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Abstract. Assessing the degree of disease severity in biomedical im-
ages is a task similar to standard classification but constrained by an
underlying structure in the label space. Such a structure reflects the
monotonic relationship between different disease grades. In this paper,
we propose a straightforward approach to enforce this constraint for the
task of predicting Diabetic Retinopathy (DR) severity from eye fun-
dus images based on the well-known notion of Cost-Sensitive classifica-
tion. We expand standard classification losses with an extra term that
acts as a regularizer, imposing greater penalties on predicted grades
when they are farther away from the true grade associated to a par-
ticular image. Furthermore, we show how to adapt our method to the
modelling of label noise in each of the sub-problems associated to DR
grading, an approach we refer to as Atomic Sub-Task modeling. This
yields models that can implicitly take into account the inherent noise
present in DR grade annotations. Our experimental analysis on sev-
eral public datasets reveals that, when a standard Convolutional Neu-
ral Network is trained using this simple strategy, improvements of 3-
5% of quadratic-weighted kappa scores can be achieved at a negligi-
ble computational cost. Code to reproduce our results is released at
github.com/agaldran/cost_sensitive_loss_classification.
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1 Introduction

Diabetes is regarded as a global eye health issue, with a steadily increasing
world-wide affected population, expected to reach 630 million individuals by
2045 [1]. Diabetic Retinopathy (DR) is a complication of standard diabetes,
caused by damage to vasculature within the retina. DR shows early signs in the
form of swelling micro-lesions that destroy small vessels and release blood into
the retina. Advanced DR stages are characterized by the appearance of more
noticeable symptoms, e.g. proliferation of neo-vessels, leading to the detachment
of the retinal layer and eventually permanent sight loss.

Retinal images acquired with fundus cameras are the tool of choice for dis-
covering these early symptoms, representing an effective diagnostic tool suitable
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(a)

Fig. 1. Images from the Messidor-2 dataset illustrating the progressive behavior of DR.
(a) Grade 1 (Mild NPDR): only few microaneurysms can be found (b) Grade 2 (Moder-
ate NPDR): Presence of multiple microaneurysms, blot hemorrhages, venous beading,
and/or cotton wool spots (c) Grade 3 (Severe NPDR): Micro-aneurysms if 4 quadrants
of the retina, cotton wool spots, venous beading, severe intra-retinal microvascular
abnormalities. (d) Grade 4 (PDR): Neovascularization, vitreous hemorrhages.

for automatic diagnostic systems [19]. In this context, and with the advent of
Deep Learning in the last decade, a wide set of techniques has been proposed in
recent years [9J2/6]. However, the vast majority of these works are designed for
the screening task, i.e. distinguishing healthy individuals from patients at any
stage of risk. Due to its difficulty, fewer works have addressed the task of DR
grading, consisting of classifying an eye fundus image into one of the five cate-
gories proposed by the American Academy of Ophthalmology [21], illustrated in
Fig.[1] In addition, most recent DR grading techniques [TIIT2JT6] have focused on
scaling up existing Convolutional Neural Networks by considering larger/better
databases, but only a few works addressed the design of customized loss functions
that are more suitable for this task, which is the goal of this paper.

Cost-Sensitive classifiers are known to be useful for addressing two of the
main challenges related to DR grading. First, they allow to model the underlying
structure of an heterogeneous label space [TYI5I3]. Second, they are beneficial for
dealing with severely class-imbalanced scenarios [I7J24]. Despite this, to the best
of our knowledge, no previous work has explored Cost-Sensitive loss minimization
approaches in the context of DR grading from eye fundus images.

In this paper, we present a straightforward approach for integrating Cost-
Sensitive classification constraints in the task of DR grading from retinal images.
We choose to introduce these constraints by attaching an auxiliary Cost-Sensitive
loss term to popular miss-classification error functions, and by analyzing the im-
pact of this process in the training of a standard CNN. In addition, we illustrate
how to adapt our method to the modeling of label noise in each of the sub-
problems associated to DR grading, an approach we refer to as Atomic Sub-Task
modeling. We conduct a series of careful experiments demonstrating that ex-
panding well-known loss functions with a Cost-Sensitive term brings noticeable
performance increases, and that sub-task modeling leads to learning models that
behave more similarly to human annotators.



Title Suppressed Due to Excessive Length 3

2 Methodology

In this section we first describe our approach to build Cost-Sensitive (CS) clas-
sifiers, and the loss functions we select as baselines, to which we will add a
CS-regularizing term. We then show how CS can be employed to model label
noise for DR grading problems, and detail the training process we followed to
optimize the parameters of our models.

2.1 Cost-Sensitive Regularization

In order to induce a different penalty for each kind of error, let us first consider
the case in which a model U produces a prediction U(z) = § € [0,1] x...x[0,1].
Such prediction is to be compared with the corresponding label y. For the sake
of readability, in the following we will abuse notation and refer by y indistinctly
to an integer label y € L = {1,2,3,4,5} and its one-hot-encoded counterpart
y € {0,1} x ... x {0,1}, which takes a value of 1 in the position corresponding
to y and 0 elsewhere.
Standard loss functions like the cross-entropy error, described by:

n=>5
Lce(9,y) =— Z yi log(7;) (1)

are insensitive to any underlying structure in the label space L. This means
that for a particular example (x,y;), if any permutation is applied on L \ {y;},
the resulting error will remain the same. In order to modify that behavior, we
consider a cost matrix M that encodes a null cost for a prediction such that
§ = y;, but cost that increases along with the distance ||y — ]|

A simple approach to achieve such increasing label-dependent penalty is by
encoding in each row of M those costs, and then computing the scalar product
of ¢ with the row of M corresponding to y, i.e. L(y,9) = (M(y, ), ). However,
due to the high imbalance of the DR grading problem (with typically few exam-
ples of classes DR1, DR3, and DR4) in our experiments we noted that simply
minimizing such quantity would lead to models remaining stuck in local minima
and classifying all images into DR0 and DR2 classes. For this reason, we prefer
to combine a CS term with a base loss as follows:

LE(G,y) = L5, y) + MM P (y,),5), M3 =i —jII3. (2)

In the above equation, we have selected the L?-based ground cost matrix M ()
since it fits nicely with the goal of maximizing quadratic-weighted kappa score,
but other cost matrices could be easily implemented if previous knowledge of the
problem is available to be embedded in the loss function. We give an example of
how to build different penalties in the next section.

As for the base loss, in this paper we consider three different alternatives,
namely the above Cross-Entropy loss together with the Focal Loss and Non-
Uniform Label Smoothing Loss functions. The Focal Loss was introduced for



4 A. Galdran et al.

object detection tasks in [I4], but it has become widely popular in classifica-
tion tasks due to its ability to penalize wrongly miss-classified examples during
training. In a multi-class setting, it is given by the following equation:

n=>5

Lrr(i,y) ==Y yie(l — ;)7 - log(#;), ®3)

=1

being « a weighing factor and y the so-called focusing parameter that penalizes
errors in wrongly classified examples more than errors in correctly classified ones.
Non-Uniform Label Smoothing Loss is a straightforward modification of the
popular Label Smoothing technique in which neighboring labels receive more
probability mass than farther-away ones. This process is described by the fol-

lowing formula [8]:
ENULS(gay) = EC’E(Q& Ga’(y))a (4)

where actual labels are manipulated by means of convolution with a Gaussian
kernel G, resulting in the introduction of lower penalty in neighboring grades and
greater loss value for far away predictions. Differently from the Cross-Entropy
and the Focal loss, the Non-Uniform Label Smoothing strategy is sensitive to the
label space structure. Yet, we hypothesize that further imposing greater penalty
on farther away grades could bring benefits training based on this loss, as well
as the other two above functions. In our experiments, described below, we train
several models by considering £°**¢ to be Log, Lrr, and Lyyrs and varying
the A hyper-parameter from A = 0 (no CS regularization whatsoever) to greater
CS penalty, and observe the resulting performance.

2.2 Atomic Sub-Task Modeling

Annotating retinal images regarding the level of DR severity is know to be a noisy
process, with high rates of inter-observer disagreement [ITI20]. In this paper we
propose to leverage available data regarding the structure of that disagreement
to improve DR grading accuracy. Our hypothesis is that if the kind of noise
affecting labels in the training data can be estimated, we can make a model
aware of such noise via a CS mechanism similar to the one described in eq. .

Specifically, we consider the confusion matrix Mypp: from the left hand side
of eq. . This matrix contains information collected in [II] regarding inter-
observer disagreement between retinal specialists and an adjudicated consensus
during the grading process of their clinical validation dataset. Interestingly, this
matrix conveys not only information about which grades are most likely to be
subject of expert disagreement, but it also tells us which grades are more often
mistaken by which other grades.

To formalize the above, we refer to the task of categorizing an image of actual
DR grade ¢ image into the j-th grade as ¢;;, and we refer to this process as
atomic sub-tasks. For a given grade D,, the amount of images actually belonging
to that grade is s; = 2?2:15 t;j, and normalizing t;; by s; provides an estimate
of t;; = P(D;|D;), which denotes the likelihood that an annotator diagnoses an
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image as grade D; when it actually was of grade D;, as shown in the right hand

side of eq. :

1469 4 5 0 0 0.9940.0030.003 0 0
58 62 5 0 0 0.4640.4960.040 0 0
Mopne = | 22 3118 1 0| My, = |0.1530.0210.819 0.007 0 | (5)
0 0 13361 0 0 0.260 0.720 0.020
0 00 115 0 0 0 0062370937

We assume below that matrices are indexed starting from 0, i.e. 0 < 4,5 < 4.

By observing M, we can draw several conclusions, for example:

— Annotators are likely to be greatly accurate when grading Dy and D4 images,
as derived from ¢y 9 ~ 1 and t4 4 ~ 0.94.

— Around 50% of D; images are likely to be incorrectly labeled (¢1; ~ 0.5).

— Only 8% of incorrectly labeled D; images are likely to be labeled as Ds.

— Approximately 93% of those incorrectly labeled D; images are likely to be
labeled as Dy.

Under the hypothesis that in a dataset labeled by a single annotator the relia-
bility of the annotations will follow a distribution similar to the above, we can
assume, for instance, that such dataset will contain reliable labels concerning Dy
grades. However, we may also assume that when an image has been annotated
as of grade Dy, this is quite likely to be incorrect, and it may well be the case
that such image is actually of grade Dy, since the corresponding atomic sub-task
t10 = P(Dy|D1) holds value comparable to t1; = P(D1|Dy).

Our goal is to impose in our models a penalty on erroneous predictions that
takes into account all the above information. That is, we want to penalize in-
correct predictions when the label is likely to be reliable, but we are willing to
be more tolerant with erroneous predictions if we know the associated label is
unreliable. Embedding this knowledge into a loss function is easily accomplished
using the CS loss formulation as developed in the previous section: we consider
I—M;,,, ineq. , being I the identity matrix. Higher values of ¢;; will result
in lower penalties, whereas lower values lead to a greater penalty.

Note, however, that for grades such that t;; = 0, M, opht» there is no useful
information in terms of relative reliability of these grades, e.g. tg3 = tgs = 0
does not convey the information that it is harder to misdiagnose a Dy images as
D3 than it is to misdiagnose it as D,4. In those situations it might be better to
rely on the penalty imposed by ij from eq. . For this reason, we suggest to
implement an averaged Cost-Sensitive regularizer as:

L, y) = L2(g,y) + (@, M(y,-)), M=M>+I1-M;,)/2 (6)

We now describe the remaining training specifications aside of the loss functions.

2.3 Training Detalils

For analyzing the impact of minimizing CS-regularized loss functions in the
problem of DR grading, we follow the process of varying the A hyper-parameter
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in eq. (2)). For each base loss function, we train a Convolutional Neural Network
(CNN) by setting A = 0 (no regularization), A = 0.1, and A = 1. If the best
performance of these three experiments results from employing A = 1, we set
A = 10 and train the CNN again. This process is repeated until performance
does not improve anymore.

As for the CNN, we select the Resnext50 architecture based on its excel-
lent classification accuracy in other multi-class problems [22], and weights are
initialized from training in the ImageNet dataset. We use Stochastic Gradient
Descent with a batch size of 8, and the learning rate is set to 0.001. Perfor-
mance (quadratic kappa score) is monitored in an independent validation set.
The learning rate is decreased by a factor of 10 whenever performance stag-
nates in the validation set, and the training is stopped after 10 epochs of no
further improvement. In addition, to mitigate the impact of class imbalance, we
oversample minority classes [5].

3 Experimental Validation

In this section we describe the experimental setting we follow in order to validate
our approach: considered datasets, comparing techniques, and numerical results.

3.1 Experimental Details

We consider as our primary dataset the Eyepacs databasrﬂ the largest public
dataset with DR grading labels for DR grading labels. It contains around 80,000
high resolution retinal fundus images (approximately 35,000 are assigned to the
training set, from which we employ 10% for validation, and 55,000 are held out
for testing purposes). The Eyepacs dataset contains a considerable amount of
low quality images and label noise [20]. Therefore, it represents an interesting
test-bed to observe the robustness of DR grading algorithms.

As a secondary test set, we also consider the Messidor-2 dataset [2], which
contains 1748 images corresponding to 874 patients. In this case, we employ the
ground-truth labels released by [I1], available onlineﬂ These labels are extracted
from a process of consensus adjudication of three retinal specialists, and they
are therefore of much better quality than the Eyepacs dataset ground-truth.

For performance assessment, we apply as the main metric of interest the
quadratic-weighted kappa score (quad-kappa), which is typically used to assess
inter-observer variability, and is very popular metric in this task. As further mea-
sures of correlation, we also analyze Average of Classification Accuracy (ACA,
the mean of the diagonal in a normalized confusion matrix [23]) and the Kendall-
7 coefficient. We also report the mean Area Under the Receiver-Operator Curve
in its multi-class extension, after considering each possible class pair[10]. For
statistical testing, expert labels and model predictions in each of both test sets

4 https://www.kaggle.com/c/diabetic-retinopathy-detection
® https://www.kaggle.com/google-brain/messidor2-dr-grades
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quad-kappa mAUC ACA Kendall-7
CE 75.76+ 0.31 87.35+ 0.14 51.32+ 0.44 67.35+ 0.31
CE-CS 77.27+ 0.30 88.42+ 0.14 53.264+ 0.42 69.89+ 0.30
CE-AST 77.39+ 0.29 88.49+ 0.13 54.12+ 0.44 69.25+ 0.30
Focal Loss 74.724+ 0.34 86.63+ 0.16 51.90+ 0.44 65.38+ 0.32
FL-CS 77.38+ 0.31 88.58+ 0.14 54.114+ 0.45 69.45+ 0.30
FL-AST 77.94+ 0.29 88.90+ 0.13 54.71+ 0.43 70.45+ 0.29
NULS 77.094+ 0.30 88.44+ 0.14 53.024+ 0.46 69.47+ 0.29
NULS-CS 77.91+ 0.30 88.82+ 0.14 54.554+ 0.44 70.144 0.30

NULS-AST 78.71+ 0.28 89.05+ 0.13 54.57+ 0.46 71.04+ 0.30

Table 1. Performance comparison when training without regularization, with CS reg-
ularization as in eq. , and with Atomic Sub-Task modeling (AST) as in eq. @, for
the three considered loss functions. Statistically significant results are marked bold.

(Eyepacs and Messidor-2) are bootstrapped [4] (n=1000) in a stratified manner
with respect to the relative presence of DR grades. Performance differences for
each metrics are derived in each bootstrap and p-values are computed for testing
significance. The statistical significance level was set to o = 0.05 in each case.

For comparison purposes, we select three other recent techniques that intro-
duce methods specifically developed to solve the DR grading task: DR|graduate
[3], Bilinear Attention Net for DR Grading (Bira-Net) [23], and Quadratic-
Weighted Kappa Loss (QWKL) [I8].

3.2 Numerical Results

After training a CNN by minimizing each of the three considered base losses
(Cross-Entropy, Focal Loss, and Non-Uniform Label Smoothing) with different
degrees of regularization, we select the best model and compute results first
on the Eyepacs test set. We denote the unregularized models by CE, FL, and
NULS respectively, and their regularized counterparts as CE-CS, FL-CS, and
NULS-CS.

We then select the best hyperparameter setting for each regularized model
(A = 10 in all cases), and retrain the same model but this time using our proposed
Atomic Sub-Task modeling, denoted by an AST suffix in each case. We compile
in Table [1] the obtained results in terms of quadratic k-score, mean AUC, ACA
and Kendall-7, for all the described options.

Finally, we report in table [2 the performance of our best model (using as a
base loss NULS and Atomic Sub-Task modeling) in comparison with the tech-
niques proposed in [3], [18], and [23], in the test set of both Eyepacs and Messidor.
We also provide confusion matrices for the Eyepacs test set in Fig. 2
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DR|graduate [3] QWKL [18] Bira-Net [23] NULS-AST

Eyepacs 74.00/53.6 74.00/n.a. n.a./54.31 78.71+0.28/54.57+0.46
Messidor-2  71.00/59.60 n.a./n.a. n.a./n.a. 79.79+1.03/ 63.41+1.99
Table 2. Performance comparison in terms of quad-kappa/ACA for different methods

when tested on the Eyepacs and Messidor-2 datasets. Models were trained on Eyepacs
and tested on Eyepacs and Messidor (without retraining/fine-tuning).

Qo = N o < Qo —= N o0 Q — N &

£ @ @ X oo £ x @ K@ =~ =< R
T/PA A A AA T/PA A A AA T/PA A A AA
DROEM 16 3 0 0 DROJEE] 6 15 0 0 DROE®@ 2 1 0 o0
DR135[48 17 0 0 DR1 1930 0 0 DRIfER24 8 0 0
DR2 11 25 [49 14 1 DR2 16 4 ] 9 2 DR2 26 13 10 1
DR3 2 5 34 4 DR3 3 1 4347 6 DR3 4 2 39 3
DR4 2 8 22 3335 DR4 0 1 22 19 DR4 7 1 18 24

(a) (b) (c)

Fig. 2. (a)—(c): Normalized confusion matrices corresponding to: (a) the method of
Aratjo et al. [3], (b) Zhao et al. [23], (c) NULS-AST.

4 Discussion and Conclusion

Results on Table [I] clearly show that introducing Cost-Sensitive regularization
results in noticeable improvements, particularly when measuring performance in
terms of quadratic k-score. This is meaningful since the considered cost matrix
was selected so as to quadratically penalize distance in the label space for er-
roneous predictions. Quadratic x-score experimented an improvement ranging
from 3.5% when regularizing the Focal loss to 1% for NULS. This could also be
expected, since NULS already introduces some asymmetry in the way DR grades
are treated. If Atomic Sub-Task modeling is considered, these improvements are
even greater when compared with unregularized counterparts: from an increase
of k score of 4.3% for the Focal Loss to an increase of 2% for NULS. It is also
worth noticing that the confusion matrix resulting from training with Atomic
Sub-Task modeling shows certain similarity with respect to the inter-observer
disagreement matrix in the left-hand side of eq. , specially when compared
with the confusion matrices produced by other techniques, as shown in Fig. .
It should be stressed that performance on Table[I]is not comparable to results
of the competition that published the data. There are several reasons for this: the
heuristics for ranking optimization common to these competitions, or the fact
that participants were allowed to submit predictions on 20% of the testing data
during the competition. In addition, the lack of cross-dataset experimentation
complicates evaluating generalization ability. In contrast, the approach proposed
here is a general improvement over standard techniques, not limited to the DR
grading problem, and which generalizes to other datasets, as Table [2] shows.
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