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Abstract
In this paper, we propose a novel technique
based on Head Movement tracking to explore
multi-layer digital content. We extend an
existing method by Kazemi et al. dealing with
the extraction of facial landmarks to define the
’head-gaze’ of the user. We use the ’head-gaze’
to calculate the users’ on-screen coordinates.
Hovering the cursor over an interactive area
for a given time threshold allows users to
explore the next layer contents. Our exper-
imental sessions allowed us to measure the
technique’s level of control and usability. Our
results were promising, and users were able
to interact with considerably small regions.
Furthermore, our lightweight method can be
used with a low-cost camera or webcam and
a wide range of screen sizes and distances.
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1 Introduction

Over the last decades, there has been growing
interest in touchless interfaces. A wide vari-
ety of fields such as healthcare, customer re-
tail, and gaming, demand interfaces to be ac-
cessible, easily ported over different platforms
and user friendly. The current COVID-19 pan-
demic presents many challenges to the world of
digital media and some significant changes will
need to be implemented. Public touch-based in-
terfaces are now under major scrutiny and this
offers an opportunity to consider new innovative
ways of interacting with visual content. A grow-
ing number of public interfaces are now required
to be touchless in order to prevent the spread
of disease on surfaces. Touchless techniques
such as head tracking and eye-tracking are also
becoming increasingly important in improving
user control in fields such as gaming and assis-
tive technology [1]. Several eye-tracking and
head movement-based approaches allow users to
trigger various commands without using hands
or changing gaze direction [2], [3]. As high-
lighted by Ju et al. [4] eye-tracking can be a reli-
able tool for human-computer interaction. Many
of the most accurate techniques use thermal in-
frared sensors and require the user to complete



a calibration step. Other eye-tracking solutions
[5] base their functionality on wearable equip-
ment (eye-glasses). While these techniques are
highly effective their hardware and calibration
requirements may limit their accessibility to the
general public.

Recent scientific findings from the neuro-
science community[6] reveal that the vestibular
system in mammals broadcasts head pose sig-
nals to areas throughout the brain and up to the
visual cortex to be processed. This indicates
the significance of head pose in visual attention
analysis.

In our work, we modify and extend an exist-
ing architecture focused on the optimisation of
face alignment [7]. Our technique can provide a
low cost, lightweight and user friendly method
of ’Headgaze’ capture. The program can accu-
rately detect facial landmarks up to 2.5 meters
making it a reliable solution for various environ-
ments and screen sizes. Before using the pro-
gram, it can be configured to the user’s camera
specifications, camera location and screen size.
Using both 2D and 3D facial key points we de-
fine the head gaze and head position of the user.
We then use these values to calculate their on-
screen coordinate position. We adopt a mul-
tilayer digital content architecture that can be
navigated through using buttons/icons (see fig-
ure 1). The remainder of the paper includes the
following sections: Related Techniques; Pro-
posed Method of Headgaze; Experimental Re-
sults; Conclusions and Future Works.

2 Related Techniques

The fast development of touchless HCI (Hu-
man Computer Interaction) techniques [8] such
as eye-tracking, hand gesture recognition, time
of flight sensors, head pose detection, etc. pro-
vide users with a more natural and intuitive way
of communicating with machines, which largely
improve the user experience. Eye-tracking plays
an important role in HCI applications due to the
fact that eye movements and the point of gaze
can provide valuable insights about user pref-
erences [9]. Some systems take advantage of
the electrooculography (EOG) [10] to measure
electrical potential differences between the front
and back of the human eye. In [11], authors

combine the top-down underlying eye dynam-
ics with the bottom-up gaze measurements from
a static gaze estimation network to improve eye
gaze predictions. Hotrakool et al. [12] provide a
real-time eye-tracking solution based on gradi-
ent orientation pattern matching and automatic
template update. Some eye-tracking methods
are the mixture of different technologies. For
example, in [13], Coetzer and Hancke use an
Infrared (IR) camera and IR LEDs to capture
the bright and dark pupil images. As the re-
sult, substracted images from different illumi-
nation conditions are feed into support vector
machine (SVM) and addaptive boosting (Ad-
aBoost) classification network. However, most
of the eye-tracking techniques either require ad-
ditional sensors or a calibration process, which
are cost and computationally inefficient. In-
stead, our proposed head pose tracking can be
regarded as a low-cost and efficient substitution
of eye-tracking, because it relies only on a single
webcam.

From another perspective, hand posture and
gesture recognition have observed an increasing
number of studies in HCI. Hand gesture recog-
nition focuses on the combination of static and
dynamic palm and finger position and shape.
The static hand gesture refers to the stable hand
shape, while the dynamic hand gesture is the
sequence of hand movements such as waving
hand [14]. It is a highly feasible nonverbal com-
munication strategy because the hand is the most
effective general-purpose interaction tool [15].
Pisharady et al. [16] implement human visual at-
tention by extracting high level (shape, shading)
and low level (colour) features to recognize hand
postures against a complex background. In [17],
the authors provide a two-stage Kinect based
human posture recognition system for sign lan-
guage recognition. Colour and depth informa-
tion are processed to detect and track the hand.
Then they apply a convolutional neural network
(CNN) to identify features from the hand gesture
images automatically. Nevertheless, training a
DNN (Deep Neural Network) requires a huge
amount of data and is highly reliant on power-
ful hardware.

Head pose estimation refers to capturing
small movements of a person’s head to infer its
orientation. As well as determining the head ori-
entation head pose can also offer valuable in-



Figure 1: The overall graphical description of our architecture for multilayer digital content explo-
ration is given above. A camera device installed on the top of the screen records everything
happening in its field of view. Our proposed method processes each frame out of the cam-
era, detects head movements, and projects them onto a screen as a cursor overlaid with a
not visible regular grid (yellow grid). Each layer (the blue, the red and the green one) has
got its interactive regions (buttons, icons). As soon as users spend a certain amount of time
interacting with a region of interest on the current layout, they are shown a more detailed
layer with contents related to the same area which they were interacting.

formation about the environment and its con-
text; for instance, a quick head movement might
be a sign of alarm [18]. Head pose estima-
tion techniques can be roughly divided into two
categories: wearable sensors and computer vi-
sion techniques. In our case, we only deal
with touchless human-computer interaction, so
we only focus on computer vision techniques
such as pattern recognition and image process-
ing. Ruiz et al. [19] propose a fine-grained
head pose Euler angles prediction method with
a multi loss network trained on a large synthetic
dataset. In [20], the authors use a CNN with
adaptive gradient methods to estimate the head
pose in the wild. In addition, some researches
combine the eye-tracking and head movement
techniques. Yingbo et al. [21] propose a hy-
brid eye-tracking (g a modified version of the
open source ITU Gaze Tracker) and head move-

ment (Microsoft Kinect depth sensor) technique
to reconstruct the realist eye movement avatars.
Again, most of the head pose prediction meth-
ods suffer from high computational software
and hardware requirements. Although our so-
lution is based on traditional computer vision
technology, the results are promising, and it is
lightweight, thus can be easily integrated into
edge devices.

3 Proposed Method of Headgaze

The technique we describe in this section is
an extension of an off-the-shelf solution that
dealt with predicting facial landmarks from
inputted images/videos [7]. We propose a
method of using these facial landmarks to
define the user’s head gaze and to interact with
visual content. The graphical description of the



Figure 2: Above we provide a flowchart of the main steps of the algorithm behind Headgaze proposed
method

algorithm behind the proposed method is given
in figure 2. In order to achieve a high level
of accuracy in ’Head Gaze’ detection, proper
camera calibration is required. This includes
calculating the camera matrix and distortion
coefficients. Smoothing filters [22] were also
used to smooth results and to improve the users
experience. The program begins by retrieving
the visual content. This content is then used
to create the necessary image layers for the
program. For layer 1, each icon is cropped
into the background image. To create the layer
2 images, each icon’s corresponding layer 2
content is cropped into copies of the completed
layer 1 image. The main event loop of the
program is then entered, which is called for
every frame. The frame firstly goes through
some pre-processing steps where it is flipped
and converted to grayscale. In the next stage
the bounding box of the face is calculated using
a frontal face detector function from the Dlib
library [23]. This information can then be
used to identify the precise landmarks of the
face using a shape predictor model [7]. This

model is trained over i-bug 300-W datasets [24]
[25] [26] to identify the facial landmarks of
each frame. The detected 2D landmarks, the
corresponding 3D co-ordinates, camera matrix
and distortion coefficients are then used as
inputs to the opencv [27] function which returns
the rotation vector and translation vector of the
head.
The rotation and translation vectors can then
be used to determine the ‘cursor’ location. The
rotation vector x-value represents the pitch of
the head, and the y-value represents the yaw of
the head. Using these two values, the screen
size, and the distance relative to the camera,the
screen position can be calculated and converted
to screen coordinates (see equation 1 and figure
3).

sxp = tz ∗ tan(−ry)− tx

syp = tz ∗ tan(rx)− ty

xc = (sxp)/(sw/2) ∗ w/2 + w/2

yc = (syp)/(sh/2) ∗ h/2 + h/2

(1)

Where xc and yc are the screen coordinates



Figure 3: The diagram above shows the current
scenario with a screen sized sh x sw

of the cursor, h and w are the height and the
width of the screen in pixels, sh and sw are the
height and the width of the screen in cm, and rx
is the pitch and ry is the yaw of the user’s head.
sxp and syp represent the on-screen position in
cm and tx ty tz represent the distance relative
to the camera. The values of sxp and syp must
be adjusted based on the camera position in or-
der to correspond with the centre of the screen.
The cursor is then drawn to the screen and its
location is checked against each icon/button. If
there is an overlap, the loading animation for the
given icon is triggered and continues while the
cursor remains within the icon’s bounding box.
Once the predefined time limit is met, action is
initialised e.g change layer. Choices of interac-
tive regions from viewers are considered simple
tasks by neurocognitive studies [28].

Neuroscience maps them out to composi-
tional acts which lay within the order of magni-
tude of 2 seconds. Due to the reasons above, we
fixed to two seconds the time limit spent over
an interactive region enabling access to further
layer. Throughout interactive sessions, the area
of interest data is collected. Each visual com-
ponent e.g. icons, has an associated ‘counter’
parameter which is incremented for every frame
the user is continuously within the icon bound-
ing box. Upon ending the program using the ‘q’
key this data is then used to give a complete per-
centage breakdown of user focus for each visual
component.

a)

b)

c)

Figure 4: The subjects who took part in the ex-
periments were asked to hover the cur-
sor over the red square region. The
main purpose was to assess on the eas-
iness of control of the cursor on in-
creasingly smaller regions. You can
see a big-size (a), a medium-size (b)
and a small-size interactive region (c)
corresponding to different levels of
test. The level is printed out on the up-
per left corner of the screen.

4 Experimental Results

The experimental sessions have been conducted
on a 15.6-inch Dell Inspiron 5570 with 8 GB of
RAM, Quad-Core Intel(R) Core(TM) i5-8250U
CPU @ 1.60GHZ and Intel(R) UHD Graphics
620 and a screen resolution of 1920 x 1080. The
purpose of this experiment was to test the us-
ability and control of our program. We created
a test in which participants would have to direct



Subject Level Region Size Inches

1 18 41 0.28
2 23 16 0.11
3 20 28 0.19
4 20 28 0.19
5 19 34 0.24
6 21 23 0.16
7 20 28 0.19
8 22 20 0.14
9 19 34 0.24
10 19 34 0.24
11 21 23 0.16
12 18 41 0.28
13 20 28 0.19
14 21 23 0.16
15 19 34 0.24
16 20 28 0.19
17 20 28 0.19
18 21 23 0.16
19 18 41 0.28
20 20 28 0.19
21 22 20 0.17
22 17 49 0.44
23 22 20 0.17
24 19 34 0.30
25 17 49 0.44
26 16 58 0.52
27 17 49 0.44
28 22 20 0.17

Average 19.67 31.5 0.24

Table 1: The table shows the number of subjects
taking part into the experimental ses-
sion to assess the stability of Headgaze.
The size of the red square region (in
pixel units and inches) each subject is
able to interact by using Headgaze re-
turns a measure of the accuracy and sta-
bility of the method.

their Headgaze at a square region and hover the
’cursor’ over it for a two second time period. If
the participant is successful they will progress
to the next ’level’ containing a smaller region to
select. The region decreases in size by a factor
of 1.2 for each new level (see figure 4). This
continues until the user can no longer select the
given region within our specified time limit of
30 seconds. By observing the results of partici-

pants we will be able to assess the usability and
control of our technique. For example, if the
the average region is ’small’, this would suggest
that the program offers a high level of control,
or vice versa.
Due to COVID-19 pandemic restriction, we had
to limit our trials to team members and house-
holds (28).The average age of participants was
36 and the gender distribution was 15 women to
13 men. During the experiment the participant
sat in a chair approximately 1.3m away from the
laptop webcam. For the experiment we kept the
location and hardware as constants. The results
from the table 1 show that subjects on average
are able to control the cursor with Headgaze up
to a region of 31 by 31 pixels. We adopted this
value to benchmark the level of stability and ac-
curacy of the method. Furthermore, we calcu-
lated the average fps (frames per second) in the
experimental sessions to be 21 fps. For further
speed improvements the program could poten-
tially be optimised using a compiled program-
ming language.
After assessing the stability and easiness in the
cursor control of Headgaze, we conducted other
experiments where subjects may interact with
multilayered architecture contents such as the
ones in figure 5. Participants in the experimen-
tal session (see figure 5a,d) are shown the first
layer with a layout characterized by interactive
icons. They can make access to the second layer
of the digital content architecture by hovering
over an icon of interest for two seconds (see fig-
ure 5b,e). As soon as the time range of two sec-
onds is met, the program triggers the access to
the second layer (see figure 5c,f) showing more
detailed contents related to the icon hovered in
the previous step. Using the same mechanism
described above, a participant can move back
and forth across different levels of a given mul-
tilayered architecture.

5 Conclusions and future works

In our work, we focus our attention on the de-
velopment of a low-cost and user-friendly so-
lution to digital content interaction. The tech-
nique does not require any wearable devices or
additional hardware. The method defines a new
spatial coordinate system for a cursor overlay-



a) b) c)

d) e) f)

Figure 5: A subject focuses her ’head gaze’ over the middle icon (a,d), a two-second loads animation
(b, e) enables the transition to the corresponding second layer contents (c, f).

ing the digital content projected onto the screen.
As soon as users’ head movements are tracked
down over a particular interactive icon, a load-
ing bar or an animation highlights the loading
of new contents letting users make access to
the next layer. Our main objective is to pro-
vide users with a user-friendly and lightweight
system. From our experiments we found that
Headgaze allows users to interact with regions
of size 31 by 31 pixels and above, at a dis-
tance of 1.3m and on a screen size of 15.6-inch
(1920,1080). With the given setup of the experi-
ment it would recommended to have all interac-
tive content larger or equal to level 15 (70 by
70 pixels) to avoid difficulty for users. Opti-
mal distances for our screen size appear to be
in the range of 0.5-2m however further studies
would be required in order to clarify this. The
extensions proposed in our paper widen the us-
ability of Headgaze over different application
domains such as customer retail, human com-
puter interaction, computer-based rehabilitation
processes. Furthermore, we aim to integrate the
current head pose project into a broader archi-
tecture involving other interaction tools such as
webcam-based eye-tracking and hand-gestures
detection. On the top of the integration of dif-
ferent interaction tools, we plan to build on a
new visual library that utilises several gestures

and expressions.
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