_3} activation

layers. The similarity layers are added into {relu1_2, relu2_2, relu3_3} activation layers. For
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Figure 3.10: Placements for similarity layers in DR Network. (a)-(d) show the recon-
structed content results with similarity layers at different places in the DR Network.
Note that the reconstructed result achieves the highest PSNR score at relu1_2, relu2_2,
relu3_3. Hence, this work places similarity layers at relu1_2, relu2_2, relu3_3 in the DR

Network for all the experiments in this chapter.

Figure 3.11: Placements for similarity layers in ST Network. (a)-(c) show the styl-
ized results with similarity layers at different places in the ST Network. Note that (a)
presents a worse stylized result than (b) and (c) as the centre area of blanket and walls
upside are not in golden style colour. It is difficult to tell that either (b) or (c) pro-
duces better style transformation as they achieve a very similar style transfer result.
This work thus chooses to place similarity layers at relu1_2,relu2_2,relu3_3 in the ST

Network, which keeps the same placements as the DR Network.

the DR Network, this work adds content and similarity layers into the pre-trained VGG-16

network, and choose parameters {α f = 5, αd = 103} for the detail reconstruction. For the

ST Network, this work adds content, similarity and style layers into the pre-trained VGG-

16 network, and choose {β f = 5, βd = 10, βs = 100} for the style transformation. This

work uses σs = 60 (default in the public source code) and σr = 1 for the edge-preserving

filter [34] in SFM. The effect of parameter αd, βd and σr is illustrated in Fig. 3.7, Fig. 3.8

and Fig. 3.9 respectively. In this chapter, PSNR (Peak Singal-to-Noise Ratio) is chosen as

the criterion for setting parameter αd as it is most commonly used to measure the quality of

image reconstruction in literatures.

This work uses a random white noise image X (XDR and XST represent X for DR Network

and for ST Network respectively ) with the same size of content image as the initialized

input, and choose Adam [75] optimization algorithm with learning rate 1 and iteration 1000

in the optimization process for all the experiments in this chapter. All the inputs including

Ic, Is and X are scaled into 512 when width or height is over 512, otherwise they remain

original resolution. The dual-stream convolution networks run the optimization process at

the same time, and the optimization time is around 2.5 minutes by running on the GPU card

(NVIDIA GeForce GTX 1060, 6G GDDR5). The whole optimization process only needs one

content image and one reference style image without any limitation on resolution.
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Table 3.1: Additional Layers in the pre-trained VGG-16 Network

Additional Layers Layers of VGG-16 Size Activation

conv1_1 64× 3× 3 relu1_1
similarity,style conv1_2 64× 3× 3 relu1_2

Maxpooling 2× 2
conv2_1 128× 3× 3 relu2_1

similarity,style conv2_2 128× 3× 3 relu2_2
Maxpooling 2× 2
conv3_1 256× 3× 3 relu3_1
conv3_2 256× 3× 3 relu3_2

content,similarity,style conv3_3 256× 3× 3 relu3_3
Maxpooling 2× 2
conv4_1 512× 3× 3 relu4_1
conv4_2 512× 3× 3 relu4_2

style conv4_3 512× 3× 3 relu4_3

Table 3.2: Implementation details of DR Network

Loss Parameters Placements in VGG-16

L f eat α f = 5 relu3_3
Lsimi αd = 103 relu1_2,relu2_2,relu3_3

3.4 Results

This section discusses the selection for hyperparameters, placement for similarity layer, com-

parisons between the proposed methods and state-of-the-art methods in terms of global and

local colour transfer.

3.4.1 The effect of hyperparameters

Fig. 3.7 and Fig. 3.8 demonstrate the effect of parameters αd and βd respectively. As shown

in Fig. 3.7, the content reconstructed result achieves the highest PSNR (peak signal-to-noise

ratio) value when αd = 103. This work thus chooses αd = 103 to reconstruct content details

in the DR Network. In Fig. 3.8, a lower βd value still produces stylized result with geometric

mismatching problem. Conversely, a larger βd value produces less style result. Hence, this

work finds the best value βd = 10 to produce the stylized result and all the other results in

this chapter. Fig. 3.10 and Fig. 3.11 illustrate the choices of similarity layers in the DR Net-

work and ST Network respectively. For DR Network, this work chooses to place similarity

layers at {relu1_2, relu2_2, relu3_3} as it achieves the highest PSNR score. For ST Network,

the stylized results (b) and (c) have very similar style transformation appearance, this work

thus chooses to place similarity layers at {relu1_2, relu2_2, relu3_3} in the ST Network, which

keeps the same placements as the DR Network. The implementation details of the proposed

network are described in Table 3.1 to Table 3.3.
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Table 3.3: Implementation details of ST Network

Loss Parameters Placements in VGG-16

L f eat β f = 5 relu3_3
Lsimi βd = 10 relu1_2,relu2_2,relu3_3
Lstyle βs = 100 relu1_2,relu2_2,relu3_3,relu4_3

Figure 3.12: Comparison between Gatys et al.[37], Ghiasi et al. [39] and NPST. Gatys
et al.[37] and Ghiasi et al. [39] produce a larger amount of distortions in their results
while NPST results are free of distortions. The stylized results of Ghisai et al. [39]
method use the interpolation weight of 0.8 and other default parameter values in their

chapter.

3.4.2 Comparisons to State-of-the-art Works

Comparison between representative artistic style transfer methods and NPST. The com-

pared methods are Gatys et al. [37], Ghiasi et al. [39] and NPST across great differences

among content images in Fig. 3.12. NPST results preserve content structures with more pre-

cise details than other artistic prior methods. For example, NPST results contains all details

of ceiling lamp, frescoes, carpets and railings which are not reconstructed well by Gatys et

al. [37] and Ghiasi et al. [39]. To illustrate the ability of preserving precise details, this figure

compares content and reference style image with great details to prior artistic style transfer

methods in third row. NPST method reconstructs almost every detail in content image and

transfer the colour style faithfully while Gayts et al. and Ghiasi et al. [39] lose great details.

The detail representations on other examples also show the strong ability of the proposed

method to reduce distortions and preserve content spatial structures as well.

Comparison between representative global colour transfer methods and NPST. Fig.

3.13 compares the proposed method with representative global colour transfer algorithms

such as Reinhard et al.[121] and Pitié et al. [117]. A global colour mapping technique is
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Figure 3.13: Comparison between representative global colour transfer methods Rein-
hard et al.[121], Pitié et al. [117] and NPST.

applied by both of them to match the colour statistics of content input and reference style

image. However, they can not obtain faithful colour transformation results when the inputs

contain spatially varying objects, which limits their applications. For example, in the second

row of Fig. 3.13, Reinhard et al. and Pitié et al. methods can not transfer light style in

reference style image to buildings.

Comparison between representative local photographic style transfer methods and the

proposed methods. Fig. 3.14 compares NPST with the state-of-the-art methods, Luan et al.

[108] and Liao et al.[103]. The approaches proposed by Luan et al. [108] and Liao et al.

[103] are the latest methods which effectively avoids the distortion problem. The proposed

method preserves more precise content details than Luan et al. For example, the plants in the

first row, the texts on the postcard in the third row and the windows in the bottom row. The

proposed method may not obtain better faithful transformation results but NPST method

achieves the highest score on the photorealism. Please refer to user study for more details in

section 3.4.3. All the stylized results (including user study) of Luan et al. [108] are their best

results with manually semantic segmentation mask and parameter λ = 104 (default value in

Luan et al.’s paper).

Luan et al. [108] propose a two-stage photo style transfer method which expands Gatys

et al.’s artistic style transfer method. Their first stage integrates semantic segmentation into

Neural-Style [37] method for object-to-object colour transfer, and their second stage applies a

post-processing step using Lapacian Matting to improve the photorealism of stylized result

obtained from the first stage. In this chapter, the first stage is called Seg-NS and the sec-

ond stage is called (Mat-NS). In terms of local object-to-object colour transfer, the proposed

similarity loss function may not transfer colour for object-to-object as faithful as manually

semantic segmentation. However, the proposed SFM may help Luan et al.’s results avoid the
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Figure 3.14: Comparison between Luan et al. [108], Liao et al. [103] and NPST. All
examples from Luan et al.[108] dataset.

posterization artefacts. Fig. 3.15 shows the stylized results that the SFM is applied to pro-

cess the results obtained from Luan et al.’s first stage. For example, the proposed method

(Seg-NS+SFM) effectively prevents the posterization artefacts on buildings in the first row,

water in the second row and forehead in the third row.

Fig. 3.16 compares the proposed method (Seg-NS+SFM) with state-of-the-art neural pho-

tographic style transfer methods Luan et al.[108] and Liao et al.[103]. Note that the proposed

method (Seg-NS+SFM) preserves more precise content details than Luan et al. [108] while

transferring style more faithfully than Liao et al. [103]..

Fig. 3.17 compares the proposed method (Seg-NS+SFM) with Mechrez et al. (Seg-NS+SPE)

[111] which proposes to apply Screened Poisson Equation (SPE) [112] to improve the pho-

torealism of result obtained from Luan et al.’s first stage. Note that Mechrez et al. [111]

method can not remove the artefacts introduced by Luan et al.’s first stage. For example, the

unexpected blue colour and inconsistent colour in the first and third row respectively.

Limitation The proposed method NPST is unable to transfer faithful colour between

images which have semantic similarity for human observers but with much complex spatial-

varying. Fig. 3.18 shows some failure cases. For example, the blanket and floor in first row

fail to be transferred into brown and white colour style.
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Figure 3.15: Comparison between Luan et al. [108] and the proposed method(Seg-
NS+SFM). The proposed method effectively handles the posterization effect of Luan et

al.[108]. All examples from Luan et al.[108] dataset.

3.4.3 User Study

This work conducts a user survey to verify several colour transfer methods on photorealism

and style faithfulness. There are six different methods considered in this survey, which in-

clude Reinhard et al. [121], Pitié et al. [117] , Luan et al. [108], Liao et al. [103], the proposed

methods(NPST, Seg-NS+SFM). This work asks 26 human participants to score stylized re-

sults on 1-to-4 scale. These participants are all young people whose age ranges from 20 to 30

years old. As young people use Instagram or Facebook more often than other age groups,

thus they are the potential users. For the photorealism, the score ranges from “1: definitely

not photorealistic" to “4:definitely photorealistic". For the style faithfulness, the score ranges

from “1:definitely not style faithful to reference style" to “4:definitely style faithful to refer-

ence style". For each participant, he or she is asked to score the stylized results of 6 methods

in a random order. There are totally 44 different scenes (excluding unrealistic and repeated

scenes) selected from Luan et al.[108] dataset.

Fig.3.19 shows the average score and standard deviation of each method. For the photo-

realism, the proposed method (NPST) and Liao et al.[103] rank the 1st and 2nd respectively.

Luan et al. [108] and Pitié et al. [117] have the worst performance regarding to the photo-

realism as their results exist some artefacts. For the style faithfulness, Luan et al. [108] and

the proposed method (Seg-NS+SFM) rank 1st and 2nd respectively. The edge-preserving

filter [34] used in SFM slightly declines the style faithfulness score of Luan et al. [108] but

it still achieves a higher score than Liao et al.[103]. Moreover, it significantly improves the

photorealism score of Luan et al.’s results. Reinhard et al. [121] and Pitié et al. [117] perform
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Figure 3.16: Comparison between Luan et al. [108], Liao et al. [103] and the proposed
method(Seg-NS+SFM). The proposed method preserves finer content details than Luan
et al.[108] and transfer style more faithful than Liao et al.[103]. All examples from Luan

et al.[108] dataset.

the worst in the style faithfulness as their limitations for sophisticated images.

3.5 Summary

The work in this chapter investigates the reason why the photorealism of stylized results

is lost especially when the photographic images are input to Gatys et al.’s method [37].

And this work discovers that both content preservation and style transformation stages

in Gatys et al.’s method distort images to lose the photorealistic attribute. Hence, a neu-

ral photographic style transfer method is proposed to constrain detail reconstruction and

style transformation processes by introducing a similarity loss function. This similarity loss

function not only preserves exact details and structures of content image but also mitigates

the content-mismatching problem. The qualitative evaluation on Luan et al.’s [108] dataset

shows that the proposed approach is capable of preventing the distortions effectively, and

obtaining faithful stylized results as well.
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Figure 3.17: Comparison between Mechrez et al. [111] and the proposed method(Seg-
NS+SFM). The zoom-ins show the insights of Luan et al.’s first stage output, Mechrez

et al. [111] and the proposed method(Seg-NS+SFM) (in that order).

Figure 3.18: Some failure cases.

Figure 3.19: User study results for photorealism and style faithfulness.
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Chapter 4

Fast Neural Photo Style Transfer

In this chapter, a new technology Fast Neural Photo Style Transfer (FNPST) is proposed to

transform prior neural artistic style transfer methods into photographic style transfer, which

improves the photorealism attribute of the stylized results. Without semantic segmenta-

tion, FNPST introduces a similarity loss function to solve the content-mismatching problem,

and a post-processing technique to further reduce potential distortion and noise artefacts.

The similarity loss function reconstructs finer details of content photographs and constrains

the content match between reference style and content images. The post-processing refine-

ment technique extracts the colour (without the details) from stylized result, and combines

it with the details of content input. Distortion and noise artefacts will be eliminated after the

refinement step. Integrating the mentioned above techniques into prior artistic style trans-

formation networks, FNPST achieves nearly real-time performance. This advantage makes

the proposed approach a good option for real-time application such as video style transfer.

There are TWO major contributions in this chapter:

1. a technique is proposed to transform representative NAST methods (e.g, Gatys et al.

[37] and Johnson et al.[68]) to NPST methods (CTRB3).

2. a fast neural photo style transfer method is proposed with near real-time performance

(CTRB4), which makes it a potential solution for social media apps and video style transfer.

There are two main differences between NPST (Chapter 3) and FNPST:

1. The NPST builds upon the slow NAST method [37] based on optimization network,

but FNPST builds upon the fast NAST method [68], which is three orders of magnitude

faster than NPST (Answering to Q3).

2. Through the extensive experiments, the similarity loss and edge-preserving filter are

capable of transforming two representative NAST methods (e.g, Gatys et al. [37] and John-

son et al. [68]) into NPST methods, including slow methods based on optimization networks

and fast methods based on feed-forward networks.
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Figure 4.1: Framework overview. The system consists of two components: a Stylizing
Network and a Loss Network. Orange, green, black and blue rectangles represent an
input image, a style target, an output image and a content target, respectively. The style
loss, feature loss and similarity loss are defined on the Loss Network. These losses are

used to train the Stylizing Network.

4.1 The FNPST Method

The FNPST method builds upon the work of [68]. Training a feed-forward neural network

with a per-pixel loss in a supervision manner is widely used for image transformation tasks

such as super resolution [74] and segmentation [107]. Since the proposed method aims to

speed up the transformation by a single forward pass, it is natural to use Gatys et al. losses

(aka VGG loss below) as supervision to train the feed-forward network. As shown in Fig.

4.1, the basic architecture of th proposed framework consists of two components: an image

stylizing feed-forward network FW(·) and a loss network that is used to define several loss

functions L1, ...,Lk. Johnson et al. use a deep residual CNN as the image stylizing network,

which is parameterized by weights W. The Loss Network is the pre-trained VGG-16 network

[136]. The input images ~x are passed through the image stylizing network, and they are

transformed into one output image ỹ via the mapping function ỹ = FW(~x). For each ~x, it has

a content target yc and style target ys. For the loss network, the content target yc is ~x. The

training of the image stylizing network pursues weights W which minimizes a weighted

total loss function:

W = arg min
W

E~x,{yc ,ys}[Σ
k
i=1λiLi(FW(~x), yc, ys)] (4.1)
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Figure 4.2: The similarity loss function for preventing content-mismatching problem.
(a) and (b) are the stylized results through the Loss Network without and with similar-
ity loss respectively. Note that (b) indicates the similarity loss effectively prevents the

content-mismatching problem in the stylized result.

4.1.1 Loss Functions for the Loss Network

To clarify the background and improvement, the loss functions in the Loss Network are :

LVGG loss and Lsim loss described in Chapter 3. The Fast-Neural-Style algorithm minimizes

the following objective function:

LVGG = αL f ea(ỹ, yc) + γLstyle(ỹ, ys) (4.2)

with:

L f ea(ỹ, yc) = ∑
j∈J f ea

1
Nj ×Mj

‖φj(ỹ)− φj(yc)‖2
2 (4.3)

Lstyle(ỹ, ys) = ∑
j∈Jsty

1
N2

j
‖ψj(ỹ)− ψj(ys)‖2

F (4.4)

where J f ea and Jsty denote the set of activation layers in the Loss Network for L f ea and Lstyle,

respectively. In each layer, the feature maps have N channels and M size where M is width

times height. φj[·] ∈ RNj×Mj denotes the feature matrix at j-th layer. ψj[·] = φj[·]φj[·]T ∈

RNj×Nj denotes the Gramian Matrix, which is the inner product between the vectorized fea-

ture maps. α and γ denote the weights to feature loss L f ea and style loss Lstyle, respectively.

yc and ys represent the content target and style target separately.

Overall, the total loss of the Loss Network is given by:

L(ỹ, yc, ys) = αL f ea(ỹ, yc) + βLsim(ỹ, yc) + γLstyle(ỹ, ys) (4.5)

where β denotes the weight of similarity loss Lsim, and the effect of Lsim is demonstrated in

Fig. 4.2.
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Figure 4.3: The post-processing step can not prevent the content-mismatching prob-
lem. In the middle (b), it shows 2 insights of (a) and (c) (in that order). Zoom in to
compare results. Note that the stylized result (c) preserves well the spatial structures
of building (green rectangle), but it can not prevent the unexpected yellow colour re-

gions (red rectangle) caused by content-mismatching.

Figure 4.4: The post-processing step reduces the potential distortion and noise arte-
facts. In the middle (b), it shows 2 insights of (a) and (c) (in that order). Zoom in to
compare results. Note that the stylized result (c) prevents the distortion (green rectan-
gle) and noise artefacts (red rectangle), thus exhibits finer details than (a). Examples

are from Shih et al. [135]

4.1.2 Post-processing Step

This chapter uses Lsim to avoid the content-mismatching problem, however, the output re-

sult may still show distortion and noise artefacts (c.f. Fig. 4.4a).To further reduce the arte-

facts, a refinement technique SFM described in Chapter 3 is used. To demonstrate the effect

of refinement step, Fig. 4.3 shows that post-processing step is not able to prevent the content-

mismatching problem without Lsim, and Fig. 4.4c shows that the refined result produced by

the post-processing step finally reduces the distortion and noise artefacts, and exhibits fine

content details.

4.2 Implementation Details

The proposed FNPST method is based on the feed-forward network, which means loss func-

tions are only applied in the training stage, and post-processing refinement step is only

applied in the test stage. For the training process, the stylizing network is trained on the

MS-COCO dataset [104]. The 80k training images are all resized to 256× 256, and the style

image is resized to width = 384 for 40k iterations using a batch size of 4. The training pro-

cess has 2 epochs as the dataset contains more than 80,000 images and 2 epochs are enough.
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Figure 4.5: Effect of parameter σr for Recursion Filter [34] in the post-processing step.
The inputs in the left contains content image and style image (bottom right). Note
that a small σr value does not reduce noise artefacts (red rectangles) in (a) and (b). In
contrast, a too large σr value does not keep buildings in dark colour (green rectangles)
of (d) and (e), while (c) does. Hence, this work uses σr = 1 to produce the result and

all the other results in this chapter.

Figure 4.6: The effect of similarity weight β for content-style trade-off. The transforma-
tion result ỹ (b) using parameter β = 10 preserves finer context of content than smaller
β value, for example, the left trees (red rectangle) in (b) are reconstructed with finer
details than (a). Moreover, (b) remains the white colour gradient style of house (green
rectangle) better than (c) and (d). This work conducts a series of experiments with the
parameter β = 10, and obtain almost the same content-style trade-off effect on other
images. Hence, this work uses similarity weight β = 10 to produce the stylized result

ỹ and all the other stylized results in this chapter.

This work uses Adam [75] with learning rate 1× 10−3, and a total variation regularization

with the strength weight 1× 10−6. No weight decay or dropout is used because of the model

does not overfit within 2 epochs. For all the image stylization experiments, this work adds

the similarity layers into {relu1_2,relu2_2. relu3_3} activation layers of the Loss Network.

The feature layers and style layers use the default settings of the Fast-Neural-Transfer [68],

which are {relu3_3} and {relu1_2, relu2_2, relu3_3, relu4_3} activation layers of the Loss Net-

work respectively. The hyperparameters of the Loss Network are set as α = 1.0 and β = 10.0

for content reconstruction, and γ = 5.0 for style transformation. The training takes roughly

2 hours on a single NVIDIA GTX 1080 Ti GPU in the implementation of Torch [22] and

cuDNN [20]. For the post-processing refinement step, this work uses σs = 60 (default in its

open source code) and σr = 1 for the Recursion Filter [34]. The effect of σr is illustrated in

Fig. 4.5.

4.3 Results

4.3.1 The content-style Trade-off

As shown in Fig. 4.6, different values of parameter β directly affect the content-style trade-

off. A small β (e.g., (a)) value reconstructs content details worse than bigger β values. Con-

versely, a large β value suppresses the style transfer. For example, the bigger β value tends
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Figure 4.7: Comparison between representative artistic style transfer method [68] and
FNPST. All examples are from Luan et al. [108]

to remain the colour of house in (c) and (d) as content image does, which actually should be

in white colour just like the style image. Hence, the parameter β = 10 is used to produce the

result and all the other results in this chapter.

4.3.2 Comparison to State-of-the-art Works

This work introduces the similarity loss function and post-processing refinement step into

the representative artistic style transfer method [68], and transfer the colour of the style

image while improving the photorealism of stylized results.

Comparison with representative artistic style transfer method. Fig. 4.7 compares FNPST

to prior representative artistic style transfer network Johnson et al. [68]. The stylized results

obtained from [68] method still suffers from the content-mismatching problem, for example,

the sky in the first three rows. The proposed method also reconstructs finer content details

than the previous works (e.g., the fourth and fifth row).
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Figure 4.8: Comparison between global colour transfer methods [121], [117], [47] and
FNPST. Top two examples are from Luan et al. [108], and bottom two examples are

from HaCohen et al. [47].

Comparison with global colour transfer methods. Reinhard et al. [121] and Pitié. et al.

[117] are based on the global colour statistics of inputs, which limits their ability to transfer

colour between more sophisticated images. For example, in the second row of Fig. 4.8,

Reinhard et al. and Pitié et al. fail to render the sky in black to match the colour of sky in the

style image. On the contrary, the proposed method is local and capable of handling more

semantic colour transfer.

HaCohen et al. [47] propose a NRDC method which relies on a small number of match-

able points to estimate the global colour transfer between inputs. Due to this, their method

obtains better results than Pitié et al.’s (e.g., branches of trees in the third row in Fig. 4.8).

However, their method fails to conduct colour transfer between two different scenes (e.g.,

top two rows in Fig. 4.8). FNPST method matches colour statistic in different levels of

deep feature maps (matching Gramian Matrix at several layers of Loss Network), therefore

FNPST results are more accurate than HaCohen et al.’s method. For example, in the fourth

row of Fig. 4.8, the sky in FNPST’s result preserves the style of reference image better than

HaCohen et al.’s, which is too bright in HaCohen et al.’s result. Besides, FNPST’s region of

grassland covered in green is more accurate than HaCohen et al.’s result.

Comparison of the integration of the proposed method with local photographic style

transfer frameworks. Luan et al. [108] propose a two-stage photo style transfer method.

Its first stage (Seg-NS) integrates Neural-Style algorithm [37] with semantic segmentation to
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Figure 4.9: Comparison between state-of-the-art style transfer methods based on deep
features [108], [103] and the refined results. All examples are from Luan et al. [108].

achieve local object-object colour transfer. The second stage (Mat-NS) attempts to improve

the photorealism of stylized results via a post-processing step, which is based on the Lapla-

cian Matting of [89]. Compared to semantic segmentation, the proposed similarity loss func-

tion can not achieve such sophisticated object-to-object style transfer as Luan et al.’s method

does. However, the proposed post-processing refinement technique further improves the

photorealism of stylized result obtained by Luan et al.’s first stage. This work uses the Re-

cursion Filter [34] rather than [89] to refine the stylized results obtained by Neural-Style with

semantic segmentation. In Fig. 4.9, it is noticeable that results produced by FNPST obtain

finer details than Luan et al.’s results while preserving the style transfer performance. For

example, the refined result preserves finer details of the buildings in the first row and bub-

bles inside the glass in the fourth row. Moreover, the refined results maintains clearly even

the characters on bottle bottom in the third row and better boundaries of cupboards in the

bottom row. Compared to Liao et al. [103], the refined results achieve more faithful style

transfer results. For instance, the FNPST refined results remain the dark colour gradient of

style image in the first and fourth row.

Fig. 4.10 compares FNPST to [108] and [103]. The proposed method may not achieve

better style transformation performance than them, but it is three orders of magnitude faster

than theirs while obtaining similar visual transfer appearance. The detailed comparison of

speed performance is described in Section 4.3.3.

Failure Cases Fig. 4.11 shows some examples of failure. Note that the content-mismatching
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Figure 4.10: Comparison between state-of-the-art style transfer methods Luan et al.
[108], Liao et al. [103] and ours (FNPST). All examples are from Luan et al. [108].

Figure 4.11: Some failure cases.

problem may still occur when inputs have very poor content semantic similarity. For exam-

ple, the kitchen and the nightscape images in the left have big content differences. Ad-

ditionally, the proposed refinement step may produce stylized results with colour floating

artefacts (e.g. apple in Fig. 4.11). This can be fixed by fine-tuning of parameters σs and σr in

the post-processing refinement step.

4.3.3 Speed Performance

Table 4.1 compares the runtime of state-of-the-art methods and FNPST for 256 × 256 and

512× 512 image resolution. The compared methods include Luan et al. [108] and Liao et al.

[103]. FNPST uses the Recursion Filter proposed in [34] as post-processing refinement step,

and the code provided by the authors is implemented in MATLAB with CPU E5 (3.50GHz).

All the runtimes exclude the I/O operation (e.g. write the file into the disk). The runtime
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Table 4.1: Speed (in seconds) for the state-of-the-art literature approaches and our
method.

Image size Literature approaches Our method Speedup
Luan [108] Liao [103] FNPST Luan [108] Liao [103]

256× 256 108.510 72.358 0.023 4717x 3118x
512× 512 342.723 449.833 0.059 5808x 7624x

of FNPST contains two parts: 1. Fast-Neural-Style: around 0.015s and 0.05s for 256× 256

and 512× 512 resolution, respectively; 2. Post-processing step: around 0.007s and 0.009s for

256× 256 and 512× 512 resolution, respectively. As listed in Table 4.1, for 256× 256 resolu-

tion, the proposed method achieves a speed up of approximately 4717 and 3118 compared

to Luan et al. [108] and Liao et al. [103], respectively. For 512× 512 resolution, the proposed

method achieves a speed up of 5808x and 7624x, compared to them, respectively. FNPST

processes 512× 512 image at approximately 16 FPS, which makes it feasible to run in near

real-time or on video.

4.3.4 User Study

A successful photographic stylized image should look natural to a human observer. There-

fore, a user survey is conducted to verify FNPST and other four methods. The user survey

assesses the photorealism of results and the style faithfulness. There are six methods in total

considered in the survey: Reinhard et al. [121], Pitié et al. [117], Luan et al. [108], Liao et al.

[103] and the proposed methods (FNPST, Seg-NS+RF). Each result image has been shown to

human participants who were asked to score the image from 1 to 4. There were only two

simple questions: “Does the picture look photorealistic? " and “Do you think the colour

looks like the reference style image". For the first question on photorealism, the score on a

1-to-4 scale ranging from ‘definitely not photorealistic’ to ‘definitely photorealistic’, and only

the stylized results were presented to people. For the second question on style faithfulness,

the score on a 1-to-4 scale ranging from ‘definitely not ’ to ‘definitely yes’ and only corre-

sponding pairs of the stylized results and style images were presented to people. This work

used 40 images from the dataset of [108] excluding unrealistic inputs. This work showed

the stylized results to 26 human observers in the survey. This work uses manually semantic

segmentation masks provided by Luan et al. for all the results of [108] in this chapter.

The average score and standard deviation of each method is shown in Fig. 4.12. For the

photorealism, the proposed FNPST method and Liao et al. [103] rank 1 and 2 respectively

regarding to photorealism. Pitié et al.’s method [117] and Luan et al. [108] perform the worst

in photorealism, due to some artefacts. For the style faithfulness, Luan et al. [108] achieves
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Figure 4.12: User study results for photorealism and style faithfulness.

the highest score among the six methods, because this work uses manually semantic seg-

mentation masks for [108]. The proposed refinement step ([34]) slightly reduces the style

faithfulness of Luan et al. [108] but still obtains a higher faithfulness score than Liao et al.

[103]. Moreover, it significantly improves the photorealism of Luan et al.’s [108] results by

avoiding the posterization artefacts. Reinhard et al. [121] and Pitié et al. [117] are the worst

in style faithfulness as they are limited to transfer colour for sophisticated images.

4.4 Summary

To improve the photorealism of style transformation results, a similarity loss function and

post-processing refinement step is introduced into the existing Neural Artistic Style Trans-

fer networks. The similarity loss function effectively avoids the content-mismatching prob-

lem while reconstructing finer content details, and the refinement step reduces the potential

distortion and noise artefacts. The introduced techniques can transform prior Neural Artis-

tic Style Transfer methods (e.g., Gatys et al.[37] and Johnson et al.[68]) into Neural Photo

Style Transfer approaches. The extensive experiments show that the proposed method ob-

tains finer content details and less artefacts than state-of-the-art methods, and transfers style

faithfully. In addition, the proposed approach is capable of processing photographic style

transfer in nearly real-time, which makes it a potential solution for video style transfer.
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Chapter 5

Fast Coherent Video Style Transfer

via Flow Errors Reduction

Figure 5.1: Flickering artefacts in video style transfer. The first row shows two original
consecutive video frames (left) and the style image (right). The second row shows
the flickering stylized results by Johnson et al. [68]. The green rectangles indicate the
different appearances (texture and colour) between these two stylized outputs, which
exhibit flickering artefacts. The third row shows the stable results by the proposed

method, where the outputs preserve the consistent texture appearances.

Chapter 3 and 4 have answered the Questions 1-3, and achieved the Objectives 1-4. To fur-

ther explore the extension of Neural Style Transfer, this chapter turns its focus onto the NVST

field.

Recently, the success of artistic style transfer for still images [37] has inspired a surge

of works ([17, 19, 59, 68, 98, 144]) to tackle the style transfer problem and style classification

([21, 54, 166]) task based on the deep correlation features. In the seminal work of artistic style
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transfer, Gatys et al. [37] seek to transfer the artistic style of a painting to another photore-

alistic image by formulating the task into a gradient-based optimization problem. Starting

with random white noise, a new image is evolved to present similar spatial structures of

a content image and stylistic feature correlations of a painting image. The stylized results

are impressive but the heavy optimization process is very slow in run time. To address this

issue, Johnson et al. [68] present a speed up solution by introducing an offline feed-forward

network. Recently, Chen et al. [19] propose another feed-forward network which swaps

arbitrary styles to content images and also gives pleasing results. Chen et al.’s method in-

troduces a patch-based matching technique that replaces the content image patch-by-patch

by the style image on neural activations. More recently, Huang et al. [59] propose to re-

place Chen et al.’s style swap layer with an adaptive instance normalization layer, which is

capable of transferring arbitrary artistic style in real-time.

Directly extending these methods to video stylization produces new issues. For example,

processing a video sequence via per-frame stylization often leads to flickering and incoher-

ence between adjacent outputs. For optimization-based methods (e.g., [37]), the random

initialization and non-convex nature leads to the local minima of the style loss, which causes

unstable texture appearances in consecutive frames. For methods based on feed-forward

networks ([19, 59, 68, 98, 144]), slight changes of illumination and movements in coherent

frames cause large variations in stylized results. Therefore, temporal consistency of consec-

utive frames in video processing techniques (e.g.,[7, 184]) should be considered for video

stylization.

The main contributions of this chapter are: 1. a stable video style transfer method is

proposed which can handle large motions and strong occlusions compared to previous feed-

forward based methods.(CTRB5, achieving OBJ5) 2. the proposed technique speeds up the

optimization-based video style transfer and is capable of handling arbitrary styles in one

network. (CTRB6, achieving OBJ6)

This framework deals with video style transfer from a new perspective with a new design

of initialization strategy which contains novel mask techniques and initialization for the

optimization-based network. The new mask techniques significantly reduce flow errors even

for large motion or strong occlusion cases (answering to Q4), and the new initialization

boosts the optimization process (answering to Q5) which handles arbitrary styles in one

network (answering to Q6). To be specific, the proposed approach proposes a set of new

mask techniques such as multi-scale scheme, incremental mask and multi-frame mask fusion

to prevent the ghosting artefacts in previous optimization-based methods ([5, 124]). The

initialization obtained via the proposed mask techniques needs much less iterations to keep
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Figure 5.2: Prerequisite. We test the straight-forward idea by recomposing pasted styl-
ized content at flow untraceable regions (see zoom-in rectangles), which preserves well
the content consistency. ⊗ denotes the warp operation which warps f t−1

s into wt with
Ft here, and ⊕ denotes element-wise addition in this chapter.

temporal consistency and image quality. To enhance the temporal consistency, the proposed

approach takes both multi-frame RGB-level and Feature-level Coherent Loss into account

which outperforms single one of them. To retain the image quality, the Sharpness Losses are

proposed to deal with the image blurriness artefacts. In this way, the proposed approach

produces coherent video outputs even for large motion or strong occlusion cases and boosts

the optimization-based network by two orders of magnitude faster speed.

5.1 Method

5.1.1 Motivation

For artistic video stylization, the unexpected flickering problem causes unsatisfactory re-

sults when still image style transfer methods (e.g., [59, 68]) are applied to process frames

independently. As shown in Fig. 5.1, the adjacent frames exhibit some colour and texture

incoherence (e.g., middle columns in zoom-ins). To preserve the coherency for video style

transfer, this work starts with a straight-forward idea.

To simplify, let’s start with two consecutive original video frames f t−1
v and f t

v, and their

corresponding per-frame stylized results f t−1
s and f t

s , and their corresponding optical flow

Ft from f t
v to f t−1

v , then a warped image w t = W( f t−1
s , Ft) is produced by warping f t−1

s

with Ft and a mask Mt containing per-pixel flow traceable (e.g., values tend to be 1) and

untraceable regions (e.g., values tend to be 0). To obtain a stable consecutive stylized result,

a straight-forward idea coming-up is to compose the warped image w t and f t
s into the flow
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Figure 5.3: Texture Discontinuity Problem. Naively combining w t and f t
s via Mt into

flow regions causes texture discontinuity problem. For example, in the green rectangle,
the gray colours preserved from wt lose the consistency of texture context (in red and

yellow colours) which look like noise artefacts.

Figure 5.4: Image Blurriness Artefacts. Images in the upper rows are original video
frames. Along with time step, the blurriness artefacts become more obvious.

traceable and untraceable regions, respectively. In this way, the composition result is capa-

ble of preserving coherency as much as possible. However, there is one prerequisite that

the pasted contents at untraceable regions must have the exact original content details espe-

cially at occlusion regions. Otherwise, a heavy image optimization process is needed during

video stabilization. Fortunately, artistic style transfer methods for still images (e.g., [68])

satisfy this prerequisite as they may change the textures or colours on the occluded regions

but they indeed do not damage the consistency of original content details. For example, in

Fig. 5.2, compared to the original frame, the content details in red and orange rectangles

of composition result (both belong to black regions in mask) preserve well the consistency.

Hence, this straight-forward idea is worthy of carefully investigating to obtain stabilized

video outputs.
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Figure 5.5: System Overview. Starting from three consecutive frames, the proposed
system takes corresponding per-frame stylized f t

s , mask Mt and warped image w t as
inputs, then computes initialization x̂t

init for optimization-based video stabilization net-
work.

Based on this observation, a further investigation is taken and it is found that naively

applying this straight-forward composition may produce two new issues. Firstly, it obvi-

ously may produce discontinuous transferred textures in the composition result. In fact, this

discontinuous textures happen a lot in large motion or strong occlusion cases as there are

many small and irregular boundary lines between flow traceable and untraceable regions.

For example, in Fig. 5.3, the errors caused by the optical flow method lead to unexpected

flow errors in the mask, which directly cause discontinuous textures or colours. Secondly,

naively copying and pasting pixels from a warped image w t into corresponding flow trace-

able regions, it degenerates image quality and produces blurriness artefacts. For example,

in Fig. 5.4, the copied and pasted results will accumulate degeneration errors and produce

image blurriness artefacts in eye regions (red rectangles) over a long period.

To address the texture discontinuity problem, a set of new mask techniques are proposed

which include multi-scale mask fusion, incremental mask and multi-frame mask fusion. The

multi-scale mask fusion is capable of reducing flow untraceable errors, and the incremental

mask and multi-frame mask fusion deal with the flow traceable errors. In this way, we ob-

tain a mask with much less errors and compose the warped image w t and per-frame stylized

result f t
s . The composition image will be the new initialization for optimization-based net-

work to preserve consistency. To reduce the image blurriness artefacts, Perceptual Losses in

[68] and a Pixel Loss are adopted as Sharpness Losses to update pixel values iteratively.

The aforementioned techniques and losses only preserve two-frames’ coherency. To en-

sure the coherency in entire video level, both multi-frame RGB-level and Feature-level Co-

herent Losses are introduced to produce results with averagely lower stability errors than

single of them independently [32]. In addition, a recurrent convolutional network strategy

[167] is adopted which means that the proposed network takes the current stabilized warped

frame w t =W(x̂t−1
out , Ft) and the current per-frame stylized frame f t

s as inputs, then produces

a stabilized output x̂t
out. During the optimization process, Coherent Losses and Sharpness
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Figure 5.6: Recurrent strategy for video style transfer problem.

Losses are forced to ensure the coherency and image quality between the generated image

x̂t and previous output image x̂t−1
out . In this manner, the proposed method propagates all the

flow traceable points as far as possible during the entire video style transfer process.

5.1.2 Fast Coherent Video Style Transfer

System Outline

Fig. 5.5 shows the overview of the proposed framework. Our method takes original video

frames f t−i
v where i ∈ T and T denotes a set of frame indices, f t

v and per-frame stylized

results f t
s and previous output x̂t−1

out as inputs, and produces coherent output video frames

x̂t
out where t ∈ {1, ..., N} and N denotes the total number of frames. A mask generation

method is developed which consists of a set of techniques (mentioned in Section 5.1.1) to

reduce the flow errors, and an initialization generation method is proposed to output a new

initial image much closer to final coherent result which speeds up the optimization-based

network. Specifically, starting with original video frames f t−i
v (i ∈ T ) and f t

v in time step

t, the proposed method generates a backward flow Ft from time t to t − 1 using Flownet2

[61], an image w t that warps previous output image x̂t−1
out and Ft, and a mask Mt. Then

these three images are warped to obtain an initial image x̂t
init which is fed into the network

along with three images above. The optimization process needs much less iterations than
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Figure 5.7: Network Architecture Overview. During optimization, the network takes
x̂t

init obtained from Initial Generation, current per-frame stylized result f t
s , mask Mt and

a warped image w t as inputs, gradually optimizes initial image x̂t
init into x̂t

out based on
gradients computed from losses. The Perceptual Losses and Pixel Loss is described in

Section 5.2.4, and Coherent Losses are described in Section 5.2.5.

previous methods (e.g., [5, 124]) as flow errors have been reduced significantly in the initial

image. In order to obtain a long-term coherency, a recurrent strategy is adopted which means

the output result x̂t
out will be fed as input into next time step. Fig. 5.6 shows the recurrent

strategy. The short-term coherency between adjacent outputs is propagated into a long-

term temporal consistency during the entire video style transfer process. In this way, the

proposed method is capable of propagating all the flow traceable points as far as possible.

The details of mask generation, initialization generation and optimization-based network

will be discussed in following sections.

Network Architecture Overview

Fig. 5.7 shows the details of the proposed optimization-based network. In time step t, there

are four total images as inputs passed into the network which are per-frame stylized result

f t
s , mask Mt, warped image w t and initial image x̂t

init. Coherent Losses force the tempo-

ral consistency between adjacent outputs, and Perceptual Losses and Pixel Loss ensures to

reduce the image blurriness artefacts. The Coherent Losses contain a RGB-level loss and a

Feature-level loss where the first one constrains the mean square error between RGB values

of x̂t and w t and second one restricts the mean square error between feature representations

of them. The Perceptual Losses force to reduce the differences between x̂t and f t
s in feature

domain, and the Pixel Loss intends to minimizes the differences of the RGB values between
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Figure 5.8: The process of multi-scale mask fusion and incremental mask. The unex-
pected flow untraceable errors are fixed in this step. The fused Mask after multi-scale
scheme may cause worse ghosting artefacts as the flow untraceable regions become
thinner than before, thus the incremental mask is proposed to thicken the boundaries

(see green rectangles).

x̂t and f t
s . During each iteration, the generated image x̂t gradually compensates discontin-

uous texture points and updates features into the entire image. Specifically, the gradients

computed from Total Loss are back propagated into the network, and the updated weights

and biases inside each CNN layer push x̂t to grow into an image with more similarity to

inputs. In addition, the proposed optimization-based network is much faster than previous

literature methods [5, 124] by using a new initial image x̂t
init. The reason is that the proposed

optimization process needs much less iterations than previous methods [5, 124] using w t,

since the initial image x̂t
init has reduced significantly the flow errors while w t does not.

5.1.3 A New Initialization for Optimization-based Network

Based on the observation in Section 5.1.1, the most important part of the initialization gen-

eration is to create a reliable flow mask reducing flow errors. To this end, a mask generation

method is proposed to deal with it. At the beginning, we start with the following items: orig-

inal adjacent video frames f t−i
v (i ∈ T and T denotes the set of frame indices) and f t

v, per-

frame stylized results f t−i
s and f t

s . Then the original video frames are rescaled into multiple

resolutions. For MPI Sintel dataset [14], let’s consider two scales r ∈ R where R = {σ, 1
2 σ}

denotes the set of resolutions and σ denotes the original video resolution. And optical flow

methods (e.g., [61]) are utilized to compute the corresponding forward flow Ft
r f and back-

ward flow Ft
rb . At this time, a warped image w t =W( f t−1

s , Ft
σb) is obtained at original video

resolution by warping previous per-frame stylized result f t−1
s and flow Ft

σb . Next, the multi-

scale per-pixel flow masks are given by a forward-backward consistency check. The values

at points of flow masks tend to be 1 at flow traceable regions where both forward and back-

ward direction estimation agrees. On the contrary, the values at positions of flow masks tend

to be 0 at disagreed points. Then the flow masks are scaled into original video resolution and

composed into one mask in a value maximum manner which remains the maximum values
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Figure 5.9: Initialization Generation. Mt is a single channel per-pixel mask which is
obtained from Mask Generation. Note that the generated x̂t

init contains much less errors
than the warped image w t in purple and red rectangles, which leads to much less

iterations to compensate correct pixel values.

from those flow masks at each pixel location. This step is able to fix unexpected flow un-

traceable errors . It is because untraceable errors in higher resolution, caused by small detail

differences (including illumination perturbation) among adjacent frames, will be ignored in

lower resolution, and these errors are eliminated by mask fusion using maximum operation.

For example, the flow untraceable errors (black regions) in the red rectangle are removed

by multi-scale fusion in Fig. 5.8. In this NVST method, it is found that two scales above

are enough for removing flow untraceable errors, as a larger scale like 3
2 σ could introduce

more untraceable errors due to enlarged illumination differences, and a smaller scale like 1
4 σ

could ignore too much traceable points due to lost details. In addition, it is found that copy-

ing the current per-frame stylized results into corresponding flow untraceable regions may

cause worse ghosting artefacts as the flow untraceable regions become much thinner than

before multi-scale fusion. Hence, an incremental mask Mt=>t−1
θ is proposed to generate an

incremental circle along with flow untraceable regions. Specifically, the points in the circle

closer to untraceable regions has lower values, and θ = {w, g} in Mt=>t−1
θ where w denotes

the circle width and g denotes the gradient. In this work, the circle width is set by default to

3 pixels and the gradient is 0.2. To further reduce flow traceable errors where large motions
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occur, multiple incremental masks Mt=>t−i
θ (i ∈ T ) are combined together where T denotes

the set of indices of adjacent video frames. The Mt=>t−i
θ (i ∈ T ) are combined in a value

minimum manner to correct errors. In general, the fusion in a maximum manner reduces

flow untraceable errors (black regions, see Fig. 5.8) and the fusion in a minimum manner

reduces flow traceable errors (white regions). The entire mask generation process is shown

in Fig. 5.10 in Section 5.3.1.

Eventually, a flow mask Mt = min(Mt=>t−i
θ ), (i ∈ T ) is used for initialization generation

by composing the warped image w t and per-frame stylized result f t
s . The generation of

initial image is shown in Fig. 5.9. The proposed initial image is defined as:

x̂t
init = Mt ⊗w t + (1−Mt)⊗ f t

s (5.1)

where ⊗ denotes element-wise multiplication. Mt is a single channel mask. x̂1
init is the first

per-frame stylized result f 1
s when t = 1.

5.1.4 Loss Functions for Image Sharpness

Over a long period video processing, especially for time-lapse videos, some points in frames

are propagated from the beginning to the end and the copied pixel values gradually lose

their quality, which results in the loss of image quality. To prevent the image degeneration,

the Perceptual Losses [68] and a Pixel Loss are adopted into the proposed network. The

Perceptual Losses constrains the differences between high-level feature representations of

the generated image x̂t and the current per-frame stylized result f t
s . The Pixel Loss preserves

the pixel values between the generated image x̂t and f t
s in RGB domain.

The Perceptual Losses contain a Content LossLcon(x̂t, f t
s ), Style LossLsty(x̂t, f t

s ) and Total

Variation Regularization Ltv(x̂t), which can be formulated as following:

Lperce(x̂t, f t
s ) = αLcon(x̂t, f t

s ) + βLsty(x̂t, f t
s ) + γLtv (5.2)

where α, β and γ are the weights of three loss terms, respectively. In experiments, the ratio

of α/β close to 0.3 produces better image quality, and γ = 1e− 3 (default in [68]) is set for

all experiments. The Pixel Loss is defined as the mean square error between the generated

image x̂t and current stylized result f t
s :

Lpixel(x̂
t, f t

s ) =
1
D

D

∑
i,j
(x̂t

(i,j) − f t
s(i,j))

2 (5.3)
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where D = N × H × W denotes the total pixel number of the input image and H ×W

denotes the height times width. In this chapter, the Perceptual Losses and Pixel Loss are

referred as Sharpness Losses which ensure the image sharpness during the entire video style

transfer process. The Sharpness Losses are the combination of Perceptual Losses and Pixel

Loss, which is defined as :

Lsharpness = Lperce + κLpixel (5.4)

where κ denotes the weight for Pixel Loss.

5.1.5 Loss Functions for Temporal Consistency

RGB-level Coherent Loss

The flickering artefact is actually presented by texture and colour discontinuities at RGB-

level regions between consecutive frames, such as disoccluded regions and motion bound-

aries. Pixel values in these areas change in adjacent frames, and the optimizer [37] or feed-

forward network [68] transforms them differently in a particular style as well. To detect these

disoccluded regions and motion boundaries, optical flow methods (e.g., Flownet2 [61]) are

applied to estimate these flow traceable areas between coherent frames. Let f t−1
s and f t

s de-

note two adjacent per-frame stylized results, x̂t−1
out denote the previous output,W(·) denote

the function to warp image, and w t denote the warped image using previous output image

x̂t−1
out and the optical flow Ft from f t

s to f t−1
s (backward direction). The warped image w t is

then given by:

w t =W(x̂t−1
out , Ft) (5.5)

In [5, 124], the coherent loss function is supposed to preserve pixel values of the flow

traceable regions in the stabilized outputs, and the flow errors in w t are then rebuilt by

style transfer process. The straight-forward two-frame temporal coherency loss considers

the consistency between two adjacent frames, thus the two-frame RGB-level Coherent Loss

is denoted as the mean squared error between generated image x̂t and w t:

LRGB
two (x̂t, w t, Mt) =

1
D

D

∑
i=1

Mt
i · (x̂

t
i −w t

i )
2 (5.6)

where D = N × H ×W denotes the dimensionality of x̂t and w t. N denotes the num-

ber of image channel and H ×W is height times width, and Mt denotes the per-pixel flow

mask with weights of the coherent loss. This LRGB
two considers consistency between only two

adjacent frames, which causes small errors as the proposed initial image utilizes a mask op-

erating on multiple consecutive frames. To further enhance the coherency, the consistency



5.1. Method 73

between more adjacent frames is taken into account. Let us consider a multi-frame coherency

between several adjacent frames, and let T (same as Section 5.1.3) denote the set of indices

of video frames which are considered as relative frames. For instance, T = {1, 2, 3} denotes

that processing frame x̂t considers coherency between frame f t
s and frame f t−1

s , frame f t
s

and frame f t−2
s , frame f t

s and frame f t−3
s . Then the multi-frame RGB-level Coherent Loss is

defined as the combination of three two-frame RGB-level coherent loss Lwo:

LRGB
mul (x̂

t, w t−T ) = ∑
i∈T :t>i

LRGB
two (x̂t, w t−i, Mt−i) (5.7)

Feature-level Coherent Loss

In previous methods ([46, 57, 125]), RGB-level coherent loss is considered to constrain the

consistency between pixel values of the warped image w t and generated x̂t. However, it

may not be accurate to preserve stylized texture consistency since their methods do not

concern the temporal consistency of feature representations in CNN layers. Hence, a feature-

level coherent loss [32] is adopted for preserving texture consistency which is capable of

constraining the feature consistency in high-level CNN layers. Let ψl(x̂t) ∈ RNl×Hl×Wl and

ψl(w t) ∈ RNl×Hl×Wl denote the feature representations of generated image x̂t and warped

image w t at layer l respectively, and Mt denote the per-pixel mask, then the two-frame

Feature-level Coherent Loss for two frames is defined as the mean squared error between

ψl(x̂t) and ψl(w t):

L f ea
two(x̂

t, w t, Mt) = ∑
l∈L f ea

coh

1
Nl

Nl

∑
i

Mt
i · (ψl

i (x̂
t)− ψl

i (w
t))2 (5.8)

where L f ea
coh denotes the set of layers computing Feature-level Coherent Loss and Nl denotes

the dimensionality of feature representations ψl(·). Similar to RGB-level Coherent Loss, the

feature-level coherent loss between more adjacent frames (same T in LRGB
mul ) is also consid-

ered, and the multi-frame Feature-level Coherent Loss term is denoted as:

L f ea
mul(x̂

t, w t−T ) = ∑
i∈T :t>i

L f ea
two(x̂

t, w t−i, Mt−i) (5.9)

The total multi-frame Coherent Losses are defined as the combination of LRGB
mul and L f ea

mul :

Lcoherent = λRGB
coh L

RGB
mul + λ

f ea
cohL

f ea
mul (5.10)
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Figure 5.10: The decrease of flow traceable errors (white regions in the right side) by
using the proposed initialization. The rectangles indicate the error difference between
the initialization x̂t

init and xt
init without the mask generation. The fusion in a max-

imum/minimum value manner indicates that the maximum/minimum values from
those masks are remained at each pixel location.

where λRGB
coh and λ

f ea
coh are the weights to corresponding terms. It is found that the ratio of

λRGB
coh /λ

f ea
coh close to 2.5 makes a better temporal consistency preservation.

Overall Loss The overall loss term for optimization process in each time step is defined

as:

Ltotal = Lsharpness + Lcoherent (5.11)

5.2 Implementation Details

The proposed network is developed on a Torch implementation called artistic video style

transfer [124]. The chosen layers for losses are: {relu1_1, relu2_1, relu3_1, relu4_1, relu5_1}

layers for Style Loss and {relu3_2} for Content Loss in Perceptual Losses, and {relu3_2} for

Feature-Level Coherent Loss. The optimization algorithm for iterations is L-BFGS. The fol-

lowing inputs are fed into the proposed network: per-frame stylized image f t
s as feature and

style target, warped image w t
t−i (i ∈ T ) as temporal consistency target, mask Mt as per-pixel

flow weight and the generated x̂t
init (Equation 5.1) as initial image. The stopping criterion:

the optimization is considered to be converged when the total loss does not change by more

than 1 during 10 iterations. For videos at 1024 × 436 (MPI Sintel dataset) and 854 × 480

(Davis 2017 dataset) resolution, the hyperparameters are chosen as followings: α = 3e1,

β = 9e1, κ = 9e− 7, λRGB
coh = 5e1, λ

f ea
coh = 2e1, T = {1, 2}. In experiments, the ratio of α/β

close to 0.3 preserves better stylistic texture appearance of per-frame stylized image fs onto

outputs. A higher ratio will generate results with more sharpness but less stylistic textures,
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Figure 5.11: Qualitative ablation study on proposed mask techniques of Alley_2 scene
from MPI Sintel dataset [14]. The naive method using the flow mask [124] causes ghost-
ing artefacts (see unexpected grid and curved lines in red and orange rectangles). The
multi-scale scheme causes worse ghosting artefacts (more obvious grid and curved
lines). By gradually adding the incremental mask and multi-frame mask fusion tech-
niques, the unexpected grids and curves are effectively mitigated and produces better

visual quality without ghosting artefacts.

in contrary, a lower ratio degenerates image quality due to excessive stylization. The co-

herent ratio of λRGB
coh /λ

f ea
coh close to 2.5 preserves better balance between execution time and

temporal consistency. A higher coherent ratio warps f t
s on RGB-level may make pixel er-

rors accumulate along with propagation, which costs more time of network to correct them.

While a lower coherent ratio tends to lose the stylization consistency on the same object

among consecutive frames. In addition, κ close to 9e− 7 keeps a better balance between im-

age quality and temporal consistency. For example, larger κ values tend to produce outputs

with better image quality (e.g., pixels updated more frequently) but poor temporal consis-

tency as pixels propagated from the beginning are lost along with time. Smaller κ values, to

some extent, fail effectively mitigate blurriness artefacts but preserve better temporal con-

sistency. In this chapter, the aforementioned hyperparameters values are chosen for all the

testing videos. The optical flow used in this chapter is Flownet2 [61], but Deepflow2 [157]

are also supported.

Speed Compared to optimization-based methods [5, 124] (3-5 minutes per frame), the

proposed optimization process takes around 1.8 seconds per frame for resolution 1024× 436

and around 1.6 seconds per frame for resolution 854× 480 on a single NVIDIA GTX 1080

Ti graphics card. The reason of fast speed is that the proposed network needs much less

iterations which are already enough for temporal consistency and image sharpness.
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Figure 5.12: The effect of image sharpness. The top rows are original video frames, the
middle rows are outputs without Sharpness Losses, and the bottom rows are outputs
with Sharpness Losses. The red rectangles indicate the difference of image sharpness.

5.3 Experiments

5.3.1 Qualitative Evaluation

Analysis of Initialization

Fig. 5.8 in Section 5.1.3 shows the mask generation is capable of reducing flow untrace-

able errors (see rectangle). In this section, the capability of reducing flow traceable errors

(ghosting artefacts) is analyzed. Fig. 5.10 shows the effect of the proposed initialization

on reduction of flow traceable errors. Starting from three adjacent original video frames,

the Mask Generation outputs a mask with much less flow traceable errors (white regions

in the right side) than previous single scale mask. This directly helps the composed initial

image contain more consistent textures (see rectangles) than xt
init in Fig. 5.3 in Section 5.1.1.

The left small discontinuous textures are then fixed by the optimization-based network with

Sharpness Losses.

Ablation study on proposed mask techniques. As mentioned in Section 5.1.3, the multi-

scale scheme, incremental mask and multi-frame mask fusion are proposed for initialization

generation. To analyze these techniques fairly, the proposed mask techniques are categorised

into four different groups: naive method (without any proposed techniques), with multi-

scale scheme, with multi-scale + incremental and with multi-scale + incremental + multi-

frame. The outputs of four groups are shown in Fig. 5.11. As can be seen, the zoom-in

rectangles of naive method indicate that the general flow mask proposed by [124] causes
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Figure 5.13: The effect of temporal consistency. The per-frame processing methods are
Johnson et al. [68] and Huang et al. [59]. The red and green rectangles indicate the

discontinuous texture appearances.

Figure 5.14: Comparison to Li et al. [95] on Soapbox scene from DAVIS 2017 dataset
[14]. The rectangles indicate the difference in two adjacent stabilization results. Please

view the supplementary video for better observation.

the ghosting artefacts. Adding multi-scale scheme into naive method is able to reduce flow

untraceable errors (c.f. Fig. 5.8) while causes worse ghosting artefacts as well. Then the

incremental mask (bottom-left) and multi-frame mask fusion (bottom-right) techniques are

gradually added into w/ multi-scale scheme method, which finally produces results without

ghosting artefacts.

Analysis of Loss Functions

Sharpness Losses. Fig. 5.12 shows the effect of Sharpness Losses in the proposed approach.

Without the Sharpness Losses, the straight-forward idea that copying and pasting pixels

from per-frame stylized result f t
s and warped image w t into corresponding regions through
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Figure 5.15: Comparison to Ruder et al. [125] on Ambush_4 scene from MPI Sintel
dataset [14]. The per-frame processing method for both methods is Johnson et al. [68].
Red rectangles demonstrate that temporal consistency among adjacent frames, and yel-
low rectangles illustrate texture (spatial) consistency in a single frame. For temporal
consistency, the proposed method achieves more consistent textures than Ruder et al.’s,
which darkens the colours and adds texture patterns among adjacent frames (see red
rectangles). For spatial consistency, the proposed method also obtains more consistent

textures than Ruder et al.’s around boundaries of flow (see yellow rectangles).

mask Mt causes the pixel loss, and accumulates this loss along with the entire video pro-

cess, which results in great image blurriness artefacts. By adding the Sharpness Losses, the

proposed approach ensures that the pixel values are compensated from the beginning to the

end which prevents the image blurriness artefacts in video outputs.

Coherent Losses. Fig. 5.13 shows the effect of Coherent Losses in the proposed method.

Per-frame processing methods like [68] and [59] produce flickering artefacts in adjacent

frames (see the zoom-ins) without any consideration of temporal consistency. The proposed

method takes the per-frame stylized frames as inputs and produces the texture consistent

consecutive outputs, for example, the rectangle areas.

Comparisons to State-of-the-art Methods

Fig. 5.14 shows the comparison between the proposed approach and Li et al. [95]. The

method proposed by Li et al. [95] learns a linear transformation matrix to minimize the dif-

ference between covariance of transformed content features and style features, which serves
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Figure 5.16: Comparison to Lai et al. [85] on Parkour scene from DAVIS 2017 dataset
[14]. The per-frame processing method for both methods is Johnson et al. [68]. The
rectangles indicate the difference in two adjacent stabilization results. Please view the

supplementary video for better observation.

as second order statistics transformation from reference image onto content image in prior

methods [37, 68]. The linear transformation is highly efficient but causes less stylistic tex-

ture presentation in transformed videos. For instance, the mosaic texture patterns of style

reference image in Fig. 5.14 do not appear in their transferred video frames, which increases

the temporal consistency among adjacent frames but less artistic texture appearance. How-

ever, the proposed method preserves better temporal consistency (c.f. Table 5.5) and texture

patterns than theirs (c.f. zoom-ins).

Fig. 5.15 shows the comparison between the proposed approach and Ruder et al. [125] in

a large motion and strong occlusion case. As mentioned in Section 5.1.1, texture discontinu-

ity is a common problem in large motion or strong occlusion cases, thus a better video style

transfer method should produce results with both high temporal consistency among adja-

cent frames and texture (spatial) consistency in a single frame. For temporal consistency,

red rectangles of adjacent frames show that Ruder et al.’s method darkens the colours and

inserts additional texture patterns which do not exist in original frames. In contrast, the pro-

posed method preserves better colours and texture patterns than Ruder et al.’s. For spatial

consistency in one single frame, Ruder et al.’s method produces discontinuous textures with

context while the proposed approach does not (see yellow rectangles).

Fig. 5.16 shows the comparison between the proposed approach and Lai et al. [85]. Their
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Figure 5.17: Comparison to Huang et al. [57] on Temple_2 scene from MPI Sintel
dataset [14]. The per-frame processing method for both methods is Johnson et al. [68].
The rectangles indicate the zoom-ins in two adjacent stabilization results. As can be
seen in rectangles, results by the proposed method obtain more diverse styles (orange)
and better temporal consistency (green) than Huang et al.’s . Please view the supple-

mentary video for better observation.

method is similar to ours which also deals with stylized videos obtained by per-frame pro-

cessing methods (i.e.,[68]). However, their method needs to sacrifice temporal consistency

for better perceptual quality. For example, the zoom-in boxes indicate that the proposed

method preserves temporal consistency better than Lai et al.

Fig. 5.17 shows the comparison between the proposed approach and Huang et al. [57].

The method proposed by Huang et al. [57] does not need optical flow estimation in their test

time thus it achieves real-time performance. Our method may not compete with their speed,

but ours is capable of obtaining more coherent texture and diverse outputs than theirs. For

example, the green boxes indicate that the proposed method preserves temporal consistency

better than Huang et al., and the orange boxes illustrate that the proposed method produces

outputs with more rich style features than their results.

Fig. 5.18 shows the comparison between the proposed approach and Chen et al. [16].

Note that the outputs of the proposed method show more rich features than those of [16] (see

red rectangles). And the yellow rectangles indicate that the proposed approach produces

more stable outputs than [16].

Fig. 5.19 shows the comparison between the proposed approach and Ruder et al.[124].

The method proposed by Ruder et al. produces the most stable outputs among the literature

methods so far, but it suffers from great ghosting artefacts as their method warps wrong

contents into flow untraceable regions (occlusions). However, their method needs heavy
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Figure 5.18: Comparison to Chen et al. [16] on Child scene from [16]. The rectangles
indicate the difference in two adjacent stabilization results.

optimization process even though inserting original content images into occlusion regions

when these movements are large, which still costs more time than ours. For example, the yel-

low rectangles show that their method leaves a texture representing arm behind in the next

output, and it is especially obvious in the entire video style transfer process. Our method

effectively mitigates this artefact by introducing the new mask techniques and initialization

described in Section 5.1.2. In addition, the proposed approach also produces a more diverse

output than Ruder et al. [124].

5.3.2 Quantitative Evaluation

The proposed method is verified on MPI Sintel dataset [14] and Davis 2017 dataset [118],

and it is tested on more than 40 videos including animation and real-world videos. In this

section, the ablation study is given on image sharpness, temporal consistency and proposed

mask techniques in initialization to verify the proposed sharpness losses, coherent losses

and initialization. Then the quantitative comparison of the proposed approach with state-

of-the-art methods ([16, 57, 59, 68, 124, 125]) is given by using a term stability error estab

which calculates the temporal errors between pairs of adjacent frames in an output video.

The stability error estab is defined as :

estab =

√√√√ 1
(N − 1)× D

N

∑
t=2

D

∑
i=1

mt
i(xt

i −w t
i )

2 (5.12)
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Figure 5.19: Comparison to Ruder et al. [124] on Alley_2 scene from MPI Sintel dataset
[14]. The rectangles indicate the difference in two adjacent stabilization results. Please

view the supplementary video for better observation.

where N denotes the total frame number of a video output, D denotes the total number

of pixels in one video frame and mt denotes the per-pixel flow weight. This formulation

is similar to Equation (5.6), except that all the temporal loss are summed up for pairs of

consecutive frames in a video. The warped image w t warps the xt−1
out at t− 1 time forward to

t. The ground truth of optical flow and flow weight can be from Flownet2 [61] or MPI Sintel

dataset [14].

Ablation Study on Loss Functions

Sharpness Losses. To quantitatively verify the Sharpness Losses, an autoregressive(AR)-

based Image Sharpness Metric (ARISM) without reference is chosen to assess image sharp-

ness [44]. The ARISM is established on the hypothesis that AR model parameters estimated

from 8-connected neighborhood of one image pixel tend to be very close to each other when

this pixel locates in a comparatively smooth region, otherwise, these parameters are obvi-

ously distinct when this pixel is in a sharp region. The ARISM sharpness score is formulated

as :

ρ = ∑
k∈Ω

θkρk (5.13)

where Ω = {E, C, Ebb, Cbb} and θk are weights to each component. E and C are two classical

metrics to define the difference between maximum and minimum values of AR parameters

at point (i, j) of the input image. Ebb and Cbb are block-based pooling [147] of E and C,

respectively.
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Figure 5.20: Ablation study on sharpness losses of Alley_2 scene from MPI Sintel
dataset [14]. The higher ARISM score is better. The outputs with sharpness losses achieve
highest ARISM scores than those without pixel loss and sharpness losses, which indi-
cates that perceptual losses and pixel loss in proposed sharpness losses both contribute

to reduce blurriness artefacts.

The ARISM has been proved to be robust to assess colour images with no reference which

is suitable to our case since the outputs of video style transfer are colourful and also have

no reference images. Fig. 5.20 shows the scores of each frame in Alley_2 scene (MPI Sintel

dataset) which are obtained from w/ Perceptual Losses + Pixel Loss (aka,Sharpness Losses

blue line) and w/ Perceptual Losses (red line) and w/o Sharpness Losses (magenta line),

and the higher ARISM score is better. The scores of w/ Perceptual Losses + Pixel Loss are

steady around the average score 2.674, while the average score of w/ Perceptual Losses tend

to be decreased from 2.674 to 2.66, and that of w/o Sharpness Losses is close to 2.651. Note

that the scores of w/ Sharpness Losses are always higher than those of w/o Pixel Loss, which

indicates the outputs with both Sharpness Losses contain much less blurriness artefacts than

those without Pixel Loss.

Coherent Losses. The quantitative ablation study on Coherent Losses is given in five test-

ing scenes, which compares stability errors of two groups of temporal losses: multi-frame

RGB-level only and both levels. Table 5.1 shows the detailed stability errors of the baseline

method [68] and two groups. It is noticeable that multi-frame RGB-level only Coherent Loss

contributes to 58.8% improvement compared to the baseline method [68], while multi-frame

Feature-level Coherent Loss contributes further approximate 2.2% improvement which fi-

nally leads to 61.0% improvement in total.
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Figure 5.21: Ablation study on image quality assessment of Alley_2 scene from MPI
Sintel dataset [14]. A lower score indicates better visual image quality. Note that adding
multi-scale scheme (magenta line) causes image quality loss (higher score) compared
to naive method (blue line), while adding incremental mask and multi-frame fusion
(red line and green line) contributes to achieve lower scores than naive method (blue

line).

Ablation Study on Initialization

As mentioned in Section 5.1.1, a set of new mask techniques are proposed to address the

texture discontinuity problem. The detailed analysis is now given on image quality of the

proposed techniques including multi-scale scheme, incremental mask and multi-frame mask

fusion. To fairly compare these techniques, this ablation study follows Section 5.3.1 and it

is categorised into four groups with general Image Quality Assessment (IQA) scores by the

following term proposed in [12]:

Q =
1

Np

Np

∑
i

yi (5.14)

where Np denotes the number of patches which are chosen from the given image, and yi de-

notes the estimated visual qualities of patch i. This IQA score (refer to DIQaM-NR method

in [12]) is chosen as our general image quality metric because it is capable of assessing im-

age quality by coping with several distortion types such as luminance and contrast changes,

compression, Gaussian noise and Rayleigh fading channel. Fig. 5.21 shows the detailed ab-

lation study on proposed mask techniques, and a lower score indicates better visual image

quality. Note that multi-scale scheme only (magenta line) reduces flow untraceable errors

(see Fig. 5.8) but it causes higher scores than naive method (blue line). The incremental mask

technique (red line) helps to achieve lower average scores than naive method (blue line) and
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Table 5.1: Ablation study on Coherent Losses of five testing videos in MPI Sintel
dataset.

Method MPI Sintel Dataset + Woman with A Hat (style)
alley_2 bamboo_2 bandage_1 cave_4 market_2 average improvement

Baseline [68] 0.1055 0.0721 0.0634 0.1206 0.0634 0.0850 *
Multi-frame RGB-Level only 0.0271 0.0317 0.0279 0.0593 0.0290 0.0350 58.8%

Both Levels 0.0243 0.0300 0.0259 0.0574 0.0275 0.0331 61.0%

Table 5.2: Stability errors of per-frame processing methods and the proposed ap-
proach on five testing videos in each dataset.

Method MPI Sintel Dataset + Candy (style) Davis 2017 Dataset + Mondrian (style)
alley_1 bamboo_2 cave_4 market_5 temple_3 dance-flare car-turn parkour soapbox stroller

Johnson et al. [68] 0.0815 0.0791 0.1196 0.1306 0.1450 0.1273 0.1263 0.1301 0.1362 0.1411
Ours 0.0313 0.0356 0.0682 0.0788 0.0825 0.0408 0.0442 0.0485 0.0492 0.0513
Huang et al. [59] 0.0916 0.1011 0.1451 0.1432 0.1444 0.1550 0.1452 0.1543 0.1577 0.1628
Ours 0.0346 0.0439 0.0766 0.0828 0.0838 0.0500 0.0499 0.0586 0.0590 0.0614

w/ multi-scale scheme method (magenta line), and multi-frame mask fusion (green line)

further improves the image quality by decreasing the average score from 30.69 (dashed blue

line) to 29.71 (dashed green line). This observation basically follows the qualitative evalua-

tion in Fig. 5.11.

Quantitative Evaluation in Literatures

The stylized perceptual strokes or patterns in results of different methods are obviously dis-

tinct even for one particular style, which may make the IQA comparison unfair. Thus the de-

tailed comparisons are given on stability error which is invariant to diverse strokes/patterns.

Table 5.2 lists the stability errors of three different approaches at MPI Sintel dataset [14] and

Davis 2017 dataset [118]. The proposed approach takes per-frame stylized results of per-

frame processing methods as inputs and produces the stabilized outputs, thus two compar-

isons are listed in Table 5.2. There are five different scenes chosen from each dataset and

combined with two representative styles. It is noticed that, for all testing videos, the pro-

posed method significantly reduces the stability errors compared to per-frame processing

methods [59, 68].

Table 5.3 lists the stability errors of state-of-the-art method [16] and the proposed ap-

proach. Four representative testing videos in [16] are chosen to compare. All the testing

videos follow the default resolution 640 × 360 in [16]. Using the same per-frame method

[68], the proposed method achieves much lower stability errors than that of Chen et al.’s in

each case. And on the average improvement, the presented method (69.8%) is more compet-

itive than Chen et al.’s method (40.3%).

Table 5.4 lists the stability errors of state-of-the-art methods [125],[95] and the proposed

approach. The testing videos are from 26 scenes in MPI Sintel dataset [14] and 19 scenes in

Davis 2017 dataset [118]. Compared to per-frame processing method in MPI Sintel dataset,
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Table 5.3: Stability errors of state-of-the-art method [16] and ours on four testing
videos. The groundtruth flow and occlusion masks are provided by Flownet2 [61].

*The results are provided by the authors. All the image resolutions are 640× 360.

Method Candy (style) La_muse (style) Statistics
alley_1 ice-age alley_2 child average improvement

per-frame [68] 0.1160 0.0999 0.1367 0.1572 0.12745 *
Chen et al.* [16] 0.0648 0.0549 0.0881 0.0971 0.07622 40.3%

ours 0.0369 0.0408 0.0371 0.0390 0.03845 69.8%

Table 5.4: Average stability errors of state-of-the-art method [125] and the proposed
approach on each dataset.

Method MPI Sintel Dataset + Woman with A Hat (style) Davis 2017 Dataset + Self Portrait 1907 (style)
average stability error improvement average stability error improvement

Johnson et al. [68] 0.1027 * 0.0782 *
Ruder et al.[125] 0.0489 52.38% 0.0430 45.02%

Ours 0.0401 60.98% 0.0358 54.24%

Ruder et al. [125] improves the stability by 52.38% averagely while the proposed method ob-

tains 60.98% improvement in terms of temporal consistency. For Davis 2017 dataset, Ruder

et al. improve the stability errors by 45.02% compared to per-frame processing method [68]

while the proposed approach achieves a higher improvement 54.24%.

Table 5.5 lists the stability errors of state-of-the-art methods and the proposed approach.

The compared methods are verified at 5 different scenes in MPI Sintel dataset [14], which

are used in [57]. All the testing videos are using 1024× 436 resolution, and the groundtruth

optical flow with corresponding masks are all provided from MPI Sintel dataset [14]. The

stability errors are re-calculated. As the dataset only provides the forward direction of opti-

cal flow, the image w t in Equation (5.12) warps per-frame stylized result f t+1
s at time t + 1

back to t. Our method may achieve higher average stability errors than Ruder et al. [124] but

the outputs of the proposed approach obtain high quality results by mitigating effectively

ghosting artefacts and it is much faster (1.8 seconds per frame) than theirs (3-5 minutes per

frame or dozens of seconds even using loose constraints). Moreover, the proposed method

achieves higher improvement (28.1%) than Lai et al. [85] (2.66%), Huang et al. [57] (21.3%)

and Ruder et al. [125] (22.6%). Our method also achieves average lower stability errors than

Li et al. [95].

5.4 Summary

This chapter proposes a novel framework to reduce the flow errors which includes multi-

scale mask fusion, incremental mask, multi-frame mask fusion and a new initialization for

optimization-based network. These mask techniques reduce significantly both the flow un-

traceable errors and flow traceable errors (ghosting artefacts). The new initialization ensures
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Table 5.5: Stability errors of state-of-the-art methods and ours on five testing videos
in MPI Sintel dataset. The groundtruth flow and occlusion masks are provided by
MPI Sintel dataset. *The results are provided by the authors. All the image resolutions
are 1024× 436. †The baseline of Li et al. [95] and Ruder et al. [124] is not [68] thus it

does not have improvement.

Method MPI Sintel Dataset + Candy (style)
alley_2 ambush_5 bandage_2 market_6 temple_2 average improvement

Johnson et al. [68] 0.0987 0.1487 0.0862 0.1291 0.1119 0.11492 *
Lai et al. * [85] 0.0959 0.1467 0.0839 0.1249 0.1079 0.11186 2.66%

Huang et al.* [57] 0.0694 0.1171 0.0695 0.1093 0.0867 0.0904 21.3%
Ruder et al.* [125] 0.0697 0.1142 0.0657 0.1076 0.0873 0.0889 22.6%

Li et al.* †[95] 0.0692 0.1061 0.0661 0.0941 0.0820 0.0835 *
Ours 0.0589 0.1097 0.0610 0.1043 0.0794 0.08266 28.1%

Ruder et al.†[124] 0.0572 0.1099 0.0471 0.0908 0.0726 0.07552 *

that the proposed approach produces stable video outputs even in large motion and occlu-

sion cases, and it also speeds up the optimization process from minutes per frame to around

seconds per frame. The proposed multi-frame Coherent Losses ensure the temporal con-

sistency between consecutive outputs, and Sharpness Losses effectively mitigate the image

blurriness artefacts during the entire video stabilization process.
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Chapter 6

Deep Normal Transfer for

Bas-relief Modelling with Enriched

Detail and Geometry

Figure 6.1: The upper row shows artistic bas-relief works. The lower row shows digital
bas-relief results produced by the proposed method. Readers are recommended to

view the electronic version for details.

Previous chapters have answered the Questions 1-6, and also achieved the Objectives 1-

6. Now this chapter turns its direction onto NGTS field, especially applying neural style

transfer on geometry surfaces for digital bas-relief generation.

Bas-relief, a special type of sculpture that figures are slightly emerged from a background,

is a bridge between 2D drawings and 3D sculptures. Bas-relief has received considerable
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attentions in recent years since it can be viewed from many different angles without causing

distortion of the figures. Due to this desirable intrinsic nature, bas-reliefs as an art form

has been very popular since prehistorical time [86]. They are now treated as either a single

piece of artwork or decorations for walls, monuments, furniture, medals, potteries etc. In

recent years, more and more researchers in Computer Graphics have developed approaches

to fulfill the stylistic design purpose of bas-reliefs. Fig. 6.1 shows a couple of real bas-relief

examples designed by artists and digital ones generated by the framework described in this

chapter. Please note the fine details of the bas-relief examples in Fig. 6.1.

Detail and geometry richness is an essential key to artistic creations. Missing any of them,

the generated bas-relief will be impossible to convey the ideas from the artists. For example,

the relief in the right of Fig. 6.1, the scaly textures and petal details present realistic fish and

lotus flowers. The display of complex geometry shapes and capture of such realistic fish in

motion make them stand out artistically.

In general, digital bas-reliefs come from two types of sources: 2D images and 3D models.

Methods based on natural images have ill-posed problems ([172][42]) in nature, and the

approaches based on 3D models mainly focus on designing sophisticated non-linear depth

compression algorithms which typically incur a high computational cost. Some recent works

(e.g.,[63, 64, 156]) attempt to simplify the bas-relief modelling problem by working on the

normal images which contain both pixel-level detailed appearance (2D information) and

the normal information of the geometry leading to stereoscopic perception (3D look). The

bas-reliefs are modelled in normal image space rather than in object space, which solves

the ill-posed problems that other image-based approaches suffer and removes the need of

sophisticated depth compression algorithms.

Realistic bas-reliefs should present both detailed appearances and stereoscopic percep-

tion. For detail transfer, existing works ([63, 64]) tend to rely on straightforward image

processing techniques like cut-and-paste and decompose-and-compose, which often lead to

imperfect composition results. For example, the cut-and-paste operation cannot preserve

the normals of the target. The decompose-and-compose [131, 132] operation requires larger

detail patches than target patches while it cannot manipulate target surfaces or cause scal-

ing issue for textures. For geometry preservation, existing methods (e.g., [156]) decompose

the normal field into a base layer and a detail layer by directly subtracting the base normal

value from the original normal, which causes unexpected triangle distortions in the resultant

bas-reliefs.
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Figure 6.2: The overview of the proposed approach. The proposed method contains
three stages: normal transfer, normal decomposition and bas-relief modelling. Normal
transfer completes the task that transfers the fine details from source normal to target
normal; Normal decomposition creates structure normal and detail normal with en-
hanced geometry properties; Bas-relief modelling constructs bas-relief from structure

and detail normal obtained from normal decomposition.

In this chapter, a novel bas-relief modelling method is proposed to overcome the above-

mentioned issues, and produces bas-reliefs with rich details as well as preserving the ge-

ometry intact. Inspired by image style transfer [37], a semantic neural network of normal

transfer is proposed that treats detail transfer as a style transfer problem. The proposed

network is capable of transferring the fine details from a source normal image to the target

normals in arbitrary shapes and scales. In addition, to generate transferred details on de-

sired areas of the normal images, a visual attention mechanism [151, 152] and object parsing

[101] are adopted to predict the corresponding masks. Rich texture areas and desired target

areas are extracted from input normals into masks, and these masks are used in the proposed

semantic normal transfer network to produce the transferred normals. For geometry preser-

vation, a normal decomposition scheme based on Domain Transfer Recursive Filter (DTRF)

is proposed to enhance the geometry properties. The local shaping and global blending steps

from [156] are adopted to construct the mesh of a bas-relief from detail and structure layers

obtained by normal decomposition.

The overview of the proposed framework is shown in Fig. 6.2. The digital bas-relief mod-

elling pipeline which takes 3D models as inputs, manipulates normal fields and generates

diverse visual effects of texture transfer, structure and detail preservation. The proposed

semantic neural network of normal transfer facilitates the design and texture transfer of

bas-reliefs and makes the generation process in an efficient and intelligent way. The main

contributions of this chapter are:

• Semantic neural network of normal transfer. The proposed semantic neural network

of normal transfer learns the texture and structure representations, and then recombines

them to generate a new normal image which shows the similar texture patterns of the source

normal image and similar structure surface of the target normal image. It is capable of taking

arbitrary sizes and shapes of normal images as inputs, and then synthesizing them into a

new texture (CTRB7-8, answering to Q6-7, achieving OBJ7).

• Geometry preservation without introducing artefacts. By considering the orientation
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Figure 6.3: The diagram of mask area extraction. The DVA network generates human
eye attention area on elephant’s head which is an identity region with richer details
than its other parts, and the LG-LSTM network segments the elephant into various
regions based on object parts. Then regions exclude head are chosen as target mask.
In general, areas without eye attention are chosen for target normals while highlight
regions are chosen for source normals. For target normals, areas with less details are
more desired as the transferred textures are better presented on these areas. For source

normals, however, areas with highlight attention are more desired.

of vector rotations, the proposed normal decomposition scheme obtains a structure layer

and a detail layer with continuous and more natural edges and shapes, which contribute to

produce artefacts free bas-relief modellings.

6.1 Semantic Neural Normal Transfer

A point in a normal image indicates a normal vector, thus spatial structures and texture

patterns are actually the orientation differences between normal vectors. As far as known,

deep neural networks ([80, 102]) are capable of learning these structures and patterns from

images, which indicates that the orientation differences of normal vectors can be captured

and stored as neural responses in networks. Based on this, a semantic deep neural network

of normal transfer is proposed to accomplish the detail transfer task by learning and recom-

bining spatial structures and texture patterns from input normal images. In addition, Deep

Visual Attention Network (DVA) [151] and LG-LSTM Network [101] are adopted to generate

mask images.

Fig. 6.3 illustrates the basic procedure of extracting areas for masks. The DVA network

produces human eye attention areas for the input normal map, and LG-LSTM network gen-

erates parsing segmentations based on object parts (e.g., head, body and legs etc). Since the

attention areas usually lie on heads or faces [151] which are identity areas with rich details,

thus this feature is able to guide us to extract masks. For example, DVA network produces

highlight area in the elephant normal on its head, while LG-LSTM network generates part

segmentations. For target normals, areas with less details are more desired as transferred

textures are better presented on these areas, thus segmented areas without attention areas

(i.e., regions exclude head in Fig. 6.3) are chosen to be final target mask areas. For source
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Figure 6.4: The overview of the proposed semantic neural normal transfer network.
The network takes source/target normal images and their corresponding masks as
inputs, then computes a new generated normal image with transferred details from

source normal via an optimization process.

normals, in contrast, areas with rich details are more desired, thus highlight areas are seg-

mented as mask areas. To increase the user control on design, the masks can also be manually

segmented by artists.

Fig. 6.4 shows the architecture of the proposed semantic neural network of normal trans-

fer. In this work, the source normal image provides the texture patterns, the target normal

image provides the spatial structures and the pixel-level binary mask images indicate the

regions that are valid for texture transfer. At the beginning of the optimization process, the

target normal image and its corresponding mask, the source normal image and its corre-

sponding mask are passed into the network and their features are learnt in the network.

Then the proposed network starts from the target normal image and gradually synthesizes

it into a new normal result via optimization iterations. This optimization process minimizes

the Euclidean distance between texture and structure representations. For the given source

normal image xtex, target normal image xstr and masks mtex and mstr, the proposed network

searches a new stylized normal image x̂ by minimizing the following loss term:

L(x̂, xstr, xtex, mstr, mtex) = αLstr(x̂, xstr, mstr) + βLtex(x̂, κ, xtex, mtex) + δRtv (6.1)

with:

Rtv = ∑
i,j
((x̂(i,j+1) − x̂(i,j))

2 + (x̂(i+1,j) − x̂(i,j))
2) (6.2)
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where the structure loss Lstr penalizes the difference of valid structure representations be-

tween xstr and x̂; the texture loss Ltex penalizes the difference of valid texture representa-

tions between xtex and x̂. To encourage the spatial smoothness in the generated image x̂, a

total variation regularization is added in the proposed network. α and β denote the weights

to balance the structure component and texture component of the stylized result x̂ while κ

and δ respectively denote the weights of texture scales and smoothness.

Let the matrix φj(·) ∈ RNj×Mj denotes the vectorized feature maps representing the neu-

ral responses in a layer j where Nj is the number of channels and Mj is Height×Width of

the corresponding feature maps, and the mask mstr indicates the valid regions for structure

preservation. The structure loss Lstr is defined as the mean square error between the two

valid feature representations φj(xstr) and φj(x̂) in the masked area:

Lstr(x̂, xstr, mstr) = ∑
j∈Js

mstr · (φj(xstr)− φj(x̂))2 (6.3)

where Js denotes the set of layers in a pre-trained VGG-19 network [136] in which the struc-

ture loss is computed. Gatys et al. [35] have discovered that the Gram-based correlations of

neural responses can be exploited as the texture representations. Hence, the texture loss Ltex

is denoted as the squared Euclidean distance between the scaled texture normal representa-

tion κ · xtex and the generated new normal representation x̂:

Ltex(x̂, κ, xtex, mtex) = ∑
j∈Jt

κ ·mtex · (ψ(φj(κ · xtex))− ψ(φj(x̂)))2
(6.4)

where Jt denotes the set of layers in the pre-trained VGG network in which the texture loss

is computed, ψ(φj(·)) = φj(·) · φj(·)T ∈ RNj×Nj is the Gramian Matrix [35], which is used to

represent the texture information.

6.2 Image-based Normal Decomposition

Normal decomposition aims to extract a structure layer Ls and a detail layer Ld from the

original normal field Lo. Generally, the structure layer Ls is achieved by applying a normal

filtering to smooth Lo, and Ld is obtained by subtracting Ls from Lo [156]. However, the

detail layer actually presents the orientation differences between normal vectors in Ls and

Lo. Thus the idea [64] considering orientation on normal subtraction is adopted in the pro-

posed normal decomposition scheme, and it utilizes an edge-preserving technique Domain

Transfer Recursive Filter [34] to extract the structure layer. Let P(i,j) and P(i,j−1) denote two
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Figure 6.5: One example of the proposed normal decomposition results {σs = 10, σr =
1.0} and the detail normal is enhanced by increasing brightness and contrast.

Figure 6.6: Demonstration of DTRF and BF in computing values of edge points. The
blue points are assumed as edge points while other points are non-edge points. The

point P(i,j) is the current point computed by Equation (6.5).

adjacent points in a normal image I, the result J(P(i,j)) of DTRF in [34] is defined as:

J(P(i,j)) =
1

Kp

c

∑
k=1

(1− ad) · Ik(P(i,j)) + ad · Jk(P(i−1,j)) (6.5)

where a = exp(−
√

2/σs) and d = 1 + σs
σr
|I(P(i,j)) − I(P(i−1,j))|. σs and σr are respectively

standard deviation and deviation range. Kp denotes the scaling factor that normalizes J(P(i,j))

to a unit vector and c denotes the channel index (e.g., RGB). To achieve a symmetric response

of Equation (6.5), the DTRF filter is applied twice: for a normal image I, Equation (6.5) is

performed left-to-right (top-to-bottom) and then bottom-to-top (right-to-left). To simplify

the user-specified parameters, σr is set to 1.0 which works well in all experiments.

Fig. 6.5 shows one example using the proposed normal decomposition. The normal de-

composition filter is defined on an edge-preserving technique Domain Transform Recursive

Filter (DTRF) [34] which is capable of working on colour images at arbitrary scales without

the need of resorting to subsampling or quantization. The following paragraph now gives

the reason why DTRF is better than BF [143] for normal smoothing. For DTRF, the output

of Equation (6.5) can only be affected by previous points (e.g., I(P(i−1,j)) and I(P(i,j+1)) for
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Figure 6.7: Structure Normals obtained by DTRF {σs = 4, σr = 0.7} and BF {σs =
3, σr = 0.3}. The zoom-ins of the red rectangle areas indicate that DTRF preserves

better edges than BF in normal smoothing application.

horizontal and vertical directions, respectively) and their own values. We will demonstrate

in horizontal direction as that of vertical direction is similar. For example, in Fig. 6.6 (b),

point P(i−1,j) is a non-edge point and P(i,j) is an edge point, then d in Equation (6.5) increases

compared to that of P(i−1,j) and P(i−2,j) which leads ad to be zero, thus the value I(P(i,j)) is

preserved well and barely affected by its neighbouring non-edge point. In contrast, values

of points on edges computed by BF can still be affected by non-edge points (i.e., points in

white color in 5x5 window size (c)), and this influence could be enhanced after a few iter-

ations, especially when the neighbouring points of an edge point share similar values. For

example, in Fig. 6.7, the edge of top-right corner in the zoom-in of structure normal (BF) is

almost wiped out and updated into the similar color of non-edge neighbouring points.

Detail enhancement. To demonstrate the effectiveness compared to value subtraction,

the comparison of the detail enhancement results obtained by Wei et al. [156] and the pro-

posed normal decomposition is shown in Fig. 6.8. To achieve detail enhancement effect, the

detail layer is simply enhanced via increasing brightness and contrast. Note that the detail

layer looks much more natural than the result of Wei et al. [156] in structure surface and

boundaries between edge and surfaces.

This paragraph now gives the reason why the proposed normal decomposition achieves

more natural bas-relief modellings than Wei et al. [156]. The orientation for the normal sub-

traction is taken into account. Each point in the normal image indicates a normal vector.

Thus the normal differences between two points in base and original normal are actually

orientation differences which should follow the vector rotation. As the orientations of the

corresponding points in base and original normal field are continuous, the orientations of

new vectors computed have the property of continuity as well. Therefore, the detail layer

containing those orientation differences gives continuous and reasonable edges and surfaces

in image space. Wei et al. [156] perform normal decomposition on mesh level via a vector
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Figure 6.8: Comparison of normal decomposition between Wei et al. [156] and the
proposed method. The proposed normal decomposition {σs = 10, σr = 1.0} extracts
details based on normal orientations and structure surface information as well, while
Wei et al. [156] only obtain details which may damage the structure surface when detail

enhancement is applied (see the zoom-ins of the red rectangle areas).

length threshold θ which follows a certain Gaussian distribution, then the small triangles

with points having shorter vector length are remained in the detail layer (c.f. the orange rect-

angle shown in the bottom-middle of Fig. 6.8). However, the orientations between remained

neighbour triangles are not continuous which leads to unexpected triangle distortions and

damages the structure surface in bas-relief modelling results when detail enhancement is

applied (c.f. the red and green rectangles in Fig. 6.8). The proposed normal decomposition

has no such damage.

6.3 Bas-relief Modelling

In this section, the bas-relief model is constructed on the decomposed structure normal map

Ls and detail normal map Ld. To generate the surface from decomposed normals, the idea

from [156] is adopted, which regards the mesh construction as an optimization problem.

During each iteration, the generalized SfG [165] technique firstly splits current mesh into

quadrangular faces according to the normal orientation of Ls and Ld, then stitches all the

disconnected faces together to form a complete surface. The entire bas-relief modelling is
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Figure 6.9: The overflow of bas-relief modelling. In the local shaping step, each face
(represented with the same colour edges and a normal vector) is projected according
to its transferred normal vector. A vertex may be spit into two or four vertices, which
are represented in the same colour. In the global blending step, new vertex positions
(marked as hollow circles) are calculated by minimizing the total energy (Equation
(6.6)). These vertices are re-organized in originally connected way to form an updated

surface. Then, the iteration on the updated surface is repeated until it is converged.

proceeded in two steps: local shaping (split) and global blending (stitch) (shown in Fig. 6.9).

Let fo denotes the expected output mesh, fs and fd denote the desired structure and

detail, and h f denotes the expected fixed overall height, then the total energy of bas-relief

modelling is formed as:

E( fo, fs, fd, hu, h f ) = Es( fo, fs) + λaEd( fo, fd) + λbE f ( fo, h f ) (6.6)

where Es( fo, fs) = ‖ fo − fs‖2 is the energy function that minimizes the difference be-

tween output faces fo and structure faces fs which aims to preserve the structure of trans-

ferred normal. Es( fo, fd) = ‖ fo − fd‖2 aims to preserve the details of transferred normal.

E f ( fo, h f ) =
∥∥∥h fo − h f

∥∥∥2
is to control the overall fixed height of relief. λa is the weight to

recover the geometry details, and λb affects the style of the resulting bas-relief (roundness or

flatness), and larger value of λb means flatter style.

6.4 Implementation Details

The normal computation and bas-relief modelling is implemented using C++ and OpenGL,

and the normal transfer is implemented using Pytorch 1.3.1 with CUDA 10.0. All the exper-

iments are performed on a desktop PC with two 2.10GHz Intel(R) Xeon(R) Platinum 8160T

CPU, 256 GB RAM and two NVIDIA TITAN RTX graphics card. A user-friendly GUI is

created. The proposed method is tested on a set of models with detail enhancement, and

transfers texture details to various models in different scales and arbitrary shapes, which

demonstrates its capability and effectiveness of diverse styles.
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(a) Owl transfer on Bunny.

(b) Turtle transfer on Pillow.

Figure 6.10: Examples of transfer results and their corresponding generated bas-reliefs
based on regular shapes of source and target normal images.

Parameters. For mask generation, the pre-trained models of [101, 151] provided by au-

thors are utilized in mask generation. Since the pre-trained model of [101] is only trained on

images with entire animal bodies, the segmented results for the source normals are not clear

as target normals and could be arbitrary shapes like owl shown in Fig. 6.2. For normal trans-

fer, the proposed network has four parameters: {α, β, σ, κ} where they respectively control

the structure preservation, texture preservation, texture scales and smoothness. Specifically,

the ratio α/β presents the emphasis on either reconstructing the structures or the texture pat-

terns. A larger ratio α/β indicates the structure identity of target normal in the synthesized

result is strongly preserved, and a smaller ratio α/β indicates the texture patterns of source

normal are effectively presented in the synthesized result. For a specific pair of source and

target normals, user can adjust the trade-off between structure identity and texture patterns

to create visually desired styles. For normal decomposition, the proposed method has one

user-specified parameter σs which is the weight of structure preservation.

For bas-relief modelling, the proposed method has three parameters: {λa, λb, h f } where

they are the weights of geometry preservation, flatness and fixed relief height, respectively.

The normal image resolution for normal transfer and bas-relief modelling is fixed to 700×

700. To reduce the number of user-specified parameters, the settings are followings: {α =

1e0, β = 1e6, δ = 1e − 3} and {relu4_2} for structure layers, and {relu1_1, relu2_1, relu3_1,

relu4_1 and relu5_1} for texture layers which are default settings([37]) in normal transfer
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(a) Turtle transfer on Buddha.

(b) Dragon transfer on Bunny.

Figure 6.11: Example of transfer results and their corresponding generated bas-reliefs
based on arbitrary shapes of source and target normal images.

stage.

6.5 Results and Analysis

6.5.1 Detail transfer of Bas-relief Modelling

One advantage of the proposed method is the detail transfer on normal field, which is capa-

ble of transferring vivid texture patterns from one normal image to another. Unlike existing

cut-and-paste technology in [63], the proposed approach learns the texture patterns from

target normal images and transfers them onto source normal images in arbitrary shapes and

multiple scales.

Regular shapes. Fig. 6.10 demonstrates that the proposed method transfers the partial

texture details of Turtle shell onto the round belly shape of Buddha and a rectangle-like

shape of Pillow. The parameters are {κ = 0.4, λa = 2, λb = 0.05, h f = 0.5}.

Arbitrary shapes. Besides the regular shape, the proposed method still deals with ar-

bitrary shapes as shown in Fig. 6.11. The texture details of the Owl and the Dragon are

transferred to the body of the Bunny without any distortion. The parameters are {λa = 2,

λb = 0.05, h f = 0.5 }. The masks of buddha and bunny are extracted in photoshop.
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(a) Source normal and target normal.

(b) Turtle transfer on Elephant (κ = 1.0).

(c) Turtle transfer on Elephant (κ = 0.5).

(d) Turtle transfer on Elephant (κ = 0.25).

Figure 6.12: An example of detail transfer results with multi-scale texture features.

Multiscales. The proposed work is able to transfer different scales of details to the same

target model by simply tuning one hyperparameter κ for texture scales during optimization

process as shown in Fig. 6.12. The parameters {λa = 2, λb = 0.05, h f = 0.5}.
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Figure 6.13: The proposed normal decomposition results with different σs values. The
first column is the original normal map as input. Results from the second column show

the structure normals (bottom row) and corresponding detail normals (top row).

Figure 6.14: Analysis of parameters λa, λb and h f in Bas-relief modelling. In the left,
the images are original normal map, structure normal map and detail normal map
enhanced in each column. The first row shows that a larger λa value would enhance
the detail preservation in relief result {λb = 0.5, h f = 0.1}. The second row shows
that a larger λb value would produce flatter relief results {λa = 1.5, h f = 0.3}. The
bottom row shows that a larger h f value would increase the height of relief results

{λa = 2, λb = 1.0}.

6.5.2 Parameter σs for Normal Decomposition

Fig. 6.13 shows the influence of parameter σs on the proposed normal decomposition. As

can be seen, the structure normal becomes smoother along with the increase of σs which pre-

serves clearer details in detail normal. Thus, a larger σs value captures more details while

preserving less structure information, and a lower σs value ignores some details while pre-

serving more structure information. The σs values are chosen between 10 and 20 in all ex-

periments.
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Figure 6.15: Comparison to state-of-the-art methods with detail enhancement on stan-
dard thickness.The images in the first column is the original Feline mesh and Feline
normal field, then the bas-relief results on the right columns follow the order: Weyrich
et al. [159], Sun et al. [139], Ji et al. [63], Schüller et al. [127], Wei et al. [156] and ours
{λa = 5, λb = 1.5, h f = 0.1}. Readers are recommended to view the electronic version

for more clear details.

6.5.3 Hyperparameters for Bas-relief Modelling

Fig. 6.14 shows how to tune the hyperparameters in the bas-relief modelling to get desired

visual effects. For geometry preservation, a larger λa preserves surface details more clearly

and even enhances it in an over-compressed case. A larger λb value produces a flatter bas-

relief while a smaller one generates a round style of a model. Parameter h f determines the

overall height of the produced bas-reliefs.

6.5.4 Comparisons to previous literature methods

Comparison to state-of-the-art methods with detail enhancement. For fair comparison of

the bas-relief results, a linear scaling as post-processing step is adopted from [156], which

aims to make sure the generated bas-reliefs share same height since these approaches usu-

ally do not control their depth exactly. Additionally, hyper-parameters for each method are

carefully fine-tuned to show their best visual appearance under the same lighting environ-

ment and height compression. The proposed approach is compared with five state-of-the-art

bas-relief modelling methods in a flatten style. All the produced results share some similari-

ties, and details on Feline model are preserved well, which are shown in Fig. 6.15. However,

the proposed approach {λa = 5, λb = 1.5, h f = 0.1} produces more continuous and obvious

edges (c.f. red rectangles) and natural shape surface (c.f. green rectangles) than others.
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Figure 6.16: Comparison on detail transfer between Ji et al. and ours {λa = 5, λb = 0.05,
h f = 3}.

Comparison on detail transfer between Ji et al. [63] and the proposed method. Fig. 6.16

shows the detail transfer comparison. Ji et al. [63] proposed a normal-based model method

which constructed reliefs from normal images as well. However, their method utilized the

cut-and-paste operation on the image domain to achieve detail transfer results which in-

evitably covered the original surface structures and details of target normal images. The

proposed approach transfers the texture patterns to target normals while preserving origi-

nal geometric property. As can be seen in Fig. 6.16, our result not only preserves well in the

surface structures but also produces turtle textures spreading along with the detailed lines

and surface of a human hand.

6.5.5 Time Consumption

In general, the proposed approach contains three stages which are normal transfer, normal

decomposition and bas-relief modelling. The normal maps of 3D input meshes are fed into

the proposed semantic neural network in normal transfer stage. This stage generates syn-

thesized normal images by running on two NVIDIA TITAN RTX graphics card. Next, the

transferred normal result is decomposed into structure normal and detail normal via the

proposed normal decomposition operator. Finally, the bas-relief modelling stage—surfaces

are generated based on the normal images produced by previous stage. For typical models

in this work, the time performance of three stages are recorded, where stage 2 and 3 are im-

plemented on CPU while stage 1 on GPU. Time cost of experiments in figure 6.10, 6.11 and



104
Chapter 6. Deep Normal Transfer for Bas-relief Modelling with Enriched Detail and

Geometry

Table 6.1: Time consumption (seconds). Here shows the time occupation for typical
bas-relief results.

Models Stage 1 Stage 2 Stage 3 Totalnormal transfer normal decomposition bas-relief modelling
Buddha 110.78 16.36 47.98 175.12
Pillow 110.28 15.88 35.70 161.86
Bunny(Owl) 110.56 16.07 43.83 170.46
Bunny(Dragon) 109.08 16.15 43.86 109.09
Elephant(κ=1.0) 109.00 24.37 32.58 165.95
Elephant(κ=0.5) 109.57 19.58 36.25 165.40
Elephant(κ=0.25) 109.39 21.31 36.03 166.73

6.12 can be found in Table 6.1.

Limitation. The proposed current semantic normal transfer method is a CNN network

which regards the texture transformation as an online optimization problem (without any

training process). It runs around 110 seconds in execution time for two 700× 700 normal

images which is slow in practice. To speed up the process, the optimization process is rec-

ommended to be replaced with feed-forward networks which may achieve real-time perfor-

mance. The details on feed-forward networks can be found in these related works ([17, 68,

146]).

6.6 Summary

This chapter presents a normal based bas-relief modelling method. To enrich the detailed

features, a semantic neural network of normal transfer is developed, which learns distribu-

tions of texture patterns and structure details from both source and target normal images re-

spectively. Then a new normal image combining these distributions is generated by an opti-

mization process. Unlike previous normal editing methods, the proposed work is capable of

learning the texture patterns from the source normal images and transferring them onto the

target normal images in arbitrary shapes and multiple scales. To preserve geometric prop-

erties, a normal decomposition scheme is presented to generate bas-relief results free from

artefacts. A number of experimental results show that the proposed method produces rea-

sonable and pleasant bas-reliefs with enriched details and preserved geometry. Our future

work will focus on speeding up the pipeline as the proposed current semantic normal trans-

fer network uses a slow optimization process. A promising solution is to use feed-forward

networks instead of optimization process, which will save time for texture transformation.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

This thesis has focused on applying Neural Artistic Style Transfer on a few related computer

vision research fields such as Neural Photo Style Transfer, Neural Video Style Transfer and

Neural Geometry Texture Synthesis. It starts from Chapter 2 Literature Reviews, which re-

views state-of-the-art methods on NST, analyses the pros/cons of existing approaches and

summarizes the factors that influence the performance on different research areas, e.g., pho-

torealism of NPST, stability of NVST and capability of NGTS (OBJ1).

In Chapter 3, the content-mismatching and the photorealism problems of NPST (Q1-2)

have been solved by proposing a similarity loss function and a Style Fusion Model (SFM).

The similarity loss terms in style transformation network prevents geometric mismatching

(OBJ2, CTRB1) between content and style reference inputs, and the SFM utilizes edge-

preserving filter to reduce distortion artefacts (OBJ3, CTRB2).

In Chapter 4, a fast solution of NPST (OBJ4) is proposed by integrating prior similarity

loss term and SFM into a feed-forward network based NAST method (Q3), which proves

that representative NAST methods can be transformed into NPST methods (CTRB3-4).

In Chapter 5, the ghosting and flickering artefacts of NVST are solved by a novel optimization-

based framework in an arbitrary-style-per-network fashion (OBJ6, Q4-5), which is capable

of reducing flow errors and generating stable video stylization results in large motions and

strong occlusion cases (OBJ5, CTRB5). The flow errors are filtered out by a set of mask tech-

niques and the temporal consistency are enhanced by mutli-frame RGB-level and Feature-

level Coherent Losses. The proposed approach also speeds up the optimization-based NVST

from minutes per frame to seconds per frame via a new initialization (CTRB6).

In Chapter 6, the extension of NST on geometry texture synthesis has been proved to

be successful on digital bas-relief modeling (Q6, CTRB7). The proposed semantic neural

normal transfer network is able to enrich details in bas-relief design (OBJ7) by synthesizing
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new texture patterns from a style reference normal image (Q7, CTRB8) onto desired content

inputs via an automatically attention-based mask technique.

7.2 Future Works

In the previous chapters, this thesis has investigated into NPST, NVST and NGTS, and pro-

poses a few novel methods to achieve OBJ1-7 with CTRB1-8, which proves related research

fields benefits from integrating NST into their frameworks. In this section, a further possible

step for NST extension has been made which considers to synthesize non-stationary textures

on 3D mesh surfaces in an efficient way (CHAL8).

7.2.1 Motivation

Since the convolutional neural networks succeed in image classification task [80], it has been

applied into vast research fields including geometry processing which inspires a new way

to approach geometry problems. The challenges of geometry processing using deep neural

networks lie in the irregular and unordered 3D representations. To tackle these challenges,

Li et al. [96] and Hancoka et al. [48] have developed deep networks on manipulating point

clouds and meshes for classification and segmentation tasks. However, as a fundamen-

tal topic, mesh generation and surface synthesis through deep networks have not attracted

much attention in computer graphics.

7.2.2 Potential Solution

Based on the brief literature reviews in Section 1.2 in Introduction, a few factors should be

considered: 1. parameterization should be avoided as much as possible as the distortion

is inevitable if arbitrary textures are considered for synthesis on surfaces; 2. non-stationary

texture synthesis still remains a challenge even using deep neural networks; 3. arbitrary-

texture-per-network is more practical for geometry texture synthesis.

Texture synthesis on surfaces via multi-view rendering seems a potential solution as no

parameterization is part of solution. In addition, non-stationary texture synthesis requires

global structures of reference inputs to be learned and transferred to target mesh surfaces,

thus coarse-to-fine rendering scheme could be a key to solve this problem. For example,

coarse level is responsible to synthesize the global structure information of the reference

texture patterns captured by deep features to target mesh, and fine level takes care of local

texture synthesis on target mesh, thus the camera numbers of coarse level is less than next

finer level. The inputs to neural networks could be a target mesh and reference geometry
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images like normal image since Chapter 6 has proved that normal images can be applied

for texture synthesis using NST. As for arbitrary-texture-per-network, an encoder-decoder

network plus loss network (e.g., loss network in [68]) architecture could be useful when the

coarse-to-fine mutli-view rendering images of target mesh are fed into loss network as con-

tent representations, and an arbitrary texture image can be regarded as conditional input

into latent vector of target mesh and their deep second order statistics (e.g., Gram Matrix)

captured by loss network can be style representations. During training, the decoder aims

to update the offsets of target mesh vertices, which will be added into original vertex posi-

tions to form desired textures on surfaces by minimizing the Gram Loss computed in loss

network.

In summary, a potential system overview could be described as followings:

1. The inputs are a target mesh without details on surfaces and a reference texture normal

image;

2. During training, the pipeline consists of two encoders (e.g., one mesh encoder and

one image encoder), one decoder and one loss network (e.g., a pre-trained VGG network)

where the mesh vertex positions and reference images are separately encoded into latent

vectors, decoder is responsible to generate offsets for each vertices, thus the output of de-

coder plus original vertex positions forms the synthesized textures. While at test time, only

two encoders and one decoder are utilized to synthesize textures;

3. Before training, the camera position and scale of each view of mesh are pre-computed.

Thus during training, these rendered views by a differentiable renderer are fed into loss

network along with the random cropped regions of the reference normal image, where the

coarse-level views are paired with the full reference image, mid-level views are paired with

random cropped large regions of the reference image, and fine-level views are paired with

random cropped small regions of the reference image;

4. The loss terms could consist of a KL loss and regularization for the mesh encoder, a

Gram loss for the texture synthesis in loss network, and a normal loss to ensure the vertex

won’t be changed too much;

5. The image encoder could be the encoder of AdaIN [59] which scales the mesh input

with standard deviation and shifts it with mean;

6. After training, the potential network could synthesize texture all over the target mesh

in real-time.
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