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Graphical abstract 

 

 

Figure 1: Architecture of the proposed prolonged and asymmetric sitting posture 

monitoring system 
Highlights 

 Design and develop new hardware and a novel pressure sensing architecture embedded in the seat 

covering to a) study human sitting biomechanics, b) reduce sensor noise through filtering, c) transfer 

collected data to a cloud using IoT and d) develop a wireless charging facility. Considering the 

manufacturability, customizability and adaptability of the equipment. 

 Classify the level of asymmetry of sitting posture using a rule-based system. 

 Design and develop a new end-point device application that uses IoT to a) summarise and show an 

overview of sitting balance and posture, b) using visual displays that provide sitting information 

including level of asymmetry, active and static sitting and c) deduce a day based summary score. 

 

Abstract— Prolonged asymmetrical sitting is common and can exacerbate musculoskeletal back pain and spinal deformities. 

Monitoring sitting posture can help maintain correct posture and prevent health problems. Currently posture is assessed by expert 

clinicians using subjective visual observation. More objective methods involve the use of a gold-standard motion capture system in 

Laboratories, which is expensive and not widely available. We develop a Smart-Cover, an automatic system to provide real time 

visualization and information about sitting posture. A Sitting Pressure Sensor (SPS) is built using Velostat, conductive fabric and foam 

to collect pressure distribution information within the seat surface. The data are collected from 10 healthy young subjects where each 

subject sits for 30 minutes and are transferred to a cloud server using Internet-of-Things (IoT).  A rule-based classifier is used to 

provide timely notification to users about sitting duration and level of asymmetry. A new end-point device application is developed to 

show sitting balance. Dial based displays show level of asymmetry, active and static sitting, and daily summary score. Our system is 
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user friendly, inexpensive, automatic and quantitative method for evaluating posture in real time, which has the capability of providing 

quantitative information about sitting behaviour. The results show that our system can be used for objective monitoring of sitting 

posture which has medical and social benefits. Smart-Cover can support the management of patients during their rehabilitation by 

monitoring pressure areas and balance when seated. In addition, it offers users at home, schools and offices the means to improve their 

sitting posture. 

 
Index Terms— Wearable Sensors; Prolonged Sitting; Sitting Disease; Posture Monitoring; Pressure Sensors; Sitting Asymmetry; 

Internet of Things; Fuzzy Classifier. 

 

1. Introduction 

ITTING in a straight, upright, symmetrical and stable posture is not only associated with good health, but also depicts a positive 

image of a dynamic person, alongside being a  good practice to avoid the ‘sitting disease’. It has been reported that  43% of 

adults and 83% of students spend more than 10 hours a day seated on a chair [1]. Indeed, prolonged sitting seems to be the new 

norm for many. Significant changes in social behaviours and arrangements, related to one’s work, commute, communication, 

entertainment and home are often leading people to prolonged periods of sitting [2-4]. On the other hand, the benefits of exercise 

are well recognized; but  prolonged sitting has only been associated with a wide range of medical ailments including 

musculoskeletal, cardiovascular, cerebrovascular disease (strokes), type 2 diabetes mellitus, decubitus ulcers, early death and 

some malignancies [4, 5].  

Prolonged sitting results in ergonomic spinal deformity and asymmetry [6]. The risk of pressure ulcer development over one’s 

buttocks is high during prolonged sitting as the soft buttock tissue gets squashed between two hard surfaces: the seat and the 

bones of one’s pelvis [7]. Sitting asymmetry caused by prolonged incorrect posture such as slouching to one side, resting one’s 

chin on a hand or resting on folded arms; leads to one’s spine being bent abnormally. In addition to this keeping one’s arms 

crossed, knees and ankles bent, or carrying thick objects such as wallets or phones in rear pockets, while seated; often results in 

pelvic asymmetry and lack of posture alignment with the rest of the spine. Such ergonomic deformity can result in non-neutral 

spine positioning which in turn might cause spinal muscular spasm and spinal imbalance [6] finally leading to  permanent 

deformity such as scoliosis, lordosis, kyphosis and chronic low back pain [8, 9]. Such postures are not recommended even for 

short time periods. The asymmetry discussed above  results in a reduction in pan-seat contact area [10].   

The economic impact of this is significant. Back pain alone is one of the common causes of absence from work and disability 

worldwide [11].  Back pain increases with age but can occur across all ages. Studies indicate that 7.3% (540 million people) of 

the world population can be affected by it at any time. With an ageing world population this burden is set to get worse in the 

future particularly for low to middle income earners [12]. Although no causal effect of poor posture on low back pain has not 

been proven [13], occupational groups that are more likely to be associated with poor posture and prolonged sitting for several 

hours at a time are more likely to get back pain [14]. 

  The need to assess posture is therefore clear. The methods used however are often subjective and based on visual 

observation by trained practitioners such as physicians, physiotherapists or researchers [15]. They use clinically validated scales 

such as Postural Assessment Scale [16] or Posture Index [17] but interpretation of these is subjective and dependent on visual 

observation, clinical expertise and experience; sometimes resulting in poor inter-rater reliability. In addition, such assessments 

often take place in artificial conditions that are not the norm for the subjects being assessed. Subjects are often assayed in 

laboratories, clinics or hospitals on equipment they are not familiar with [15]. More objective gold-standard benchmarks such as 

a Motion Capture System [18] can analyse posture. This equipment is not widely available as it is expensive and laboratory 

based.  In addition, this requires technically trained clinical staff to operate them. They also require the patients to attend in 

person to dedicated clinics for an assessment. There are other systems in development for posture monitoring. For instance in 

[19], a flexible three layers printed pressure sensing system is proposed, classifying four leaning sitting angles (forward, 

backward, right and left). The top layer is screen printed to form conductive interdigital electrodes on a polyethylene 

terephthalate sheet, a sensing layer is printed on the bottom sheet for pressure sensing and an adhesive layer is used in the middle 

for spacing and adhesion. The polyethylene terephthalate sheet is hard and may be uncomfortable to sit on. In addition, there is 

no information about the durability of the adhesive to repeated mechanical sensor deforming with sitting. In [20], a bank of real-

time textile pressure sensors is introduced as a building block of a sitting posture correction system. The sensors consist of 

conducting Ni-Ti alloy fiber and a pressure-sensitive polyurethane elastomer resulted in reliable capacitance change by an 

applied pressure. Although, the system shows high accuracy and responsiveness, the Ni-Ti alloy fiber elastic material approaches 

its yield stress, the sensitivity may be compromised as the plastic phase begins and the change in separation distance becomes 

less observable and with elastic hysteresis. The elastic hysteresis characteristics change with many parameters (e.g. weight of the 

individual subject, longitudinal uses and many more) which may affect the accuracy. Closer to the proposed system, the authors 

in [21] described a piezoresistive pressure distribution sensor for sitting analysis. Such a sensor is designed with Velostat and 

matrix of electrodes where surfaces are covered with adhesive vinyl films. The sensors are placed on a rigid acrylic board. Sitting 

on an acrylic board will be neither comfortable, nor compatible with conventional chairs. Four load cells are used to assess in 

real-time six different postures of a seated person [22]. The load cells are placed four locations on a chair and a cushion is placed 
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on the top of the load cells. The size of the load cell covers a small area and it measures only the vertical downward pressure. 

The majority of the pressure is distributed outside the load cell region, while the cushion is not rigid. Hence, a slight change in 

the same sitting position may result in a different output signal. Based on these studies, it becomes clear that there still is a need 

to develop innovative ways of evaluating posture that can provide real-time feedback to users. 

In this study, we design, develop and implement a novel user-friendly smart seat cover to monitor sitting posture. The users 

can visually assess and get feedback through a mobile phone application linked via Bluetooth to the seat cover. IoT technology 

enables such data to be gathered, processed, stored and finally visualized on end-point devices such as computers, tablets, smart-

phones etc. 

This study is the improvisation of our previous work [23] that investigated the basic sensor architecture which displayed 

instantaneous values without categorizing level of asymmetry and validation with subjects. This study therefore has three main 

contributions: 

1) Design and develop new hardware and a novel pressure sensing architecture embedded in the seat covering to a) study 

human sitting biomechanics, b) reduce sensor noise through filtering, c) transfer collected data to a cloud using IoT and d) 

develop a wireless charging facility. Considering the manufacturability, customizability and adaptability of the equipment. 

2) Classify the level of asymmetry of sitting posture using a rule-based system. 

3) Design and develop a new end-point device application that uses IoT to a) summarise and show an overview of sitting 

balance and posture, b) using visual displays that provide sitting information including level of asymmetry, active and static 

sitting and c) deduce a day based summary score. 

2. System Architecture and Design  

We combine hardware and software components to develop a dynamic automatic sitting posture monitoring system, Smart-

Cover that is able to study prolonged and asymmetrical sitting information. Figure 1 illustrates the architecture of the system 

identifying the various stages and processes involved. 

 
Figure 1: Architecture of the proposed prolonged and asymmetric sitting posture monitoring system 

2.1. Sitting Pressure Sensing (SPS) 

A Smart-Cover that can measure pressure force, is constructed using woven silver conductive fibre, piezoresistive conductive 

film, polyethylene foam and conductive thread fabricated in layers. The resistivity of piezoresistive material changes when 

deformed, making them the ideal choice for use as pressure sensors [24, 25]. For our project we chose the anti-static Velostat, 

which is a type of piezoelectric conductive material with the characteristics of flexural modules 40,000-50,000 psi, usual 

thickness 104 µm, volume restively < 500 ohm·cm and tensile strength of 1,700-2,000 psi [26]. Conductive fabric consists of 

woven silver coloured yarns with the consistency of polyester (70±3%), copper (16±5%), nickel (14±2%) and plated nylon [27]. 

It has a resistance of less than 1 ohm per square foot. This material complies with ROHS requirements for being halogen free, 

washable, stretchable, and durable. Topping all that, it can also bend. These characteristics are crucial to integrate electronic 

functions in wearable devices. 

According to our design, in between the Velostat layers, a layer of electric insulator is required. Polyethylene foams are widely 

available and commonly used for packing, storing and handling objects. They are ideal as they can be used in several ways, 

materials can easily be added to them and are easily used in the manufacturing process. We chose Cell-Aire® polyethylene foam 

for our project. It is 2.5 m thick, has a density of 1,2 pounds/cubic foot and punching test resistance of 5.5N in relation to 

standard SAC-PL 012 when damage free from damage [28]. The material also provides strong support and protection to the 

various layers of the seat.  

We use conductive thread for wiring the sensors with the circuit. It is made from nylon, polyester and cotton coated with a 

metallic mesh consisting of a silver nanowire. Examples of non-conductive thread would essentially be cotton, nylon and 

polyester as they are insulators for electricity.  

Force sensor architecture in [29] and [30] used a Velostat placed between two copper layers. With such a design prolonged use 
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results in a tightening of the copper layer with the Velostat resulting in a loss of sensitivity. For this reason, we adopted the 

multi-layered architecture of the SPS using foam as demonstrated in Figure 2(a).  A 2.5 mm polyethylene foam layer is placed 

between two Velostat layers and the whole is then sandwiched between two silver conductive fabric layers. These two Velostat 

layers are sewed using non-conductive thread to stop any slippage of the layers, which might occur when the seat is in use, as a 

result of pressure. 

 
Figure 2: Sitting pressure sensing system; (a) Multi-layered architecture and components; (b) Schematic diagram of current path geometry (Rc, Rv and Rf are the 

corresponding resistances of woven silver conductive fabric, Velostat and polyethylene foam); (c) View of the loaded contact area due to sitting pressure; (d) 
Schematic diagram of the current path through contact layers; (e) Analog output reading VSPS using voltage divider configuration; and 

 (f) SPS1 to SPS6 arrangements on the face of a chair 

The foam between the two Velostat layers has holes cut in a circular shape shown in Figure 2(a). When pressure is applied its 

shape squeezes and becomes thin and flexes due to sitting. Current then flows through these circular holes in a top to bottom 

direction. When there is no sitting pressure the foam regains its original shape and current stops flowing. 

Figure 2(b) shows the modelling of the electrical components for use in the sensor. Let the resistance of conductive fabric be 

Rc, Velostat resistance be Rv and foam resistance be Rf. To increase the accuracy of the SPS output a correction is made for the 

contact resistance Rcv between conductive fabric and the Velostat.  SPS resistance can therefore be calculated as 𝑅𝑆𝑃𝑆 = 2𝑅𝑐 +
2𝑅𝑐𝑣 + 2𝑅𝑣 + 𝑅𝑓.  A number of assumptions had to be made to derive to the above formula, namely: since the conductive fabric 

is made of silver we assume resistance Rc ≈ 0. Conversely foam resistance with no-load Rf ≈ ∞ and load condition is Rf ≈ 0. 

Using the Holm and Greenwood [31] formula,  𝑅𝑐𝑣 = (𝜌1 + 𝜌2)/4𝑛𝑎  where 𝜌1and 𝜌2are the electrical resistivity of the two 

materials in contact, a is the radius of contact area and n is the number of contact areas. As pressure increases the number of 

contact area increases (Figure 2c). As pressure is progressively applied, the upper surface of the SPS is deformed while the 

bottom remains flat decreasing the thickness of the layer. When pressure is applied there is a decrease in the distance between the 

filler particles inside the piezoresistive film, thus decreasing its resistance [30]. We have incorporated an air vent at the lower end 

of the SPS to enable air trapped between the conductor and Velostat to escape. This will lead to a sudden decrease in Rcv, and Rv 

between the conductive fabric and the Velostat followed by a flow of current from the top to bottom (blue arrows in Figure 2d). 

The blue arrows demonstrate the effective areas of contact. In reality they are much greater at a microscopic level due to the 

roughness of the surfaces [32]. In order to convert this pressure to voltage we design a voltage divider that measures and 

configures the resistance change from the SPS and match for impedance as shown in Figure 2(e). We therefore introduce Rm 

which is the resistance of the voltage divider. The output from the SPS can be expressed as 𝑉𝑆𝑃𝑆 = (𝑅𝑆𝑃𝑆 ∗ 𝑉𝑐𝑐)/(𝑅𝑚 + 𝑅𝑆𝑃𝑆) 

where Vcc is the supply voltage. In order to determine Rm we calculate the changes in VSPS output arising from different pressures 

applied to the SPS in increments of Kgs getting a measure of force vs resistance [33]. For our work we set the value of Rm as 1K 

Ω and the supply voltage as +3.7V  

Another important factor that determines the accuracy of the results is the location on the chair where the SPS are placed. The 

design of the SPS is to monitor symmetry of posture for extended periods of sitting. The location therefore needs to be based on 

analysis of the dimensions of the human body [34]. In a sitting position, shoulder width ranges from 375-505 mm, height 505-

646 mm and hip width 310-405 mm [35]. Each SPS measures 50 x 300 mm in shoulder area and 70 x 100 mm in the seat cover.  

Repetitive deformation due to sitting on the chair is an important issue for piezoresistive sensors [36]. The SPS accuracy is 

measured using a controlled load digital universal testing machine. We assume that the range of human body weight is between 

50 kg and 100 kg and that the human sitting position covers 80% of a seat area amounting to 350 x 300 mm. The range of 

minimum to maximum pressure per square cm is then 0.06 kg to 0.12 kg. Therefore, the range of minimum to maximum 

pressure for the area of each SPS is from 4.2 kg to 8.4 kg. A digital universal testing machine is used to apply dynamic force 

from 1 kg to 10 kg and record the corresponding resistance of the SPS. The procedure is repeated 10 times for 10 days. The 

result of this experiment is shown in Figure 3.  
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Figure 3: SPS deformation characteristics for 100 times repetitive measurements 

The black line shows the mean estimation, while the blue lines show the ± standard deviation of 100 repetitive measurements. 

The error spread is high (approximately ±10%) during the low pressure (0 to 2kg) and gradually decreases (approximately ± 1%) 

during high pressure (9 to 10 kg). The average error for the region between 4.2 kg to 8.4 kg when a person sits on the chair is 

approximately ± 4%. The repeatability error for our case is lower where it shows up to 15% error performed with a controlled 

load machine [37]. As the purpose of this research is to show sitting asymmetry by measuring the relative difference between 

right and left sided pressure, this error will have minimal output effect. However, the process of minimizing this error will be 

explored in future work.  

Human anatomy has also been taken into consideration. When sitting the bones of the spine need to align on top of each other 

to permit the paravertebral muscles to relax. This will result the lower back in a lordosis that will lengthen and relax the spine. 

The area covered by the shoulder can therefore vary from individual to individual. To sense the pressure from both shoulders we 

place the SPSs with a slight inclination to pick up input from people of small and large build. 

For maximum coverage the seat cover is divided into 6 regions. The backrest is divided into right shoulder area and left 

shoulder area across the midline. The seat is divided into 4 regions. 

1) Right lower back 2) Left lower back 3) Right thigh and 4) Left thigh. Two SPS are placed at the top of the centre line of the 

seat for the right and left thighs and two attached below the centre for right and left lower back as shown in Figure 2(f). These 

positions have been chosen to delineate the sitting pressure distribution for all these regions. 

2.2. Raw Data Processing 

As the SPS sensors are very sensitive, they record some noise. When at rest with no pressure the sensors demonstrate some 

minor activity. When activated the SPS sensors record noise arising from flicker noise, mechanical and stretching stimuli, 

temperature changes and calibration errors [38]. The readings are made of noisy spikes that need to be removed before analysis. 

We do this using a Kalman filter that uses advanced optimal reclusive filter techniques [39] in a two-step process. It estimates the 

current state variables in the first step. The estimates are updated using a weighted average, with more weight being given to 

estimates with higher certainty in the second step. It is recursive and it can run in real time, using only the present input 

measurements and the previously calculated state and its uncertainty matrix; therefore, no additional past information is required. 

Implementation  of this Kalman filter results in significant noise reduction, hence obtaining a clear and usable distortion-free 

stable signal from the sensors [40]. Data is then transmitted wirelessly to the cloud using IoT cloud communication layer. 

2.3. IoT Cloud Connectivity for SPS 

The IoT communication layer uses pre-set rules to establish wireless connectivity between the sensors and cloud data storage 

[41]. This enables quick data storage and real-time data-analysis, enabling users to see results instantaneously. Communications 

are usually established using W-Fi [42], Bluetooth [43], ZigBee [44], and even cellular network. We use Wi-Fi and ESP8266 

development board [45] as the conduit for data transmission to cloud server ThingSpeakTM [46]. This enables the creation of a 

user account. A user can then make sensor-logging applications; applications that track location and a social network that enables 

status updates. This also allows the data to be stored from various IoT applications, using Wi-Fi, not only as a data packet carrier 

between the sensors and the ThingSpeakTM cloud but also as a link to MATLAB for data analysis. The format we use is date 

(dd/mm/yyyy), time (HH:MM:SS.ss), clock (ms), and SPS (SPS1, SPS2, SPS3,SPS4, SPS5, SPS6).  

2.4. Power Management 

To maintain an extended active period of the equipment, an efficient power supply is required. The battery is charged using 

the Qi wireless power standard [47] inductive power transfer [48] technology. A DC 3.7 Volt 4000 mAh capacity battery is to 

operate the circuit. To extend the battery life we lower the duty cycle between the ThingSpeakTM and Wi-Fi. Power is controlled 

by a push button switch with an On/Off option. The ON position activates the processor to start reading the SPS, the Wi-Fi 
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transmitter to start data transfer and the circuit to become active. The circuit automatically reverts to sleep mode if no pressure 

changes are detected for a user defined period of time considered to be the threshold; and switches on by itself upon detection of 

pressure data by the SPS. 

2.5. Circuit Design 

In Figure 4(a) we demonstrate the block diagram of the circuit and the inductive wireless charging system. For the circuit we 

used Proteus ISIS Professional simulation software [49] developed by Labcenter Electronics Corporation Figure 4(b). Figure 4(c) 

demonstrates a 3D view of the circuit. More information on the PCB and 3DS files is provided in the supporting document. The 

circuit and the corresponding wireless charging system is shown in Figure 4(d).  

 
Figure 4: Hardware implementation (a) Circuit block-diagram, (b) Circuit schematic, (c) 3D view of the simulated circuit, and (d) Implemented circuit and 

wireless inductive charging 

ATmega328 processor is used in the circuit. Six SPS are connected with a voltage divider configuration (Figure 4(a)). The 

outputs are connected with six analogue pins (PC0 to 5). The SPS sampling rate by the processor is 5Hz. Data gathered by PC0 to 5 

is transmitted to ThingSpeakTM cloud server using ESP8266 Wi-Fi. This uses UART serial communication to receive (Rx) and 

transmit (Tx) data. The Rx and Tx pins are connected with ATmega328 Pin PD0 and PD1. The inductive wireless QI receiver 

(BD57011AGWL-E2) is used to receive electrical energy. The QI receiver coil patch can charge up to 1000 mAh, 5V which is a 

faster charge and a higher conversion rate. TP4056 linear charging is used to charge a BRC 18650 Li-ion 3.7V 4000mAh 

capacity battery. When charging we put an LED marker that shows red and this turns blue when fully charged. 

3. Data Collection and Analysis 

3.1. Ethical Approval and Subject Selection 

Ethical approval for this research is granted by the Bournemouth University ethical review committee and each subject is 

given a Participant Information Sheet and signs an informed Participant Agreement Form. We recruit a convenient group of 10 

healthy young subjects (8 males, age mean ± standard deviation: 32.42 ± 4.32 years, range: 24 to 40 years, weight mean ± 

standard deviation: 73.68 ± 13.6 Kg, range: 44.5 to 93.9 Kg and height mean ± standard deviation: 174.13 ± 7.23 cm, range: 161 

to 188 cm). The chosen subjects, each are known to have full time office jobs where they had to spend long hours being seated 

on a chair, despite of which, they still have not yet experienced any sign of back pain or sitting disease. The exclusion criteria for 

selecting these young subjects were identifiable movement dysfunction, pain, and/or pathology in the spine or lower extremities 

requiring treatment, musculoskeletal or neurological pathology, contraindication to exercise, fracture or muscle injury, 

impairment attributable to other cause by history or other health conditions during the preceding six months and sitting disease 

may adversely impact the outcomes of the study. In this initial part of our study and development we purposefully select young 

healthy subjects to find the measurement of normal sitting pressure ranges. 

3.2. Experimental Protocol and Data Collection 

This experiment is conducted in an office environment. Each subject is given a chair and is asked to sit on it, maintaining a 

normal posture, using the lever to adjust the height of the chair seat, depending on their body types so that the feet are completely 

in contact with the ground. The normal sitting posture as described in [50, 51], is explained to each subject and  they are then 

asked to sit up with their back straight, shoulders pushed back, and buttocks aligned to the rear most part of the seat, such that 

their back is straight in line with the backrest. It is therefore ensured that the subject’s body weight is evenly distributed on both 

hips. Each subject is asked to bend their knees at a right angle, such that they are at the same level of higher than the hips. The 

normal sitting posture is shown in Figure 5(a). This position is considered as normal or best sitting posture with mild asymmetry. 

We then collected the sitting pressure data for a period of 10 min for each subject. Subjects are then asked to sit cross legged; 

with right leg over the left knee; which is considered to be a moderate asymmetry posture as shown in Figure 5(b). Another set of 

pressure data is collected for this posture for the same time period. Lastly, the subjects are asked to sit leaning high to right side, 
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cross-legged with right leg over the left knee in a severe asymmetry posture as shown in Figure 5(c). Another set of data is 

collected for each subject for 10 min. The collected data is streamed and stored in the cloud ThingSpeakTM server. These 

positions are chosen after discussion with 5 clinicians (3 physiotherapists, 1 chiropractor and 1 doctor) who regularly assess 

posture in their work. 

 
Figure 5: Front (top) and side (bottom) views of sitting postures with a) Normal or mild asymmetry, b) Moderate asymmetry, and c) Severe asymmetry 

3.3. Data Importation and Interpretation 

ThingSpeakTM MATLAB toolbox reads and imports SPS data using a secure channel ID and API key. In Figure 6, we 

demonstrate raw cloud data collected from the group of SPS sensors in each seat. 

 
Figure 6: Graphical output of the SPS raw data from ThingSpeakTM IoT cloud 

Figure 6 shows the data collected from the sensors shown in Figure 2(f).  SPS1 (red) is the pressure reading from the right 

shoulder, SPS2 (pink) from left shoulder, SPS3 (cyan) from right lower back, SPS4 (blue) left lower back, SPS5 (yellow) right 

thigh and SPS6 (green) left thigh. SPS1 to 6 shows zero at no sitting condition (Figure 6). When a subject sits and changes posture, 

the pressure values rise sharply and is referred to as an active sitting period. After a while readings become constant and is 

referred to as static sitting. The output of the SPS sensor gives a value between 0 and 1023 based on the sitting pressure. A 

change in the sitting position results in a sharp increase and decrease in the signal. Asymmetrical sitting is identified from a 

signal difference between right and left sided signals from the various regions. An example of this is shown in the cyan and blue 

lines indicating that the pressure is highest on the right lower back area compared to the left. Such a difference can occur while 

sitting with the left leg crossed over the right leg. Next, collected data requires to be processed for unwanted noise that can 

potentially bias the data and give wrong information. Eventually, we reach the next step which is calibration. 

3.4. Calibration 

The Piezoresistive conductive film in the SPS is very sensitive to pressure force and stretch. In practice, when the seat is at 

rest, with nobody sitting on it, we shall receive no data ideally; however, a signal is still generated. This may be due to intrinsic 

resistance of the material or the mechanical structure of the film, thus making it necessary for the signal output to be calibrated, 

before the data can be analysed. The calibration is done by measuring the signal generated while the seat is at rest position, with 

no one sitting and saving these data as ‘initial baseline values’ for future reference. A subject is then asked to sit on the chair and 

move in different directions. This enabled the maximum threshold values for each SPS to be recorded. The initial baseline values 

are subtracted from the threshold values, giving the true “zero” value for each SPS. The threshold value and the true zero value, 
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for each SPS, is stored in a log file. In our system we use adaptive calibration to factorize the different weights of subjects. To 

achieve this, we continually follow the values in the no sitting state and continually update the calibration limits. 

3.5. Measurement of Normal Sitting Range 

The normal sitting posture data from all subjects are analysed to estimate the sitting range in percentage using the equation  
𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑀𝑎𝑥(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)
∗ 100. The mean of percentage from SPS1 to SPS6 are shown in Figure 7(a) and the distribution of percentage 

values are displayed in Figure 7(b).  

 
Figure 7: a) Mean of percentage of sitting pressure (SPS1 to SPS6) estimated from all subjects, b) Distribution of the percentage of sitting pressure (SPS1 to 

SPS6) from all subjects 

The mean of percentage of sitting pressure in shoulder areas is 80%, back thigh areas is around 79% and front thigh areas is 

around 82% for normal sitting from all subjects. The values indicate that the sitting pressure is distributed equally to all 

locations. Figure 7(b) shows the distribution of the percentage of sitting pressure for SPS1 to SPS6 from all subjects in Boxplots. 

The percentage distribution shows that most data lies between 70 to 90% for normal sitting posture. The boxes of interquartile 

ranges of SPS1, SPS3 and SPS5 show greater variation than SPS2, SPS4 and SPS6. It means that left side pressure variations are 

higher comparing with right side pressure. All the subjects in this study are right handed and hence have controlled movement. 

However, the investigation of association between right and left handed person with their sitting pressure distribution will be of 

our interest in future. 

3.6. Measurement of Asymmetry Levels 

The sitting pressure is distributed almost equally for the mild asymmetry or normal sitting posture, hence the sitting pressure 

variation between right (SPS2, SPS4 and SPS6) and left (SPS1, SPS3 and SPS5) sides are low shown in Figure 8.  

 
Figure 8: Boxplots of sitting postures for Mild, Moderate and Severe asymmetry 

For the moderate asymmetry sitting posture, subjects sit with right leg over the left knee which means the sitting pressure is 

higher on left side; hence the left side sensors SPS1, SPS3 and SPS5 regarding is higher comparing with right side sensors SPS2, 

SPS4 and SPS6. For the severe asymmetry sitting posture, subjects sit leaning high to right side with right leg over the left knee 

which means most of the sitting pressure is distributed on the left side and almost no pressure is on the right side; hence the left 

side sensors SPS1, SPS3 and SPS5 regarding is higher than right side sensors SPS2, SPS4 and SPS6. The shoulder asymmetry 

(SA=|SPS1-SPS2|), lower back asymmetry (BA=|SPS3-SPS4|) and thigh asymmetry (TA=|SPS5-SPS6|) are estimated. The 
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asymmetry values are then converted to percentage using equation mentioned in Section 3.5 and generated Boxplots shown in 

Figure 8. Mild asymmetry Boxplots show that percentage range is from 0 to 40 and more than 75% data lie between 0 to 20. 

Moderate asymmetry Boxplots show that percentage range is from 20 to less than 80 and more than 75% data lie between 20 to 

55. The percentage range is from 20 to 100 (shoulder), 60 to 100 (lower back) and 65 to 100 (thigh) for severe asymmetry shown 

in Boxplots. More than 75% data lie between 60 to 100. These results are presented to 5 above mentioned (Section 3.2) medical 

professionals and discussed about selecting ranges. It has been therefore decided that the mild asymmetry range is ±0~25% with 

maximum sitting time of 15 min, moderate asymmetry range is ±26~65% with maximum sitting time of 10 min and severe 

asymmetry range is ±66~100% with maximum sitting time of 5 min. 

3.7. A Rule Based Approach to Monitor Sitting Behaviours 

To prevent the adverse consequences of bad posture, it is important to provide clear and useful real-time information that can 

be interpreted by everyday people to prompt an improvement in sitting posture. In addition to detecting and monitoring bad 

posture, there is a need to classify prolonged asymmetric posture. Support vector machine, decision trees and Bayesian network 

are three such classification techniques. The signals from different sitting positions are approximated over time for each SPS 

which are fuzzy (Figure 5). To interpret this, we use fuzzy logic as a technique that classifies the fuzziness of the SPS signal. 

Fuzzy logic deals with reasoning that is fixed or approximate as opposed to fixed and exact and is a form of many-valued logic. 

Variables have a truth value range between 0 and 1 [52]. Fuzzy logic is advantageous as it avoids categorical (yes/no) computer 

analysis. It allows outputs between a range of 0 to 1 enabling it to monitor sitting behaviour and to act as a rule-based system. 

Such an analysis imitates human thinking and evaluation of a complex and changing situation of a human sitting in a chair and 

all the subconscious movements that occur. However the detail that it delivers in the analysis is not possible to derive by human 

observation alone improving on a clinician’s performance observing sitting behaviours [53]. This system delivers a quick real-

time information and feedback for users to quickly understand their sitting posture and helps improve sitting behaviour. 

The steps in designing a fuzzy logic algorithm are: 1) fuzzification, 2) an inference, 3) a fuzzy rule base, and 4) defuzzification 

[54]. Sensor data inputs are “fuzzified” according to rules set by the system designer to break down all possible variants in input 

into degrees of membership. Each membership function is set a range with minimum and maximum values. Each of these ranges 

can have several shapes for distribution i.e. Gaussian, Triangular or Trapezoidal. In this study, Trapezoidal shaped membership 

function is used as the level of asymmetry range is not discrete. The fuzzy set formed by setting the minimum input for each 

function to the centre point of the previous membership function. A counter is used to record sitting time (ST) when there is a 

non-zero reading generated from the six SPS sensors. 

1) Design of Fuzzy Rule based system 

Figure 9 shows the basic structure of the system to monitor sitting behaviour. The Fuzzy Logic system takes input from four 

(SA, BA, TA and ST) inputs and outputs one result of level of asymmetry. This output refers to the real-time sitting posture and 

is presented as Mild, Moderate or Severe asymmetry. 

 
Figure 9: The basic structure of the Fuzzy Rule based sitting behaviour monitoring system 

The input information is process according to 16 rules. These rules run in parallel and is an important aspect of the design of 

the system.  The information flows logically along regions where the system facilitates the flow to occur depending on which 

rule is being satisfied. This removes the need for sharp switching between modes based on breakpoints. 

2) Developing the fuzzy logic algorithm: Input, output variables and Fuzzy Rules 

The four input variables SA, BA, TA and ST are and the corresponding membership functions are shown in Figure 10(a). 

In the ideal scenario when there is no sitting pressure to generate a reading the values of SA, BA and TA should be zero with 

no difference in pressure between right and left regions. In reality the sitting pressure is not perfectly symmetrical. We therefore 

set ranges expressed as a percentage.  Mild asymmetry is: SA 0-20, BA 0-20 and TA 0- 20. During sitting, pressure is highest in 
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the lower back compared to the thigh or shoulder regions. The range is the lowest in the BA since there is less asymmetry in the 

lower back when maximum pressure is released.  We calculated moderate asymmetry ranges as follows: SA 21-60, BA 21-60 

and TA 21-60. Severe asymmetry ranges are: SA 61-100, BA 61-100 and TA 61- 100. The ST ranges are 0-15 min, 0-10 min 

and 0-5 min for mild, moderate and severe asymmetry respectively. 

There is one output “Sitting Behaviour”. This refers to the condition of the sitting posture at any one point in time and the 

corresponding membership functions as shown in Figure 10(b).  Output is classified as Excellent, Good and Poor with ranges of 

6-10, 3-6 and 0-3 respectively. The higher the value, the higher the level of asymmetry indicating a worse posture. These ranges 

are selected based on the basis of laboratory observations. However further validation by experts such as physiotherapists, 

medical doctors and biomechanics is needed. 

 
Figure 10: (a) Input variables membership functions of SA, BA, TA and ST; (b) Output variable membership functions of “SittingBehaviour”; and (c) Fuzzy 
Logic System Rules sample 

Defining the Fuzzy Rules is crucial for the function of the fuzzy inference system and determines the quality of results. In this 

work we include 16 rules that cover all the possible scenarios. We obtain the rules using the formula N=r1 × r2 ×…..× rn where N 

is the number of possible (combinations of the input variables) rules for a Fuzzy system and rn is the number of linguistic terms 

for the input linguistic variables. We determined the rules on the basis of assumptions. These assumptions will need to be 

validated. Some of the rules are shown in Figure 10(c).  

3) Fuzzyfication and Defuzzification 

Our system uses the Mamdani Fuzzy inference [55]  mechanism approach available in MATLAB. It uses a logical 

combination of inputs that depend on each other. The system has one output that describes the sitting posture as a fuzzy term. 

This crisp value output is determined by a defuzzification process after estimating its input values. An example of what results 

one can expect is shown in Figure 11 where inputs are given as SA=15.5, BA=7.47, TA=6.32 and ST=12.2. Based on these 

inputs the Fuzzy Logic engine gives a result of 1.35 which is indicative of mild asymmetry.  

 
Figure 11: MATLAB- rule viewer and simulation result for fuzzy logic Sitting Monitoring system 

3.8. Visualization 

We use a purposely designed app loaded onto a Wi-Fi enabled smart phone to visualize the output from our system. To 

visualize sitting posture we use the readings of minimum and maximum thresholds for SPS1 to SPS6 restored from the cloud. We 

then draw a circle from θ=0 to 2π of duration of 0.01 using )cos(),sin(   yx . The interval α=50 is defined and the value of 

each increment (δ) is calculated using the equation  /min)(max . The value of each incremental step (δ) is calculated 

using  /min)(max . The interval angle ω is estimated using  /*  with λ =1. The scale is represented from 0 to α 

using  **/*  ni , for n= 0 to α. The small scale line is then drawn using )cos(),sin(   yx . The minimum and 
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maximum values of the scale are mapped between -100 to +100. The indicator line (β) is then set with the instantaneous 

difference between left and right value of the feature (η) using  */min)(*  . The indicator line is drawn from 0 to β. 

The asymmetry (SA, BA and TA) values between right and left of shoulder, lower back and thigh are estimated described in 

Section 3.6. A summary picture of the overall sitting posture is demonstrated in Figure 12.  

 
Figure 12: (a) Display of sitting pressure in percentage; (b) Dial based asymmetrical sitting posture visualization; (c) Sitting score and summary for a day 

To illustrate the case in Figure 5(a) we see a subject sitting in normal posture. Figure 12(a) demonstrates the asymmetrical 

measurements using a dial format. In a situation of perfect symmetry, the pressure distribution is equal on right and left sides and 

should give dial readings of 0 (zero). In the example shown all the dials are demonstrating asymmetry for all the areas of the 

shoulder, thigh and lower back.  One can also note that the level of asymmetry varies. For example, in Dial 1 the reading is +8.7 

and pointing to the right alternatively described as a positive deflection indicating that the pressure is higher on the right shoulder 

than the left. Conversely if the deflection of the dial is to the left indicates that the pressure on the left shoulder is higher than the 

right. The higher the deflection the greater the asymmetry and the lower the deflection i.e. the more central the pointer is, the 

better the posture. Our app has the facility to record daily readings, record the total sitting time and the time spent in active, static 

and asymmetric sitting state. Active sitting is calculated from the time when there is a non-zero reading from all six SPSs. Static 

sitting is the time when the dials lie lower than ±25 and symmetric sitting refers to the duration when the dial is ±20 for more 

than 5 minutes. A percentage static sitting score is estimated using the formula: STATIC = (duration of static sitting/duration of 

active sitting) x 100. A percentage asymmetric sitting score is estimated using ASYMMETRY = (duration of asymmetric 

sitting/duration of active sitting) x 100. Figure 12(c) shows the summary results. A low score is indicative of good sitting 

posture. 

4. Discussion 

Smart-Cover is embedded with SPSs and IoT platform whose operation is based on a Fuzzy classifier. It generates a score and 

a visual representation of the state of posture with the aim of prompting a correction in bad posture and promote better sitting 

behaviour. Kalman filter and Fuzzy logic are used to reduce noise and classification of asymmetry level respectively. A built-in 

adaptive calibration system is also developed to improve the versatility of the system so it can be employed by different users in 

an adaptive way. The advantage of our Smart-Cover is that using an IoT platform, the system provides sitting posture 

information without interfering in the user’s daily routine and promotes healthier sitting behaviour with the aim of preventing 

and reducing the severity of musculoskeletal problems.  This research is still in its initial stages and what we have shown is that 

such a system can work and provide clinically useful results.  Much work still needs to be done to validate in a clinical setting 

with the help of experts in the field, the input/output variable ranges used for Fuzzy classification. More research is needed to 

quantify and evaluate long term data. Future work will also need to investigate the possible therapeutic benefits of the use of 

such equipment.  

There are a number of limitations in this study. We only included 10 subjects and they were predominantly male of a young 

age. This study therefore can only be considered as a proof of concept for the development of the system and cannot be used to 

determine normal posture in specific genders or different age groups. We also do not have any information about disease specific 

conditions. Our results show that there is a greater variation of sitting posture on the left compared to the right. All our subjects 

were right handed and this raises the possibility that there is a right/left variation in posture depending on whether the person is 

right or left handed. These will be addressed in future work.  While there are other sitting postures such as cross legged sitting on 

the floor or squatting, we only consider sitting posture on a chair at 3 levels of asymmetry i.e. mild, moderate and severe. Such 

postures are common in some countries but are not considered.  

Adopting the correct sitting position is essential for maintaining good posture and a healthy back spine. Most people can 

improve their sitting posture by following a few simple guidelines. Our system provides real time information about duration and 

level of asymmetry of sitting which can help users to improve their sitting behaviour. 
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5. Conclusion 

We developed a sitting posture monitoring system called Smart-Cover where a chair seat cover is embedded with SPSs and 

that, uses an IoT platform whose operation is based on a rule based classifier. We also developed an accompanying Android app 

to monitor the sitting behaviour and to detect extended periods of sitting in an asymmetrical posture. We build a SPS system 

embedded in the piezoelectric interface on a chair seat cover to sense sitting pressure taking into consideration human 

biomechanics. The multi-layer architecture that is proposed can provide a novel seat cover for manufacturing and real world use. 

The flexible fabric based nature of the sensors provide the opportunity to adapt and make bespoke design for people with varying 

anthropomorphic parameters such as different human back sizes and variations in chair shapes. The IoT communication layer 

transfers sensor data to the cloud server and makes such data available for use to other interested third parties. Our inductive 

charging system maximizes battery life. The auto cut feature protects the battery from over charging. The Fuzzy rule based 

classifier provides real-time information about sitting posture using our Android App. This offers an easy and user friendly way 

of visualizing and monitoring sitting posture which can be used for treatment and rehabilitation purpose of musculoskeletal 

conditions associated with sitting in hospitals, clinics, work, school and home. This study enhances the current literature 

demonstrating a new visual method to show real-time sitting posture that enhances the reliability and validity of monitoring 

posture. 
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