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Fig. 9. Interpolation between the latent representation of a vessel tree with the optical disk on the left and another with the optical disk on the right.
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Fig. 10. Vessel networks from the first 3 columns (v1 ; v2 and v3 ) of both Figs.
(10a) a (10b) were encoded from test set vessel networks. The vessel network
from the last column (v4 ) is the result of applying the same transformation
between v1 and v2 to v3 . In Fig. (10a), the relationship that was successfully
captured by the model was the increase in the amount of visible vessels. In
Fig. (10b), the true relationship was the change in the position of the optical
disk.

compute a fourth latent representation z22 associated to z21

in the following sense: z22 should have the same relationship
with respect to z21 as z12 has with respect to z11. This means
that the decoded vessel network image should maintain the
optical disk on the right, while showing a larger amount of
visible vessels. We thus apply Eq. (10) to obtain z22, and
synthesize the corresponding vessel network and associated
retinal image. The results of this experiment are shown in
Fig. (10a). As expected, the generated images contained a
more visible vasculature, while the optical disk’s position was
preserved.

In our last experiment, we tested if we were able to
disentangle the latent factors related to the position of the
optical disk. For that, we selected three vessel tree images
od11, od12, and od21 such that: 1) od11 contains the optical
disk to the right; 2) od12 contains the optical disk to the left;
3) od21 contains the optical disk on the left. After application

of the same strategy as before, we should expect to synthesize
a retinal image that preserves the amount of vasculature,
but translates the optical disk to the right. As shown in
Fig. (10b), our model successfully displaced the optical disk
while keeping the amount of visible vessels, implying that it
correctly disentangled the latent space direction related to the
optical disk’s location.

IV. LIMITATIONS AND FUTURE WORK

Generative models are always limited by the information
contained within the training set, and how it captures the
variability of the underlying real world data distribution.
In this sense, the proposed technique was only trained on
614 healthy macula-centered retinal images, extracted from
a single database (Messidor-1). Even with such a relatively
small training set, our technique shows a remarkable capabil-
ity of generating realistic synthetic images that substantially
differ from the examples the system observed during training.
Nevertheless, this reduced training set limits its capability to
generate, e.g., optical disk centered images, or pathological
instances. Overcoming this obstacle is the first natural ex-
tension of our work. A first alternative could be to train a
one-class classifier with synthetic healthy images, and treat
pathology as an anomaly discovery problem. A more general
approach would involve addressing the diagnosing problem by
implementing Class-Conditional Adversarial Models, such as
[34] or [35], in which the training data comes with annotations.
These kind of models can generate points in the data manifold
corresponding to a particular label. In this way, not only
diagnosing systems but many applications can be enhanced
by newly generated images, annotated with information of in-
terest. For instance, a compelling problem to investigate would
be to employ generated retinal images to replace missing
or corrupted images within longitudinal studies. This could
be achieved by means of a model that learns to interpolate
between different time points within a large dataset.

There are other limitations of the proposed approach that
should be object of future research. First, the size of the
synthetic images (256 � 256) is far from the resolution
provided by images produced by current retinal fundus image
acquisition systems. Also, although the generated images and
associated vessel networks have an overall consistent appear-
ance, and they seem to be reasonably useful to train a vessel
segmentation model without manual vessel annotations, the
realism of the synthetic vessel maps still does not reach that
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of real vasculatures. The generated synthetic vessel networks
often exhibit abnormal interruptions, unusual width variation
along the same vessel, and there does not seem to be a clear
distinction between veins and arteries.

Most of the above drawbacks can be attributed to the amount
of available data and computational resource restrictions,
and not to a limitation intrinsic to the proposed technique.
Therefore, in the future, the introduction of clinical labels or
annotations in the context of a large scale high-resolution data
collection will be the first natural extension of our model,
as a part of the more general goal of producing realistic
and interesting synthetic images that can be employed to
train models to solve more complex retinal image analysis
tasks. These may involve locating different areas of the retinal
anatomy, or performing diabetic retinopathy diagnosis, to
name a few.

In general, the availability of an additional set of training
examples that can be efficiently generated on-demand could
greatly impact the size and capacity of the models the reti-
nal image analysis community train. These new annotated
examples can be applied to validate novel retinal image
understanding techniques, or to supplement existing datasets
by expanding them with meaningful data. In addition, the
proposed approach is not limited to retinal imaging. In our
case, we employed the vessel tree as a proxy that serves
as a guide for the model to learn to locate all parts of the
anatomy consistently while generating plausible texture. The
same methodology could be applied to different medical image
analysis problems in which there exists such an intermediate
structure.

V. CONCLUSIONS

In this work, a generative model capable of synthesizing
new vessel networks and corresponding eye fundus images
was presented. This model learns the underlying structure of
the manifold of plausible retinal images from examples of
pairs of vessel networks and eye fundus images . Once trained,
it can generate both synthesized vessel networks and retinal
images, that are shown to contain rich visual information and
to be different from the training examples. The method is
capable of generating realistic vessel geometries and retinal
image texture, while keeping the global structure consistent.

Notably, the user is only required to sample from an N -
dimensional predefined prior Gaussian distribution p(z) to
generate a new pair of images. Additionally, we provided vi-
sual experiments demonstrating that the latent space associated
with our generative model contained a well-defined semantic
structure. Furthermore, our results show that it is possible to
exploit that structure in order to gain more control over its
output.
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