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Abstract: Age-related health issues have been increasing with the rise of life expectancy all over the
world. One of these problems is cognitive impairment, which causes elderly people to have problems
performing their daily activities. Detection of cognitive impairment at an early stage would enable
medical doctors to deepen diagnosis and follow-up on patient status. Recent studies show that daily
activities can be used to assess the cognitive status of elderly people. Additionally, the intrinsic
structure of activities and the relationships between their sub-activities are important clues for
capturing the cognitive abilities of seniors. Existing methods perceive each activity as a stand-alone
unit while ignoring their inner structural relationships. This study investigates such relationships
by modelling activities hierarchically from their sub-activities, with the overall goal of detecting
abnormal activities linked to cognitive impairment. For this purpose, recursive auto-encoders (RAE)
and their linear vs. greedy and supervised vs. semi-supervised variants are adopted to model the
activities. Then, abnormal activities are systematically detected using RAE’s reconstruction error.
Moreover, to apply RAEs for this problem, we introduce a new sensor representation called raw
sensor measurement (RSM) that captures the intrinsic structure of activities, such as the frequency
and the order of sensor activations. As real-world data are not accessible, we generated data by
simulating abnormal behaviour, which reflects on cognitive impairment. Extensive experiments
show that RAEs can be used as a decision-supporting tool, especially when the training set is not
labelled to detect early indicators of dementia.

Keywords: activity recognition; cognitive impairment; abnormal behaviour detection; hierarchical
learning; recursive auto-encoders; data generation

1. Introduction

Studies indicate that 17% of the population is aged over 65 in the UK and one million
people will have dementia by 2025, and this will increase to two million by 2050 [1–3].
These numbers underline a situation which presents a certain level of criticality that needs
to be managed. Cognitive impairment is a condition-affecting the memory and thinking
abilities of elderly people [4]. This situation makes the elderly people dependent on their
caregivers. However, studies show that age-in-place can help to mitigate the affects of
cognitive decline. Providing a living environment in a smart home can assist elderly people
suffering from dementia to lead an independent life. Moreover, tracking daily activities
of elderly people at such a smart home would be helpful to detect the early indicators
of dementia.

The indicators of cognitive impairment can be observed in daily activities, such as
cooking and eating [5,6]. Monitoring the trends over time and tracking the changes in
activity patterns, such as getting up repeatedly during the night and failure to complete
tasks, would be useful to understand the markers of cognitive decline. For example,
an elderly person suffering from Alzheimer’s may have abnormalities in their sleeping
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patterns, such as waking up or going to the toilet in the middle of the night. Moreover,
there can be an abnormality in their eating habits (forgetting to have dinner, for example),
or they may suffer from the consequences of dehydration because of forgetting to drink
water. They may also get confused and make mistakes while performing activities such as
running the dishwasher; they may confuse names on a phone book; they might forget to
turn off heaters and kitchen utilities [7].

In-home automatic assessment of cognitive decline has been the subject of many
studies [8–12]. Currently, questionnaires or in-person examinations are being used by
experts to evaluate the cognitive status of elderly people. The work reported in [11] was a
comparison of the paper-based Montreal Cognitive Assessment and its electronic version
(eMoCA) from 401 participants in two groups. A demographic questionnaire was built
into the eMoCA. The study presents that the eMoCA provides the potential to screen for
early changes in cognitive function and the access to rural or remote communities. In [12],
the authors assumed that leisure-time physical activity (LTPA) is protective against decline
in cognitive performance. They evaluated the cognition assessment using the in-person
questionnaires to the participants. Study results show the independent association between
a low level LTPA and a greater decline in cognitive performance. However, examination
methods of this kind poorly represent the cognitive status of an elderly person, since
they only depend on pre-defined questions asked in a given short time. Our study relies
on the idea that indicators of cognitive impairment can be observed in daily activities.
Thus, monitoring the activities of an elderly person in a smart assisted environment
would be helpful to assess the cognitive status. This system could be used as a decision-
supporting system for caregivers and medical doctors to take action towards improving
their life quality.

Daily activities are often composed of several sub-activities [13]. For example; the ac-
tivity “preparing coffee” consists of the following sub-activities: boiling water; taking a cup;
mixing coffee and water. These sub-activities are important in the detection of abnormal
behaviour related to dementia. For example, an elderly person suffering from cognitive
decline may get confused during the performance of an activity and this may result in rep-
etition or skip of some sub-activities. The repetition frequencies of sub-activities and their
correlations can be clues regarding the abnormal behaviour arising from cognitive impair-
ment. Unfortunately, existing studies treat each activity as an atomic unit and fail to model
activities based on their sub-activities, and thus fail to capture the relationships among
sub-activities, which might be important in the context of dementia. This study addresses
this shortcoming by constructing activity instances hierarchically from their sub-activities.
Activity recognition resembles scene parsing or phrase detection, which are hierarchical
learning problems. Inspired by solutions to these problems [14–16], we explored recur-
sive auto-encoders to model daily activities from their low-level sub-activity structures
hierarchically and then detect abnormal behaviour arising from cognitive decline.

Unfortunately, there exists no publicly available dataset on abnormal behaviour of
people with dementia. Producing such a dataset would require time and an adequate
experimental environment. When there is no real-world dataset available, data simulation
can be a solution [17–20]. Given the scarcity of such data, simulating daily life abnormal
behaviours of elderly people suffering from dementia would be helpful for providing auto-
matic assessment methods. Thus, in this paper, a method is proposed to artificially produce
abnormal activities reflecting on typical behaviour of elderly people with dementia.

The proposed application would be used as a cognitive status assessment method in
the natural flow of daily life of elderly people suffering from cognitive decline. The pro-
posed method would be used as a warning and decision supporting system rather than a
decision making system. As described in Figure 1, the model learns the normal activities
and detects the possible candidates for abnormal behaviour, which are actually deviating
sensor representations from the normal ones. Then the detected abnormal activities are
presented to the caregiver or the medical doctors to support their decision making. Final
decisions would be given by the clinicians.
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The contributions of this paper are three-fold.

• Simulation of abnormal behaviour: A method is presented to simulate abnormal
behaviour stemming from cognitive decline. More specifically, activity-related (repeti-
tion of activities and sleep disorder anomalies) and sub-activity (confusion)-related
abnormal behaviour instances are generated from real-world data.

• A new sensor representation: Raw sensor measurements coming from sequential data
are represented using raw sensor triggering information rather than a bag-of-words
style approach. This representation encodes granular-level information such as the
frequency of each sensor activation and their relative activation order.

• Modelling activities hierarchically: Recursive auto-encoders and their variants are
used to model sensor-based daily activities based on their sub-activities and detect
abnormal behaviour-related to cognitive impairment.

detect abnormal activities

warn caregivers
 and clinicians

Outliers

sensor representation

Figure 1. Overview of the proposed method.

The rest of the paper is organised as follows. Section 2 summarises the literature
work. Section 3 describes the dataset used and explains dementia-driven data generation; it
also presents the sensor representations along with the variants of the auto-encoder models
for abnormal behaviour detection. Section 4 presents the experimental settings and results.
Section 5 provides a discussion of the results. Finally, Section 6 concludes the paper.

2. Related Work

Automatic assessment of cognitive impairment has been tackled using many ma-
chine learning approaches, such as support vector machines (SVMs), naïve Bayes (NB)
methods [21], restricted Boltzmann machines (RBMs) [22], Markov logic networks [9,23],
hidden Markov models (HMMs) [19,24], random forest methods [20], hidden conditional
random fields [25], recurrent neural networks (RNNs), convolutional neural networks
(CNNs) [26,27] and some hierarchical models [28,29].

Cognitive Assessment Studies: In [30,31], participants were asked to complete a pre-
defined set of tasks and based on their performance, their cognitive status was evaluated.
This score was calculated based on the duration of the activity and the sensor activations.
In [32], the authors focused on kettle and fridge usage and sleep patterns. The cognitive
status of a person was assessed based on the kettle and fridge usage times, durations
and frequencies; and the duration of sleep. In [33], the authors designed games to assess
the cognitive status of an elderly person. Unfortunately, these assessment methods were
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not performed in the natural flow of daily activities. Rule-based systems require trained
experts and manually designed and integrated rules for each individual person since daily
life habits change from person to person. For example, while one person has the habit
of going to toilet frequently during the night, this routine might be abnormal for another
person. On the other hand, our method does not involve expert input, because it learns the
habits of people automatically from training data. In this study, we aim to detect abnormal
behaviour in a real-life scenario and in the natural flow of daily living without providing
any instructions, rules or tasks.

Deep Learning Studies: In [34], features were extracted and selected from sequential
data using RBMs. In [35], convolutional neural networks (CNNs) and long short term
(LSTM) recurrent neural networks (RNNs) were used to recognise activities from wearable
sensors. In [36], the authors explored convolutional and recurrent approaches on move-
ment data captured with wearable sensors. In [37], the authors utilised CNNs to classify
activities using smartphone sensors. In [38], features from raw physiological signals were
extracted using CNNs, and a multivariate Gaussian distribution was exploited to identify
risks. Unlike our work, these studies exploited wearable sensor data, which would not
be applicable for our task, since elderly people would be annoyed by wearing sensors.
In [26,27], the authors exploited RNNs and CNNs to detect abnormal behaviour stemming
from cognitive decline; however, these studies failed to capture the intrinsic structure of
activities and cannot detect anomalies occurring at the sub-activity level.

Data Generation Studies: In [19], the authors modified a real-world dataset to syn-
thesise health-related abnormal behaviours. Daily living activities such as sleeping and
waking up were chosen, and abnormal behaviours such as frequent toilet visits, no exercise
and sleeping without dinner were synthesised. In [20], more data were synthesised using
HMMs based on real data collected. To increase the realism of data simulation, the authors
modelled the sensor events by a combination of Markov chains and the Poisson distribu-
tion. However, in both [19,20], it was not mentioned in detail how the data synthesis was
done. In [17], the authors modified a real-life dataset, converting the rooms into activities.
The authors focused on walking and eating in conjunction with the sleeping activity, and
samples of these activities were manually inserted.

Hierarchical Modelling Studies: In [25], the authors exploited HCRF to detect ab-
normal behaviour by considering sub-activity and their relations. First, activities were
recognised by using HCRF; then a threshold based method was used to detect abnormal
behaviours. However, they did not build activities from their sub-activities; they looked for
anomalies in sub-activities manually. For example, for an anomaly occurring in sub-activity
“forget to turn off the tap”, they checked the HCRF confidence value calculated for this
sub-activity specifically. In [9], the authors detected anomalies by exploiting a Markov
logic network, which uses rule-based reasoning and probabilistic reasoning. Unfortunately,
these rules would need to be changed based on the home environment, sensors and habits
of the elderly. In [23], these rules were learned automatically by using a formal rule induc-
tion method. In our study, the abnormal behaviour is defined in the context of sequences
considering their relationships with before and after activities, similarly to [9,25]. In [28],
recursive auto-encoders (RAE) were used to cope with the scarcity of data. The authors
applied transfer learning when there was limited data available. They learnt “normal”
behaviour in a source household, and then transfered the parameters of a RAE to another
house (source) to detect abnormal behaviour of dementia sufferers. In [29], graph convolu-
tional networks (GCNs) were exploited to build daily activities from their granular-level
structures in order to detect abnormal behaviour arising from cognitive impairment.

Impressive results have been obtained with recursive models in hierarchical learning
problems, such as parsing, sentence-level sentiment analysis and paraphrase detection and
scene parsing [14,15,39]. In [40,41], auto-encoders were exploited for anomaly detection
in time-series sequences. In [15], the authors used recursive auto-encoders for predicting
sentiment distributions. Instead of using a bag-of-words model, hierarchical composi-
tional semantics was exploited to understand the sentiment. Inspired by [14,15], we aim
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to hierarchically merge sensor readings coming from time-series sensor activation data.
This model will be helpful to understand the intrinsic sub-structures of activities and to
extract sub-activities.

Data Simulation Studies: Many studies used data simulations to cope with the scarcity
of data [17,19,20]. In [28], transfer learning via recursive auto-encoders (RAE) was used
to detect abnormal behaviour of elderly people when there was limited data available.
First, normal behaviour was learned in a source household, and then the parameters of
a RAE were transferred to another house (target) to detect abnormal behaviour. In [19],
the authors modified a real-world dataset to synthesise health-related abnormal behaviour
for their experiments. In [20], more data were synthesised using hidden Markov models
(HMMs) based on a small set of real data collected. In [17], the authors modified a real-life
dataset of an older adult converting basically the rooms into activities. In [28], recursive
auto-encoders (RAE) via transfer learning were used to cope with the scarcity of data.
First “normal” behaviour in a source household was learnt, and then the parameters
of a RAE were transferred to another house (source) to detect abnormal behaviour of
dementia sufferers.

Sensor Representations: The studies in the literature exploit binary, changing and
lasting features [42]. However, these features were extracted from time-slice chunks
within a given time and neglect the interaction between sensors, their triggering order
and frequency. Similarly to our work, in [43], the authors tried to capture the relationship
between the sensor activations. They learn an adjacency matrix reflecting the sensor
topology in the house.

3. Materials and Methods

In this section, firstly, the dataset used is presented along with the simulation of the
abnormal behaviour. Secondly, two different sensor representations, namely, bag-of-sensors
and raw-sensor-measurement, are described. Thirdly, recursive auto-encoder models and
their variants, namely, traditional and greedy RAEs are presented. Lastly, an abnormal
behaviour detection method is summarised.

3.1. Dataset Description

The proposed RAE-based method was evaluated on Aruba testbed provided by
CASAS smart home project [44]. In our study, we used three door and 31 motion sensors
and excluded temperature sensors, since they do not add any additional information. The
data were collected in 224 days and data were noted as sensor readings and time-stamps.
In total, there are 11 daily activities, namely, “meal preparation”, “relaxing”, “eating”,
“work”, “sleeping”, “washing dishes”, bed to toilet”, “entering home”, “leaving home”,
“housekeeping” and “respirating” in this dataset. Unfortunately, Aruba dataset does not
include any abnormal behaviour reflecting the cognitive status of elderly people with
dementia. Therefore, we need to generate some artificial abnormal behaviour.

3.2. Simulation of Dementia-Related Abnormal Behaviour

In this study, we generate two types of abnormal behaviour observed in daily activ-
ities of elderly people with dementia: (i) activity and (ii) sub-activity-related abnormal
behaviour. In activity-related anomalies, an activity itself is totally normal, but there is
an anomaly related to its frequency or its occurrence time (before/after certain activities).
On the other hand, a sub-activity-related anomaly occurs in the intrinsic structure of the
activity (frequency of sensor activations, their order and correlation). In the first one,
activities as a whole are repeated or forgotten; in the second one, some steps (sub-activities)
of activities are forgotten or repeated.

3.2.1. Activity-Related Abnormal Behaviour

An elderly person with cognitive decline has a tendency either to forget or repeat a
certain activity [45,46]. This kind of abnormal behaviour is simulated by inserting certain
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activities within the sequence of the day. This simulation generates abnormal activities
in an abnormal time of the day, such as cooking or going to the toilet in the middle of a
night, showing degeneration of the sleep–waking cycle, which is a symptom of cognitive
decline [45,47]. We injected the instances of the following activities into the normal activity
sequences to generate abnormal activities related to the frequency: meal preparation, eating,
work, washing dishes, leaving home and entering home. We injected relaxing, eating, bed
to toilet and respirating into the normal activity sequences of sleeping activity to mimic
abnormal behaviour stemming from sleeping disorders (see Algorithm 1). In total, we
manually generate 77 abnormal activity instances.

Algorithm 1: Simulation of abnormal activities.
Input : A sequence S of sensor activations in a day such as S = < s1, s2, . . . , sn > where each si is a sensor

activation.
An activity A = < a1, a2, . . . , am > where each aj is a sensor activation. /* A is chosen specially

(e.g.,eating) to reflect a dementia-related abnormal behaviour. */
Output : S = < s1, s2, . . . , sl , a1, a2, . . . , am, sl+1, . . . , sn >
while true do

Choose a random position l in S;
Insert A into S at position l;

end

3.2.2. Sub-Activity-Related Abnormal Behaviour

Elderly people with cognitive impairment may get confused during the performance
of daily activities. As a result, they might tend to perform some sub-activities more than
once, or change the orders of sub-activities within an activity. For example; during washing
clothes activity, an elderly person may confuse how to use the washing machine, and may
press the buttons of the machine a couple of times. Then the sensors on the machine would
be triggered abnormally more than they should be.

The generation of this kind of anomalies is done by repeating some sensor activations
in a given activity instance (see Algorithm 2). For this purpose, given random instances
of working, eating, meal preparation and bed to toilet, we randomly repeat the sensors
(M26, M14, M18, M4 respectively) involved in these activities. Here, we can think that the
sensor M26 emulates the computer. Repeating the triggering of this sensor in working
activity will emulate the confusion of using a computer. For example, assume that S =
s1, s2, s3, ..., sn is a randomly chosen sequence of working activity, where each si represents
a sensor activation. Here, the sensor M26 is inserted at random locations with a random
frequency. Then the modified S becomes S = s1, M26, s2, s3, M26, ..., M26, sn which results
in abnormal activations of that sensor (see Figure 2). In total 69 abnormal activities are
generated in this category.

Algorithm 2: Simulation of abnormal sub-activities.
Input : A sequence of S of sensor activations of an activity A such as S = < a1, a2, . . . , an > where each ai is a

sensor activation
A sensor type M that occurs in activity A.
/* A and M are chosen specially (e.g., sensor M6 in working activity) to reflect a

dementia-related abnormal behaviour. */
Output : S = a1, M, a2, M, a3, . . . , M, an
while true do

Choose a random location l in S
Insert M into S at l

end
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2011-04-01 08:42:35.982779 M026 ON WORK
2011-04-01 08:42:37.732557 M028 OFF
2011-04-01 08:42:37.732557 M26 ONabn
2011-04-01 08:42:41.771143 M027 ON
2011-04-01 08:42:44.654344 M027 OFF
2011-04-01 08:42:49.308347 M026 OFF
2011-04-01 08:42:49.308347 M26 ONabn
2011-04-01 08:42:49.686528 M026 ON
2011-04-01 08:42:49.686528 M26 ONabn
2011-04-01 08:42:56.781314 M026 OFF
2011-04-01 08:42:56.781314 M26 ONabn
2011-04-01 08:42:59.231909 M026 ON
2011-04-01 08:42:59.231909 M26 ONabn
2011-04-01 08:43:01.87894 M026 OFF
2011-04-01 08:43:01.87894 M26 ONabn
2011-04-01 08:43:10.698872 M026 ON
2011-04-01 08:43:10.698872 M26 ONabn
2011-04-01 08:43:12.222027 M027 ON
2011-04-01 08:43:12.222027 M26 ONabn
2011-04-01 08:43:15.870637 M027 OFF
2011-04-01 08:43:19.705349 M028 ON
2011-04-01 08:43:19.705349 M26 ONabn

Figure 2. A snapshot for sub-activity-related anomaly synthesis. ONabn shows the inserted sen-
sor activations.

3.3. Feature Engineering

In this study, raw sensor readings are mapped onto two representations, namely,
bag-of-sensors (BOS) and raw-sensor-measurement (RSM) representations.

3.3.1. Bag-Of-Sensors (BOS)

This representation is the same as raw feature representation described in [42]. How-
ever, we name it BOS, since it resembles a bag-of-words representation in document
recognition literature. This representation ignores the context of sensor events in a given
duration. Firstly, time-slice chunks are segmented from raw sensor data using a sliding
window approach [42]. A time-slice chunk can be thought of as a bag that collects the
sensors which are triggered in a given time. A vector of length N, where N is the total
number of sensors in the dataset, is initialised to zeros, and the sensors triggered at a given
time are set to 1. This feature ignores the frequency and the order of activations.

For example, sensor readings from Aruba dataset within a 1 minute time are shown in
Figure 3. There are 34 sensors in Aruba test-bed. Thus BOS representation for this chunk
will be 0011101000000000000000000000000000, where only the positions at 3, 4, 5, 7 are set
to 1. Although M003 is triggered two times and M005 is triggered only once, they have the
same affect on the representation. Moreover, first M007 is activated and then M003 and so
on; nevertheless, this order is lost in this representation.

3.3.2. Raw-Sensor-Measurement (RSM)

In this version, the frequency and the correlation between the sensor activations are
preserved. For example, given the one-minute data in Figure 3, the RSM representation will
be M7, M3, M7, M3, M5, M4. The representation is then mapped onto a one-hot encoded
representation for each sensor activation. The extracted representation will be the variable
size of (number of sensor activations in a given time window × number of total sensors
in the dataset; in this example, 6× 34), whereas BOS has a fixed size of (1 × number of
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total sensors in the dataset; 1× 34 in this case). BOS feature ignores the relative order
and the frequency of sensor activations, whereas this information is captured by the RSM
representation. However, the order of sensor activations, their correlation with other
sensors and their frequency are granular, important details to detect anomalies-related
to dementia.

Figure 3. Raw sensor data and its RSM feature.

3.4. Auto-Encoder Models for Abnormal Behaviour Detection

An auto-encoder network is an architecture that takes an input and is trained to
reproduce that input in its prediction layer. Auto-encoders are unsupervised since they do
not need explicit labels during training. However, they work in a self-supervised fashion
since they learn model parameters relying on training data. An auto-encoder consists of
an encoder compressing the input, a decoder reconstructing the input and a loss function
calculating the error between the real input and the reconstructed input.

In a recursive auto-encoder (RAE), which originated from [48], given two children,
an encoding function first constructs the parent. Then the children are reconstructed by
decoding function to calculate the loss. The same encoder and decoder are used at all levels
of the tree recursively. We will be focusing on two types of RAEs—traditional RAEs and
greedy RAEs.

3.4.1. Traditional Linear Recursive Auto-Encoders

In a traditional RAE, a parent is constructed by merging a child with its neighbour.
In Figure 4 (figure retrieved from [15]), a list of inputs x = (x1, x2, x3, x4) is given. First,
the children (c1, c2) = (x3, x4) are merged to calculate parent y1 so that p = f (W(1)[c1; c2] +
b(1)) where a weight matrix W is multiplied with the children. Then a bias term is added
before applying an element-wise activation function such as tanh. Next, parent vector y1
is merged with the next child x2. The same procedure is applied recursively in all levels
of the tree. Then, the model reconstructs the children in a reconstruction layer: [c1; c2] =
g(W(2)p + b(2)). In the end, the reconstruction errors are minimised in a training phase to
learn the model parameters. The reconstruction error is calculated as E = Porig([c1; c2])−
Prec([c1; c2]). The process repeats until the full tree is constructed and a reconstruction error
is obtained at each non-terminal node. The encoding and decoding weight matrices are
learned by applying the back-propagation algorithm.

3.4.2. Greedy Recursive Auto-Encoder

In greedy RAE, two children that give the least reconstruction error are merged at
each tree level. This greedy approach is described as follows. Assume that a sequence
of instances x1, x2, x3, x4, x5 is given (see Figure 5). First, the parent p = x1, x2 of children
[x1,x2] is encoded, then the children are reconstructed. The reconstruction error e1 is
calculated and kept in memory. Then, the merging is shifted to the right child where
the parent of children [x2, x3] is encoded and the reconstruction error is calculated as e2.
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This shifting is done until the last child is used. The minimum error among the errors
e1, e2, e3, e4 is chosen and the corresponding children are merged at that level. Let’s assume
e4 is the minimum, which is a result of merging of children [x4, x5]. The first merging for
the first level of the tree is done as y1 = x4, x5 and these children are represented by y1.
Then the merging for the second level is done with x1, x2, x3, y1 and it continues in the
same greedy manner until only one parent (y4) remains in the last layer.

Figure 4. A recursive auto-encoder.

Figure 5. A greedy recursive auto-encoder.

3.5. Abnormal Behaviour Detection

First, the dataset is divided into training and testing sets and the training set is used to
learn the parameters for encoding function (W(1) and b(1)) and decoding function W(2) and
b(2) for a RAE model. Then test instances are given to constructed RAE trees to construct
their parents. The main motivation behind is that given a training activity set of normal
behavior, RAE learns a feature representation that encodes and models normal behaviour.
Abnormal behavior is defined as the ones deviating from the expected behaviour. When a
new test instance is introduced, the model will reconstruct the children with a small error,
while the abnormal instances will be poorly reconstructed. Thus, the reconstruction error
will be exploited to decide if an instance is normal or abnormal behaviour. Two different
methods are used to construct RAE trees as follows.

3.5.1. BOS Feature Merging Method

A sliding window of one minute is applied on the raw data (in both training and
testing dataset) and sensor readings in each one window are mapped onto BOS represen-
tation (Section 3.3). Then a window size of w is used to extract chunks from these BOS
representations. Thus, these chunks have a size w× n, where n is the number of features
(=34). Then each row of a chunk is merged with its next row using traditional RAE until
only one parent is constructed in the end.
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In Equation (1), the error between the original children x1 and x2, and their recon-
structed versions x

′
1 and x

′
2 is calculated using the mean squared error (MSE). N is the

total number of features that each xi has. Then the error of each parent is used to decide if
there is an abnormality in children or not. Here, in a constructed RAE tree for an input,
time-slices in 25 min chunks are spanned, and the relationship between each one-minute
slice is taken into account during the mergings in RAE.

Erec(x1) = 1/N
N

∑
i=1

(x
′
1i − x1i)

2 (1)

3.5.2. RSM Feature Merging Method

First, each one minute time-slices are mapped onto RSM representation. Inspired
by [15], where words in a sentence are merged by a RAE, we treat each sensor activation
as a word and each extracted RSM as a sentence. For example, in the extracted RSM
feature M7, M3, M7, M3, M5, M4, each sensor activation, such as M7, is treated as a word.
Resembling a sentence, in a RSM representation the order of the words is important to
decide the context of a sentence. The sensor activations in RSM representations are merged
hierarchically by greedy RAE. Each sensor activation is represented as a one-hot encoding
representation during the merging. Here, the error for each RSM tree is used to decide if
that time-slice is abnormal or not. This error is decided in two ways. First, the average
error of all parents in the tree is used. Second, the error of the last parent is used. The
experiments with this feature is performed in two modes following the same procedure
in [15].

Unsupervised RAE: In unsupervised RAE, activity labels are not used and RAE
is trained as described in Section 3.4.1. Each sensor reading is represented by one-hot
encoding and parents are constructed from the children. The error is calculated using MSE
in Equation (4).

Semi-Supervised RAE: In semi-supervised RAE, the error at each parent node is
a combination of unsupervised RAE error (see Section 3.4.1) and supervised error. Su-
pervised error is calculated in the following way. Assume that we have the RSM input
x1, x2, x3, x4, x5, which is extracted within one minute duration from raw data (Figure 5).
The activity occurred at that one minute, label l is used as the label for whole parents in
the tree while the parents are used as the features. Each parent p can be seen as a feature
describing the sub-tree under it. Then a softmax layer is added to each parent as follows.

d(p; θ) = so f tmax(W label p) (2)

where θ = (W(1), b(1), W(2), b(2), W(label)). Assume that there are K labels, dk ∈ IRK is
a K − dimensional multinomial distribution and ∑k=1 dk. Then softmax layer’s outputs
can be used as conditional probabilities for a parent p as dk(p; θ) = p(k|[c1; c2]). Then,
the cross-entropy (supervised) error is:

Esup(p, t; θ) = −
K

∑
k=1

tk log dk(p; θ) (3)

where tk is the kth element of the multinomial target label distribution t for parent.
A weighted average of supervised error Esup(x1, x2) and unsupervised error

Eunsup(x1, x2) (Equation (1)) is used to calculate the final error (Equation (4)), where α
is decided experimentally as a value between 0 and 1.

Erec(x1, x2) = αEunsup(x1, x2) + (1− α)Esup(x1, x2) (4)

4. Results

In this section, first, the experimental set-up is described summarising implementation
details and model parameters; then the results with different sensor representations and
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the proposed RAE-based method are presented along with the compared methods. We also
present the results showing the classifiers’ performance and show n-gram patterns for the
extracted sub-activities.

4.1. Experimental Set-Up

First the dataset was divided into training (139 days) and testing sets (70 days), where
15 days were used for validation. The testing set was modified to include sub-activity
and activity-related anomalies. The modifications (Section 3.1) were done separately,
which resulted in two different testing sets. We analysed sub-activity and activity-related
anomalies separately to see the affects of RAEs on both types of anomalies individually.

We compare our results of RAE with RNNs (long short term variants), CNNs, HMM,
NB and CRF. For comparison experiments, BOS feature is used since we need a fixed-
length feature representation for these experiments. These models are supervised and
they classify instances based on a confidence value. The models assign a class label to
each instance with a confidence value. Firstly, the means of confidence values of training
instances for each class were calculated as in Equation 5. If the model recognised a test
instance with a confidence value smaller than a threshold, that instance was flagged up as
an abnormal activity.

mj = 1/N
N

∑
t=1

pt (5)

where mj is the mean confidence value of class j and pt is the confidence value for training
instance t of that class and N is the total number of instances in that class.

Keras Deep Learning library’s [49], and Theano’s [50] Python implementations of
the CNNs and LSTM were used in this study. Experiments with NB, HMM, HSMM and
CRF were conducted on the implementation provided in [42], which was implemented
in Matlab. In the CNN and RNN experiments, the Adam optimiser [51] was used and
the instances were fed into the system with a batch size of 20. In CNN experiments, a
time-series window of length 10 seconds was extracted from the raw sensor reading data
based on a sliding window approach. The CNN model had the following layers: A 2D
convolutional layer (with 20 kernels of size 5× 10), a max pooling layer (with a pooling
size of 2× 2), a 2D convolutional layer (with 10 kernels of size 10× 15), a max pooling
layer (with a pooling size of 2× 2) a flattened layer and two dense layers of size 128 and
50, followed by a softmax layer to do the classification. In LSTM two hidden layers of 50
and 100 nodes were used. Then, dense layers of size 100, 128 and 50 were added to the
network, followed by a softmax layer. There were drop-out layers with a probability of 0.5
between every two layers in both CNN and LSTM models.

RAE experiments were performed in two ways. The first experiment was conducted
with BOS feature and it was implemented on Theano and Python, and the second experi-
ment was based on Socher et. al.’s Matlab implementation [15] and performed with the
RSM feature.

Abnormal behaviour detection success was measured using true positive rate (TPR)
and false positive rate (FPR) (see Equations (6) and (7)). TPR vs. FPR values for different
thresholds are shown on a receiver operating characteristic (ROC) curve. Additionally, area
under curve (AUC) was calculated for each model to interpret the results in a better way.
True positive rate (TPR) gives us an idea about the correctly detected instances which are
abnormal. FPR calculates the percentage of mislabelled normal instances—in other words,
it reflects the method’s ability to differentiate between normal and abnormal behaviour.

TPR (Sensitivity) =
TP

(TP + FN)
(6)

FPR (Specificity) =
TN

(TN + FP)
(7)
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Precision, recall, accuracy and F-measures, as depicted in Equations (8)–(10), are
used to evaluate classifier performance. Here, TP is true positive, TT is total number of
instances, TP is total true labels, TI is total of inferred labels, N is the number of classes
in a specific class of the dataset and Total is the total number of instances of all classes
in the dataset. For each class, precision and recall are calculated separately and then the
average is taken over all classes. As our dataset is unbalanced, these measures give us
a better idea about the success of the models used. In unbalanced datasets such as daily
activity ones, some certain classes (such as going to toilet) appear more than others (such
as leaving home). Thus, our measure takes the average precision and recall over all classes
and considers the correct classification of each class equally important. Accuracy calculates
the total percentage of correctly classified time-slices; thus, more frequently occurring
classes have larger weights [42].

Precision =
1
N

N

∑
i=1

TPi
TIi

(8)

Recall =
1
N

N

∑
i=1

TPi
TTi

(9)

F-measure =
2× Precision× Recall

Precision + Recall
(10)

Accuracy =
∑N

i=1 TPi

Total
(11)

4.2. Evaluation of Features and Models

The results for anomaly detection are shown in Figures 6 and 7. The abbreviations in
Table 1 are used for the results.

Table 1. Abbreviations of the models used.

LSTM Long Short Term Memory variants of RNNs

HMM Hidden Markov Model

CRF Conditional Random Field

CNN Convolutional Neural Network

BOS-L Unsupervised (U) traditional linear (L) RAE with BOS feature

RSM-GUA
Unsupervised (U) RAE with RSM and greedy (G) merging
when the average (A) of all parent errors is used

RSM-GSA
Supervised (S) RAE with RSM feature and greedy merging
when the average (A) of all parent errors is used

RSM-GUE
Unsupervised (U) RAE with RSM and greedy (G) merging
when the error of root node (E) is used

RSM-GSE
Supervised (S) RAE with RSM and greedy (G) merging when
the error of root (E) node is used

Figures 6 and 7 show the results on activity-related anomaly detection. The results
show that LSTM is the best method giving the highest AUC (58.48%), and NB is the worst
one (with AUC41.48%). Activity-related anomalies occur in the order of the activities
involved, and LSTM is good at capturing temporal dependency between inputs, so it
detects changes in the order of the activities. CNN comes as the second method (with
AUC 57.79%). Instead of relying on given features, CNN extracts its own features taking
spatial context into account. After CNN, RSM-GSE produced an AUC of 55.83%, which
was followed by RSM-GSA (with AUC 54.59%) and RSM-GUE (with AUC 54.10%). Then



Sensors 2021, 21, 260 13 of 20

CRF achieved an AUC of 53.80%. The next methods were RSM-GUA (with AUC 52.10%),
BOS-L (46.45%) and HMM (AUC of 43.55%).

(a) ROC curve for activity-related abnormal behaviour test set.

(b) ROC curve for sub-activity-related abnormal behaviour test set.

Figure 6. ROC curves for abnormal behaviour detection with both activity-related and sub-activity-
related abnormal behaviours.

We see that RSM-GUE performs better than supervised methods NB, CRF and HMM.
The reasons for this are as follows. HMMs are constrained to binary transition and emission
feature functions, which force each instance to depend only on the current label and each
label to depend only on the previous label. NB does not rely on any temporal dependency
and it uses BOS measurement, neglecting both temporal context and granular-level details
of each feature. Linear-chain CRF has limited memory, since it captures linear dependency
between the current input and the previous one. RAEs learn hierarchical structures and
the learned structures can capture more of the semantic relationships of sensor activations
in RSM representation.
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In Figures 6 and 7, LSTM is the best method to detect anomalies related to sub-activities
with an AUC of 69.91%. The second best method is HMM, and then comes CRF—AUCs
of 56.76% and 55.43%. BOS-L achieved an AUC of54.36%. Please remember that BOS-L
merged 25 instances of 1 min time-slices at each tree. Thus it could detect changes within
25 min and relate the changes between these time-slice instances. A sub-activity-related
anomaly causes changes in the feature vector itself and in the neighbouring feature vectors.
NB gives AUC of 51.20%, but it cannot capture temporal context. Greedy RAE with
RSM model only takes 1 minute time-slices into account and constructs RAE trees, but
unfortunately it cannot relate each RAE tree of 1 minute time-slices to the next time-slice,
since it cannot take temporal information into account.

Figure 7. AUC histogram for the proposed methods and the comparison methods.

We see that RAE models do not give the best results when AUC values are compared.
However, when an optimum threshold is chosen on the ROC curve, RAE models can
perform as good as supervised methods. For example, in Figure 6a, RSM-GSE gives the
same TPR (65%) and FPR (55%) with CNN and LSTM at the intersection point of their
ROC curves. In Figure 6b, we see that RSM-GUA intersects with LSTM at TPR of 95% and
FPR of 55%. AUC weights TRP and FPR equally. However, in some scenarios like ours,
detection of TP is more important. For abnormality detection problem in skewed datasets,
where the number of anomalies is much less than normal ones, TP is more important.

4.3. Classifier Performance

The next set of experiments was performed to evaluate the modelling ability of
RAE and the representation ability of the reconstructed features of RAE. Even though
the RSM representation has a variable length for each input, the RAE model outputs a
fixed feature vector at the root node. The reconstructed representation of the root (size of
1× 34) can be used as a final representation for the variable-length input and supervised
classification methods can be trained with these features for further applications. We chose
the J48 decision tree (the Weka implementation of the standard C4.5 algorithm) as our
classifier due to its simplicity. The classifier results are depicted in Table 2. Firstly, classifier
accuracy rates with BOS features are presented to provide a baseline for comparison.
The classifier accuracy with BOS feature for activity-related test set is 81.37%, while it
is 81.49% for sub-activity-related test set. The recognition accuracy rates with the RSM
feature were as follows: 78.78% for activity-related anomaly test set; accuracy of 78.49% for
sub-activity-related anomaly test set when supervised RAE was used; accuracy of 71.81%
for activity-related anomaly test set; accuracy of 72.64% for sub-activity-related anomaly
test set when unsupervised RAE was used.
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Table 2. J48 classifier precision, recall and accuracy rates (best results presented in bold font) with
reconstructed features for both activity and sub-activity-related anomaly test sets.

Model Activity Anomaly Test Set

Precision Recall F-Measure Accuracy
BOS—Original 42.92% 42.31% 41.84% 81.37%
RSM—Semi-supervised 46.92% 47.23% 46.06% 78.78%
RSM—Unsupervised 47.33% 38.72% 37.89% 71.81%

Model Sub-Activity Anomaly Test Set

Precision Recall F-Measure Accuracy
BOS—Original 40.93% 42.08% 38.93% 81.49%
RSM—Semi-supervised 43.77% 42.77% 41.65% 78.49%
RSM—Unsupervised 42.84% 39.27% 37.89% 72.64%

Although an RSM representation gives less classification accuracy compared to BOS
feature, it gives better precision and recall rates, which means experiments with RSM are
good at providing class-specific detailed information and result in higher precision and
recall rates. For example, the BOS-original experiment achieved a precision of 42.92%,
recall of 42.31% and F-measure of 41.84% on the activity anomaly set, while RSM semi-
supervised experiment achieved precision of 46.92%, recall of 47.23% and F-measure of
46.06%. For imbalanced datasets, RSM representation can be used where the accuracy is
important, but also precision and recall on the least frequent classes are important. We see
that supervised RAE calculates better features than unsupervised RAE and it gives very
close classification accuracy rate with BOS feature, which shows that RSM has a high
representation ability.

4.4. Pattern Extraction

We also provide quantitative analysis to show how greedy RAE merges sub-activities
in a hierarchical way to model activities. Sub-activities come together and form meaningful
structures, which we call patterns. A sample set of constructed trees is shown in Figure 8.
For example, we see that the sensors M19 and M15 are grouped together in the constructed
trees for meal preparation activity. In Aruba testbed, these sensors are replaced close to
each other, and when the resident performs meal preparation, these sensors are triggered
one after another. Thus, they form a sub-activity pattern during the performance of this
activity. The pattern constructed by these two sensors is identified as near the kitchen
range and sink in [52], which supports our finding. Additionally, we see that the sensor
M16 is added to this sub-activity (M15, M19) which probably represents the cupboard usage
during meal preparation. Another grouping of sensors, namely, M17, M15, M19, shows
another sub-pattern in this activity, which is again (M17 and M19) found as a movement
pattern in [52]. We see that RAE hierarchically models these relations in the trees. In
the eating activity, we see that M13 and M15 represent a sub-activity and M14, M13, M15
represent another sub-activity, which is constructed by the sub-activity M13, M15 and the
sensor M14.
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(a) Meal Preparation (b) Meal Preparation

(c) Meal Preparation (d) Meal Preparation

(e) Eating (f) Housekeeping

(g) Meal Preparation (h) Work

Figure 8. RAE trees constructed with the training set.

Moreover, we extract the most common and important patterns for each activity class
in the following way. The idea is that the sensor readings, which are triggered one after
each other frequently, represent a sub-activity (pattern). If they are seen together frequently
in the training set, RAE learns to reconstruct them better and then in the test set; it gives
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less reconstruction error compared to the ones not seen frequently. We firstly sort all
reconstruction errors of each node in the training set, and take the top 500 nodes with
the least error. Then n-gram patterns are calculated with these top patterns. We calculate
n-grams with only n = 2 and n = 3, which is already enough to see the patterns in the
dataset. The n-grams are extracted from constructed the RAE trees by the supervised
greedy method on the training set. The most frequent 2-grams and 3-grams are shown
for each activity class in Table 3. For example, for the activity sleeping, the most frequent
pattern is M2, M3; this makes sense because when we look at the sensor locations on
Aruba testbed, we see that these sensors are on the bed and they will be triggered one
after another during sleeping activity; thus they have a correlation. After extracting these
frequent patterns (sub-activities), we can look for their errors in the RAE trees. If there
is high error at those patterns, we can easily detect specific anomalies related to these
patterns. For example, to check if the person is washing the dishes after a cooking activity,
we can check sub-activity between the sink and the kitchen table and check the error of
this sub-activity.

Table 3. N-gram patterns extracted from training set.

Activity 2-Gram 3-Gram

Bed to Toilet
M4, M7
M5, M7

M4, M5, M7
M4, M4, M7

Meal Preparation
M15, M19
M18, M19
M17, M19

M15, M19, M19
M15, M18, M19
M15, M16, M19

Relaxing
M6, M9
M8, M9
M9, M13

M9, M9, M13
M9, M9, M10
M9, M13, M20

Eating
M8, M14
M6, M14

M9, M14, M14
M10, M14, M14

Work
M26, M27
M8, M26

M26, M26, M27
M26, M27, M27

Sleeping
M2, M3
M3, M3
M3, M7

M2, M3, M7
M2, M3, M3
M3, M3, M7

Washing Dishes
M15, M19
M18, M19
M17, M19

M15, M16, M19
M15, M19, M19
M15, M18, M19

Housekeeping
M14, M20
M13, M20

M15, M18, M19
M14, M18, M20

Leaving Home
M31, D3

M18, M21

M29, M30, D4
M10, M22, m29

Entering Home
M31, D3

M21, M14

M29, M30, D4
M22, M30, D4

respirating M27, M25 M25, M25, M25

5. Discussion

Although LSTMs and CNNs outperform our proposed RAE-based method, one
disadvantage of supervised models on our proposed method is that they require too much
training data. Collecting and labelling that much training data is time consuming and a
laborious task. Moreover, providing labelled data at the beginning would not be enough
since observation of elderly people suffering from dementia in a smart home is a task which
can be up to years. Thus, a continuous labelling of the data would be necessary. Moreover,
activity classes need be fixed for supervised models. However, users tend to change their
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activity patterns in a time lapse of years. This would require the training set to be updated
and labelled again. Thus, using RAEs to model activities is more advantageous than using
supervised methods.

Moreover, although supervised methods give better AUC results than RAE models,
they require labelling information which is tedious and time consuming task to obtain. In a
case where getting a training set is difficult, RAE models can be an alternative to supervised
methods. Moreover, detection of dementia indicators is a process spanning months and
maybe years. In this time, the habits of residents may change and new activities may
emerge. Thus, obtaining a training dataset and labelling it would not be sufficient since
this labelling process would need to be repeated again when the activity labels change.
However, with unsupervised methods such as RAE, no activity label data is used and
the model can be updated at any time. Some of the supervised methods, such as CRF,
take frequency information of each class instances into account and favours those classes
in terms of classification. This would be a problem with imbalanced datasets like daily
activity datasets, where abnormal detection of infrequent classes are important as well.
However, RAE models do not learn class based parameters since they do not use class
labels. We see that supervised methods used in the experiments tend to detect abnormal
instances of frequent classes better than the others.

However, RAE models cannot relate one instance to another and neglects temporal
information. Another problem with BOS is that it does not reflect the real status of an
activity being performed. For example, people do not tend to close the room doors after
they enter or leave. Once the door is open, the door sensor continues to emit 1. However,
RMS feature representation only takes the activation of the sensor into account and then
neglects the information that the door is left open. For scenarios where the door sensor
is not important, it is good that the on status is not carried forward, but for abnormality
detection scenarios such as leaving the door open, RMS feature would not be able to catch
this information.

6. Conclusions

This paper proposed a method to detect abnormal behaviour associated with the
cognitive impairment of elderly people. The abnormal behaviour of dementia sufferers is
detected by decomposing activities into sub-activities to obtain a hierarchical tree structure.
Using RAE, the promising results show that although this method cannot outperform
methods such as LSTM, it can be used as an alternative when there is no training set
or a limited training set available. Unfortunately, this method cannot relate one activity
to another and neglects temporal information. We will extend the presented method
in future investigations. Moreover, it is worth considering the off status of the sensors
and investigating the effect on anomaly detection. The most important step in the future
is to collect real-world data to study cognitive impairment. Our future work will be
further evaluated with other popular semi-supervised or unsupervised models, such as
semi-supervised ensemble isolation forest and local outlier factor, which are unsupervised
anomaly detection methods. We will also investigate the applicability of deep unsupervised
transfer learning or generative adversarial networks (GANs) for the detection of the
indicators of dementia.
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