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Abstract 

A concatenation framework for time-domain concatenative speech synthesis (TDCSS) 

is presented and evaluated. In this framework, speech segments are extracted from 

CV, VC, CVC and CC waveforms, and abutted. Speech rhythm is controlled via a 

single duration parameter, which specifies the initial portion of each stored waveform 

to be output. An appropriate choice of segmental durations reduces spectral 

discontinuity problems at points of concatenation, thus reducing reliance upon 

smoothing procedures. 

For text-to-speech considerations, a segmental timing system is described, which 

predicts segmental durations at the word level, using a timing database and a pattern- 

matching look-up algorithm. The timing database contains segmented words with 

associated duration values, and is specific to an actual inventory of concatenative 

units. Segmental duration prediction accuracy improves as the timing database size 

increases. The problem of incomplete timing data has been addressed by using 

`default duration' entries in the database, which are created by re-categorising existing 

timing data according to articulation manner. If segmental duration data are 

incomplete, a default duration procedure automatically categorises the missing speech 

segments according to segment class. The look-up algorithm then searches the timing 

database for duration data corresponding to these re-categorised segments. 

The timing database is constructed using an iterative synthesis/adjustment technique, 

in which a `judge' listens to synthetic speech and adjusts segmental durations to 

improve naturalness. This manual technique for constructing the timing database has 

been evaluated. Since the timing data is linked to an expert judge's perception, an 

investigation examined whether the expert judge's perception of speech naturalness is 

representative of people in general. Listening experiments revealed marked 

similarities between an expert judge's perception of naturalness and that of the 

experimental subjects. It was also found that the expert judge's perception remains 

stable over time. A synthesis/adjustment experiment found a positive linear 

correlation between segmental durations chosen by an experienced expert judge and 

duration values chosen by subjects acting as expert judges. 
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A listening test confirmed that between 70% and 100% intelligibility can be achieved 

with words synthesised using TDCSS. In a further test, a TDCSS synthesiser was 

compared with five well-known text-to-speech synthesisers, and was ranked fifth 

most natural out of six. An alternative concatenation framework (TDCSS2) was also 

evaluated, in which duration parameters specify both the start point and the end point 

of the speech to be extracted from a stored waveform and concatenated. In a similar 

listening experiment, TDCSS2 stimuli were compared with five well-known text-to- 

speech synthesisers, and were ranked fifth most natural out of six. 
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Chapter One 

1. Introduction 

1.1 This thesis 

In speech synthesis research, considerable attention is paid to improving models of 

prosody. However, other aspects of speech synthesis are often given less emphasis. 

For instance, in concatenative speech synthesis, problems still arise due to unnatural 

discontinuities when conjoining speech segments (Hess, 1992). These discontinuities 

are detrimental to segmental intelligibility and cannot be hidden by a good prosodic 

model (Carlson, 1991). This research presents and evaluates a concatenation 

framework for text-to-speech synthesis, which is potentially a means of improving the 

naturalness and intelligibility of synthetic speech; however the framework is at 

present constrained to the synthesis of isolated words from a text input. 

In this concatenation framework, speech segments are concatenated in the time 

domain to produce synthetic speech (see Chapter 3). In the concatenation process, 

speech segments are abutted without the use of explicit smoothing procedures; a key 

feature of this method is that the point of concatenation itself can be varied from 

segment to segment. By choosing an optimal concatenation point, the naturalness of 

the synthesised speech is greatly improved. Concatenation points are directly related 

to a segmental duration parameter, which specifies the initial portion of a speech unit 

that is to be abutted. There is a direct relationship between the extracted portion of a 

speech unit and the segmental duration parameter, because the selected portion has an 

intrinsic duration. This time-domain concatenation technique has not been explored 

extensively in the literature, and so this research seeks to evaluate its potential. 

The concatenation framework is based primarily on CVC (consonant-vowel- 

consonant) syllables, formed by joining together CV (consonant-vowel) and VC 

(vowel-consonant) syllables. Some CC (consonant-consonant) diphones are also used. 

The development of the inventory of speech waveforms is described. The 

concatenation framework is not limited to the above types of concatenative unit, and 

additional types of segment can subsequently be added to the waveform inventory. It 
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is shown that under this framework, intelligible synthetic speech is attainable for 

whole words. 

For text-to-speech applications, a segmental duration prediction algorithm has been 

developed (see Chapter 4), which uses a timing database and a pattern-matching look- 

up algorithm. The timing database consists of segmented words with their 

corresponding duration values and is constructed using an iterative 

synthesis/adjustment approach, in which a human listens to the synthetic speech and 

adjusts segmental durations to improve naturalness. This manual approach was 

chosen because it is difficult to judge one component of a text-to-speech synthesiser 

independently of the others (Carlson, Granström & Klatt, 1979). By using a human 

listener, it is possible to make a more reliable assessment of the final synthetic speech 

signal, and the effect of altering a particular parameter, such as segmental duration. In 

this way, segmental duration data are produced that are directly linked to a specific 

waveform inventory; it is also a perceptual approach, since a human listener is 

involved in creating the timing database. Throughout this thesis, this person is 

referred to as an expert judge. 

In this study, segmental duration data are initially obtained on a manual basis, using 

an expert judge. The timing data acquired are thus based on a particular expert's 

judgement of synthetic speech naturalness, and differ in nature to conventional timing 

data, which are based on labelled recordings of natural speech (e. g., Carlson & 

Granström, 1986). This raises several questions as to whether the expert's judgement 

is stable over a period of time, and whether it is representative of other people's 

perceptions. These issues are examined through a set of listening experiments and a 

synthesis/adjustment experiment, which are described fully in Chapter 5. 

In the above listening experiments, subjects listened to several versions of a synthetic 

word, and ranked them in order of perceived naturalness (the different versions of the 

word contained small segmental duration modifications). The subjects' preferences 

were then compared with those of an expert judge. 

In the synthesis/adjustment experiment, subjects synthesised a given set of words, 

manipulating the segmental durations according to their personal criteria for 
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naturalness. A positive linear correlation was found between these segmental 
durations and those pre-chosen by an expert judge. 

In a listening test, a time-domain concatenative speech synthesiser (TDCSS) was 
compared with five well-known text-to-speech synthesisers, and was ranked fifth 

most natural out of six. An alternative concatenation framework (TDCSS2) was also 
evaluated, in which duration parameters specify both the start point and the end point 
of the speech to be extracted from a stored waveform and concatenated (see Section 
3.4). In a similar listening experiment, TDCSS2 stimuli were compared with five 

well-known text-to-speech synthesisers, and were also ranked fifth most natural out of 
six. The implications of these results are discussed in Chapter 6. 

In studying TTS synthesis, researchers continue to use annotated speech recordings as 

a starting point for building segmental timing and pitch prediction systems. However, 

until both timing and pitch prediction systems are perfected, there will remain the 

problem of interaction between the various components of the TTS system. For 

example, listeners may still perceive correctly predicted segmental durations as 

unnatural if an inappropriate pitch contour is used. 

A clear implication is that annotated speech recordings may not be the most 

appropriate prosodic databases from which to formulate prediction systems for 

segmental durations or pitch. It may be that prosodic databases (for both pitch and 

segmental duration) should somehow account for human perception of synthetic 

speech based on that data. For this reason, the iterative synthesis/adjustment method 
has been investigated in this research. It is anticipated that similar practices may 
become more popular in an attempt to overcome the problems of interactions between 

TTS system components. For instance, the IPO research into pitch prediction ('t Hart, 

Collier & Cohen, 1990) makes use of `perceptual stylisation', in which subjects 

synthesise pitch contours which they judge to be perceptually equivalent to a given 

pitch contour. An additional trend may be that for each new speaker added to 

concatenative speech synthesisers, a new prosodic database may have to be created, 

specifically for that speaker. Unfortunately for TTS research, this is a time-intensive 

process. 
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It is concluded that time-domain concatenative speech synthesis methods are viable 
for producing isolated words, and can be incorporated into a text-to-speech 

framework on the word level (for sentence-level speech synthesis, a mechanism for 

pitch manipulation would need to be introduced). Evidence is also shown that the 

iterative synthesis/adjustment technique is a valid means of obtaining the necessary 

timing data for segmental duration prediction. 

1.2 Background Information 

It has long been a goal of humans to produce talking machines. Speech is a 

fundamental means of communication between humans, and is even linked to one's 

personal identity (Crystal, 1987). Synthetic speech is viewed as a way of making the 

interaction between humans and machines more natural, and so has been the subject 

of much research. Many years before the advent of electronic computers, speech 

synthesis was attempted using mechanical means. The first talking machine was 

invented by Wolfgang von Kempelen (1734-1804). This used a set of bellows to 

produce a flow of air which vibrated a wooden reed, thus providing a voicing source 

(Dudley & Tarnoczy, 1950). The air passed through a leather tube, which acted as the 

vocal tract. A skilled operator operated the bellows with the left hand, whilst altering 

the vocal tract's shape with the other (Crystal, 1987). This machine could produce 

approximately twenty speech sounds. Alexander Graham Bell (1847-1922) also 

constructed a synthetic `talking head' that could produce a variety of speech sounds 

(Crystal, 1987). 

The first electronic speech synthesiser was demonstrated at the New York world fair 

in 1939; Dudley's `Voder' (VOice DEmonstratoR) aroused considerable public 

interest at the time (Breen, 1992a). The Voder's speech output was controlled via a 

keyboard and pitch-control pedal, and required a human operator (Dudley, Riesz & 

Watkins, 1939). The Voder produced the speech signal electronically by modifying an 

excitation source with a bank of ten filters, which resonate at fixed frequencies. (N. B. 

A filter is a device used to separate the frequency components of a sound wave 

(Crystal, 1987)). In the above technique, the excitation signal (which is analogous to 

sound produced by the vocal cords) is treated separately to the action of the vocal 
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tract. This is known as the source filter theory (see Section 1.2.1.1), and has been 

incorporated widely into speech synthesis research (Fant, 1960). 

After Dudley's Voder, there were several milestones in the development of electronic 

speech synthesis (e. g., Kelly & Gerstman, 1961). One of the first speech synthesis 

systems was due to Holmes, Mattingly and Shearme (1964). This required the user to 

input the pronunciation for each word, and a set of stress markers. The system was 
later improved to automatically assign a pitch contour to utterances. Coker, Umeda 

and Browman (1973) developed a comprehensive text-to-speech synthesiser, which 

was able to predict a plausible timing and pitch structure for the output speech. 

Dennis Klatt developed the MITtalk speech synthesiser (Allen, Hunnicutt & Klatt, 

1987), which later became DECtalk. This synthesiser produces highly intelligible 

speech, and still remains a benchmark against which other synthesisers are compared. 

Subsequent speech synthesis techniques (Moulines & Charpentier, 1990) have made a 

greater level of naturalness possible. However, an ongoing challenge in synthetic 

speech research is to achieve such naturalness using sets of rules. This is particularly 

necessary in the case where speech is synthesised with only unrestricted text as an 
input (see Section 1.2.3). The various speech synthesis techniques are described later, 

in Section 1.2.2. Much of the research into speech synthesis is influenced by the 

human mechanism for speech production, and so this is described in the following 

section. 

1.2.1 Speech Production 

Humans produce sounds by expelling air from the lungs. This pulmonic egressive 

airstream (Breen, 1992a) passes through the larynx, which consists of interlocking 

sets of cartilage (see Figure 1.1). Between the thyroid and cricoid cartilage are the 

vocal folds; these are fleshy membranes which are held apart during normal 

breathing. Voiced speech (phonation) is produced by a rapid vibration of the vocal 

folds. The tension of the vocal folds is altered by tilting the thyroid cartilage; this 

alters the fundamental period of vocal fold oscillation, and hence, the fundamental 

frequency of the speech. The fundamental frequency (f0) of voiced speech is 
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influenced by the pressure difference across the vocal cords; this consequently affects 
the air flow rate through them (Rowden, 1992). A faster rate of air flow results in a 

rise in f0. 

Nasal cavity 

Hard palate 

jar ý" ter 
{` -, 

Soft oaiaýe_ 

Lower lip 
'aV4 

tVV. ` 
ak 

Bronchi 
ýyY 

t4 

Y ýý 

Figure 1.1: Cross-section through the head - based on Holmes (1988) 

The field of articulatory phonetics examines the linguistically important sounds of a 

language in terms of movements of the articulators (i. e., the lips, jaw, tongue and 

velum). In articulatory phonetics, several parameters are considered to be important. 

For consonants, the chief variables are voice, manner and place (Breen, 1992a). The 

`voice' variable refers to whether a sound is voiced or unvoiced. Voiced sounds are 

produced by the larynx, whilst unvoiced sounds are influenced by constrictions in the 

vocal tract. Place of articulation refers to the points of constriction in the vocal tract, 

such as the glottis, palate, gums, teeth and lips (Yost, 1994). Manner of articulation 

describes the way in which the sound is produced, i. e., how the air pressure from the 

voice mechanisms is altered to produce sounds. The main manners of articulation 
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include plosive, nasal and fricative. Plosives are created by a sudden release of air 
pressure built up as a result of blocking the vocal tract. Fricatives result from a 
turbulent flow of air from the mouth. Nasals are produced by using the nasal cavity as 
a place of articulation (Yost, 1994). The main parameters for producing vowels are 
front/back, tongue shape and lip rounding (i. e., whether the lips are spread or 
rounded). 

Some of the above aspects of human speech production influence speech synthesis 
techniques directly. The most widespread example of this is the source-filter model of 
speech. 

1.2.1.1 Source-Filter model of speech 

Many speech synthesisers are based upon the source-filter model of speech 

production (Fant, 1960). The source-filter model (see Figure 1.2) views the speech as 
being produced via an excitation source (or glottal source) g(t), representing the 

airflow passing the vocal cords (Veldhuis, 1998; Witten, 1986). The vocal tract 

response is represented by a filter with a transfer function H(jw). The excitation 

source consists of white noise, a periodic pulse or a mixture of both. A radiation 

characteristic R models the conversion of the airflow to a pressure wave s(t) at the lips 

(Veldhuis, 1998). 

g(t) H(jw) R s(t) 

Figure 1.2: Source-filter model showing glottal source, vocal tract filter and radiation 
characteristic respectively 

The assumption that the source and filter are independent is only an approximation of 

reality. In practice, the human vocal tract can produce a combination of voiced source 

and noise source. However, in many speech synthesisers, this mixture is often not 
implemented (Breen, 1992a). The reliability of the source-filter independence 
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assumption is further diminished by the fact that in female voices, the vocal cords 

remain open for longer during each pitch period, and, in some cases, this results in an 
interaction between the trachea and the vocal tract. 

The choice of glottal source is related to the quality of synthetic speech (Veldhuis, 

1998). Indeed, the use of simplified glottal sources has been responsible for a lack of 

naturalness in synthetic speech (Carlson, 1991), often giving rise to the `buzziness' 

that characterises some speech synthesisers (Dutoit, 1997). This has led to the creation 

of complicated voicing models, which enable many of these features to be varied 
(Klatt, 1987; Klatt & Klatt, 1990). However, substantial improvements are necessary 
in the rules that control these models (Klatt, 1987). 

1.2.2 Speech Synthesis methods 

Synthetic speech can be produced using either parametric or concatenative methods. 

The most common parametric method is known as formant synthesis, in which the 

speech signal is described in terms of its formant frequencies, antiformants, 

bandwidths, etc. (Dutoit, 1997). Detailed discussion of this method is given in Section 

1.2.2.2. Another parametric method is articulatory synthesis, in which speech is 

described in terms of movements of the articulators (see Section 1.2.2.1). At present, 

this approach is generally considered to be less successful than formant synthesis. 

In concatenative synthesis, speech is produced by joining together segments of pre- 

recorded speech. In this approach, it is important that the acoustic speech segments 

are conjoined in such a way that they will be perceived as natural; they must also be 

timed so that the listener will perceive a correct rhythm. Detailed discussion of this 

method may be found in Section 1.2.2.3. 

1.2.2.1 Articulatory Synthesis 

In articulatory speech synthesis, speech is described in terms of movements of the 

speech articulators. This method also requires a means of representing the shape of 

the vocal tract. The vocal tract is often modelled in terms of a series of shapes of 
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varying cross-sectional area. Since the shape of the vocal tract changes slowly with 
time, the area function only requires updating at intervals of between 20 and 50 ms 
(Linggard, 1985). 

The vocal tract can also be viewed as a system of two tubes, which represent the oral 

and nasal cavities. One of the tubes corresponds to the nasal side branch at the top of 
the pharynx. The nasal tract is of fixed cross-sectional area and shape, whilst the oral 
tract can vary in shape, as the articulators are moved. The most important variable that 

must be predicted is, therefore, the oral tract's cross-sectional area (which is assumed 
to be fixed during a single analysis frame). 

In vocal tract modelling, the analogy of an electrical transmission line is sometimes 

used (Linggard, 1985), with variations occurring in inductance and capacitance per 

unit length. Air flow is modelled as electric current, whilst the storage of air in the 

lungs is represented as capacitance. Acoustic energy losses via the lips and nostrils 

(the radiation characteristic) can be modelled as a resistive load (Linggard, 1985). 

Unfortunately, it is difficult to vary real inductors and capacitors with sufficient speed 

to simulate articulatory movements. 

The appeal of articulatory synthesis is that, in theory, only a few control parameters 

are necessary to produce human-quality speech. Since movements of the articulators 

are relatively slow, articulatory parameters potentially allow low bit-rate speech 

coding (Rahim et al., 1993). Furthermore, coarticulation effects should automatically 

be produced as the articulators are moved (coarticulation refers to changes in the 

articulation of a segment of speech due to preceding and forthcoming segments) 

(Cohen & Massaro, 1993). This is attractive because coarticulation is difficult to 

control as a set of rules in formant synthesis (Allen, Hunnicutt & Klatt, 1987). 

At this point, it is necessary to define some commonly used terms. A phoneme is the 

smallest unit in the sound system of a language where substitution of one unit for 

another might make a distinction in meaning (e. g., do versus to). An allophone is a 

variation in the form of a phoneme that does not alter its basic identity (Crystal, 

1987). 
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One problem that must be considered is that there is not a simple correspondence 
between articulatory positions and individual speech sounds such as allophones. In 

other words, no one-to-one mapping exists (Rahim et al., 1993). However, this need 

not be a problem if one starts by studying articulatory gestures and their resulting 

sounds (Tatham, 1970). 

Accurate metrical data for the articulators are rather difficult to obtain (Tatham, 

Morton & Mansell, 1971). The traditional method is to use X-ray photography 

(O' Shaughnessy, 1987). However, it is easier to analyse speech sounds than to study 

movements of the vocal organs (Witten, 1982). There is therefore a need for ways of 

automatically extracting articulatory parameters from a speech signal (Rahim et al., 

1993). This was attempted by Levinson, Coker and Schmidt (1981), who derived area 

functions from real speech by matching the parameters of synthetic speech to those of 

a recorded utterance. 

Whilst articulatory synthesis has not yet achieved a great level of commercial success, 

it remains a valuable tool for studying articulatory dynamics. It also has the potential 

to incorporate the interaction between the source and filter (Rahim et al., 1993), 

which is discarded by the source-filter model's assumption that they are independent. 

1.2.2.2 Formant Speech Synthesis 

In formant speech synthesis, the speech signal is described in terms of a set of 

parameters that vary with time. During natural speech, resonances are produced in the 

vocal tract; these resonances produce peaks in the energy spectrum of the speech 

wave, known as formants (Witten, 1982). The use of rules to generate formant 

synthesiser control parameters is sometimes referred to as `speech synthesis by rule'; 

however, this term is somewhat misleading, since waveform concatenation speech 

synthesisers can also be controlled by rule. In formant synthesis, speech is synthesised 

by attempting to mimic the formant frequencies of natural speech as they vary with 

time. Up to three formants are generally required to synthesise intelligible speech, 

with four or five being sufficient to produce high quality speech. Formants can be 

physically produced using a set of filters, which resonate at variable frequencies. 

19 



There are two types of formant synthesiser - parallel and cascade (see Figure 1.3). 

With the parallel architecture, an excitation signal is applied to all the formants in 

parallel and their outputs are summed, enabling individual gains to be specified for 

each formant. In cascade formant synthesisers, the output of one formant is applied to 

the input of the next. Whilst both kinds have their drawbacks, it is generally found 

that cascade synthesisers produce better non-nasal voiced sounds, whilst the parallel 

type produces superior nasals, fricatives and stops (Linggard, 1985). Excitation 

sources have been proposed in which two possible source functions are used: a pulse 

train for producing voiced speech, and a random noise source for fricatives (Klatt, 

1972). The excitation source is often implemented using a -12dB/octave filter. An 

additional +6dB/octave filter is often placed after the vocal tract filter to approximate 

the radiation characteristic. 

excitation modified 
sourcc-10 F1 F2 F3 F� signal 

F1 

F2 
summation 

excitation modified 
source 

+ signal 

F3 

F� 

Figure 1.3: Speech synthesis architectures: cascade (top) and parallel (bottom) 
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The control signals that drive a formant synthesiser can be obtained either by 

analysing speech or using sets of rules. In synthesis-by-analysis, often called `copy 

synthesis', sets of synthesiser control signal values are derived through an intensive 

analysis of the original speech (Breen, 1992a). Synthetic speech produced in this 

manner can be of a very high quality, largely due to the fact that very few 

assumptions are made about the relative importance of particular acoustic events to 

the naturalness of speech. In effect the only assumptions used are those made during 

the design of the synthesiser. 

An important demonstration of the capabilities of formant synthesisers was reported 

by Holmes (1973). In a listening experiment, people unaccustomed to synthetic 

speech were unable to distinguish between natural and synthetic versions of the same 

utterance, even when using earphones. The synthetic utterance was generated by 

manually tuning the control parameters of a parallel formant synthesiser to reproduce 

the natural utterance. Whilst Holmes' results were encouraging, a major challenge 

still remained in producing natural-sounding speech by rule. In fact, the success of 

rule-based formant synthesis still largely depends on how well the influence of 

phonemes on one another is described (Dutoit, 1997). 

Efforts to improve formant synthesisers have been made by combining both the 

parallel and cascade synthesiser arrangements. Klatt's (1980) synthesis-by-rule 

system was one of the most sophisticated, using a complex excitation model and 

relying on by 39 parameters, which were updated every 5 ms. Additional parameters 

such as resonances and anti-resonances assisted in the synthesis of nasals. A sixth 

formant enabled the production of very high frequency noise, whilst a further filter 

modelled the radiation characteristic. The synthesiser produced high quality speech, 

and has since been incorporated into several commercial systems, and used by many 

researchers in their work. 

In formant synthesis, a general approach is to use a look-up table containing the 

parameters necessary to specify each phoneme. An interpolation method is also 

required, to calculate the transitions between phonemes, in order to improve the 

naturalness of the resulting speech. Various interpolation methods have been 

considered for speech synthesis, including piecewise linear (e. g., Holmes, Mattingly 
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& Shearme, 1964), decaying exponentials (Rabiner, 1969), and increasing 

exponentials (Lawrence, 1974). Holmes, Mattingly & Shearme (1964) used phoneme 
look-up tables, containing information concerning formant frequencies, formant 

amplitudes, fixed and transitional data and a 'transition-rank'. The transition rank 
determined which of two adjacent phonemes would dominate a mutual transition, and 

the extent to which they would overlap. Stops (such as /p/ and /t/ phonemes) were 

given the highest rank, and vowels the lowest. At the boundary between two 

phonemes, a `boundary value' was calculated for each control parameter, using 

specified fractions of the parameter values on both sides of the transition, and taking 

into account their transition-ranks. Linear interpolation was used to join this boundary 

value across the transition regions of the two phonemes. 

Klatt's (1980) approach was to use target values of control parameters and an 

interpolation algorithm. However, the target values for phonemes were not all 

obtained from tables; some were calculated by rules from data concerning place, 

context and articulation manner. Also, the time constants of the parameter transitions 

were not stored, but derived from rules on contextual information. 

Formant synthesis can be improved by the painstaking examination of continuous 

speech, parameterised using speech analysers. When speech is parameterised, analysis 

biases can occur if the analysis algorithm does not yield the best possible parameters 

in the first place (Dutoit, 1997). These biases are known as extrinsic errors. Intrinsic 

errors also arise due to inaccuracies in the mathematical equations used to describe 

speech in the synthesis algorithm. This `trial and error' method of producing sets of 

rules can be a labour-intensive process, because formant frequencies and bandwidths 

are inherently difficult to estimate from speech data (Dutoit, 1997). 

1.2.2.3 Concatenative Synthesis 

In concatenative synthesis, speech segments are joined together (concatenated) to 

form the required acoustic signal. The segments are speech samples taken from an 

inventory of pre-recorded natural speech data (Hess, 1992). Segments of speech can 

then be concatenated to form arbitrary words and sentences, given the correct 
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pronunciation. A major advantage of this method is that it is easier to produce realistic 
coarticulation effects, if suitable speech segments are chosen. It is also appealing in 
terms of its simplicity, in that all knowledge concerning the synthetic message is 
inherent to the speech segments to be concatenated (Dutoit, 1997). Thus, little 

attention needs to be paid to the modelling of articulatory movements 

Various digital signal processing techniques are employed for smoothing boundaries 
between speech segments and producing a pitch contour. Two main categories of 
signal processing are used in concatenative systems: Linear Prediction and Pitch- 
Synchronous Overlap-Add (PSOLA). These are described in Sections 1.2.2.6 and 
1.2.2.7 respectively. 

The selection of speech segments for concatenation is in itself an important 

consideration which affects both the quality of the synthetic speech and the storage 
requirements. Such decisions often involve trade-offs between storage requirements, 
the extent to which signal processing is required, and so on. The selection criteria are 
discussed in the following section. 

1.2.2.4 Concatenative Unit Selection 

Various speech segments, of differing sizes, have been tried in concatenative speech 

synthesis. Initially, phonemes were favoured by researchers (Witten, 1982), because 

the small number of units required (approximately forty for the English language) 

kept storage requirements to a minimum. However, this approach requires a great deal 

of attention to be paid to coarticulation at the boundaries between phonemes (Witten, 

1982). Consequently, synthesis using phonemes requires the formulation of complex 

coarticulation rules (Linggard, 1985). 

Coarticulation problems can be minimised by a careful choice of concatenative unit. 
A popular unit is the diphone, which consists of the transition from the centre of one 

phoneme to the centre of the following one (Dixon & Maxey, 1968). This helps to 

capture transitional information between phonemes. For instance, the word `cat' may 
be represented using the diphones /silence-k/, /k { /, /it/ and /t-silence/ (here, the 
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/t-silence/ segment is necessary to represent the egression of air as the /t1 stop is 

released). A complete set of diphones would number approximately 1600, since there 

are (40)2 possible combinations of phoneme pairs. Diphone speech synthesis thus 

requires only a moderate amount of storage. The main disadvantage of diphones is 

that they lead to a high density of concatenation points (one per phoneme), so that 

heavy reliance is placed upon an efficient smoothing algorithm. 

Syllables have the advantage that most coarticulation occurs within syllable 

boundaries (Fujimura & Lovins, 1978). Syllables thus produce good-quality speech 

when joined together. The disadvantage of using syllables is that there are 

approximately 10,000 of them (for the English language), and a complete syllable 

inventory would require significant amounts of storage space. In response to the 

problem of minimising storage requirements whilst accounting for syllables, the use 

of demisyllables was introduced. Demisyllables are extracted from syllables. A 

demisyllable includes all the consonants before the vowel and the beginning of the 

vowel in an initial demisyllable; in final demisyllables, the end of the vowel and the 

following consonants are included (Dettweiler & Hess, 1985). 

Subphonemic wavelets have been used as concatenative units (Bhaskararao, 1994; 

Rodet, 1980; Sharman, 1994). These wavelets consist of a single pitch period of 

recorded speech, and are put together to synthesise speech in the time domain. One 

problem with this method is that placing wavelets next to each other often results in 

signal discontinuities, which are detrimental to the overall speech quality. This 

problem can be alleviated somewhat, by attenuating the ends of each wavelet to zero 

(Rodet, 1980). However, some speech degradation is inevitable due to fluctuating 

amplitudes in the signal. 

The problem of coarticulation can be greatly reduced by using word-sized units, 

recorded in isolation with a neutral intonation (Linggard, 1985). The words are then 

concatenated to form sentences. With this technique, it is important that the pitch and 

stress patterns of each word can be altered in order to give a natural sentence. Word 

concatenation was successfully used by Fallside and Young (1978), using Linear 

Predictive Coding as a storage means (see Section 1.2.2.6). 
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Obtaining units for concatenation can be time-consuming. Segments are extracted 
from a corpus of speech recorded by a human subject. The speech corpus may consist 

of several minutes' worth of continuous speech or a set of nonsense words (known as 
logatomes (Dutoit, 1997)). The speech should be recorded in a sound-proof booth, 

preferably in a single session. It is desirable that the speaker should utter the speech 

with a constant speaking rate and in a neutral manner (e. g., without exhibiting 

attitudes such as anger or boredom). However, it is very unlikely that a speaker will 
be successful in recording the speech in this manner, and so it is often necessary for 

some speech segments to be re-recorded. Once the speech segment inventory has been 

obtained, it is usually normalised for amplitude and fundamental frequency (Dutoit, 

1997; Tatham & Lewis, 1992). 

Concatenative units can be automatically extracted from speech recordings (Donavon, 

1996), using procedures based upon Hidden Markov Models. Whilst such approaches 

give a consistent approach to segmentation, they are less accurate than manual 
labelling (Vonwiller et al., 1997). 

1.2.2.5 Concatenation & Speech Quality 

The process of concatenation, in which consecutive speech segments are conjoined, 

usually involves smoothing algorithms. Every junction between segments is a 

possible source of degradation in quality, particularly when acoustic units are 

conjoined. It is thus important to minimise signal discontinuities at each junction 

(Hess, 1992). This can be achieved in several ways. Firstly, by using appropriate 

segments in the inventory, degradation due to vowel-vowel concatenation points can 

be avoided (the density of concatenation points can be decreased overall by reducing 

the number of segments that make up utterances). Secondly, with careful recording of 

speech segments, mismatches between the segments in the inventory can be 

minimised (Dutoit, 1997). Thirdly, the speech segments can be stored in parametric 

form, so that a simple linear interpolation of the parameter tracks can be carried out 

from one segment to the next. Other techniques can be employed to reduce clicks at 

segment boundaries, by reducing amplitude discontinuities. These include the 

interpolation of amplitudes at segment boundaries and the attenuation of the ends of 
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waveforms to zero (Yazu & Yamada, 1986). Signals can also be slightly overlapped 
(e. g., with an overlap width of 25 ms) and weighted by a raised cosine window 
(Huckvale, 1996). 

A significant improvement to concatenative speech synthesis techniques came with 

the Pitch-Synchronous Overlap-Add (PSOLA) method (Moulines & Charpentier, 

1990). This technique allows the point of concatenation to be distributed over an 

entire pitch period (see Section 1.2.2.7) and modifies the speech signal directly, 

without using a source-filter model. 

Although the production of realistic prosody is important (see Section 1.4), it has been 

shown (Kraft, 1994) that more attention is needed for the concatenation process itself 

in speech synthesis research. 

1.2.2.6 Linear Prediction 

Linear Prediction (LP) follows the source-filter speech synthesis method (explained in 

Section 1.2.1), and is used extensively in concatenation synthesisers (Witten, 1982). 

LP has a simpler structure than formant synthesis, and can be used for both speech 

synthesis and speech storage. For instance, LP was used as a storage means in the 

commercially successful `Speak'n'Spell' toy (Witten, 1986). 

A linear predictive analysis of speech yields all the spectral properties of speech 

(except its periodicity). LP exploits the redundancy inherent in speech, so that only 

the difference between the current speech sample x(n) and the previous sample 

x(n-1) needs to be transmitted (Linggard, 1985). The current speech sample x(n) 

must be multiplied by a coefficient al to minimise this difference for each time step. 

The error between speech samples is expressed in Equation 1-1. 

26 



e(n) =x(n)-alx(n-1) - a2x(n-2) -... - ax(n-p) 

P 

=x(n)-I akx(n-k) 
k=1 

(1-1) 

In Equation 1-1, p refers to the number of speech samples preceding the current 

sample. The LP coefficients, ak are obtained by minimising the sum of the squared 

errors over the current analysis frame and must be recalculated every 10-25 ms. This 

calculation is commonly performed using either the covariance method or the 

autocorrelation method, which differ in the range of n over which the error is 

minimised (Witten, 1982). Coefficients calculated using the autocorrelation method 

have the advantage that the filter they define is guaranteed to be stable (Markel & 

Gray, 1976). It can be shown that LP analysis is equivalent to matching the power 

spectrum of the all-pole filter defined by the LP coefficients to the spectrum of the 

speech signal. This matching is weighted to achieve the most accuracy in the vicinity 

of the formant peaks (Markel & Gray, 1976). The digital filter thus models the 

spectral envelope of the speech signal, and the error signal e(n) (ideally) contains 

only the harmonic structure of the speech and/or white noise. The speech can 

therefore be re-synthesised at a different fundamental frequency by exciting the filter. 

It should be noted that LP is not well suited to rule-based synthesis, since rules are 

most easily specified in terms of formants, and the relationship between the 

coefficients used to define the LP filter and formants is not a simple one (Donavon, 

1996). 

1.2.2.7 Pitch-Synchronous Overlap-Add 

Pitch-Synchronous Overlap-Add (PSOLA) is a concatenation technique that allows 

prosodic modifications to be performed directly on the speech signal (Charpentier & 

Stella, 1986; Moulines & Charpentier, 1990). PSOLA is not a source-filter model. 

Rather, it simply works by windowing and recombining the waveforms of existing 

concatenative units (Donovan, 1996). PSOLA allows prosodic attributes such as pitch 

27 



(see Section 1.2.3.5) to be manipulated by directly modifying continuous waveforms, 

without using any parametric model. 

PSOLA involves three main processes: analysis, modification and synthesis. Firstly, 

speech waveforms are analysed to give an intermediate representation. The speech 

waveform x(n) is converted to a sequence of short-term signals xm(n), by multiplying 

it by a sequence of pitch-synchronous Hanning windows hm(n): 

xm(Yl) = hm(tm 
- n)x(n) (1-2) 

The pitch-synchronous Hanning windows are so-called because each one is centred 

on one of several pitch markers t,, (which are placed at a pitch-synchronous rate on 

voiced portions of the signal, and at a constant rate on unvoiced parts). Each Hanning 

window is set so that adjacent short-term signals overlap somewhat. This involves 

setting each window's length to be proportional to the local pitch period. 

Next, prosodic modifications are applied to this intermediate representation. Pitch 

modifications are produced by changing the time-shift between frames from the 

original pitch period To to a new period T. This is achieved through a combination of 

possible operations: modifying the number of short-term signals, modifying the time 

delay between short-term signals or modifying the short-term signals themselves. This 

constitutes a simple and efficient way of changing the pitch of a periodic signal 

(Dutoit, 1997). 

Finally, the modified intermediate representation is recombined to produce the final 

synthetic signal. This is achieved using the overlap-add (OLA) operation, of which 

several versions are available (Moulines & Charpentier 1990). 

Since PSOLA is a family of methods for manipulating the prosody of speech 

waveforms, some of the different versions of PSOLA are outlined below. 
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1.2.2.8 Time-Domain Pitch-Synchronous Overlap-Add 

In PSOLA, a signal is decomposed into separate, overlapping segments and then 

recombined via overlap-adding. In Time-Domain Pitch-Synchronous Overlap-Add 

(TD-PSOLA), the speech segment inventory consists of parameter lists consisting of 

sequences of pitch markers t,,, denoting the centres of overlap-add frames. Pitch 

marking is applied on voiced parts of segments, with the assistance of automatic pitch 

marking algorithms (Di Francesco & Moulines, 1989), although such algorithms 

suffer from a lack of precision and often require manual correction. On unvoiced 

portions, pitch marks are regularly spaced. Apart from pitch marking, no parameter 

estimation stage is necessary. Before segment recombination takes place, a new pitch- 

marker sequence is defined, in order to manipulate the fundamental frequency. This is 

carried out by adjusting the time intervals between pitch markers. For example, 

increasing the time intervals results in a lowering of pitch. Duration modifications are 

made by repeating or omitting segments (Kortekaas & Kohlrausch, 1997). TD- 

PSOLA is an efficient technique which is generally preferred for real-time 

concatenative synthesis, due to its low computational requirements (Dutoit, 1997). 

1.2.2.9 Other versions of PSOLA 

One limitation of TD-PSOLA is that no spectral smoothing is possible, and with 

simple diphone inventories, some audible discontinuities are produced during 

concatenation. This problem was alleviated somewhat by Dutoit and Leich (1993) 

with the Multi-Band Re-synthesis PSOLA (or MBR-PSOLA) technique, which is a 

means of improving the segment inventory. This involves applying a 

(computationally expensive) Multi-Band-Excited analysis-synthesis procedure to the 

synthesis unit inventory, in order to make it more suitable for the TD-PSOLA method. 

The voiced parts of segments are re-synthesised with a constant pitch, eliminating the 

need for pitch-markers in the segment inventory. This method goes some way towards 

reducing the concatenation discontinuities associated with simple diphone inventories. 

A Linear Predictive Pitch-Synchronous Overlap Add (LP-PSOLA) method has also 

been described (Moulines & Charpentier, 1990). This involves performing an LP 
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analysis of speech to obtain the signal's source and filter components. TD-PSOLA 

modifications can then be applied directly to the LP filter's excitation signal. This 

method allows an improved spectral modelling, since `the TD-PSOLA scheme 
produces less distortion when applied to the residual waveform than on the speech 
signal itself' (Moulines & Charpentier, 1990). 

Frequency-domain versions of PSOLA also exist (Moulines & Charpentier, 1990). In 

FD-PSOLA, the synthesis short-term signals are obtained by a frequency-domain 

transformation of the translated signal. FD-PSOLA consists of analysis, modification 

and synthesis stages. In the analysis stage, the signal is separated into source and filter 

components by computing the complex short-term spectrum of the signal (where the 

time origin coincides with the analysis pitch-mark). In the modification stage, the 

spacing between the pitch harmonics is altered, giving the required fundamental 

frequency. In the synthesis stage, the modified representation of the signal is 

reconverted back to a synthetic complex spectrum, via an inverse Fourier Transform. 

FD-PSOLA has the benefit of supporting modifications of voice quality (Valbret et 

al., 1992), since the speech signal's spectral characteristics can be altered. 

1.2.2.10 Drawbacks of PSOLA 

The PSOLA method has the disadvantage that small Hanning windows (Linggard, 

1985) must be used, otherwise a mismatch occurs between the new synthesis 
frequency and the frequency inherent to each short-term signal during synthesis. This 

results in selective alteration of the pitch harmonic amplitudes for voiced speech, and 

causes a reverberation effect to be heard. Secondly, PSOLA can introduce annoying 

artefacts such as `hoarseness and roughness' of the synthesised signal (Kortekaas & 

Kohlrausch, 1997), which are similar to comb filtering. Such artefacts are hard to 

predict beforehand. 

Little is known yet of the perceptual effects of the PSOLA operation. Kortekaas and 

Kohlrausch point out that `even if PSOLA manipulation of a speech signal does not 

lead to the perception of either of the artefacts mentioned above, the manipulation 

does affect its spectral content'. Problems can also occur when increasing the 
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durations of unvoiced sounds. Repeating the unvoiced short-term signals can result in 

tonal noise, due to the local periodicity. Voiced sounds can also suffer similar 

problems. This can be solved for unvoiced sounds by reversing the time axis for 

repeated short-term signals. However, since PSOLA has been so successful, it is 

possible that these spectral modifications are perceptually subliminal. 

1.2.2.11 Hybrid Concatenative/Formant Synthesis Systems 

There are clear advantages to both the formant and concatenative synthesis 

approaches. Formant synthesis has the benefit of providing almost unlimited 

flexibility, allowing any property of speech to be modified easily (Witten, 1982). 

Concatenative synthesis easily captures the microprosodic attributes of speech 

(Posmyk, 1989), which include natural voice characteristics on the segmental level. It 

is therefore not surprising that some research seeks to combine the best aspects of 

both of the above approaches. For instance, Pearson, Holm and Hata (1997) combined 

a library of sampled consonant waveforms with a sampled natural glottal source. It is 

expected that in the future, hybrid approaches will become more widespread. 

1.2.3 Text-to-Speech 

Most speech synthesisers can produce a speech signal, given a stream of phoneme 

symbols to specify the pronunciation (as defined in Section 1.2.2.1, a phoneme is a 

minimal, linguistic unit). A logical extension of speech synthesis is to produce 

natural-sounding synthetic speech from unrestricted text, either input from a keyboard 

or from a text file. This is known as text-to-speech synthesis, and can be carried out 

using either formant or concatenative speech synthesisers. Text-to-speech synthesis 

involves applying many conversion processes to the input text before the speech can 

be synthesised (see Figure 1.4). Firstly, the text is transformed into symbols such as 

phonemes (Robinson, 1994; Yost, 1994). The text analysis stage also produces 

symbols (known as prosodic symbols) which define aspects of the speech such as 

pitch, rhythm and amplitude (see Section 1.2.3.4). By correctly manipulating prosodic 

factors, the synthetic utterance can sound more natural, whilst its meaning is clarified. 

In practical terms, text-to-speech systems must be able to derive these prosodic labels, 
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given only the input text. These must be predicted accurately if natural-sounding 

speech is to be synthesised. 

Text 

Grammatical Text Analysis Pronunciati 
Rules Dictionary 

phoneme symbols prosodic symbols 

Speech Segment Inventory 

-stored as (parameterised) 
speech waveforms 

Phonetic Prosodic Control 
Control Pitch, rhythm & 

amplitude 

Prosodic 
Rules 

speech waveforms/parameters segmental duration, f0, amplitude 

Speech Synthesiser 

Figure 1.4: Overview of text-to-speech synthesis 

1.2.3.1 Text Analysis 

For realistic text-to-speech synthesis, one must predict, from a given text, sufficient 

information to allow a speech signal, to be constructed. Text-to-speech systems must 

therefore extract as much information from the input text as is feasible, given the 

constraint of producing speech in real time. 

Text-to-speech systems contain a text analysis module, which generates both a 

pronunciation (see Section 1.2.3.3) and a linguistic description from the input text 

(Edgington et al., 1996a). The linguistic description assists in deciding the meaning of 

the utterance, and this in turn affects the pitch, rhythm and amplitude that must be 

applied to the synthetic speech (see Section 1.2.3.4). The generation of a linguistic 
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description is carried out via tagging and parsing operations, which are described 

below. 

Before these operations take place, the text is normalised, involving the expansion of 

abbreviations and the interpretation of non-word characters such as paragraph 

markers, punctuation and numbers (Edgington et al., 1996a). Unfortunately, of all the 

punctuation marks, only the role of the question mark in a sentence is unambiguous 
(McAllister, 1989). Often, contextual and real-world information have to be used to 
disambiguate abbreviations such as `St. ', which could refer to either `Saint' or 
'Street'. In text-to-speech systems, text normalisation is usually carried out by a 

separate module (Hallahan & Vitale, 1997). 

Whilst text analysis is mainly carried out for shorter phrases and sentences, it is 

becoming more ambitious in scope, extending to longer sentences (Edgington et al., 

1996a). 

1.2.3.2 Tagging and parsing operations 

Tagging involves the assignment of part-of-speech information to each word, in an 

unambiguous manner (Edgington et al., 1996a). Some researchers refer to part-of- 

speech attributes such as function words and content words (Dutoit, 1997; Sorin et al., 

1987), although this terminology is becoming somewhat outdated. Function words 

express grammatical relationships, whilst content words have an independent, 

`dictionary' meaning (Crystal, 1987). Examples of function words are articles, 

conjunctions and prepositions; content words include nouns, verbs and adjectives. 

Such information is necessary for the assignment of pitch context. 

Two main groups of part-of-speech category are usually identified: lexical categories, 

such as nouns, verbs, adjectives, adverbs, and grammatical categories such as 

pronouns and articles, prepositions, conjunctions, interjections. 

It is important at this stage that potential ambiguities are identified. Consider 

adjectives and nouns that might be orthographically identical (e. g., the word 
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`content'), but require different stress patterns; in adjective form, this word is 

rendered as [con+tent], whilst the noun form has the pattern [con+tent] (Tatham & 
Lewis, 1992). These differences in category should be signalled by information from 

a dictionary (see Section 1.2.3.3) and passed to the parser. 

Parsing or syntactic analysis produces a structural representation of the input text. 
This assists in the addition of prosodic markers such as prominence, juncture and 

sentence type (Allen, 1995). Prosodic markers are used in the prediction of segmental 
durations and pitch contours (see Section 1.2.3.4). The phrase markers produced are 

useful in determining the pronunciation of a word, since this can vary with part-of- 

speech. Phrase boundaries can also correspond to pauses for breath (Donavon, 1996), 

and can be signalled by punctuation marks. Accurate placing of phrase boundaries 

requires a syntactic parse of each sentence. This is a non-trivial task since phrase 
boundaries are not always indicated by the punctuation. Consequently, phrase 
boundary placement is often carried out using data-driven methods to automatically 

construct a decision tree from a labelled speech database. For instance, Breiman et al. 
(1984) used Classification and Regression Trees (CARTs) to cluster such a database 

according to features such as speaker identity, sentence type, time- and word-based 
distance information, part-of-speech, syntax and pitch accent. 

In text-to-speech systems, parsing is usually only carried out to a limited extent. 
Whilst full clause-level parsing remains elusive, phrase-level parsing is rapid, reliable 

and less complex. Measures can also be taken to ensure that a valid parse is obtained 
for each sentence. For instance, in the SPRUCE text-to-speech system, if a parse fails, 

then a statistically based choice is made between default solutions (Tatham & Lewis, 

1992). 

1.2.3.3 Text-to-phoneme conversion 

Text-to-phoneme conversion aims to produce an accurate pronunciation for any input 

text, represented by a stream of phonemes. Text-to-phoneme conversion is an 

essential part of the text-to-speech process, in that no synthetic speech is acceptable 

unless a correct pronunciation is used. This process involves several stages. 
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Words and symbols produced by the text normalisation stage are used to determine 

word pronunciation. Determining word pronunciation is very difficult for the English 

language, since there are many pronunciation exceptions which make it difficult to 

find comprehensive sets of pronunciation rules. For this reason, it is common practice 

to maintain a dictionary of phonological information (N. B. Phonology is the study 
linking high-level linguistics and phonetics). 

The MITalk system (Allen et al., 1987) used a dictionary containing 12,000 

morphemes and their respective phonetic representations. Morphemes are the smallest 

contrastive units of grammar (Crystal, 1987); these basic, meaningful elements make 

up words (O' Shaughnessy, 1987) and contribute to a word's meaning. Using 

morphemes is a more feasible alternative to storing a comprehensive word lexicon. 

With this method, each word input to the text-to-speech system must be reduced to its 

constituent `morphs' (a morph is the physical form of a morpheme), in a morphemic 

analysis stage (Hallahan & Vitale, 1997). So, the word `bidding' might be split into 

the morphs `bid' and `ing' (Witten, 1982). Morphemic analysis can be problematic, 

since there can be several possible decompositions for a single word. For instance, 

`resting' could either be split into the morphs `rest + ing', or `re + sting'. Selection 

rules must therefore be incorporated into the morph decomposition process, in order 

to choose the correct decomposition (Allen, 1976). Once the morphs are obtained, a 

lexicon or dictionary is searched for the phonetic pronunciation of each morpheme. 

However, it is not always possible to directly concatenate a sequence of morphs, since 

a morph's pronunciation may be affected by its context. Allen (1976) addressed the 

problem of morph concatenation using morphophonemic rules. 

After the system's lexicon/dictionary has been searched, any remaining words that 

were not found are passed to a set of letter-to-sound rules, in order to produce a 

pronunciation (Williams, 1994). Letter-to-sound rules treat a word as an unstructured 

sequence of letters. A scanning window is then passed across each word to identify 

consonant and vowel clusters that can be converted to phonemes. This approach can, 

however, produce pronunciation errors if the rules are applied across morph 

boundaries. 
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Alternatives to rule-based phonetization systems have appeared in the form of 

connectionist systems, such as NETtalk (Sejnowski & Rosenberg, 1987). The 

NETtalk neural network accepted a 7-letter sliding window of text as an input, and 

used three layers of neurons. The input layer was arranged as 7 groups of units, 

corresponding to a single letter, punctuation marker or word boundary. The middle 
layer contained 120 units, with approximately 25,000 connections. For the central 
letter in the input window, an output was produced in terms of articulatory 

information, syllable boundaries and stress markers. The system predicted 90% of 

phonemes correctly after being trained on a dictionary of 20,000 words. Various 

improvements have been made to the NETtalk system (Adamson & Damper, 1996; 

McCulloch et al., 1987), such as the use of a recurrent (temporal) network. However, 

results produced by neural network approaches are relatively poor, compared to 

dictionary look-up methods (Dutoit, 1997). 

1.2.3.4 Prosody 

Listeners often complain that text-to-speech synthesisers sound unnatural. Common 

objections are that `the rhythm sounds wrong' or that `the pitch sounds unnatural'. 

These aspects of speech are covered by the term prosody, which is analogous to `the 

music of speech', and refers to properties such as pitch contour, loudness, and 

segmental duration. As well as making synthetic speech more natural-sounding, 

prosody can be used to clarify the meaning of a sentence, and by itself can convey 

linguistic concepts (Sonntag & Portele, 1996). 

The following sections examine the major aspects of prosody: fundamental frequency 

and segmental duration, and their application to text-to-speech synthesis. 

1.2.3.5 Fundamental Frequency 

Fundamental frequency (f0) is an important cue for sentence type (e. g., questioning, 

declarative, etc. ). Fundamental frequency is linked (but not identical) to pitch, which 

is a psychological construct related to the perception of frequency (Levitin, 1998). 

When a suitable pitch contour is applied to a synthetic utterance, naturalness is 
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improved and intended meaning is clarified. The intonational `melody' of the speech 

conveys syntactic information, and hence semantic information ('t Hart, Collier & 

Cohen, 1990; Selkirk, 1984). This includes markers of questioning, and discourse 

information such as topic or theme. Fundamental frequency also conveys the 

speaker's attitude, which may include politeness or irony (Parke & Waters, 1996). 

Whilst fundamental frequency conveys semantic information to the listener, deducing 

it from unrestricted text is particularly difficult. For instance, pitch is affected by the 
`importance' or `information value' of a word. `New' items in an utterance tend to be 

accented, whilst `given' information is usually deaccented (Hirschberg, 1993). In 

determining pitch accent, heuristics such as previous mention are used, in which the 

number of previous occurrences of a word (or its root) is recorded, giving an 
indication of the importance of a word (Pelachaud & Prevost, 1995). However, 

determining the `givenness' of items remains troublesome. For instance, in the 

sentence `The SLEEPY SOLDIER SLEPT for an HOUR', the mention of sleepy does 

not necessarily imply that slept is deaccentable (Hirschberg, 1993). 

The above discussion highlights the importance of adequate prosodic labelling of text. 

Once these prosodic labels are available, actual pitch contours must be predicted. 

Fundamental frequency algorithms for text-to-speech separate into distinct categories: 

those where an actual pitch contour is applied (possibly from an inventory of tunes), 

and those in which a sequence of relative, elementary tones is specified (Dutoit, 

1997). These different approaches are described in the following sections. 

Generating fO as sequences of stylised contours 

Fundamental frequency can be generated as a sequence of stylised contours, usually 

taken from an inventory of tunes, or melodic elements (Kohler, 1991). This approach 

exploits the fact that certain types of phrases exhibit characteristic patterns. For 

instance, most phrases exhibit a slight initial rise in f0, followed by a steady decline 

towards the end of the phrase. It is also usual to raise the fO pattern at the end of 

interrogative sentences (Sagisaka, 1990). Once a sentence has been categorised, an 

overall tune can then be applied. 
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Pitch contours can be generated with several possible approaches. Basic pitch patterns 

can be specified in terms of two falling declination lines: a high `topline' and a lower 

`bottomline', which gradually converge towards each other as the sentence progresses 
(O' Shaughnessy, 1987; Tatham & Lewis, 1992). Another reasonably simple way of 

assigning fO is to divide the utterance up into intonational phrase groups, which can 

each be characterised by a single 'tune'. A pitch contour is assigned to each tone 

group by identifying the tonic syllables (i. e., the major stress point of each tone 

group). For instance, Halliday (1970) identified five primary intonation contours, each 
hinging on the tonic syllable (i. e., the most prominent one). Under Halliday's scheme, 

a tone group boundary is placed by each punctuation mark. The tonic syllable is 

identified as the first syllable of the last foot in a tone group (N. B. afoot is the interval 

between two stressed syllables in a sentence). A pitch contour is then chosen 
depending on the tone group's position within a paragraph, and whether the question 
is a yes-no question or not. 

A data-driven alternative to the above is to select and hierarchically organise 

meaningful segmental features from a prosodic database, producing a decision tree 

(Dutoit, 1997). Each leaf of this tree has an associated melodic contour, which is 

defined by averaging the melodic information provided by each of its representatives 

in a prosodic database. Connectionist approaches have also been used to map 

syntactic-prosodic information to the observed stylised curves. For example, Traber 

(1992) controlled fO using a recurrent neural network, which used a sliding window 

technique to associate letter sequences with pitch contours. The system produced a 

series of stylised melodic patterns, which were then concatenated (Dutoit, 1997). 

Generating f0 as sequences of tones 

In this technique, fO is viewed as a series of relative, elementary tonal units 

(Pierrehumbert, 1981), which are converted later to numerical fO values. 

Pierrehumbert used a target and transition notation to describe pitch contours. This 

remains a popular annotation method, and has been adapted to form other labelling 

systems, such as ToBI (Silverman et al., 1992). In this system, the pitch contour is 

initially described as abstract intonational events, which are later converted to actual 

phonetic values (Delin & Zacharski, 1997). 
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Intonational melodies are described by pitch accents, phrasal tones and boundary 

tones (Pelachaud & Prevost, 1995). High or low frequency phrasal tones are 

represented by the symbols H and L, whilst stressed syllables are marked with an 

asterisk. Stressed syllables are generally higher in amplitude than unstressed syllables 

(Crystal, 1987), although syllables can also be perceived as stressed if they are 

acoustically longer in duration. Pitch accents specify the relative pitch for various 

parts of a word. In English, the set of pitch accents is as follows: 

H*, L*, L+H*, H*+L, L*+H and H+L* 

Using this notation, the pitch accent contained in the word computer would be 

annotated as L+H*; this translates to a pitch contour made up of a low pitch, followed 

by a marked pitch increase on the second syllable. Intonational phrase boundaries are 

represented by the markers H% and L%. An example of prosodic labelling using 

ToBI is shown below for the sentence `Marianna made the marmalade' : 

Marianna made the marmalade. 
H* H* L-L% 

1114 

In the example, the numerical values in the `break-index tier' label the end of each 

word for the subjective strength of its association with the next word, on a scale from 

0 (for the strongest perceived association) to 4 (for the most disjoint). This relative 

notation is used in order to describe pitch contours in cognitive terms, signalling the 

speaker's intent. However, since this notation only describes pitch in relative terms, a 

procedure is necessary for producing an actual intonation melody. 

For this reason, tone sequence intonation models for text-to-speech are often 

separated into high-level and low-level systems. An example is the O' Shaughnessy 

fundamental frequency algorithm (1977), which was used in the MiTalk system 

(Allen et al., 1987). At the high-level, syntactic information such as sentence type, 

clauses and phrases were used to produce an approximate fO contour. The low-level 

system refined this contour using information such as phoneme type, number of 

syllables per word and lexical stress. 
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1.2.3.6 Segmental Duration 

An essential aspect of prosody, is segmental duration (Carlson et al., 1979; Ostendorf 

et al., 1990). Segmental duration is an important perceptual cue, which facilitates 

discrimination between different segments of speech. For instance, duration aids the 
judgement of whether a vowel is long or short (Nooteboom, 1973), or whether a 
fricative is voiced or unvoiced (Cole & Cooper, 1975; Idson & Massaro, 1981). 

Segmental durations can be used to produce contrastive stress, or to alter the speaking 

rate (Klatt, 1979). On the sentence level, segmental duration can also signal whether a 

word is phrase-final or not (Klatt, 1975). 

Segmental duration directly affects the overall rhythm of speech, and it is important to 

consider its effect on timing at the sentence and paragraph level. One theory of speech 

timing that has been widely discussed is the idea that continuous speech is 

isochronous, i. e., stressed syllables seem to occur at regular intervals (Abercrombie, 

1964). This is also referred to as stress timing. Intervals between stressed syllables are 

known as `feet', and are approximately comparable to musical `bars'. In the 

isochronous foot theory, the duration of syllables is adjusted in such a way as to make 

the total duration of each foot approximately constant (Dutoit, 1997). However, the 

isochrony theory has not been strongly supported by empirical evidence (Lehiste, 

1977). Despite this lack of evidence, English is often viewed as being isochronous. 

This suggests that isochrony is mainly a perceptual phenomenon in which heavy 

syllables tend to dominate (Fant et al., 1991). The belief that English is stress timed is 

due to the human tendency to impose a rhythm upon any sequence of intervals (Allen, 

1975). 

The perception of duration can be studied using a range of different stimulus types. 

These include non-speech stimuli such as white noise, filtered noise or pure tones 

(Fujisaki et al., 1975). In the acoustic marker technique, sensitivity to duration is 

measured by presenting subjects with sinusoidal tones, separated by pauses. An 

experimental stimulus would be a sinusoidal tone lasting 170 ms, followed 10 ms later 

by an identical 170 ms tone. Other stimuli would differ only by the length of the 

silence between the two acoustic markers (Yost, 1994). 
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For both formant and concatenative speech synthesis, a duration parameter must be 

predicted for each segment that is output. Careful chosen segmental durations result in 

a marked improvement in the naturalness of synthetic speech, whilst inappropriate 

segmental timing can cause the speech to sound `unnatural and laboured' (Breen & 

Easton, 1994). This makes the prediction of segmental durations an important task. 
Unfortunately, it is also a difficult task, since segmental timing is influenced by many 
factors (Port, 1981). 

Segmental timing for text-to-speech is influenced by syntactic, lexical and semantic 
factors (Klatt, 1976). Syntactic factors include the locations of phrase and clause 
boundaries in the input text. These boundaries may be determined manually (Black & 

Taylor, 1994), predicted by rule or identified from the input text using a stochastic 

approach (Edgington et al., 1996a). 

Lexical stress markers define the stress level for a speech segment. It is common for 

three stress levels to be used: high, normal and unstressed. All of these levels have an 

effect on segmental duration. A substantial part of the variation in segmental timing 

involves the actual combination of speech segments that is used to synthesise speech. 

The segments produced by the speech synthesiser's lexical module all possess 

inherent durations, which by themselves account for most of the variation in 

segmental duration (Takeda et al., 1989). 

Semantic factors contribute to the meaning of an utterance. These include contrastive 

stress (Pelachaud & Prevost, 1995) and variations in speaking rate. For example, 

speakers will often slow their speaking rate when words with a high information 

content (i. e., unusual words) are encountered (although Eefting (1991) showed that 

for the Dutch language, duration is only affected if an unusual word is stressed). 

However, non-verbal communication, such as `information content', is not usually 

available to text-to-speech synthesisers (Hawkins & Warren, 1991). 

Duration models have been proposed for various languages (Bartkova & Sorin, 1987; 

Carlson & Granström, 1986; Coker, Umeda & Browman, 1973; Huber, 1990; Möbius 

& van Santen, 1996; Pitrelli & Zue, 1989). Segmental duration models are usually 

produced with the assistance of a timing database (van Santen, 1994) consisting of a 
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recording of continuous human speech, labelled with segmental durations (Campbell, 

1992). Duration rules can then be formulated by trial and error, attempting to fit the 

predicted durations to those in the timing database (e. g., Klatt, 1979). It is desirable 

for duration rules to incorporate articulatory or phonological principles from the 

phonetics literature (van Santen, 1993). Alternatively, a statistical model can be 

constructed, using a tree approach (e. g., Breen, 1992b) to exploit statistical 

regularities in speech data (van Santen, 1993). 

Rule-based segmental duration models usually incorporate several `rules of thumb'. 
For instance, Morton (1987) states that all sounds have intrinsic durations and 

amplitudes, and the intrinsic duration of vowels may be shortened in certain contexts 
(such as when they occur before /p, t or k/). Thus, in most rule-based segmental 
duration models, an intrinsic duration is first assigned to segments (including pauses), 

which is further modified by successively applying rules combining co-intrinsic and 
linguistic factors into additive or multiplicative factors (Bartkova & Sorin, 1987; 

Klatt, 1976; O' Shaughnessy, 1984). 

Klatt's (1979) duration model is probably the most well known of its kind, forming 

the basis for many other models. In this model, an `inherent duration' is assigned to 

each phoneme. The inherent duration is `roughly the duration to be expected in 

nonsense CVCs spoken in the carrier phrase `Say bVb again' or `Say CaC again". 

Here, CVC refers to a consonant-vowel-consonant syllable. Klatt specified a set of 11 

durational rules which cause a percentage change in the segment's inherent duration, 

taking into account factors like syntactic information, position in a word, stress 

markers, etc. A `minimum duration' value was also defined, which limits the extent to 

which a phoneme can be shortened. This corresponds to the minimum duration for 

that phoneme if stressed. Equation 1-3 is used to calculate segmental durations: 

DUR=[(INHDUR-MINDUR) x PRCNT]/100 + MINDUR (1-3) 

where INNDUR refers to a phoneme's inherent duration, MINDUR is the minimum 

duration that a phoneme must take when stressed and PRCNT is a percentage 

shortening value determined by Equation 1-4: 
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PRCNT=(PRCNT x PRCNT1)/100 

Here, PRCNT 1 is a value specified in each of the 11 duration rules. 

(1-4) 

Klatt's rules predicted reasonably adequate segmental durations. When segmental 
durations predicted by Klatt's rules were compared with continuous speech, read by 

himself, a standard deviation value of 17 ms was obtained. 

One problem with such models is that the inherent durations for phonemes are 
difficult to estimate (Huber, 1990), and vary somewhat between the different studies 
(Carlson & Granström, 1986; Klatt, 1979; Umeda, 1977). This is no doubt a result of 

variations in speaking rate by individual speakers. Furthermore, there is some 

variation in inherent and minimum durations between British and American English 

(for instance, Breen (1992b) had to re-map Klatt's inherent durations to English ones). 

Many duration models (such as Klatt's) are speaker-specific. Attempts have been 

made to create models that are independent of the speaker. Bartkova and Sorin (1987) 

used several corpora in studying speaker-independent intrinsic durations and their 

modifications in different contexts. They considered factors such as type of word (i. e., 

content versus function word), the location of a segment within a word and a 

segment's distance to major and minor phrase boundaries. This study led to the 

following rules: 

Vowel Duration = ID VV m, 

Consonant duration = ID Cy 

(1-5) 

(1-6) 

In equations 1-5 and 1-6, ID refers to intrinsic durations; Vi and C13 are shortening or 

lengthening coefficients dependent on the position i of a segment within a word and 

in a sentence; j refers to the phonetic class membership of consonants and m, denotes, 

for certain closed syllables, the influence of a consonant or semivowel on the 

preceding vowel. 
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More recently, the availability of large speech corpora has been exploited to allow 

general, statistically-derived models to be produced, in which a large number of 

possible control factors are simultaneously varied. A general additive model has been 

proposed by Kaiki et al. (1990); Classification and Regression Trees (CARTs) have 

also been used by Riley (1992) to make continuous segmental duration predictions; 
CARTS were used to cluster allophone durations according to their context. Campbell 

(1992) used a connectionist approach. Whichever method is used, it has been shown 
(Breen, 1992b) that statistical duration models tend to produce slightly more accurate 
durations than rule-based ones. 

Most of the segmental duration models and systems described are designed to predict 

phoneme durations. However, most concatenative speech synthesisers are based upon 

other segments of speech (such as diphones). This raises the interesting problem of 
deciding how to distribute phoneme durations amongst diphones or syllables 

(O'Shaughnessy et al., 1988). For example, one could assign 50% of the current 

phoneme duration and 50% of the following phoneme duration to a diphone. 

However, this problem remains unsolved, and has prompted the creation of segmental 

duration models based on diphones (Huber, 1990). 

It can be seen from the above discussion that segmental timing is affected by many 

factors, which interact in a complex manner (Port, 1981). Whilst these timing factors 

have been identified, the extent to which they affect each other is not yet fully 

understood (Pitrelli & Zue, 1989). It should also be noted that in natural sentence 

utterances, segmental durations fluctuate more widely than in isolated-word speech 

(Takeda et al., 1989). On the sentence level, it is probable that a certain amount of 

variability should be introduced into the predicted segmental durations, particularly in 

cases where the sentence may be repeated several times within a dialogue (Tatham, 

1996). Thus, predicting sentence-level durations will continue to be an important 

factor in producing natural-sounding synthetic speech. 

1.3 Limitations of This Research 

This research has several given limitations that should be noted. For instance, the 

44 



speech synthesis framework is monolingual, being tailored towards British English. If 

the developed system were to be used for other languages, additional waveforms 

would have to be recorded and added to the inventory, to account for additional 

speech sounds. A new timing database would also be necessary, based on words from 

the desired language. Furthermore, for each new speaker, a new segmental duration 

database must be created using the iterative synthesis/adjustment method. 
Unfortunately, this is requires a lot of time and manual effort. However, it is possible 

that all concatenative TTS synthesisers require such handcrafted databases in order to 

sound more natural. 

Although this thesis is entitled `Time-Domain Concatenative Text-to-Speech 

Synthesis', it is acknowledged that at present, speech can only be synthesised for 

isolated words. However, the concatenation framework is designed in such a way that 

text-to-speech synthesis is achievable if some additional components are added. For 

instance, mechanisms for pitch manipulation and prediction are required. It is 

intended that this will be achieved using TD-PSOLA. Segmental duration prediction 

also needs to be implemented on the sentence level, rather than at the word level only. 

Although the time-domain concatenative speech synthesis method is evaluated in this 

thesis, the evaluation is not exhaustive. Further evaluation, such as segmental 

intelligibility tests, could be carried out. 
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Chapter Two 

2. Speech Synthesis System Components 

2.1 Introduction 

A time-domain concatenative speech synthesis (TDCSS) method has been devised, 

which enables speech to be synthesised for whole words, given a text input. Speech is 

synthesised by concatenating pre-recorded segments of speech, taken from an 
inventory of speech waveforms (see Chapter 3). The speech segments used are CV, 

VC and CVC syllables, supplemented with CC diphones. This chapter summarises the 

components of a prototype text-to-speech synthesiser which has been implemented 

(see Figure 2.1). 

The text-to-speech system contains a Text-to-Segment Conversion module which 

converts the input text into a segmental representation. A Timing Module then 

predicts a duration for each segment (this is described in Chapter 4). The Timing 

Module contains a duration look-up algorithm and a timing database. Finally, the 

stream of segments and their segmental durations (supplied by the Timing Module) 

are passed to the Synthesis Module, to be converted into a speech signal. The 

Synthesis Module contains an inventory of pre-recorded speech waveforms. In order 

to synthesise a word, an appropriate sequence of waveforms is firstly selected from 

the inventory, using the given segmental representation. According to the given 

segmental duration values, a portion of speech is extracted from each waveform. 

These temporary portions are then concatenated to form a single waveform, which is 

converted to an audio signal via a Digital-to-Audio Converter. 

These individual modules are described in more detail in the following sections. 
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Figure 2.1: Overview of Text-to-Speech System 

2.2 The Text-to-Segment Conversion Module 

The Text-to-Segment Conversion module converts the input text to a stream of 

symbols, representing the actual speech segments to be concatenated (see Chapter 3, 

Section 3.3). In this thesis, these are referred to as speech segment symbols, because 

they represent speech segments in an actual waveform inventory; on the other hand, 

the term speech segment refers to a section of recorded speech. This module contains 

a text-to-phoneme conversion system, which breaks up the input text into a stream of 

phoneme symbols, using a set of letter-to-sound rules, which are an adaptation of a set 

of letter-to-phoneme rules for American English published by the U. S. Naval 

Research Laboratories (Naval Research Laboratory, 1976). 
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The phoneme symbols produced are then converted to speech segment symbols such 

as CC diphones, CV and VC syllables, by grouping them into pairs. The Text-to- 

Segment Conversion module ensures that for any given text, the largest possible 

speech segments are selected from the waveform inventory. Where possible, CV-VC 

syllable pairs are replaced by a single CVC syllable, when available in the speech 

segment inventory. This ensures that fewer speech segments are used to make up a 

word, and consequently, the number of concatenation points per word is minimised. 

Reducing the number of concatenation points per word tends to produce more fluent- 

sounding speech with fewer abrupt `clicks' (Kraft, 1993). 

2.3 The Timing Module 

The Timing Module predicts segmental durations for any input word using a pattern- 

matching, duration look-up algorithm and a timing database. The duration look-up 

algorithm is supplemented with a default duration function, which is activated 

whenever the look-up algorithm fails to return a duration value for a segment. The 

duration look-up algorithm is described more fully in Chapter 4, and the timing 

database is explained in Chapter 5. With this approach, the intelligibility and 

naturalness of the output speech are closely related to the amount of timing data 

available. 

2.3.1 The Timing Database 

The timing database consists of sets of segmental durations for frequently used 

English words. The timing database is created using an iterative synthesis/adjustment 

technique, involving a cycle of synthesising speech and adjustment by an expert 

judge. The segmental durations are adjusted purely on the basis of the expert judge's 

perception of the synthetic speech's naturalness. The creation and nature of the timing 

database are described in more detail in Chapter 5. 

Several important issues are raised, concerning the expert judge approach, used in the 

creation of timing databases. These are discussed in Chapter 5. These include: 
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9 the question of whether the expert's judgement of naturalness is 

representative of other people's perception 

9 the stability of the expert judge's perception over a period of time 

" the issue of whether non-expert listeners can carry out an iterative 

synthesis/adjustment task in the same manner as the expert judge 

These points have been examined via a series of listening experiments and an iterative 

synthesis/adjustment experiment. The findings are discussed in Sections 5.4.6 and 
5.5.6. 

2.4 The Synthesis Module 

At the heart of the Synthesis Module is an inventory of speech segments, recorded by 

a single, male speaker. The methods used to record the CC diphones and the CV, VC 

and CVC syllables are described in Section 3.2.2. The Synthesis Module produces the 

synthetic speech (in the form of a single speech file) by concatenating portions of 

speech, extracted from pre-recorded waveforms according to a set of segmental 

duration values. 

The Synthesis Module has been implemented using a combination of the C language 

and the Speech Filing System (SFS) software, version 1.1 (Huckvale, 1996). SFS is a 

suite of software tools, file and data formats, standards and special programming 

languages which facilitates speech research. It was supplied freely by the University 

College of London. 

The synthesis program is written in C, and is used to obtain parameters concerning the 

word to be synthesised, such as an appropriate segmental representation and a set of 

segmental durations. For example, in order to synthesise the word `Tom', the symbols 

/to/ and /om/ would be required as an input. A set of segmental durations (in 

milliseconds) is also necessary, e. g., [37.5,140.0]. The segmental durations are 

produced by the Timing Module, and have a high degree of accuracy in order to 

minimise discontinuities when concatenating speech segments. Using the above 
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information, the synthesis program then activates the relevant SFS functions to 

concatenate the speech segments according to the given segmental durations 

The segmental durations supplied by the Timing Module are used to construct 

temporary speech files, which are then concatenated to produce the synthetic word. 

Each temporary speech file is created using the SFS function slink, which allows a 

segment of speech to be extracted from a stored waveform, according to a specified 

segmental duration. The temporary speech files are concatenated into a single speech 

signal using the SFS function spaned. Although the spaned function supplies a 

smoothing facility, this is not used by the Synthesis Module -a zero overlap is 

specified, in order to remain true to the concatenation framework described in Chapter 

3. Alternative versions of the TDCSS synthesiser that have also been implemented 

include a `smoothed' Synthesis Module and a TDCSS2 Synthesis Module, which 

follows the two-parameter concatenation method described in Chapter 3. 

The concatenation framework underlying the Synthesis Module is explained in 

Chapter 3. The synthetic speech output is evaluated in Chapter 6, in terms of its 

intelligibility and naturalness. These aspects of the synthetic speech were both 

investigated by means of listening experiments. One experiment established that 

intelligible speech is attainable using TDCSS. In a further experiment, the synthetic 

speech was ranked in terms of naturalness, alongside five well-known text-to-speech 

synthesisers. 

2.5 Summary 

A time-domain concatenative speech synthesis method is described, which enables 

speech to be synthesised for whole words, from a text input. This chapter has outlined 

the various components of a prototype text-to-speech synthesiser for whole words. 

The concatenation framework and speech synthesis method underlying this prototype 

are described in Chapter 3. A Timing Module is also described (see Chapter 4) which 

is capable of predicting segmental durations for whole words, using a duration look- 

up algorithm and a timing database. 
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Chapter Three 

3. A Concatenation Framework for Speech Synthesis 

3.1 Introduction 

Speech can be synthesised by concatenating speech segments, taken from an 

inventory, to form a continuous signal (Rudnicky et al., 1994). In text-to-speech 

applications, it must be possible to synthesise an unlimited vocabulary, even though 

the speech segment inventory is of fixed size (Dixon & Maxey, 1968). The size and 

content of speech segment inventories is thus an important issue. Although 

inventories should not be prohibitively large, they must contain a sufficient number of 

segments to cover a wide range of possible speech sounds. Furthermore, an individual 

speech segment may have to be used in many different phonetic contexts. This is a 

difficult problem, because a speech segment, extracted from recorded human speech, 

consists of one or more allophones (Tatham, 1969), rather than phonemes. The 

transitions between segments may not sound natural, even though a logical order of 

segments may be used. Dixon and Maxey (1968) succinctly summed up the above 

problem with this question: 

`Can a library of synthetic segments be devised which will be acceptable to 

listeners if the segments are forced to fulfill multiallophonic roles in continuous 

speech? ' 

We have seen in Chapter 1 that the concatenation of allophones (Ozum & Bulut, 

1994) has an immediate appeal due to the minimal storage requirements. However, 

the main challenge is that of producing realistic coarticulation - describing the 

influence of one phoneme on another. The need to model transitional information 

between phonemes led to the introduction of diphones, which were first proposed by 

Peterson, Wang & Silvertsen (1958). Requiring only moderate storage space, 

diphones, which are sometimes -referred to as dyads (Olive, 1977), are the transition 

from the middle of one phoneme to the middle of the next. The approach is successful 

because the centres of allophones are relatively stable, acoustically, and are 
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reasonably ideal concatenation points. In fact, if a diphone inventory is recorded 

adequately, it is possible to synthesise intelligible speech by simply appending the 

relevant diphones (Elsendoorn & `t Hart, 1982) with no smoothing. However, one 

must exercise caution, since large differences in either fundamental frequency or 

amplitude can be manifested as clicks, particularly when voiced diphones are 

appended. One solution is to adjust the initial pitch of the current diphone to match 

the pitch period of the preceding diphone, thus creating a `pitch ramp' between the 

diphones (Yarrington & Foulds, 1993). 

The drawback of diphones is that they require a rather large number of concatenation 

points (one for each allophone). Each concatenation point is a potential source of 
degradation in the speech output, and so heavy reliance is placed upon an effective 

smoothing algorithm (Breen, 1992a). A further disadvantage is that diphones can only 

account for some of the coarticulatory effects exhibited by a language (Dutoit, 1997). 

It is found that to be really effective, they should ideally be taken from a carrier word 

similar to the phrase to be synthesised (Breen, 1992a). 

A linguistically appealing concatenative unit is the syllable. Syllables are larger in 

size than diphones, and require fewer concatenation points. Syllables are thought to be 

more directly linked to the timing of speech, to the extent that some languages are 

referred to as being syllable-timed (Lehiste, 1977). Syllables produce good-quality 

speech when joined together because most coarticulation occurs within syllable 

boundaries (Fujimura & Lovins, 1978). As mentioned in Chapter 1 the disadvantage 

of syllables is that there is a large number of them (approximately 10,000) in the 

English language. 

The introduction of demisyllables (or half-syllables) reduced these storage 

requirements, whilst maintaining the concept of syllable timing. Demisyllables are 

defined by Fujimura and Lovins (1978) as being half of a syllable, either the set of 

initial consonants plus half of the vowel, or the second half of the vowel plus any 

postvocalic consonants (Allen et al., 1987). 

It is found that different languages can be synthesised more effectively using 

particular concatenative unit types. For Japanese speech synthesis, CV syllables have 
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commonly been used, since a small number of combinations of CV segments can 

cover all the possible utterances (Iwahashi & Sagisaka, 1995). 

The naturalness of concatenative speech can be improved by using several stored 

versions of a particular phoneme, taken from different contexts, such as triphones 
(Hirokawa, Itoh & Sato, 1993). When a word is to be synthesised, an optimal set of 

segments (e. g., diphones) is selected from the segment inventory on the basis of 

minimising a concatenation cost function (Iwahashi & Sagisaka, 1995). The cost 
function accounts for factors such as potential waveform distortion between 

consecutive segments. Since each type of concatenative unit has its advantages, an 

optimal combination is often used. For instance, Dettweiler and Hess (1985), included 

demisyllables, diphones and suffixes in the speech segment inventory. 

A further alternative is to use concatenative units which are of non-uniform size 
(Takeda, Katsuo & Sagisaka, 1992). In this technique, speech segments are selected 
from a continuous speech recording in such a way that they match the context of the 

message to be synthesised as closely as possible. 

This chapter describes a framework for waveform concatenation speech synthesis, 

that allows intelligible speech to be synthesised at the word level (this is verified in 

Chapter 6). The concatenation framework utilises a mixture of waveform types, 

including CV, VC and CVC syllables, extracted from digitised human speech (see 

Appendix A). Some CC diphones are also used. The framework allows the speech 

segments to be concatenated with minimal discontinuities whilst avoiding smoothing 

at segment boundaries. This is achieved by outputting the initial fraction of each 

segment, specified by a segmental duration parameter. An alternative concatenative 

framework is also described, in which two segmental duration values are used, 

specifying a variable `start point' and `end point' for each speech segment to be 

concatenated. 

3.2 Time-Domain Waveform Concatenation Framework 

One goal of this research was to examine whether intelligible and natural-sounding 
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speech could be synthesised using a concatenation of speech waveforms in the time 

domain. The literature available on this subject is not extensive, often dismissing such 

techniques without a full evaluation. For instance, Witten (1986) warns against a 

simple abutting of time waveforms. Indeed, such an approach is unlikely to succeed 

unless both the waveforms and the concatenation points are chosen carefully. 

Furthermore, Linggard (1985) states that `simply concatenating words, or syllable- 

type units will not result in natural-sounding or even intelligible speech. ' However, 

this research demonstrates that certain time-domain concatenation techniques should 

not be dismissed so readily, and investigates the extent to which TDCSS is a viable 

method for text-to-speech synthesis. 

Concatenating speech waveforms in the time domain has the advantage that the 

microprosodic information carried in the speech segments is preserved. Processing 

requirements can also be considerably reduced. This is advantageous because 

excessive processing of speech segments tends to degrade the overall speech quality. 

The chief problems associated with this method are waveform discontinuities at 

segment boundaries (Yarrington & Foulds, 1993) and the incorporation of prosodic 

information, such as fundamental frequency, into the synthesised speech. These 

problems are discussed in Sections 3.2.3 and 3.2.5. 

3.2.1 Choice of concatenative units 

The units chosen for concatenation are CV, VC and CVC syllables, supplemented 

with CC diphones. Using CVC segments has the advantage that coarticulation effects 

rarely extend beyond syllable boundaries (Fujimura & Lovins, 1978). The CC 

diphones are often necessary for producing clusters of consonants, and can be used to 

span word boundaries in connected speech. For instance, a /ts/ diphone would be 

needed in the synthesis of the expression `The cat saw nothing' . 

3.2.2 Obtaining the concatenative units 

All of the speech waveforms were recorded digitally by a single, male speaker. A PC 

soundcard was used to convert the analog signal to a digital representation such as a 
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`. wav' file. The speaker was the author, who is referred to in this thesis as DSGV. All 

speech waveforms were recorded in a quiet room, using a sampling rate of 44,100 Hz 

and a 16-bit representation. In an attempt to minimise fluctuations in amplitude, a 

constant microphone distance was used. Also, a constant pitch was used for each 

speech segment as far as possible. Throughout the recording sessions, the author 

would frequently listen to random examples of previously recorded speech segments 
in order to be reminded of the pitch to be used. After every recording session, the 

speech segments were normalised for amplitude. 

The CC diphones were manually extracted from nonsense words by DSGV, using a 

time waveform display program. Typically, a nonsense word would be recorded 

several times by the speaker, with short pauses between each version. The relevant 
diphone would be extracted from the best version (which would be judged by ear, in 

terms of clarity, overall amplitude and pitch). 

When recording CV or VC syllables, it was found experimentally that it was easier to 

utter them in isolation, rather than to extract them from nonsense words. This 

approach has the potential danger that the final synthetic speech could sound overly 

accentuated. In order to counteract this effect, the speaker would imagine the syllable 

to be part of a carrier sentence such as `You must not again', where the 

underscore indicates the position of the syllable. In this sentence, the word not is 

accentuated, as well as the final syllable gain. It was found by experimentation that 

embedding the syllable in this type of carrier sentence tends to have the effect of 

producing an unaccented syllable. In the above technique, it should be noted that only 

the syllable to be recorded is actually spoken. The carrier sentence is purely a means 

of mentally rehearsing the duration and amplitude of the utterance. 

At present, only a partial CVC inventory has been recorded. However, it is shown in 

this chapter that CVC syllables can be constructed by concatenating CV and VC 

syllables. 
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3.2.3 Segment boundaries 

If speech is synthesised solely by concatenating entire waveforms from an inventory, 

intelligibility can be seriously degraded. However, this approach can be substantially 

improved by outputting a specified portion of each selected waveform. The portion of 

each waveform to be output is specified by a segmental duration parameter (Vine & 

Sahandi, 1996). This `portion' refers to a section of the stored segment starting from 

the onset of the segment tstart, and finishing at any point tsta,. r+s, where s is the 

specified segmental duration. Thus, depending on s, a smaller or larger portion of a 

waveform is output. This is shown in Figure 3.1, in which portions of the syllables 

/DI/ and /Is/ are used to synthesise the word `this' (the portions are indicated by 

arrows). The first two windows show the complete syllables, and the final window 

shows the synthetic word `this' (in the final window, the waveform has been re-scaled 

to fit the page). As the diagram shows, only the portion of the /DI/ waveform is output 

before /Is/. For intelligible speech to be output, TDCSS requires a high degree of 

timing accuracy, since the timing data is specific to a particular inventory of speech 

waveforms. This is unlike conventional speech synthesis methods, in which each 

segment is squashed or stretched to fit a particular duration (Isard & Miller, 1986). 

Since such speech synthesis methods use smoothing procedures at segmental 

boundaries, a wider range of segmental durations can be tolerated. 

With the above technique, a segment's duration can usually be specified so that 

concatenation occurs at an acoustically stable portion of the current waveform. In this 

way, the current waveform can often be made to finish with a perceived pitch or 

amplitude similar to that of the following waveform. This minimises the probability 

of waveform discontinuities at segment boundaries, which can result in audible 

`clicks' 
. Thus, by using well-chosen segmental timing data alone, the need for 

smoothing algorithms at concatenation boundaries is greatly reduced. Segmental 

duration also plays a major part in the intelligibility of the resulting synthetic speech. 
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The `initial portion' principle described above has the interesting property that for VC 

syllables, one can synthesise a speech sound that corresponds to either a word-initial 

or a word-final position. For instance, if an /Vt/ segment is used in a word-initial 

position, e. g., at the start of the word `attract', then the sound corresponding to a 

plosive burst of air after the /t/ would be undesirable. This plosive burst could be 

removed from the original /Vt/ segment by reducing the initial portion of the /Vt/ 

segment to be output. Alternatively, if /Vt/ is to be used in a word-final position (as in 

the word 'hut'), then the plosive burst is desirable, and so can be produced by using 

the maximum possible duration of /Vt/. N. B. In this example, the SAMPA notation 

standard is used. The above is an example of how a stored concatenative unit can be 

used to fulfil the `multiallophonic roles' mentioned by Dixon and Maxey (1968). 

In concatenative speech synthesis research, extra units such as triphones tend to be 

added to the waveform inventory (Shih & Sproat, 1996), so that an acoustic unit is 

available for every conceivable context. However, TDCSS reduces the need to keep 

adding extra units to the inventory. 
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3.2.4 Formation of CVC syllables 

When CV segments are joined to VC syllables to form CVC units, it is important to 

avoid concatenation points within vowels where possible, because this is detrimental 

to the vowel quality. As Saito (1992) points out: 

`... vowels are key components determining synthesised voice quality and should 

not be segmented or concatenated in their middle at all and concatenation of 

units must be made in consonantal parts because they are small in amplitude so 
that the discontinuity introduced by the concatenation sounds less distinct'. 

Whilst concatenation points within vowels are sometimes unavoidable, better results 

can be obtained by making a demi-syllabic cut where the consonant-to-vowel 

transition ends and the vowel portion begins (Bhaskararao, 1994). This allows for 

coarticulation effects and enables the listener to anticipate the following VC segment. 

If this does produce an audible waveform discontinuity, only the consonant portion of 

the CV syllable should be output. 

In creating a CV-VC pair, the initial consonant can accept some degree of duration 

variation. For instance, a CV segment beginning with a fricative or affricate can take a 

wide duration range, without the likelihood of introducing waveform discontinuities. 

For example, the words `shoot' or `jig' allow considerable variation in their initial 

consonants. To some extent, CV-VC pairs starting with sustained sounds such as 

liquids can also vary in duration without compromising the speech output. Finally, 

even unsustained sounds such as unvoiced plosives can tolerate some duration 

variation. For example, experiments with TDCSS have shown that in synthesising the 

word `ton', the initial /t/ can have any duration value between 45 and 348 ms. 

3.2.5 Concatenation nodes 

When CV and VC syllables are concatenated, there is a risk that a waveform 

discontinuity will result. This problem can be reduced by choosing specific 

concatenation points in the CV segment's waveform. These points will be referred to 
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as concatenation nodes. Figure 3.2 shows examples of concatenation nodes for the 

CV segment /m{/. These are labelled C,, where n is an integer between 1 and 5. The 

nodes indicate the instants in the `m' allophone where the signal crosses the time axis. 
These nodes usually correspond to zero-crossings in the time domain. The arrows 

show the relevant segmental durations. 

Figure 3.2: Example concatenation nodes for the syllable /ml/ 

An informal experiment was carried out to verify the efficacy of the concatenation 

nodes, by synthesising different CVC words which share the same initial CVC 

segment. For instance, the concatenation nodes for the /m{/ segment were established 

by visual inspection of the waveforms in the time domain. Initially they were tested 

via a synthesis of the word `mat', using a /m{/ segment followed by an entire /{t/ 

segment. The same concatenation nodes for /m{/ were then tested by synthesising 

other CVC syllables. These consisted of an initial /m{/ segment, followed by various 

VC syllables starting with /{/, e. g., /{n/ or /{d/. It was found that for the concatenation 

nodes shown, minimal waveform discontinuities were produced, compared to CVC 

segments synthesised using random durations for the initial /m I/ syllable. This finding 

shows that concatenation points must be well-chosen. 

3.2.6 Phonemic category shifts 

When concatenating a CV segment followed by a VC, it is highly important to choose 

an appropriate duration value for the CV segment. Apart from the challenges of 
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creating realistic coarticulation and minimising waveform discontinuities, one must 

also consider the segmental intelligibility of the synthesised speech. If the duration of 

an initial CV segment is shortened too much, a shift is produced in the phonemic 

category perceived by the listener (Ferrero et al., 1979). For example, if the /j/ sound 

in the word `ship' is shortened beyond a certain point, listeners often perceive the 

word 'chip'. 

It is therefore evident that for the TDCSS method, a `minimum duration' is 

permissible for each CV segment. Let us assume that the CV will be followed by a 

VC segment, where the second segment's initial vowel is the same as the final vowel 

of the CV. A CV segment's minimum duration is defined as the minimum duration 

that a word-initial CV segment can be assigned without listeners experiencing a 

perceptual category shift. This definition is related in concept to Klatt's (1976) 

`minimum duration' term. However, Klatt's concepts of a minimum and maximum 

duration for a phoneme apply to a different synthesis method in which segments are 

`squashed' or `stretched' to fit a specified duration. This concatenation scheme does 

not require a maximum duration for segments, since its value depends upon the actual 

duration of the recorded waveform. 

3.3 The Text-to-Segment Conversion Module 

For text-to-speech synthesis, text must be converted to a stream of segment symbols 

which correspond to the stored concatenative units. A Text-to-Segment Conversion 

module has thus been designed, which converts the input text to a stream of symbols 

which represent CV, VC, CC and CVC speech segments (see Figure 3.3). This 

module contains a text-to-phoneme conversion system (see Appendix G), which 

breaks up the input text into a stream of phoneme symbols, using a set of letter-to- 

sound rules (Naval Research Laboratory, 1976). NB. The letter-to-sound rules are for 

American English, and ideally should be converted to British English. The rules 

consist of four parts: the text to be matched, its left context, its right context and a 

corresponding list of phonemes. A `sliding window' is passed across the text, and the 

text within the current position of the scanning window is compared with a set of 

rules. If a successful match is found, the corresponding phonemes are substituted for 
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the windowed text. The rules also contain some text normalisation rules to convert 
text such as ̀ Dr. ' to 'doctor'. 

Since the phoneme symbols produced may not correlate with the stored segments in 

the inventory, the phonemes are thus converted to CV, VC and CC segments by 

grouping them into pairs. For example, the word `cats', is converted from the 

phoneme stream to CV, VC and CC segments as shown: 

k{ts => k{ {tts 

Speech output can be improved by using larger speech segments (Tatham, 1991). This 

reduces the number of segment boundaries per word and hence the likelihood of 

waveform discontinuities. The Text-to-Segment Conversion module therefore ensures 

that for any given text, the largest possible speech segments are selected from the 

waveform inventory. Where possible, CV-VC syllable pairs are replaced by a single 
CVC syllable, when available in the waveform inventory. 

The Text-to-Segment Conversion module relies upon a Segment Equivalency Table, 

which contains equivalencies between CV-VC pairs and CVC syllables that are stored 
in the waveform inventory. For each consecutive pair of syllables in the stream of 

segments for output, the Text-to-Segment Conversion module searches the Segment 

Equivalency Table for an appropriate CVC syllable. For example, for the word `cats', 

the /k{/, /it/ pair could be replaced by a single segment /k { t/, if it is contained in the 

Segment Equivalency Table. 

The Text-to-Segment Conversion module currently deals with CV, VC, CC and CVC 

syllables, and is potentially independent of segment type. At present, the CVC 

inventory is not exhaustive, but can be further developed. Whenever additional speech 

segments are added to the waveform inventory, the Segment Equivalency Table is 

also updated with appropriate equivalencies. This allows the speech waveform 

inventory to contain a range of segment types. 
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PAIRS TO CVC 

SYLLABLES 
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TABLE 

CV, VC, CC and/or CVC SEGMENTS 

Figure 3.3: Text-to-Segment Conversion Module 

3.4 An alternative concatenation framework 

This research concentrates upon a concatenation framework in which an initial 

portion is specified for each speech- segment. This framework is referred to in this 

thesis as TDCSS (Time-Domain Concatenative Speech Synthesis). The speech output 

finishes at a variable point, after the onset of the segment tstart, controlled by a single 

duration value. Thus, the segmental duration parameter simply determines the `end 

point' at which concatenation is to occur. 

This one-parameter method (TDCSS) is somewhat constrained in that for each speech 

segment for concatenation, speech output must start at the onset of the recorded 

segment, tstart. Consequently, every time a VC unit is concatenated, the onset of the 
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vowel is always output. This is not too detrimental to the synthetic speech's 

naturalness if the VC unit is situated at or near the start of a word or a foot. However, 

if a VC unit is not in a word-initial position, the presence of the vowel onset can 

sometimes make the overall speech sound over-accentuated. 

Another possibility is to use a variable `start point' at which speech output is to begin. 

This would require two parameters, sl and s2 for each speech segment. Speech would 

thus be output starting from point tstart+ Si and finishing at tstart+ s2: 

Speech output per segment = (tstart + s2)- (tstart + s1) = s2 - sl (3-1) 

This two-parameter concatenation framework (referred to in this thesis as TDCSS2) 

has the potential to improve speech synthesised by waveform concatenation, and 

makes use of an existing inventory of CV, VC and CVC syllables, supplemented with 

CC diphones. Some of the key aspects of this framework are discussed below. 

The TDCSS2 framework is based on joining CV to VC syllables to form CVC units. 
As with the one-parameter method, it is advisable to avoid concatenation points 

within vowels if possible, due to potential discontinuities in pitch or amplitude. 

Accordingly, it is likely that better results will be achieved using a demi-syllabic cut, 

incorporating the end of the consonant-to-vowel transition and the start of the vowel 

portion. If this produces poor quality speech, s2 can be decreased for the CV segment, 

so that only the consonant portion is output. 
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Figure 3.4: Possible strategies for avoiding the splitting of vowels 

If the above strategies fail to produce natural-sounding speech, then an alternative is 

to output most of the CV syllable and to ignore the vowel portion of the VC segment. 

In other words, by manipulating the parameters sl and s2, the entire vowel can be 

extracted from either the CV or the VC syllable (whilst ignoring the vowel part of the 
A 

other syllable). This is expressed in Figure 3.4, in which the shaded areas indicate the 

portions of the stored CV and VC syllables that are to make up the final CVC 

syllable. 

The TDCSS2 framework requires further investigation into the conversion of text into 

a segmental representation. It is likely that this would be based on the Text-to- 

Segment Conversion module of Section 3.3, in which the segmental representation is 

based on an initial grouping of phonemes into CV, VC and CC units. Chapter 6 

provides a brief evaluation of this technique. 

3.4.1 Advantages of the two-parameter concatenation framework 

TDCSS2 has been found by experiment to have some advantages over the one- 

parameter framework. Firstly, extra control over prosodic segmental duration changes 

is available: increased speaking rates are possible, since the overall duration for a 
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word can be reduced further than under the single-parameter method. Secondly, the 

greater number of parameters available gives the expert judge a greater chance of 
improving the fluency and smoothness of speech output. For instance, when 
appending two consecutive speech segments, it is often the case that discontinuities in 

pitch at the concatenation point can be reduced by altering the starting point sl for the 

second speech segment. A final advantage is that this framework allows consonant 
durations to be varied to a greater extent, particularly in liquids and fricatives. 

3.5 Summary 

A framework for speech synthesis via a time-domain concatenation of waveforms has 

been presented. The framework enables intelligible speech to be synthesised for 

isolated words by varying a single segmental duration parameter. This parameter 

specifies a variable, initial portion of each stored waveform, which is to be extracted 

and concatenated. The segmental duration parameter has several functions. By 

specifying segmental durations correctly, a natural-sounding duration pattern can be 

produced for each word. Also, appropriate segmental durations have the effect of 

minimising waveform discontinuities at the concatenation points between speech 

segments. This reduces the need for smoothing operations at segment boundaries. A 

further advantage is that greater use can be made of the existing units in the waveform 

inventory. By offering a choice of concatenation points for each stored waveform, it 

can be used in a wider variety of segmental contexts. 

An alternative concatenation framework (TDCSS2) has also been discussed, in which 

both the start and end point of each stored speech segment can be varied. This two- 

parameter approach has some theoretical advantages over TDCSS, and so in Chapter 

6, both frameworks are evaluated. 
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Chapter Four 

4. Segmental Duration Prediction for Time-Domain 
Concatenative Speech Synthesis 

4.1 Introduction 

A time-domain concatenation framework for speech synthesis has been described 

(TDCSS), based on units of speech such as syllables and diphones. Within this 

concatenation framework, appropriate segmental durations are essential to the overall 
intelligibility and naturalness of the resulting speech. This is because the segmental 
duration variable effectively determines the number of speech samples that are 

extracted from a stored waveform, and concatenated. This enables smoother speech to 

be produced at segment boundaries. However, if intelligible, natural-sounding speech 
is to be synthesised from text, a system for predicting appropriate segmental durations 

is necessary. This chapter explores the prediction of segmental durations for the 

TDCSS method, from a given text input. 

Both rule-based (e. g., Klatt, 1979) and data-driven (e. g., Riley, 1992) systems for 

segmental duration prediction have been described in the literature. Rule-based 

approaches tend to require a non-trivial level of text analysis before they can be 

applied. For TDCSS, it was decided to design a segmental duration system that would 

not require any text analysis other than a text-to-phoneme conversion. For this reason, 

a data-driven approach was favoured. This made necessary a database of appropriate 

segmental timing data. 

Initial experiments suggested that it would be beneficial to design a timing database 

that is closely linked to both the waveform inventory and the TDCSS method itself. 

This method is somewhat unusual in that more conventional segmental duration 

prediction systems are designed independently of the intended speech synthesiser. For 

instance, Dennis Klatt's (1979) segmental duration rules were derived through 

studying a recording of his own speech, and yet these rules have been applied to a 

variety of other speech synthesisers, some of which use concatenative units recorded 
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by other speakers. The above approach also avoids the problem of trying to map 
predicted phoneme durations onto the speech segments in the waveform inventory, 

such as diphones or syllables (O'Shaughnessy et al., 1988). 

A timing database for TDCSS synthesis has been built, which consists of segmented 

words along with their corresponding duration values (see Appendix E). An iterative 

synthesis/adjustment approach, involving an expert judge, was adopted to assign 

appropriate segmental durations to segmented words. This technique implicitly 

enhances the speech rhythm through the listening and improving cycle, and goes 

some way towards incorporating a human's perception of speech rhythm. This is 

advantageous, because traditional timing systems have no explicit speech rhythm 

model, and as a result, the speech rhythm may not be correct (Breen, 1992b). 

Whilst it would be possible to predict segmental durations using a straightforward 

look-up method for each word held in the timing database, this approach would only 

have a limited application. It was thus decided to use the timing database in the 

prediction of segmental durations for novel words. A pattern-matching technique was 

adopted which could account for some of the factors used in rule-based segmental 

duration prediction, e. g., contextual and positional effects on segmental duration. 

The duration prediction algorithm operates independently of the types of 

concatenative unit used, and can even deal with a mixture of segment types. A range 

of segment sizes and types can thus be used to synthesise speech, allowing great 

flexibility. This is highly convenient for waveform concatenation synthesis, because 

its output can be significantly improved through the availability of larger speech 

segments (Tatham, 1991). The timing database is thus capable of simultaneously 

storing a mixture of segment types. For example, the word `connect' can be 

represented using the segments /k @ n/, /ne/, /ek/, /kt/. This word would simply be 

stored in the timing database, along with appropriate segmental duration data. 

The following section describes a system that has been developed for the prediction of 

segmental durations for whole words, by means of a timing database and a look-up 

algorithm (see Appendix F for details). 
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4.2 Segmental Duration Prediction 

The segmental duration module developed requires that an input word is first 

converted into a segmental representation (see Chapter 3). The segmented word is 

input to the timing system, which uses a timing database to predict appropriate 

segmental durations. The timing database consists of a list of segmented words, 

accompanied by a list of corresponding durations for each segmented word (see 

Appendix E). So, for example, the words `card' and `this' could be stored as follows, 

where the numerical values represent segmental duration in milliseconds: 

[[kA:, A: d] [ 106.4,381.1 ], [DI, Is] [ 189.1,396.4], 
... ]. 

The duration prediction algorithm works by assembling sub-strings of durations from 

the database. In this study, a `sub-string' refers to an unbroken sequence of speech 

segment symbols (along with their corresponding duration values), taken from a 

single database entry (this can include an entire database entry). When a list of input 

segments representing the input word is received, the duration prediction algorithm 

searches the database for sub-strings that match some or all of the input list. If several 

sub-strings containing the same segment are found, the prediction algorithm applies a 

series of three rules to determine which duration sub-string to use in the output list of 

durations. These rules are described in Section 4.3. If no duration value is available 

for a particular segment, a default value is used. 

The operation of the duration prediction algorithm is illustrated in Figure 4.1, along 

with a simplified representation of the timing database. The database shows the words 

`worms', `hard', `cat', `razor', `school', `Peter' and `lurks' in segmental form, 

accompanied by their corresponding durations (see Appendix A for details of the 

segmental representation). To predict durations for the input word `works', the 

algorithm looks for all instances of the initial segment, /wur/. This is found in the first 

database entry, and so the corresponding duration, t1, is used as the first predicted 

duration. The final segments (/urc/ /cs/) are found together as part of the final 

database entry, and so their respective durations are added to the output duration list. 
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Input segments: wur urc cs 

Timing Database 

wur urm mz 
t11 t12 t13 

har and 
t21 t22 

ca at 
t31 t32 

ray ayz zu 
t41 t42 t43 

sc cooh oohl 
t51 t52 t53 

pee eet tu 
t61 t62 t63 

lur urc cs 
t71 t72 t73 

Extracted Durations: tll t72 t73 

Figure 4.1: Duration look-up algorithm 

4.3 Duration Look-up Rules 

The following section describes a set of rules used in the duration look-up algorithm. 

A high-level view of the Timing Module is shown in Appendix B. The main principle 

is to attempt to find the largest sets of sub-strings available in the timing database. At 

the same time, the duration look-up algorithm also attempts to take into account the 

position of segments within a word (see Appendix B). 

4.3.1 Rule 1: Largest possible sub-string 

The duration prediction algorithm should extract the largest possible sub-strings 
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from the timing database (where `largest' refers to the number of segments in the sub- 

string). 

This rule takes into account the fact that a segment's duration is affected by its 

neighbouring ones (van Santen, 1992). This rule works on the basis that it is more 
likely that a sub-string taken from one database entry will produce more natural 

speech than durations taken from a variety of locations. It should be noted that the 
largest possible sub-string rule is similar to Hunt and Black's (1996) approach to the 

selection of concatenation units from a large speech database. Hunt and Black used a 
`concatenation cost function', which encouraged the selection of multiple consecutive 

phonemes from the synthesis database. 

4.3.2 Rule 2: Position in word 

If several sub-strings of equal length are found, the sub-string closest in position to 

the input sub-string is selected. 

When searching through large duration databases, it is likely that several sub-strings 

of equal length may be found by Rule 1. In such cases, the `position in word' rule is 

used to differentiate between them. This rule is used because a segment's position 

within a word has an effect on its duration (Oller, 1973). For instance, the first 

occurrence of the /I/ vowel in the word `intimate' has a longer duration than the 

second /I/. A further example is the well-known phenomenon of final-syllable 

lengthening, in which the final syllable in a word tends to exhibit a lengthening in 

duration. 

4.3.3 Rule 3: Length of database entry 

If rules 1 and 2 fail to arrive at a single sub-string, the sub-string whose database 

entry length most closely matches the input segment string's length is chosen. 

If the first two rules fail to arrive at a single sub-string, then a `length of database 

entry' rule is used, since there remain some sub-strings of identical size and position- 
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in-word. This rule examines the database entries for these remaining sub-strings, and 

compares the length of their respective database entries. The entry whose length (in 

terms of number of segments) most closely matches that of the input segment string is 

noted. The sub-string of durations corresponding to that database entry is then 

appended to the output duration list. 

For example, consider the segmental duration prediction for the input word `toe', 

represented by the segment /toh/. It is possible that the timing database may contain 

the words `toe' and 'tone'. These could be represented as follows: 

Segmented Word: Segmental Durations: Word: 

[toh] [450.0] toe 

[toh, ohn] [43.5,420.7] tone 

As can be seen from the above data, if the duration value was taken from the entry for 

`tone', the value of 43.5 ms would mean that only the /t/ portion of the /toh/ waveform 

would actually be output. However, the duration of 450.0 ms (from the entry for 'toe') 

is very appropriate, since it is more likely that the /toh/ waveform will be output in its 

entirety, including the vowel portion. 

4.4 Default Durations 

The Default Duration Procedure is activated if the duration look-up algorithm fails to 

produce a complete set of segmental durations (see Appendix Q. The default duration 

module accepts a list of the segments that were missing from the timing database as 

an input. The segments contained in the `missing segments list' are then re- 

categorised according to the categories defined in Section 5.3.2. 

For example, Table 4.1 shows the input word `bone' represented by the segments 

/boh/ and /ohn/, which are input to the duration look-up algorithm. Depending on the 

size of the timing database, the initial duration look-up may not find a duration value 

for /boh/. In a default duration procedure, the missing segment is re-categorised as 

/plosoh/, denoting. a plosive followed by /oh/. The duration lookup is then repeated, 
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using the new sequence of segments as an input. The subsequent look-up then finds a 
duration value for both of the segments. It is worth noting that it is not adequate to 

simply look for individual default entries (such as /plosoh/) without considering the 

entire sequence of segments, because information such as `position in word' would 

then be inaccurate. 

Input Segments Resulting Segmental Durations 

[boh, ohn] [(not found), 420.7] 

[plosoh, ohn] [43.5,420.7] 

Table 4.1: Example inputs to the duration look-up algorithm and their possible results 

If some segmental durations are still missing after this repetition of the look-up 

algorithm, then the missing segments are re-categorised further, with less specific 

segment categories. For example, a fricative-vowel segment such as /frica/ could be 

replaced by /*a/, where the asterisk represents a `wild-card' category that can 

represent any phoneme. 

In the above approach, each re-categorised segment consists of a specific part 

(corresponding to an allophone) and a more general part consisting of a phoneme, 

categorised by articulation manner (e. g., fricative). It is important to note that if a 

segment such as /at/ is re-categorised in this way, giving the segment /astp/, an 

assumption is being made that any duration predicted for /astp/ will be appropriate for 

the segment /at/. This is because durations for different categories of phoneme tend to 

be similar. 

4.5 Segmental duration prediction for TDCSS2 

A segmental duration prediction system has been implemented for the two-parameter 

concatenation framework mentioned in Chapter 3 (TDCSS2). In order to do this, the 

timing database look-up algorithm required only trivial amendments. This is because 

the look-up algorithm searches the timing database for speech segment symbols, 
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rather than segmental durations. Consequently, the time taken for a single duration 

look-up time remains unchanged. 

Under the TDCSS2 method, the timing database only differs in that two duration 

values are stored for each segment, instead of one. Some example timing database 

entries for TDCSS2 are shown in Appendix F. 

It is not yet certain how the speed of timing database development would be affected 

for TDCSS2 (see Section 3.4.1). However, it is not necessarily the case that database 

construction would be slower under such a framework. It is certainly the case that the 

two-parameter method merits further study, since it retains much of the simplicity of 

the time-domain concatenation principles evaluated in this research. 

4.6 Summary 

A timing system has been discussed, which predicts segmental durations on the word 

level, for time-domain concatenative text-to-speech synthesis. The timing system 

makes use of a timing database and a duration look-up algorithm which is guided by a 

small set of rules. The timing system is independent of segment type, and requires 

only a string of phonemes as its input. 

In cases where timing data for a particular speech segment symbol is missing, a 

default duration procedure is presented, involving the re-categorisation of the segment 

symbol according to articulation manner. This allows for a graceful degradation in the 

performance of the segmental duration prediction system. 
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Chapter Five 

5. Timing Databases 

5.1 Introduction 

In this chapter, the manual method used for building the timing database is evaluated. 
The timing database is an integral part of the Timing Module (see Appendix E), and is 

created using an iterative synthesis/adjustment technique. This method is a kind of 

analysis-synthesis cycle, and is based on a human's perception of speech. This 

method of obtaining timing data is rather different to the more usual practice of using 

segmental durations based on natural speech. In this way, the phonetic and linguistic 

knowledge of the expert is incorporated into the timing data produced. There is thus a 

clear need to evaluate the validity of the expert's perceptive judgement of naturalness. 

The iterative synthesis/adjustment concept has thus been evaluated via a set of 

listening experiments and a synthesis/adjustment experiment. 

Normally, timing databases are used in the study of segmental duration, and consist of 

a recording of continuous human speech, segmented into its constituent phonemes and 

labelled with the corresponding durations (Campbell, 1992; van Santen, 1994). The 

timing database then forms the basis for producing rule-based or data-driven 

segmental duration prediction systems (see Chapter 1). For elementary speech 

synthesis applications, timing databases could be used as a simple look-up table, 

holding segmental duration data for pre-defined words or sentences. However, simple 

look-up tables have only a limited application, and so in Chapter 4, a means of using a 

timing database to predict segmental durations for novel words was suggested. 

Since prediction accuracy improves with the growth of the timing database, this 

chapter includes an investigation into recommended timing database sizes in terms of 

the segmental duration prediction algorithm's performance. A means of alleviating 

the problem of incomplete timing data is also described, involving the re- 

categorisation of existing timing data, via `default duration' entries. In this way, the 
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timing database size can be easily expanded, whilst allowing a more graceful 
degradation in the performance of the duration prediction algorithm. 

Most timing databases are dedicated to a particular type of concatenative unit, such as 

phonemes or syllables (Campbell, 1992). Ideally, both timing databases and timing 

models should be directly related to the intended speech synthesis units. For instance, 

if diphones are to be concatenated, then a timing model that predicts diphone 

durations is most appropriate (e. g., Huber, 1990). This avoids the problem of trying to 

map the predicted phoneme durations to the diphones for concatenation 
(O'Shaughnessy et al., 1988). In time-domain concatenative synthesis, it is 

particularly necessary for segmental duration data to relate directly to the stored 

concatenative units. This is because a simple abutting method is used, in which 

segments are not stretched or squashed to fit a target duration value (Dutoit, 1997; 

Isard & Miller, 1986). It is thus not practical to use labelled continuous speech for the 

timing database. 

An additional difficulty with using segmental durations based on human speech is that 

even if `correct' segmental durations are used, the synthetic speech may not be 

perceived as being natural unless all the prosodic correlates of duration are accurate 

(Carlson, Granström & Klatt, 1979; Klatt, 1979). The above problem is emphasised 

by van Santen (1994): 

`The premise that we should mimic natural durations is not axiomatic because, 

paradoxically, flaws in other components of a text-to-speech system may 

require non-natural durations for the system to sound natural. ' 

Further problems may also arise if the `natural' durations are based on a person other 

than the one whose voice was used to produce the concatenative speech segments. A 

possible solution to the above problems is to listen to the speech produced by the 

synthesiser itself, and decide whether the speech sounds natural for a particular set of 

segmental durations. For this reason, the iterative synthesis/adjustment technique was 

favoured. In effect, this technique produces timing data based on the human 

perception of the synthetic speech signal. Since the accuracy of segmental duration 

perception can depend on linguistic experience (Potapova, 1975), it is likely that the 
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iterative synthesis/adjustment method would benefit from using an expert judge with 
extensive phonetic experience. 

If speech produced on the basis of such timing data is to be judged as natural by any 
listener, it is reasonable to expect that the expert judge's perception of naturalness 

should be similar to that of the general listener. Some listening experiments, which 
investigated this issue, are discussed in this chapter. It is possible that during the 

timing database development, an expert judge's perception of naturalness may change 
due to over-familiarity with the synthetic speech (Dixon & Maxey, 1968). 

Accordingly, this study also attempts to verify whether such a perceptual change 

occurs with the passage of time. 

In judging the qualities of synthetic speech, factors such as intelligibility and 

naturalness are recognised as desirable, but remain ill defined. Dutoit (1997) has 

defined intelligibility as being linked to `the efficiency achieved in producing 

phoneme-to-phoneme transitions', whilst naturalness is `the result of the congruence 

of segmental and supra-segmental features'. Here, supra-segmental features refer to 

aspects of the speech operating above the segmental level, such as fundamental 

frequency, amplitude and rhythm. 

In this investigation, it was impossible to measure intelligibility and naturalness 

separately, as defined by Dutoit. This is because in time-domain concatenative 

synthesis, the duration value effectively determines the choice of concatenation point 

and, hence, the quality of the synthetic speech, in terms of both speech timing and 

smoothness of the join between acoustic segments. As a result, the prediction of 

appropriate segmental durations is more critical than in speech synthesis methods that 

make use of smoothing techniques. 

For the purposes of this study, the term naturalness is therefore defined as a general, 

all-inclusive term, incorporating factors such as smoothness, intelligibility and 

durational pattern, and is rather like the term acceptability, which was defined by 

Pavlovic, Rossi and Espesser (1990) as `the user's overall satisfaction with the 

communication situation'. This definition is reasonably similar to the `naturalness' 

concept investigated in this thesis. 
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The use of an expert judge in gathering timing data relies heavily upon the expert's 

perceptive judgement of the synthetic speech, and so two complementary experiments 
have been carried out which investigate the stability and reliability of such 
judgements. The first investigation consisted of a set of listening experiments, whilst 
in the second experiment, subjects synthesised words in an adjustment task. In both 

experiments, the perceptive judgement of a panel of naive listeners was compared 

with an expert's evaluation. 

The listening experiments followed a two-alternative forced-choice paradigm (2AFC). 

An overview of these experiments is given in Section 5.4.1. Pairs of temporally 

modified CVC words were presented to subjects, who were asked to decide which 

version of the word was `the more natural-sounding'. These choices were then 

compared with those predefined by an expert judge as the most natural. 

The second experiment (see Section 5.5) investigated the perception of naturalness of 

synthetic speech from a synthesis/adjustment point of view. Subjects were asked to 

synthesise ten words, given the necessary speech segments. Each subject altered the 

segmental durations until each word sounded as natural as possible. The objective was 

to ascertain whether there is a significant difference between the subjects' chosen 

segmental durations and those of an experienced expert judge. This would then help 

to establish whether it is feasible to use teams of expert judges, in order to accelerate 

the acquisition of timing data. 

5.2 Timing Database Creation 

A timing database was developed to support segmental duration prediction for text-to- 

speech synthesis. The database consists of segmented words with their corresponding 

duration values, and is constructed using an iterative synthesis/adjustment approach 

(see Figure 5.1). When a new word is to be added to the timing database, the word is 

firstly synthesised using a set of initial segmental durations, chosen according to the 

expert judge's experience. The segmental durations are then repeatedly altered by an 

expert judge until the speech subjectively sounds the most natural possible. The 

segmental durations are subsequently stored in the timing database. 
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The notion of using an expert judge is linked to Mattingly's (1971) research into the 

use of speech synthesis-by-rule as a tool for phonological research. Before speech 
synthesisers were sufficiently well developed, phonological rules had to be tested by a 
phonologist, who would utter a set of experimental stimuli by natural means. An 
`informant' would then judge the acceptability of these utterances, and suggest 

corrections which would be used to improve the original set of rules. The difficulty 

with this approach is that the phonologist can not be sure that the speech stimuli were 

uttered in exact accordance with the rules. Mattingly argued for the use of speech 

synthesised by rule instead: 

`Imagine an automatic system, the inputs to which are proposed phonological 

rules of a language, and a phonemic transcription of an utterance of the 
language, and the output from which is a synthetic acoustic representation of the 

utterance. Such a system simulates the phonologist in his generative phase. But 

it does not make accidental errors, and it applies only rules which have been 

explicitly stated. A native informant can propose utterances to be generated - or 

even, if he has learned the transcription, generate the utterances himself - and 

report to the phonologist in what respects the synthetic versions are incorrect. In 

difficult cases, the informant can be invited to compare stimuli produced by 

alternative versions of the rules differing only in respect to the variable of 

interest. In the light of the informant's responses, the rules can be revised easily 

and quickly, and the informant can then be confronted with the output of the 

revised rules. ' 

A similar technique for `hand crafting' speech has been mentioned by Morton (1987), 

who used an `expert phonetician' to adjust duration and amplitude values in order to 

add variability to synthetic speech. In this way, speaker attitude and mood can be 

overlaid onto a synthetic utterance. This finding may well be linked to research which 

suggests that humans possess an internally-held criterion for perceiving segmental 

duration in speech (Nooteboom, 1973; 1975). However, in TDCSS, the expert judge's 

chosen durations can make the difference between the speech sounding `clicky' and 

unintelligible, and producing fluent, natural-sounding speech. It may also be possible, 

that humans possess a common, internal reference for judging the naturalness of 

speech stimuli. 
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Input segments Input durations 

Speech Store 
Speech synthesis Acceptable in 

? Yes Database 

Alter one or more No 
duration parameters 

Figure 5.1: Iterative synthesis/adjustment approach 

It is likely that the expert judge's knowledge of how to improve naturalness can be 

formulated in such a way that others can be taught to carry out a similar task and act 

as an expert judge. According to Morton (1987), it is possible in principle to 

`externalize the knowledge that an expert phonetician applies when editing synthetic 

speech to enable the non-expert to do the editing. ' This is particularly important for 

the waveform concatenation framework under discussion, because this means that 

teams of expert judges might be employed in timing database construction, thus 

speeding up the process. 

In the context of the iterative synthesis/adjustment cycle, it is instructive to define 

what is meant by naturalness in negative terms, i. e., what would sound unnatural to a 

listener. A synthesised word would, be perceived as unnatural if it contains abrupt 

discontinuities in the form of clicks, caused by abrupt changes in amplitude or 

fundamental frequency. Furthermore, in TDCSS, if inappropriate segmental durations 

are chosen, it is possible that the resulting synthetic word may contain repetitions of 

vowel sounds. For instance, in synthesising the word `sit', using the stored units /si/ 

and /it/, the resulting word can sound like `si-it', if too great a duration value is 

assigned to /si/. 
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5.3 Timing Database Content 

It is important to choose carefully the words to be stored in the timing database. In 

making this choice, one must consider the intended speech synthesis application. Such 

applications could include the synthesis of place names, surnames, weather details, 

etc. Whichever application is required, a timing database can be custom-built, 

concentrating on words that are relevant to a topic. 

In this study, an ideal aim is to produce a timing database that can be applied to text- 

to-speech synthesis for any isolated word. It was decided that it would be most 

appropriate to store the most frequently-used words in English. These were taken in 

descending order of frequency from the word frequency rank lists of Francis & 

Kucera (1982). 

5.3.1 Timing Database Size Issues 

When the timing system is presented with unrestricted text, it is possible that duration 

data for a particular segment may not be available in the desired context. Therefore, 

the larger the database size, the greater the likelihood of obtaining an appropriate 

match. If timing data are absent altogether for a particular speech segment symbol, a 

default duration must be used. This tends to decrease the naturalness of the output 

speech. It is therefore imperative that the timing database is of sufficient size. 

According to Nation (1993), 89% coverage of a written academic text can be achieved 

with a vocabulary size of 5,000 words. A timing database of 5,000 words would thus 

cater for a considerable percentage of the likely text inputs and substantially reduce 

number of unfamiliar input words encountered. 

It has been found during this research that the smaller the sub-strings of durations 

used when synthesising a word,. the worse the naturalness of the speech. This finding 

can be used to gauge the naturalness of speech produced using TDCSS. This is used 

as a performance measure in an experiment to examine the relationship between 

timing database size and segmental duration prediction. 
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The experiment tested the effect of increasing database size on the duration prediction 

algorithm's output. The experiment monitored the percentage of an input set of test 

words for which a complete set of durations was produced by the duration prediction 

algorithm. Complete sets of durations were defined as a `complete word match'. The 

experimental procedure was to take a set of 150 words randomly from a dictionary. 

The words were then input to the timing system and the number of complete word 

matches for this set was noted. The number of sub-strings making up the predicted 
durations for each word was recorded. 

The experiment was repeated for every 100 words added to the timing database. 

Figure 5.2 shows the percentage of all input words, for which a complete word match 

was recorded. The results show that as more words were added to the database, this 

percentage increased to approximately 90%. 

Figure 5.2: Timing Database performance 

The speech output quality for a word can be judged in terms of the number of 

database entries from which its set of durations is taken (i. e., the number of sub- 

strings that make up the final set of time values). Thus, the database is of better 

quality if, for a set number of input words, fewer sub-strings are used, compared to 
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the total number of segment symbols required. Thus, for a test set size of 150 words, 
Equation 5-1 is defined: 

R= 
150 Number of sub-strings required for test word W; 
L 

i-1 Number of segments required for test word W; 
(5-1) 

The R ratio is shown in Figure 5.3, for increasing database sizes. Figure 5.3 shows an 

overall decrease in the sub-string/segment ratio R, as the database size is increased. 

This is in accordance with the trend that a larger database allows better duration 

prediction. 
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Figure 5.3: Sub-strings/segments ratio R 

5.3.2 Using Default Duration Entries in the Timing Database 

It is often the case that the timing database will not contain all the required segmental 

durations for an input word (see van Santen (1992) for an overview of `database 

holes'). Whilst a single, default duration value could be used for missing segment 

symbols, this is hardly an ideal solution, since the default value may not be suitable 
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for the segment in question, its context, or its position within a word. The default 
duration approach taken attempts to account for the fact that certain types of speech 
segment exhibit similar duration properties. For instance, vowel durations tend to be 
longer (and more critical) than consonant durations (Klatt, 1979; van Santen, 1992). 
The intrinsic duration properties of the various classes of phoneme (such as stops and 
fricatives) have thus been exploited. 

Whilst no default duration rules are used as such, the method employed takes an 

existing timing database entry and re-categorises some of its constituent segment 

symbols according to phoneme class. In particular, consonants are re-categorised 

according to articulation manner (e. g., liquid, fricative, etc. ), whilst the original 
identity of any vowels is retained. One or more segment symbols in a word can be re- 

categorised in this way, and then the new version of the word is stored in the timing 
database, along with the original word's segmental timing data. This additional entry 
in the timing database is referred to as a `default duration entry'. 

Category Symbol Articulation manner 
fric fricatives 

liq liquids 

nas nasals 

plos plosives 

Table 5.1: Category symbols 

Any of the symbols in Table 5.1 can be combined with any segment from Appendix A 

to form a default duration category. For example, the symbol /teye/ is replaced as 

/ploseye/, where ploseye refers to any syllable consisting of a plosive, followed by an 

/eye/ symbol (here, the naming convention from Appendix A is used). Since this 

procedure retains part of the original symbol, it can be thought of as a partial re- 

categorisation, since only the consonants are altered. 

The default duration scheme allows a further re-categorisation of default duration 

segments (such as /ploseye/), in which the plosive category is replaced with a `wild- 
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card' character, denoted by an asterisk. In this case, /*eye/ refers to any initial 

consonant followed by /eye/. Although such default duration entries are less specific 
(in that they do not distinguish between classes of consonant), they were introduced in 

order to allow a graceful degradation in the performance of the Timing Module. 

An advantage of the `default duration' approach is that the duration look-up algorithm 
(see Chapter 4) does not require major modification. The lookup algorithm treats the 
default duration entries in exactly the same way as any other entry, so that 
information such as position-in-word is taken into account. 

The Default Duration Procedure is shown in Appendix C. After an initial duration 

look-up procedure, any missing segment is replaced with its corresponding segment 

category. The new string of segments is then input to the Timing Module. If this 

search still fails to find complete segmental durations in the timing database then a 
further categorisation is applied to the missing segment symbols, using the `wild card' 

asterisk symbol. Once this second categorisation has taken place, the updated string of 

segment symbols is input to the duration look-up procedure once more. 

Using default duration entries makes greater use of known timing information. In the 

initial stages of database creation, it potentially allows the number of database entries 

to be doubled or even trebled with minimal effort. This facilitates segmental duration 

prediction for a far wider range of input words. 

The segment re-categorisation technique allows phoneme classes to exist alongside 

symbols that represent allophones. Whilst it would be possible to introduce separate 

categories for voiced and unvoiced segments, the current implementation blurs the 

distinction between them. For instance, it was decided to treat affricates in the same 

way as fricatives, working on the assumption that they would tend to require similar 

segmental durations. This inevitably introduces some inaccuracy into the predicted 

durations. However, the approach is an improvement on the practice of using a single 

default duration for any missing segment symbol. 

84 



5.4 Evaluation of naturalness in temporally modified words 

The quality and naturalness of speech synthesised by TDCSS depend on the use of 
accurate segmental durations. For text-to-speech, segmental durations are predicted 
using a timing database and a look-up algorithm. The timing database was developed 

using an expert judge (DSGV) to `hand tune' the segmental durations and optimise 
the perceived naturalness of the speech. To evaluate the expert judge's perception, a 
listening experiment was carried out, to evaluate the naturalness of speech produced 

using TDCSS. The motivation for the experiment was to examine the general validity 

of the expert judge approach, through a comparison with other people's perceptions. 
The results would also indicate whether it is appropriate to use teams of expert judges 

to speed up the process of timing database construction. 

The experimental stimuli were CVC words, synthesised by concatenating CV and VC 

waveforms. An expert judge (DSGV) optimised the segmental durations according to 

his perception. Four additional variants per word were synthesised, varying the CV 

duration in 20 ms steps (the reason for this choice of time step is discussed in Section 

5.4.1.2). In a single pair forced choice experiment, subjects ranked each word's 

stimuli according to perceived naturalness. 

The results indicate very close similarities between the subjects' perception and that 

of the expert judge (see Section 5.4.5). Furthermore, the expert judge's perception 

remained stable over a period of time. The implications of these results are discussed 

in detail. The use of teams of expert judges to accelerate timing database construction, 

and the development of a support tool for the expert judge are also discussed. 

5.4.1 Experiment Series Overview 

The listening experiments evaluate the expert judge's subjective perception of 

naturalness of temporally-modified CVC stimuli. In total, four experiments were 

carried out, the first being a pilot study. To allow a systematic comparison, five word 

variants were created for each CVC word (instead of three in the pilot experiment). 

The pilot experiment required the subjects to hold three stimuli in memory 

85 



simultaneously. However, in the subsequent experiments, subjects were presented 
with pairs of stimuli selected from a set of five word variants. Details of the three 

experiments carried out are shown in Table 5.2. 

Experiment 1 Stimuli presented in a partially random order 

Experiment 2 Stimuli presented in a fully random order 

Experiment 3 Experiment 1 was carried out, using DSGV as a subject, several 

weeks after the original reference stimuli (t,. ef) were created 

Table 5.2: Overview of experiments carried out 

Whilst the first two experiments compared subjects' preferences with those 

predefined by an expert judge, Experiment 3 investigated whether the expert judge's 

perception remained constant over time. This was achieved by using DSGV as a 

subject in Experiment 1, several weeks after his original reference stimuli were 

chosen. 

5.4.1.1 Stimuli 

The speech stimuli consisted of 10 different words, synthesised using TDCSS 

(Sahandi & Vine, 1997). CV and VC syllables, taken from the concatenative 

synthesiser's inventory of speech waveforms. All speech waveforms were recorded at 

a sampling rate of 44,100 Hz, with a 16-bit representation. Each CVC word was 

synthesised by sequentially outputting a CV followed immediately by a VC segment. 

Whilst each VC waveform was output in its entirety, each CV segment was assigned a 

segmental duration value, determining the initial portion of the CV segment to be 

extracted and concatenated. 

The stimuli were produced using an iterative synthesis/adjustment approach, in which 

the expert judge (DSGV) created a version of each word that subjectively sounded the 

most natural. Since the segmental duration parameter has a direct effect upon the 

salience of waveform discontinuities and the durational pattern of the synthesised 

word, the subjective judgement included all of these factors. The CV segment's 
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duration in this `best judged' word was termed tre f. Four additional versions of the 

word were then synthesised, two of them having longer CV durations and two with 

shorter CV durations than tref. The CV durations for each stimulus (including the best- 

judged) were termed tref 2«, tref. «, tref, tref+« and tref+2« where a=20 ms. The a value 

was selected on the basis of a pilot study, which is described in the following section. 

5.4.1.2 Choice of oc value 

The value of ° directly affects how easy it is to distinguish between the temporally- 

modified stimuli for a particular word. It was therefore important to choose an 

appropriate value for it. For instance, with too small an oc value, subjects would 

generally experience greater difficulty in distinguishing between a pair of stimuli; if 

an excessively large oc value is chosen, it would become too easy to differentiate 

between stimuli. 

A pilot study was carried out to provide data which would assist in choosing the Oc 

value. In this study, subjects' perceptions of temporally-modified synthetic words 

were compared with that of the expert judge. This listening experiment followed a 

three-alternative forced-choice paradigm (3AFC), and is described in more detail 

below. 

In the interactive pilot experiment, subjects listened to temporally-modified CVC 

stimuli, synthesised using TDCSS. Three temporally-modified versions of each word 

were used, and the CVC words were synthesised using duration intervals randomly 

chosen between 5 and 80 ms. Three versions of each word were presented in a 

random sequence, and subjects were asked to choose which of these sounded `the 

most natural'. 

The purpose of this pilot experiment was to identify a range of values from which a 

suitable oc value could be chosen for the main listening experiments. Firstly, the 

words for which all the subjects preferred tref were examined (see Table 5.3). For 

these words, the subjects all agreed that tref was most natural, so it was probably too 
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easy to distinguish between stimuli. This could be compensated by setting or- a value 

less than the smallest value in Table 5.3 (i. e., oc<38.0 ms). Secondly, the average 

duration interval for the entire pilot experiment was 34.9 ms, so it was decided to use 

a smaller value for a (i. e., a<34.9 ms). This would increase the similarities between 

the stimuli and the difficulty level for distinguishing between them. The a value 

could safely be larger than 5 ms, since shorter durations are assumed to be 

perceptually indistinguishable (Klatt, 1979). 

Word 
Triplet 

Average duration interval 
between word variants (ms) 

`been' 53.5 
`tin' 38.0 
`ra ' 72.0 

Table 5.3: Words for which all subjects preferred tref 

The experiment's results can be summarised as showing that oc can take any value in 

the range 5<a< 34.9 ms. Taking the above factors into account, an a value of 20 ms 

was chosen for the experiment series. This value is also supported by Hirsh (1959), 

who found that to correctly identify the order of a sequence of unrelated sounds, 

trained subjects require durations of about 20 ms per item. It also agrees with the just- 

noticeable difference value adopted by Bartkova and Sorin (1987). 

5.4.1.3 Subjects 

In total, twenty-two subjects participated in the experiments. None of them had 

extensive experience of speech synthesis. They were not made aware of the overall 

purpose of the experiment, but were told that the synthetic speech stimuli may contain 

small temporal modifications. 
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Word Order: 

1. Been 
2. Loud 
3. Shoes 
4. Shine 
5. Race 
6. Got 
7. Dawn 
8. Jig 
9. Well 
10. Sun 

Keys: 

Please Listen and Choose The 
Most Natural Sounding Word: 

REPEAT 

N: Speak next word 
R: Repeat word 
1: Choose 1st word as most natural 
2: Choose 2nd word as most natural 

SPEAK 
NEXT 

Figure 5.4: Screen layout for Experiment 1 

5.4.2 Experiment 1 (randomised for each word) 

The experiment followed a two-alternative forced choice paradigm (2AFC), carried 

out via an interactive computer program (see Figure 5.4). At the start of the 

experiment, each subject was told that they were to hear a series of pairs of synthetic 

words; they were allowed to listen to a few randomly-chosen stimuli as examples. 

They were told that for each pair of stimuli, they should decide which word was `the 

most natural sounding'. Subjects were allowed to repeat a stimulus pair as many times 

as they required. In this thesis, every pair of stimuli presented is referred to as a `trial'. 

For each trial, subjects noted their preferred word by clicking a button. In the event 

that no difference could be perceived between two stimuli, subjects were required to 

choose one or the other, in order to proceed to the next trial. 

Each subject was presented with 14 pairs of variants for each of the 10 different 

words. For example, 14 trials for the word `sun' would be presented, followed by 14 

trials for the word `dawn', and so on. For each different word, the stimulus pairs were 
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presented in a random order. Table 5.4 illustrates the fourteen combinations of stimuli 

used for each word. The pseudo-code for Experiment 1 is shown in Figure 5.5. 

for each person do 
for each separate word do 

randomise the pairs of word varian 
for each word variant pair do 

present pair of words 
store user's response 

end 
end 

end 

Figure 5.5: Pseudo-code for Experiment 1 

Fourteen English speaking people with normal hearing participated in Experiment 1. 

Eleven of them were native speakers of English. Details are shown below: 

Male: Female: Native: Non-native: 

12 2 11 3 

5.4.2.1 Stimulus Pairs 

During the listening experiments, it would not be practical to present subjects with an 

exhaustive set of combinations of stimuli, since this would cause considerable 

boredom and listening fatigue. For this reason, only a sub-set of the possible stimulus 

pair combinations was used. The trials were chosen in order to cover many of the 

possible combinations of word variant pairs. The stimulus pairs used are shown in 

Table 5.4. 
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Stimulus pairs: Stimulus pairs 

(continued): 

tref 2a tref- 
a tref 

a tref 2a 

tref_2 a 
tref tref tref 2 ac 

tref-a tref tref tref 
- 

tre f-a tref+a tref+a tre f oc 

tref tref+a tref+a tref 

tref tref+2 
a tref+2 

a tref 

tref+a tref+2a tref+2a tref+ 

Table 5.4: Stimulus combinations 

Whilst the above is not an exhaustive set of combinations, it does cover all possible 

comparisons for word variants that are 20 or 40 ms apart. This limit was imposed in 

order to cut the total number of trials and thus preserve subject attention. 

It should be noted that the number of presentations for each duration bin is uneven 
(here, the term duration bin refers to a particular category of word variant). For 

instance, tre f is presented 8 times for each different word, compared to 4 observations 

for tref±2a. This bias in the results is normalised by dividing the results for each 

duration bin by N, where N= number of data observations per bin. This is shown in 

Equation 5-2: 

resultnormalised (tref+ka)= reSUltoriginal(tref+k«)IN (5-2) 

where k= -2, -1,0,1, or 2. 

The results for Experiment 1 are discussed in Section 5.4.5.1, and are displayed 

graphically in Appendix D. 
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5.4.3 Experiment 2 (fully randomised) 

It is possible that in Experiment 1, the results are influenced by subjects experiencing 
a `training effect' for each different word as it is repeated for 14 trials, despite the 
order for each word being randomised. After several repetitions of a word, subjects 
can lose their ability to judge distinguish between word variants (Dixon & Maxey, 
1968). It was thus decided to vary the experiment so that the trial order was 
completely randomised for the entire test set. The procedure for Experiment 2 is 

expressed in pseudo-code in Figure 5.6. 

for each person do 
randomise entire list of possible word variant pairs 

for each word variant pair do 
output pair of words 
store user's response 

end 
end 

Figure 5.6: Pseudo-code for Experiment 2 

Apart from a complete randomisation of the trial order, Experiment 2 was carried out 
in a similar manner to Experiment 1, with the main purpose of demonstrating whether 

noticeably different results would be produced. In this experiment, eight subjects were 

used. None of these subjects had taken part in Experiment 1. Six of them were native 

English speakers. Details are given below: 

Male: Female : Native: Non-native: 

5362 

The results for Experiment 2 are discussed in Section 5.4.5.2, and are shown 

graphically in Appendix D. 
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5.4.4 Experiment 3 (expert judge as subject) 

Since it may take several weeks to develop a timing database, it is important that the 

expert judge's perception of naturalness should remain constant throughout the 
development period. Experiment 3 therefore examines whether the expert judge's 

perception remains reasonably constant after a period of time. This was investigated 

by using the expert judge as a subject, participating in Experiment 1, several weeks 

after the tref stimuli were designated. The expert judge (DSGV) is a male, native 

speaker of English, with normal hearing. 

5.4.5 Results 

Graphical representations of the results for Experiment 1,2 and 3 are shown in 

Appendix D. For each experiment, the assumption was made that whenever tref was 

chosen, the subject agreed with the expert judge's original preference. Choices for 

treffa indicate that the subject's perception of naturalness differs to a small extent 

from that of the expert judge. Wherever trefj2a is preferred, a larger difference in 

perception is indicated. 

In interpreting the results, it is assumed that the closer a duration category is to t,. ef, 

the more similar the subject's perception of naturalness is to the expert judge's. This 

is not necessarily true in all cases, since in this study, the perception of naturalness is 

affected by more than one factor. For instance, in terms of smoothness of speech 

output (e. g., lack of `clicks'), any stimulus may sound reasonably fluent if the CV 

segment's concatenation point corresponds to an appropriate zero-crossing in the 

time-domain. In terms of perceived similarities in overall durational pattern, the 

`closeness to tre f' criterion seems reasonable. 

The results for each experiment . were converted to a single time value, representing a 

time distance measure, relative to tre f. This was achieved by multiplying the mean 

preferences for each duration bin by an appropriate constant and summing the result, 
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as shown in Equation 5-3: 

+2 

Time distance measure = 120k(mean preference { tref+k« }) (5-3) 
k=-2 

(where k= -2, -1 , 0,1,2) 

The time distance measure is intended to indicate a general trend when averaged 
across all the samples, and enables comparisons between the results for the different 

experiments. 

5.4.5.1 Results and Discussion: Experiment 1 

The overall results for Experiment 1 take the form of a bell-shaped curve, with tre f 

receiving the greatest number of choices for every single subject. Figure D. 1.1 (see 

Appendix D) shows the average preferences for each duration bin, whilst Figure D. 1.2 

shows the average preferences for each CVC word. Figures D. 1.3 to D. 1.12 show the 

average preferences for the individual words. They show a normally distributed curve 
for 8 of the 10 words tested in the experiment. The results are less clear for the words 

`Shine' (Figure D. 1.6) and `Dawn' (Figure D. 1.9). In Figure D. 1.6, tref+a is judged 

the most natural by the majority of subjects, for the word `Shine'. Figure D. 1.9 has 

less clear results overall. It is possible to interpret the results as showing a shallow 

normally distributed curve, centred on tref2a. It is also possible that no clear 

preferences emerge for this stimulus, since the results are fairly even for each duration 

bin. This result may be due to changes in the subjects' perception of naturalness as the 

experiment progressed. The overall results, however, are reasonably consistent, 

showing that each subject's perception of naturalness is largely similar to that of the 

expert judge. 

For some words, a number of subjects favoured tref± . These cases would seem to 

indicate that there are substantial differences between the expert judge's perception of 
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naturalness and that of the subjects. It should be emphasised, however, that some 
CVC syllables (such as those beginning with fricatives) can accept a considerable 

range of duration values for the CV segment, without affecting naturalness (see 

Section 3.2.4). Furthermore, due to the unpredictable nature of speech data, it is 

possible that occasionally, a word variant based upon t,. ef±2a could by chance have a 

smooth-sounding transition. 

In order to interpret the results further, a statistical test was used to examine the 

relationship between the results for Experiment 1 and the tre f values set by the expert 

judge. The Wilcoxon signed ranks test (Siegel & Castellan 1988; Clarke & Cooke 

1983) examines whether there is any difference between two related sets of scores and 

establishes whether there is a significant difference between the two sets of results. In 

other words, the Wilcoxon signed ranks test reveals whether the population median of 

the paired differences of the two samples is 0. This test has the advantage that a 

normal distribution of data is not assumed. 

The Wilcoxon signed ranks test showed that for aT value of 26, with N= 14, there is a 

significant difference between the results for Experiment 1 and the tre f values, with a 

two-tailed probability of 0.05. A probability level of 0.05 was used, because 

according to Clarke and Cooke (1983): 

`... there is a well established working rule or convention, used by statisticians 

generally, which is to regard events having probability 0.05 or less as `very 

unlikely". 

The interpretation of this result is that although the subjects agreed overall with the 

expert judge, they exhibited a wider spread of responses, i. e., the expert's results were 

tidier than those of the subject population. 

Using Equation 5-3, the time distance measure is -1.62 ms. From this we conclude 

that on average, the subjects sometimes preferred stimuli with slightly shorter CV 

durations than tre f The time distance measure is very small when compared with the 

a value of 20 ms and a possible range of 80 ms. 
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To summarise the results for Experiment 1, the subjects' averaged results agree with 
those of the expert judge, but the variance of the distribution of percepts is larger. 

5.4.5.2 Results and Discussion: Experiment 2 

The graphical results (fig. D. 2.3 to D. 2.12) show that tref was favoured over the other 

duration bins. Overall, figures D. 2.1 and D. 2.2 illustrate a normal distribution for the 

experiment, demonstrating a good agreement between the subjects' perception of 

naturalness and that of the expert judge. 

A Whitney-Mann U test (Siegel & Castellan, 1988) was carried out in order to 

ascertain whether there is a significant difference between the results from 

Experiment 1 and those from Experiment 2, due to the different randomisation 

methods used. The Whitney-Mann U test was chosen because it reveals whether two 

independent groups have been drawn from the same population, and avoids the 

assumption that the experimental data are normally distributed. The Whitney-Mann U 

test produces aU value, which is a count of the total number of times each 

observation of one sample comes before each observation of the other sample. AU 

value of 29 was produced, showing that there is no significant difference between the 

results produced under either randomisation method (with a two-tailed probability of 

0.05). 

A Wilcoxon signed ranks test (Siegel & Castellan, 1988) was carried out comparing 

the results for Experiment 2 with the tre f values set by the expert judge. This showed 

that for aT value of 4.5, with N=8, there is a significant difference between these 

values, with a two-tailed probability of 0.05. Again, this is interpreted as showing that 

although the subjects showed overall agreement with the expert judge, they submitted 

a wider spread of responses during the experiment. 

For Experiment 2, the time distance measure is -0.96 ms. This shows that subjects' 

preferences were even closer to tref than the results for Experiment 1. A similar 
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conclusion is drawn for Experiment 2: the subjects' averaged results agreed with 
those of the expert judge, but the variance of the distribution of percepts was larger. 

5.4.5.3 Results and Discussion: Experiment 3 

For this experiment, the majority of the expert judge's preferences coincided with tref 

The overall results are shown in figures D. 3.1 and D. 3.2. These figures demonstrate 

that the tref± categories were seldom preferred by the expert judge, and for the 

majority of trials, tref was perceived to be `most natural'. Taken as a whole, the results 
demonstrate that the expert judge's judgement of naturalness for the temporally- 

modified words had remained largely stable as time passed. This is in keeping with 

the requirement that for timing database development, the expert judge's perception 

of naturalness should remain stable over time, since the construction process may take 

several months. 

A Wilcoxon signed ranks test (Siegel & Castellan, 1988) was carried out, comparing 

the original trefvalues with the overall duration value for each word. This produced a 

T value of 12.5, with N=10; from this we conclude that there is no significant 

difference between the expert judge's tref choices and the results for Experiment 3, 

with a two-tailed probability of 0.05. 

This result is in keeping with the research of Pavlovic, Rossi and Espesser (1990), 

who found that the `acceptability' of synthetic speech can be accurately assessed by 

seasoned researchers, even after many years (see Section 5.1). 

5.4.6 Conclusion 

The overall trend for the set of listening experiments (Experiments 1 and 2) is that the 

subjects' averaged responses (in terms of perception of naturalness) agreed with those 

of an expert judge. However, as might be expected, the subjects gave a larger spread 

of responses. Furthermore, the subjects' choices only differed from the expert judge's 
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preferred durations by a mean value of -1.29 ms. In Experiment 3, it was shown that 
the expert judge's perception remained largely constant over several weeks. 

No significant difference was found between the results of Experiments 1 and 2 due to 
the different randomisation methods used (with a probability of 0.05). However, when 
the subjects' responses were compared with the expert judge's chosen stimuli, a 
significant difference was found for both Experiments 1 and 2 (with a probability of 
0.05). 

Overall, one can conclude that when averaged over a large number of samples, the 
inexperienced listeners' perception of the most natural stimuli agreed with that of the 

expert judge, but the variance of the distribution of the percepts was larger. 

This empirical work is important in that it validates the use of an expert judge in the 

assessment of synthetic speech naturalness in an iterative synthesis/adjustment 

process. The listening experiments' results showed clear similarities between 

inexperienced listeners' perceptions of waveform concatenation speech and those of 

an experienced, expert judge. The finding that the expert judge's perception remained 

stable over time is partly related to Nooteboom's (1973,1975) study, which showed 

evidence that humans have an `internal auditory representation' for syllable nucleus 

durations. This study, however, deals with the perception of naturalness, rather than 

segmental duration per se (even though the naturalness is strongly linked to segmental 

duration). 

The experimental results are critical to the large-scale development of timing 

databases using an iterative synthesis/adjustment method. This approach is labour 

intensive. However, the similarity of the expert's judgements to those of the subjects 

in the experiments means that when scaling-up the approach, it will not be necessary 

to extensively validate an expert's judgement against naive listeners' perceptions. 

This, in itself, will considerably reduce the development effort of such speech 

synthesis systems. At this point, however, it is important to state that these findings 

only apply specifically to TDCSS, used with a particular waveform inventory. 
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The results justify the development of a tool to support an expert judge. This could 
present temporally-modified word variants to the expert judge, in a version of the 
2AFC paradigm. The experiments have shown the 2AFC paradigm to be very 
sensitive, to a point far below the perceptible difference levels (e. g., about 2 ms). For 
instance, statistical tests detected significant differences (at the 0.05 probability level) 

between the first two experiments' results and the tre f values set by the expert judge. 

This finding shows that a 2AFC paradigm may be appropriate in such a support tool, 

reducing the effort required to hand tune each word, and accelerate the acquisition of 
timing data for waveform concatenation speech synthesis. 

In the following section, the `expert judge' concept is investigated from a different 

angle, in which subjects take part in an iterative synthesis/adjustment task. 

5.5 A comparison of segmental durations produced by different expert 
judges 

If timing data for TDCSS is to be produced on a large scale using a team of expert 

judges, one must ascertain whether different expert judges have a similar perception 

of naturalness, and whether they carry out the iterative synthesis/adjustment task in a 

similar manner. An experiment was thus carried out to investigate this issue, 

complementing the listening experiment described in Section 5.4. However, instead of 

listening to pre-synthesised stimuli and recording their preferences, subjects played a 

direct part in generating speech themselves, adjusting segmental durations according 

to their own judgement of naturalness. Subjects were initially shown how to 

synthesise words according to the concatenation framework in Chapter 3. Subjects 

were then given the task of synthesising a set of isolated words with no assistance. 

The resulting segmental durations were compared with durations preferred by a more 

experienced expert judge (DSGV) for the same set of words. 

The motivation of this experiment was thus to evaluate the following hypothesis: 

`There is no significant difference between segmental durations preferred by the 

subjects and those preferred by DSGV'. 
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This would help to establish whether a person can be trained successfully to act as an 
expert judge, and generate acceptable segmental durations for synthetic speech. It also 
shows whether an expert judge can manually synthesise natural-sounding speech, 
using a waveform inventory which is based on another person's voice. 

5.5.1 Subjects 

Six English-speaking subjects with normal hearing were used, who had not 

participated in any experiments involving synthetic speech. Five were native speakers 

of English; the sixth was a native speaker of Arabic. Five subjects were male and one 

was female. The female subject had a mild Scottish accent, whilst the native English- 

speaking males did not have strong regional accents. Subjects were academic 

researchers, aged between 20 and 35. 

5.5.2 Method 

Subjects were given basic training by the author in the synthesis of words using an 

iterative synthesis/adjustment method and an existing speech segment inventory. This 

training included a demonstration of the rudiments of the concatenation framework 

described in Chapter 2. The training period lasted approximately 30 minutes. All 

words were synthesised by means of simple cut-and-paste techniques, using the PC- 

based Autodesk Soundlab program to display time-domain speech waveforms. A 

variable, initial portion of a CV or VC syllable would be copied and pasted into a new 

sound file. Further speech segments would then be abutted by pasting them and 

removing the intermediate silence. If the resulting speech was judged inadequate by 

the subject, the word would be re-synthesised using a modified set of segmental 

durations. 

For the actual experiment, it was thought likely that the task of cutting and pasting 

speech waveforms would prove too difficult and lengthy a task for subjects. 

Consequently, an experienced assistant was provided, who synthesised words 

according to the durations specified by a subject. Subjects were only allowed to give 
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instructions of the form `increase/decrease the duration of the segment', which 

would then be carried out for them. No other conversation with the assistant was 

allowed during the experiment. Subjects chose the initial segmental durations for each 

word arbitrarily, and were given no advice on the choice of segmental durations to 

use. 

Subjects were given the instructions shown in the following section. 

5.5.3 Instructions 

Please synthesise the following words using the speech segments shown in the table 

below (the files are situated in the directory c: \diphones). Cut and paste techniques 

will be necessary to assemble the word. When synthesising a word, only the initial 

portion of any segment should be varied. If a synthetic word does not sound natural, 

alter this portion for one or more of the speech segment files and re-assemble the 

word. Repeat this process until the word sounds natural. 

You should attempt to synthesise the word as if it was produced in isolation, rather 

than in continuous speech. 

In order to speed up the synthesis task, an assistant will be provided, who will carry 

out any adjustments to the segmental duration values that you request. Requests 

should be made to the assistant in the following format: 

`Please increase/decrease the duration of <segment>' 

When you are satisfied that the synthetic word is the most natural-sounding possible, 

write down the duration value for each speech segment (this is found at the bottom- 

right corner of a speech window). 

F-W 

T-Y 1 fps e 
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Word Constituent Segments Segmental 

durations (ms) 

three thr ree 

most moh st 

ask ahs sc 

without wi ith owt 

waveform way ayv for orm 

speak sp eec 

must mu us st 

single si ing gl 

never ne ev vu 

stop st op 

5.5.4 Results 

The results for the iterative synthesis/adjustment experiment are shown below. Figure 

5.7 shows the mean segmental duration per word, chosen by the subjects and DSGV 

respectively. This value is directly proportional to the overall length chosen by the 

expert judge for a word. It can be seen that the subjects' mean durations 

approximately follow those of DSGV. 

Iterative synthesis/adjustment experiment 
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Figure 5.7: Mean duration value per word 
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Figure 5.8 shows that the mean segmental duration per word chosen by the author lies 

between the values chosen by the other subjects. This also demonstrates that TDCSS 

provides some flexibility in terms of overall length of word, despite the fact that this 

technique does not allow speech segments to be stretched or squashed (see Section 
3.2.3). 
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Figure 5.8: Mean segmental duration per word 

Figure 5.9 shows the ordered, consecutive segmental durations for the entire set of 

synthesised words. The initials shown in the legend refer to the subjects' names. This 

is complemented by Figure 5.10, which shows the mean segmental duration chosen 

by the subjects compared with segmental durations preferred by DSGV. 
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Figure 5.9: Segmental durations for the set of synthesised words 
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A Kruskal-Wallis test (Siegel & Castellan, 1988) was carried out in order to establish 

whether there is a significant difference between the groups of scores, using the mean 

segmental duration per word. The Kruskal-Wallis test decides whether k independent 

samples are from different populations, with respect to averages. Since differences 

between sample values usually exist, this test establishes whether the differences 

among the samples are genuine population differences, or whether they have merely 

arisen by chance (Siegel & Castellan, 1988). The test assumes that the data arise as k 

independent random samples from continuous distributions, all having the same 

shape. 

Figure 5.10: Subjects' mean segmental durations compared with those of DSGV 

The null hypothesis was that there is no significant difference between the subjects' 

results and those of the expert judge. The Kruskal-Wallis test yielded an H value of 

2.77, showing that there is no significant difference between the subjects' values for 

mean segmental duration per word (with a two-tailed probability of 0.05) and those 

selected by DSGV. The null hypothesis was thus validated. 

The relationship between the subjects' mean segmental durations and DSGV's 

duration values is shown in Figure 5.11. This scattergram shows a positive linear 

correlation between the subjects' mean values and those selected by DSGV. A 

Spearman Rank Correlation Coefficient (Siegel & Castellan, 1988) was calculated for 

these two sets of data, giving the value rs = 0.90. The closer a correlation coefficient 

is to ±1, the stronger the correlation between the sets of values. This value therefore 
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confirms that there is a strong correlation between the subjects' mean segmental 
durations and DSGV's duration values. 
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Figure 5.11: Relationship between subjects' mean segmental durations and DSGV's 
reference values 

A comparison was made between the subjects' chosen segmental durations and 

DSGV's. In order to achieve this, DSGV's values were treated as a `reference' set of 

results. A set of mean segmental durations was then calculated across the subjects, 

which was then subtracted from the reference results. The mean results produced by 

the subjects differed from the reference values by a standard deviation of 37.36 ms. 

This approach is similar to that taken by Klatt (1979), who compared segmental 

durations predicted by rule with spectograms of continuous speech, read by himself. 

Klatt obtained a standard deviation value of 17 ms. 

5.5.5 Discussion 

On an intuitive level, there are noticeable similarities between the subjects' chosen 

segmental durations (see Figure 5.9). This lends some support to the idea that 

inexperienced subjects could act as expert judges, and choose similar segmental 

duration patterns for TDCSS. Furthermore, no significant difference at the 0.05 

probability level was found between the different sets of values. This is impressive, 
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considering that the experiment gives the subjects total freedom to differ in their 
responses. Also, since subjects were synthesising words in isolation, it was all the 
more likely that they would differ in their perception of the required word duration 

It should be noted that the experiment could have been designed in such a way as to 
increase the likelihood of subjects producing uniform-length words. This could be 

achieved using an experimental format in which the word for synthesis is embedded 
in a carrier sentence, recorded by the person upon whose voice the original speech 
segment inventory is based. An example sentence might be `Say again' (Klatt, 
1979). However, this approach was avoided in this experiment, because the subjects' 

chosen segmental durations could be influenced by the speaking rate inherent in the 

carrier sentence. 

5.6 Support tools for timing database development 

The task of the expert judge is to listen to synthetic speech and adjust a word's 

segmental durations until the speech is judged to sound the most natural. This task is 

potentially time-intensive, ' so a support tool to minimise the `hand-tuning' time per 

word is desirable. This could be achieved by a system that produces an `initial guess'. 

At present, the duration look-up algorithm itself is used as a support tool, providing an 

initial segmental duration prediction. A list of speech segment symbols is input to the 

look-up algorithm, and the resulting segmental durations are used as the starting point 

in the iterative synthesis/adjustment cycle (see Figure 5.12). This accelerates the 

timing data acquisition process. 

A possible support tool which may be investigated would use a two-alternative forced 

choice (2AFC) paradigm, and would present pairs of temporally-modified stimuli to 

an expert judge. The expert judge would decide which of the stimuli sounded the most 

natural. A further pair would then be presented on the basis of the expert judge's 

choice. In this way, the number of segmental duration adjustments would be reduced. 

A current goal for such a tool could be to reduce the hand tuning time for each word 

to under a minute. 
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Segmented word 

Duration Look-up Algorithm 
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Iterative Synthesis/Adjustment Process 

Final segmental durations 

Timing 
Database 

Figure 5.12: Initial segmental duration prediction 

5.7 Summary 

A timing database has been created for use in segmental duration prediction for text- 

to-speech. The database consists of segmented words with their corresponding 

duration values, and is constructed using an iterative synthesis/adjustment cycle. This 

cycle involves assigning segmental durations to a word, synthesising it and repeatedly 

altering the segmental durations until the speech subjectively sounds the most natural 

possible. 

The person used to judge the synthetic speech output and adjust segmental durations 

is referred to as the `expert judge'. This approach merited investigation, since several 

questions are likely to be raised. For instance, how do other listeners perceive the 

segmental durations chosen by an expert judge? Are the expert judge's preferred 

segmental durations representative of the general listener's perception of naturalness? 
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These issues were investigated using a set of listening experiments and a 
synthesis/adjustment experiment. The listening experiments investigated the 

perception of naturalness in temporally-modified CVC stimuli, and showed that on 
the whole, the subjects' preferred stimuli matched those preferred by an expert judge. 

In an adjustment experiment, subjects acted as expert judges, in synthesising a set of 
ten isolated words. It was found that their mean segmental durations differed from the 

author's chosen values by a standard deviation of 37.36 ms. 

Since the task of obtaining timing data is labour-intensive, it is likely that 

occasionally, duration data may be unavailable for a particular segment, making it 

necessary to use a default duration value. This is not an ideal situation, since the 

default value may well be inappropriate for the segment's context. An improved 

default duration mechanism has been introduced which relies on the re-categorisation 

of existing timing data, thus creating new database entries. In this way, timing 

database sizes can be increased more easily. This method only requires minor 

modifications to the duration look-up algorithm for segmental duration prediction. 

The possible use of support tools for expert judges has also been discussed. 

108 



Chapter Six 

6. Evaluation of Time-Domain Concatenation Speech 
Synthesis 

6.1 Introduction 

The assessment of text-to-speech systems is a necessary task, firstly because there are 
`no physical measurements which result in indices that quantify perceptual attributes 

of synthesised speech' (Pavlovic, 1990). It is also the case that anyone who 
investigates speech synthesis for any great period finds it increasingly difficult to 
judge its naturalness effectively (Dixon & Maxey, 1968). Researchers need to be able 
to examine which aspects of a speech synthesis technique improve the overall speech 
(Morton, 1991), and yet the task of assessing synthetic speech is complicated by many 
interacting factors. At present, there is no universally agreed objective procedure that 

should be used, and so researchers largely rely upon subjective assessment by 

listeners to assess the speech. 

Some aspects of speech can be quantitatively measured, such as intelligibility and 

comprehension. However, some aspects of the speech's quality can only be measured 

qualitatively, such as ease of listening, ease of comprehension and naturalness. 
Naturalness, whilst being a desirable quality, remains ill-defined. As mentioned in 

Chapter 5, Dutoit (1997) has defined intelligibility as being linked to `the efficiency 

achieved in producing phoneme-to-phoneme transitions', whilst naturalness is `the 

result of the congruence of segmental and supra-segmental features' . 

In this investigation, it was impossible to make such a distinction and measure 

intelligibility and naturalness separately, following the above definition, because in 

TDCSS, intelligibility and naturalness are affected simultaneously by the segmental 

duration parameter. Therefore, in this chapter, naturalness is used in the sense of 

`human-sounding', following the definition of Childers and Lee (1991). Since 

naturalness is influenced by factors such as smoothness, intelligibility and durational 
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pattern, it is used as an all-inclusive term, and is rather like the term acceptability, 

which was defined by Pavlovic, Rossi and Espesser (1990) as `the user's overall 

satisfaction with the communication situation'. 

Synthetic speech is often assessed on the word level. However, it also necessary to 

evaluate synthetic speech with reference to the prosodic (or suprasegmental) features 

of speech (Sonntag & Portele, 1997). The evaluation of prosodic features remains a 

difficult task, and it is unclear as to how synthetic speech should be assessed on the 

sentence level (Morton, 1991). This is because the various components of a text-to- 

speech synthesiser can interact with the prosodic component. A potential solution to 

this problem is to reduce the experimental stimuli to their prosodic content, such as 

fundamental frequency contour, intensity or rhythm (Sonntag & Portele, 1997). 

Some of the most popular tests for evaluating text-to-speech synthesis are listed 

below: 

* Segmental intelligibility tests (MRT, DRT, CLID) 

" Semantically unpredictable sentences (SUS) test 

" Paired Comparisons 

6.1.1 Segmental Intelligibility Tests 

Segmental intelligibility tests examine intelligibility at the phoneme level (Carlson et 

al., 1992). These include the Modified Rhyme Test, Diagnostic Rhyme Test (Voiers, 

1983) and Cluster Identification Test (Jekosch & Pols, 1994). 

The Modified Rhyme Test involves the presentation of isolated, monosyllabic words to 

subjects (Logan, Greene & Pisoni, 1989). This has the advantage that it can be used 

with untrained listeners. In the Diagnostic Rhyme Test, listeners are presented with an 

isolated word taken from a set. vocabulary, and must identify it in a pair of words 

(which differ only by their initial consonant). Cluster Identification Tests involve the 

presentation of nonsense words within short carrier phrases to subjects, who then 

write down what they think the word was (Kraft & Portele, 1995). The nonsense 
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words usually have a given syllable structure, such as CiVCf (where i and f indicate 

the number of initial and final consonants in the cluster). Each stimulus is only 
presented once, and subjects are provided with the overall list of words to be played. 
Responses are then scored according to correctness. Tests based on cluster 
identification are more inclusive and more reproducible than Diagnostic Rhyme Tests, 

requiring only a limited number of trained listeners (usually four is enough). 

It should be noted that the use of nonsense words in segmental intelligibility tests may 

not be appropriate because listeners may perceive some words as being distorted 

versions of real words, whilst other words (which may be more perceptually distant 

from existing words) may be treated as genuine nonsense words (Morton, 1991). It is 

also the case that segmental intelligibility tests such as the MRT do not address issues 

such as listener preference, naturalness, and comprehension of fluent passages of 

synthetic speech (Logan, Greene & Pisoni, 1989). 

6.1.2 Semantically Unpredictable Sentences test 

Intelligibility is measured on the sentence level using the Semantically Unpredictable 

Sentences (SUS) test. Semantically unpredictable sentences aim to minimise the 

contextual semantic information given in sentences by using raw sentence structures 

filled by a random selection of words taken from predefined lists of possible 

candidates (Benoit, 1992). An example sentence is `The table walked through the blue 

truth' (Dutoit, 1997). 

6.1.3 Paired Comparison tests 

Pair comparison tests can operate on either the word or sentence level, and can be 

used to determine the ranking of systems (Johnston, 1996). These tests can either 

focus on specific attributes (e. g., loudness, distortion, etc. ) or allow an open response 

(e. g., `Which do you prefer? '). Such tests can be used to evaluate either intelligibility 

or naturalness. 
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6.2 Chapter Overview 

This chapter describes an evaluation of the time-domain concatenative speech 

synthesis (TDCSS) method, using listening experiments to examine intelligibility and 

naturalness respectively. The first experiment was intended merely to establish 

whether it is possible to synthesise intelligible speech using TDCSS. This experiment 

was prompted by a claim by Linggard (1985) that `simply concatenating words, or 

syllable-type units, will not result in natural-sounding or even intelligible speech'. 
Whilst the main emphasis of this quote is no doubt on the synthesis of continuous 

speech at the sentence level, it was considered important to test whether the 

concatenation of whole or partial syllables can produce intelligible speech at the word 
level. 

In a second listening experiment, the naturalness of synthetic speech was evaluated 

using a single pair comparison format. Speech produced using the TDCSS method 

was compared with that of five well-known text-to-speech synthesisers. Subjects 

listened to pairs of synthetic speech stimuli and decided which stimulus sounded `the 

most natural'. Using these responses, the synthetic stimuli were ranked in order of 

perceived naturalness. 

In a final listening experiment, synthetic speech produced following the two- 

parameter concatenation method (TDCSS2) was ranked against five well-known text- 

to-speech synthesisers, in a similar manner to the previous experiment. In this way, a 

comparison could be made between the TDCSS and TDCSS2 methods in terms of 

perceived naturalness. 

6.3 Evaluating Intelligibility 

A small-scale listening experiment was carried out in order to evaluate the 

intelligibility of speech, synthesised by TDCSS. The motivation was to establish the 

possibility of synthesising intelligible speech using this technique. For this reason, 

only a small number of subjects was necessary. 
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6.3.1 Stimuli 

The stimuli used were ten words, synthesised using the TDCSS method. These are 
showed in Table 6.1. 

Speak Single Without Three 

Stop Must Ask - 
Never Waveform Most - 

Table 6.1: Words used in the intelligibility test 

6.3.2 Subjects 

Two subjects participated. One was a male, non-native speaker of English, in his mid- 

twenties; the other was a female, native speaker of English in her mid-twenties. 

Neither had extensive experience of synthetic speech. 

6.3.3 Method 

Each subject listened to ten synthetic words, following a random order, and was asked 

to write down what they heard for each stimulus. Each word was repeated 3 times, 

with a second's pause between repetitions. 

6.3.4 Results 

In this experiment, the male, non-native English speaker identified 70% of the stimuli 

correctly, whilst the female, native speaker of English correctly identified all the 

words. This demonstrates that it is indeed possible to produce intelligible synthetic 

speech using TDCSS. 
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6.4 Evaluating Naturalness: Investigating the One-Parameter 
Concatenation Framework (TDCSS) 

In this study, the TDCSS synthesis method was evaluated in isolation, independently 

of the other components of the TTS system. This study assumed that appropriate 

segmental durations will eventually be made available through a statistical segmental 
timing algorithm, so in the experiment, hand-refined segmental durations were used. 
The investigation assessed the potential of the TDCSS method by comparing its best 

possible output (i. e., hand-refined) with that of some established text-to-speech 

synthesisers. This was accomplished using a listening experiment, following a pair 

comparison format. All comparisons were made in terms of perceived naturalness (see 

Section 6.1). 

6.4.1 Stimuli 

The stimuli consisted of isolated, single words of between one and five syllables (see 

Table 6.2). Six different speech synthesisers were used to produce the experimental 

stimuli: TDCSS, KTH, Laureate, Festival, Bell Labs and TruVoice. These are shown 

in Table 6.3. Here, KTH refers to the interactive multilingual text-to-speech service of 

KTH in Stockholm (KTH, 1998). Laureate refers to BT's text-to-speech synthesiser 

(Edgington et al., 1996b; Laureate, 1998). Festival refers to Edinburgh University's 

Festival text-to-speech synthesiser, version 1.2.1 (Festival, 1997). Bell Labs and 

TruVoice refer to text-to-speech synthesisers produced by AT&T and Centigram 

respectively (Bell Labs, 1998; TruVoice, 1998). 

Still Computer Hurts Concatenation 

Definitely State Talking - 

Table 6.2: Words used as synthetic stimuli 

The non-TDCSS stimuli were obtained through on-line interactive speech synthesis 

demonstration pages on the internet. For each synthesiser, a normal speaking rate was 
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selected. In some cases, a `word prosody' option was available, which would remove 
all phrasing from the text. This would have the effect of synthesising each word as if 
it were a separate sentence. However, the option was not used, because it was not 
available for all the speech synthesisers. 

Speech Synthesiser Voice 

Bell Labs American English, Male 

Festival British Male ('rab') 

KTH American English, Male 

Laureate British, Male 

TruVoice American English, Male 

TDCSS British, Male 

Table 6.3: Speech Synthesiser Voices Used 

For all the words synthesised by TDCSS, the phonetic transcription was produced by 

hand. The experiment was intended to test the naturalness of TDCSS, for CV and VC 

segments only, since this would be the most arduous test of the method. Each word 

was represented using CV and VC segments. It should be noted that the synthetic 

speech can be further improved by making use of CVC segments; this can reduce 
discontinuities through avoiding vowel-vowel concatenation points (see Section 

1.3.3.2). Segmental timing was produced using the output of the duration look-up 

algorithm and hand-adjusting durations where necessary. In some cases, the 

segmental durations were further adjusted by hand, and so in this experiment, the 

TDCSS stimuli represent the `ideal' output of the synthesiser, rather than current 

results using the Timing Module. 

It should be noted that half of the speech synthesisers are for American English and 

half are for British English. The subjects generally stated that they prefer British 

English to American and so the results may be somewhat influenced by their like or 

dislike of the American accent. Male voices were used, so as to be comparable with 

the TDCSS stimuli. 
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6.4.2 Subjects 

Fifteen subjects were used in the listening experiment (see Table 6.4). Nine of them 

were male and six were female. Nine subjects were native speakers of English whilst 

six were not. All of them had normal hearing, and did not have extensive experience 

of speech synthesis. Subjects were told that the purpose of the experiment was to 

compare a number of different speech synthesisers in terms of naturalness. All of the 

subjects were told to only judge the naturalness of the stimuli, and were instructed to 

ignore the meaning of the words presented. 

Subject Attributes Number of subjects 
Male 9 

Female 6 

Native 9 

Non-native 6 

Table 6.4: Description of subjects 

6.4.3 Method 

In a ranking experiment, six speech synthesisers were compared in terms of perceived 

naturalness. For each synthesiser, a set of seven isolated words was synthesised. The 

main part of the experiment was carried out via an interactive computer program (see 

Figure 6.1). A pair comparison format was followed, so that each pair of stimuli 

presented to the subject would consist of the same word, produced by two different 

speech synthesisers. The pairs were arranged in such a way that every possible 

combination of the six speech synthesisers was used for a particular word. The pairs 

of stimuli were presented in a completely random order, so as to minimise any 

possible boredom that may arise. After each pair was presented, the subject was asked 

to indicate which of the stimuli they thought was `the most natural sounding' by 

clicking a `First' or `Second' button. A `Repeat' button allowed subjects to hear a pair 

of stimuli as many times as was necessary before making a choice. All of the subjects 

were provided with a list of the words that they would encounter, in order to reduce 
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any cognitive load associated with word identification, and to enable them to 

concentrate purely on judging naturalness. 

Words Used: 
Still 
Computer 
Hurts 
Concatenation 
Definitely 
State 
Talking 

Please listen to the two words and 
indicate which word sounded the 
most natural by clicking FIRST or 

SECOND 
Word Counter 

1 of 106 

The FIRST word vas most natural The SECOND word was most natural 

(REPEATD 

Alternative keys: 

1: FIRST word was most natural 
2: SECOND word was most natural 
R: Repeat 

Figure 6.1: 
_Screen 

layout for listening experiment 

Each speech synthesiser was assigned a separate running total, initialised to zero at 

the start of the experiment. Every time the `First' or `Second' button was pressed, a 

total was incremented for the relevant speech synthesiser. The scores for each speech 

synthesiser were then used to rank them in order of perceived naturalness. 

6.4.4 Results 

The overall rankings for the speech synthesisers are shown in Figure 6.2. The 

histogram shows the average number of times that a particular speech synthesiser was 

preferred to another. 
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Figure 6.2: Overall rankings for six text-to-speech synthesisers 

6.4.5 Discussion 

When ranked against five established speech synthesisers, TDCSS was judged to be 

the fifth most natural out of six. This is a fairly impressive result, considering that 

TDCSS was compared with synthesisers that are either well-established commercially 

or academically. Although such experiments give an overall ranking, such data are 

ordinal, and so give no indication as to the actual distance between the individual 

ranks. It was evident that several subjects favoured a British speech accent to an 

American one. This is perhaps unsurprising, since all the subjects were British 

residents. It was often the case that shorter words, such as monosyllables and 

disyllables, tended to be judged more favourably. It was also found that certain 

subjects consistently preferred the TDCSS stimuli to the other synthesisers. It is 

probable that even better results would be obtained if CVC syllables were used in 

producing the TDCSS stimuli. 

The speech synthesisers used were based on a variety of different synthesis methods, 

including TD-PSOLA (Laureate), LPC (Bell Labs) and formant synthesis (KTH). The 

overall results follow the general trend that concatenative synthesisers (particularly 

the TD-PSOLA method) are perceived as being more natural (Klaus et al., 1997). It is 
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also interesting that a relatively unsophisticated synthesis method such as TDCSS was 
perceived as slightly more natural than an established formant text-to-speech 

synthesiser. 

It is important to consider that in this experiment, only isolated words, of up to five 

syllables, were used as stimuli. It is likely that further differences between the 

synthesisers would emerge, in terms of predicted intonation at the sentence level. 

6.5 An Evaluation of the Two-Parameter Concatenation Framework 
(TDCSS2) 

In a second listening experiment, the naturalness of synthetic speech produced using 

the TDCSS2 method was compared with that of five established text-to-speech 

synthesisers. The experiment was carried out in essentially the same manner as the 

experiment described in Section 6.4, differing only in the TDCSS stimuli that were 

used. This had a two-fold purpose: it enabled a comparison between the one- 

parameter and two-parameter concatenation frameworks described in Chapter Three, 

whilst also providing a ranking against the non-TDCSS stimuli mentioned in Section 

6.4. 

6.5.1 Stimuli 

The TDCSS2 stimuli were produced using only CV and VC syllables, and were the 

same words mentioned in Table 6.1. Since a timing database has not yet been 

constructed for TDCSS2, the segmental durations were entirely produced by the 

expert judge (DSGV), following the two-parameter concatenation framework outlined 

in Section 3.6. The TDCSS2 stimuli were compared with stimuli from the previous 

experiment, produced by the text-to-speech synthesisers KTH, Laureate, Festival, Bell 

Labs and TruVoice (see Section 6.4). 
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6.5.2 Subjects 

Fifteen subjects were used in the listening experiment (see Table 6.4). None of them 
had been used in any of the previous listening experiments. Nine of them were male 

and six were female. Nine subjects were native speakers of English whilst six were 

not. All of them had normal hearing, and did not have extensive experience of 

synthetic speech. Subjects were told that the purpose of the experiment was to 

compare a number of different speech synthesisers in terms of perceived naturalness. 
All of the subjects were told to only judge the naturalness of the stimuli, and were 

instructed to ignore the meaning of the words presented. 

Subject Attributes Number of subjects 

Male 9 

Female 6 

Native speaker of English 9 

Non-native speaker of English 6 

Table 6.5: Description of subjects 

6.5.3 Method 

The six speech synthesisers were compared using similar experimental procedures to 

those described in Section 6.4. For each synthesiser, a set of 6 isolated words was 

synthesised. Every possible combination of the synthetic words was presented to the 

subjects. The pairs of stimuli were presented in a completely random order, so as to 

minimise any possible boredom that may arise. For each pair, subjects indicated 

which stimulus was `the most natural sounding'. All subjects were given a list of the 

different possible words that they would encounter. 

6.5.4 Results 

When ranked against five text-to-speech synthesisers, the TDCSS2 stimuli were 
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judged to be the fifth most natural. This is the same rank achieved by the TDCSS 

stimuli in the previous experiment (see Section 6.4). It would thus appear that there is 

little difference in naturalness between speech synthesised by either concatenation 
framework. However, the average number of times that the TDCSS stimuli were 

preferred was 14.5, compared with a value of 12.9 for TDCSS2. From this, it is 

possible to infer that TDCSS2 stimuli were marginally less natural than the TDCSS 

stimuli. This result could possibly be due to the expert judge's relative lack of 

experience with the TDCSS2 method. 

Speech synthesisers ranked by perceived 
naturalness 

T] 25 

20 

Cß 15 
E 
4- 
0 10 
ö 
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0 

4 

Figure 6.3: Perceived naturalness of TDCSS2 stimuli, compared with five text-to- 
speech synthesisers 

On the whole, the results largely confirm the overall ranking of speech synthesisers 

found in the previous experiment, with the exception that the rankings are swapped 

for Bell Labs and Festival. 

6.6 Summary 

It has been demonstrated that intelligible speech can be synthesised using the TDCSS 

method. Listening experiments have also been carried out to evaluate the naturalness 

of speech produced by both the TDCSS (one-parameter concatenation framework) 

and the TDCSS2 (two-parameter concatenation framework) methods. In single pair 

121 

U- 'FZ U UC\j )_ U ý-- 
Ü 

0 mJ> 

CO 
Co 

Speech synthesiser 



comparison experiments, TDCSS and TDCSS2 speech stimuli were compared with 

the output of five established text-to-speech synthesisers. Both TDCSS and TDCSS2 

were judged to be fifth most natural out of the six synthesisers. Although the TDCSS2 

method has some theoretical advantages over TDCSS (in terms of its flexibility), both 

sets of stimuli were judged to be equally natural in the listening experiments. 
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Chapter Seven 

7. Conclusions 

In this thesis, a time-domain waveform concatenation framework for speech synthesis 
has been implemented and evaluated. At present, the TDCSS framework allows the 
synthesis of isolated words from a text input. In the TDCSS framework, CV, VC and 
CVC syllables are used as concatenative units, along with CC diphones. The 

concatenation method has been designed in such a way as to reduce the amount of 
signal processing applied to each speech segment, as it retains simplicity and 
improves the intelligibility and naturalness of each speech segment (Saito, 1992). This 
investigation was partly prompted by a comment from Linggard (1985) that `... simply 
concatenating words, or syllable-type units, will not result in natural-sounding or even 
intelligible speech'. It also stemmed from the need for more attention to be paid to the 

concatenation process itself (Kraft, 1994). Part of this study has thus evaluated the 

potential of a simple concatenation method for time-domain waveforms, and shown 
that intelligible speech can be synthesised, for isolated words. 

The concatenative framework reduces the problem of waveform discontinuities at the 
boundaries between adjacent speech segments. At the same time, it allows prosodic 
duration changes to be made, in order to produce a natural speech rhythm. Both of the 

above issues may be dealt with using a single segmental duration parameter that 

specifies the initial portion of the segment to be output. Using the segmental duration 

parameter, the point of concatenation itself can be varied from segment to segment. 
Smoother speech can be produced by choosing segmental durations that correspond to 

`concatenation nodes', which often coincide with zero-crossings in the time domain. 

This technique helps to preserve the acoustic uniformity at concatenation points, and 
is somewhat similar to Hess's (1992) idea of using `floating concatenation points', 

where the crossover between segments is set to the point of minimal spectral distance 

within a limited interval. 

The appropriate segmental durations for text-to-speech synthesis can be predicted for 

isolated words, using a timing database and a pattern-matching look-up algorithm. 
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The timing database consists of segmented words with their corresponding duration 

values, and is constructed using an iterative synthesis/adjustment approach. In this 
process, a listener (known as an `expert judge') repeatedly adjusts segmental 
durations according to the perceived naturalness of the speech output. In this way, 
segmental duration data is produced that is directly related to a specific waveform 
inventory. The iterative synthesis/adjustment approach is thus a perceptual approach 
to data acquisition, since an expert judge's perception of the final synthetic speech 
signal is involved. 

Segmental duration prediction can be successfully carried out using a data-driven 

approach, provided that there are sufficiently large quantities of timing data available. 
Indeed, in the Timing Module that has been developed, the accuracy of segmental 
duration predictions increases with the size of the timing database. Whilst the process 

of creating the timing database is somewhat time-consuming, a default duration 

procedure has been described, in which existing timing information is re-categorised 

according to articulation manner. This potentially allows the size of the timing 

database to be doubled, or even trebled. In cases where the duration look-up algorithm 
fails to find sufficient timing data for a particular word, the default duration procedure 

re-categorises the missing speech segment symbols according to articulation manner. 
The timing database is then searched for the new set of speech segment symbols. This 

approach provides a graceful degradation in the performance of the duration look-up 

algorithm in cases where timing data is incomplete. 

The iterative synthesis/adjustment method has been investigated via a set of listening 

experiments. These provided evidence that an expert judge's perception of naturalness 

was largely representative of that of the participating subjects. It is thus concluded 

that it is possible for a team of relatively inexperienced listeners to act as expert 

judges, participating in the acquisition of timing data via iterative 

synthesis/adjustment methods. An additional listening experiment showed that an 

expert's judgement of naturalness remained stable over several weeks. This finding is 

essential to the `expert judge' method for timing data acquisition, since a single 

timing database may take several weeks to construct. 
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In a further investigation of the iterative synthesis/adjustment approach, inexperienced 

subjects acted as expert judges in synthesising a set of words following the TDCSS 

principle. It was found that there was no significant difference between a set of 
reference values pre-defined by DSGV (an experienced expert judge) and those 
favoured by the inexperienced subjects (with a two-tailed probability of 0.05). 
Furthermore, a strong, positive correlation was found between the subjects' chosen 
duration values and the reference durations. These experimental results complement 
the findings of the previous listening experiments, namely, that there is a 
commonality between the expert judge's perception of the naturalness of segmental 
durations and other people's perceptions. 

When compared with five well-known text-to-speech synthesisers, speech synthesised 
by TDCSS was judged to be the fifth most natural out of the six synthesisers. This 

was verified using a single pair comparison experiment, with fifteen subjects. In 

creating the TDCSS stimuli, segmental durations were hand-adjusted, so that the 

stimuli represented the `ideal' output of the speech synthesiser. The above result is 

encouraging, since the TDCSS stimuli were perceived to be more natural than one 

particular text-to-speech synthesiser, which is relatively well-established. Of course, 

one must be careful not to over-extrapolate this result, due to the scale of the listening 

experiment and the number of subjects used. The result also only applies to isolated- 

word stimuli. 

When speech produced using the two-parameter concatenation framework (TDCSS2) 

was compared with the same five text-to-speech synthesisers, it was also judged to be 

fifth most natural. It therefore remains unclear as to whether TDCSS or TDCSS2 is a 

superior concatenation framework. However, TDCSS2 does have some theoretical 

advantages, in terms of its flexibility. 

Whilst in its present form, the time-domain concatenative speech synthesis method 

only produces isolated words, it could be usefully applied to any system that uses 

shorter synthetic messages, such as enquiry or dialogue systems, or the synthesis of 

email subject lines. The reason for this is that in contexts in which there is not much 

linguistic redundancy, prosodic manipulation is less important (Hess, 1992). Of 

course, a system for predicting pauses would be necessary, even for the production of 
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short sentences. Also, at the sentence level, segmental durations predicted for isolated 

words would have to be re-calculated. 

This thesis has thus described the implementation and evaluation of a text-to-speech 

synthesis method, which involves a time-domain concatenation of speech segments. It 
has also investigated some of the perceptual issues related to an auditory evaluation 
method that can be used for obtaining the necessary timing data for statistical 

segmental duration prediction. 

7.1 Future Work 

The two-parameter concatenation method (TDCSS2) merits further investigation, 

since it allows greater flexibility in the choice of concatenation point between speech 

segments. This allows the possibility of smoother transitions at speech segment 
boundaries, leading to a greater level of naturalness. Whilst a segmental duration 

look-up system has already been developed for TDCSS2, a full evaluation of this 

method requires the development of a much larger timing database, dedicated to two- 

parameter timing information. 

The general time-domain concatenative speech synthesis framework is limited in that 

no explicit smoothing operations or manipulation of fundamental frequency is offered 

in its present form. This could be rectified by viewing the concatenation framework as 

a pre-processing stage in a conventional concatenative speech synthesiser. Since each 

segmental duration directly specifies a portion of a speech unit, this `front end' is 

somewhat analogous to the speech segment selection process, in which an optimal set 

of concatenative units is constructed (e. g., Iwahashi & Sagisaka, 1995). This reduces 

the ̀ concatenation cost' incurred, in terms of spectral discontinuities. 

By using optimal segmental durations in the first place, the extent to which the 

original acoustic samples are processed is greatly reduced, preserving the qualities of 

the original speech data as far as possible (for instance, speech segments are not 

stretched or squashed to fit a particular duration value). At this point, it would be 

profitable to introduce a smoothing mechanism (e. g., a form of overlap-add). At 
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present, a smoothed version of the Synthesis Module has already been implemented, 

in which adjacent speech segments are overlapped (with an overlap width of 25 ms) 

and weighted by a raised cosine window. 

Possible future research might be to use the concatenation framework as a pre- 

processor to a time-domain pitch synchronous overlap-add (TD-PSOLA) synthesiser. 
This would allow the manipulation of fundamental frequency and provide additional 

smoothing. It is possible that the use of optimal segmental durations may help to solve 

some of the problems associated with TD-PSOLA, such as the production of artefacts 

similar to comb filtering (Kortekaas & Kohlrausch, 1997). Alternatively, the 

concatenation framework could be incorporated into a speech synthesis system that 

uses linear prediction techniques. 

Additional work could also include an investigation into the issue of segment elision, 

in which some speech segments are omitted from the synthetic utterance. If suitable 

segment elision rules can be formulated, the omission of carefully chosen units can 

provide a marked improvement to the output speech. This can have the effect of 

reducing the density of concatenation points whilst increasing the speaking rate. 
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8. Appendix A- Naming Conventions 

Below are details of the labelling convention used for the speech segments in the 
waveform inventory. Example carrier words are given for each speech sound. For the 
consonants, a description is given, in terms of articulation manner. Individual 
segments from these tables can be appended to make up CV, VC, CC or CVC 
segments. 

For example, the word `two' would be represented as /tooh/. This is formed using /t/ 
from Table A. 2 and /ooh/ from Table A. 1. 

Vowels Example 
a (cat) 
ah (car) 
ay (bay) 

e (bet) 

ee (bee) 
i (bit) 

o (dog) 
oh (toe) 
00 (took) 
ooh (through) 
or (lawn) 

u (bud) 

ur (burn) 
Table A. 1: Naming conventions for vowels 
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Consonants Example Description 
b (bat) voiced sto 
c (cat) plosive 
ch (chat) unvoiced affricate 
cw (quick) plosive followed by 

semi-vowel 
dg (edge) affricate 
d (did) voiced stop 
dh (this) voiced fricative 
f (if) unvoiced fricative 

(go) voiced stop 
h (head) aspirate 
1 (low) liquid 
in (mow) nasal 
n (no) nasal 
ng 

_(young) nasal 
( at) unvoiced stop 

r (ran) liquid 
s (sat) unvoiced fricative 
sh (shy) unvoiced fricative 
t (tow) unvoiced stop 
th (Kath) unvoiced fricative 
v (vow) voiced fricative 

(yacht) vowel 
z (zoo) voiced fricative 
zh (Asia) voiced fricative 
Table A. 2: Naming conventions for consonants 

Diphthongs Example 
ew (new) 
eye (bite) 
ow (now) 
oy (boy) 
w (we) 
Table A. 3: Naming conventions for diphthongs 
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9. Appendix B- Duration Look-Up Algorithm 
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Figure B. 1: Duration look-up algorithm 



Figure B. 2: Select Biggest Matching Sub-string function 
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Return to Fig. B. 1 



10. Appendix C- Default Duration Procedure 

Figure C. l shows the procedure for producing default duration values when the duration look-up algorithm fails to predict a complete set of segmental durations. 
After the initial duration look-up, any `missing' segments are recategorized, and a 
new duration look-up is carried out. 

segmented word 

Duration Look-up 

Xall \ 
segmental 

durations predicte yes 
OR no further 71inish 

recategorization 
\ possible 

no 

Segment Recategorization 

segment categories 

Update original segmented 
word to include generated 
segment categories 

updated segmented word 

Figure C. 1: Default duration scheme 
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11. Appendix D- Listening Experiment Results 

In the following graphs, a=a= 20 ms 

Experiment 1: Overall results by 
duration bin 

Fig. D. 1.1: Experiment 1: Average preferences by duration bin 
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Fig. D. 1.2: Experiment 1: Average preferences per word 
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Experiment 1: Preferences for 'Been' 
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Experiment 1: Preferences for 'Shine' 
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Experiment 1: Preferences for 'Dawn' 
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Experiment 1: Preferences for 'Sun' 
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Fig. D. 2.1: Overall results for Experiment 2 by duration bin 

Experiment 2: Overall results by word 
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Experiment 2: Preferences for 'Been' 
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Experiment 2: Preferences for 'Shine' 
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Experiment 2: Preferences for 'Dawn' 
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Experiment 2: Preferences for 'Sun' 
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Figure D. 3.2: Results for Experiment 3 by word 
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12. Appendix E- Timing Database Contents 

The following tables show the contents of the timing database. These are described in 
detail below: 

Table El shows a segmental representation for each word and its corresponding 
segmental durations. The right-hand column shows the original word itself. 

Table E2 shows `default duration' entries that were derived from existing data in the 
timing database. The left-hand column shows the segmental representation of a word. Some of these segments may have been categorised according to articulation manner. 
The middle column shows segmental durations, whilst the right-hand column shows 
the word from which the segmental duration data was originally taken. 

Table E3 shows default duration entries for which some of the speech segments have 
been re-categorised to contain `wild-card' elements. The right-hand column shows the 
word from which the segmental duration data was originally taken. 

Table E4 gives example timing database entries for use with the TDCSS2 
concatenation method. The right-hand column shows the word from which the 
segmental duration data was originally taken. 

Segmented Word Segmental Durations (ms) Word 
["in"] [282.0] in 
["hee"] [290.0] he 
["tooh"] [352.4] to 
["ha", "av"] [68.6,380.0] have 
["it"] [350.0] it 
["eye"] [368.3] I 
["dha "] [520.2] they 

wi", "idh"] [177.6,329.9] with 
["no", "ot"] [141 . 7,484.0] not 
["dha", "at"] [128.5,295.9] that 
["on"] [379.9] on 
["shee"] [420.6] she 
["az"] [388.3] as 
["at"] [295.9] at 
["bee"] [380.0] by 
["dhi", "is"] [158.7,402.11 this 
["wee"] [435.11 we 

[498.6] you 
["fr", "ro", "om"] [174.2,92.4,400.0] from 
["dooh"] [330.0] do 
["bu", "ut"] [53.9,387.3] but 
["or"] [359.0] or 
["an"] [330.9] an 
["wi", "ich"] [170.1,374.9] which 
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["woo", "ood"] [234.3,319.9] would 
["say"] [430.2] say 
["orl"] [404.6] all 
["wu", "un"] [188.0,348.11 one 
["wi", "il"] [224.5,249.9] will 
["hooh"] [395.3] who 
["we", "en"] [154.7,360.0] when 
['may" , "a c"] [143.0,330.0] make 
["dhe", "er"] [127 . 0,294.0] there 
["if"] [351.8] if 
["ca", "an"] [90.3,330.9] can 
["ma", "an"] [155.9,330.9] man 
["wo", "ot"] [ 195.1,484.0] what 
["tee", "e em"] [86.8,548.7] time 
[" oh"] [339.9] go 
["noh"] [450.0] no 
["in", "nt", "took"] [281.5,0,304.2] into 
["coo", "ood"] [109.6,319.9] could 
["u "] [423.1] up 
["udh", "dhu"] [166.4,451.4] other 
["dha", "at"] [137.8,295.9] that 
[" ee", "eeu"] [146.5,410.0] year 
["owt"] [480.0] out 
["new"] [400.0] new 
["su", "um"] [156.3,282.9] sum 
["ta ", "a c"] [63.3,330.0] take 
["dhee", "eez"] [145.3,380.0] these 
["cu", "um"] [103.2,322.5] come 
["see"] [439.9] see 
[" e", "et"] [56.7,340.0] get 
["noh"] [450.0] know 
["st" "ta " "a "] 346.4] 2 0 [264 state , , . , , 
["tooh"] [352.4] two 
["ohn" "nl" "lee"] 270.8] 0 0 [343 8 only , , . , . , 
["dhe" "en"] 360.0] [173 1 then , . , 
["en", "nee"] [83.1,380.0] any 
["now"] [430.0] now 
["ma "] [367.9] may 
["dha" "an"] 330.9] [168.0 than 

, 9 
[" i" "iv"] 389.9] [42 2 give , . , 
["ub" "bow" "owt"] 480.0] 49.5 [168.2 about , , , , 
["az"] [388.3] as 
["da "] [273.11 day 
["orl" "ls" "soh"] 563.9] 0 9 [268 also , , , , . 
["fur" "urs" "st"] 0 260-11 [465.5 first 

, , , , 
["fee", "e en", "nd"] [169.4,345.7,266.11 find 
["wa "] [475.11 way 
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["mu", "usit, "st"] [168.8,209.8,380.8] must 
["ooh", "oohz"] [ 197.7,469.9] use 
["mor"] [439.9] more 
["lee", "e ec"] [131.1,437.0] like 
["eev", "vu", "un"] [233.8,145.9,348.1] even 
["me", "en", "nee"] [164.2,128.2,380.0] many 
["eech"] [390.0] each 
["thoh", "ohz"] [224.6,400.0] those 
["mi", "is", "st", "tu"] [164.4,349.2,0,281.0] mister 
["ohv", "vu"] [275.6,294.8] over 
["wur", "url", "ld"] [195.5,263.2,283.6] world 
["see", "eem"] [187.1,379.9] seem 
["d u", "us", "st"] [121.2,227.7,380.8] just 
["leye", "eyef"] [123.4,479.5] life 
["bee", "eec", "cu", "um"] [ 163.9,0,100.7,330.0] become 
["te", "el"] [ 117.7,253.2] tell 
["hee", "eeu"] [73.1,410.01 here 
["dow", "own"] [49.0,474.7] down 
["ba", "ac"] [40.0,300.0] back 
["boh", "ohth"] [35.1,439.9] both 
[" oo", "ood"] [45.3,319.9] good 
["bi", "it", "tw", "wee", "een"] [45.2,199.1,90.4,102.3,342.0] between 
["st", "ti", "il"] [231.7,95.8,249.9] still 
["ha", "an", "nd"] [76.0,169.2,266.11 hand 
["bi", "ic", "co", "oz"] [37.3,120.8,88.5,419.9] because 
[I've", "e-r", "ree"] [150.4,166.1,304.0] very 
["thi", "in "] [123.0,339.5] thing 
["ahf" "ft" "tu"] 225 296 [280 6 2 5] after , , . , . , . 
["dow", "own"] [42.2,470.4] down 
["ne", "ev", "vu"] [289.8,0,320.11 never 
["un" "nu" "udh" "dhu"] 451.4] 0 260 8 [189 7 another , , , , . , . , 
["un" "nd" "du"] 300.0] 0 [331 0 under , , , . , 
["sc" "cooh" "oohl"] 320.0] 0 [192 6 school , , , . , 
["ca ", "a m"] [114.0,427.4] came 
["wur", "urc"] [188.0,399.9] work 
["sl" "loh"] 4] [133 8 slow , . , 
["ohl" "ld"] 283.6] 6 [165 old , , . 
[" " "ra " "a t"] 346.4] 123.1 [46 1 great , , , , . 
["ha" "av"] 373.0] 6 [75 have 

, . , 
["moh" "ohs" "st"] 380.8] 0 [334.6 most , , , , 
["wee", "eel"] [134.3,511-11 while 
[" ah", "aht"] [83.8,358.8] part 
["thr" "ree"] 419.9] [135.7 three 

, , 
["ta" "ad"] 290.0] [90.3 tad 

, , 
["few"] [479.9] few 
["che e", "eel", "Id"] [125.2,283.6,283.6] child 
["wu" "un"] [163.1,348.11 one 

, 
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["bi", "i it ," i", "in"] [122.9,0,60.0,287.2] begin 
["wi", "ith", "dhow", "owt"] [166.3., 245.8,0,480.0] without 
["fee", "eel"] [144.1,279.9] feel 
["nu", "um", "mb", "bu"] [142.5,299.5,0,292.4] number 
[" 1", "la ", "a s"] [47.8,111.5,363.7] place 
["wu", "un", "nt"] [326.1,0,500.0] want 
["soh"] [550.4] so 
["ub", "bow", "owt"] [230.3,0,480.0] about 
["lah", "ahs", "st"] [122.2,268.2,273.5] last 
["dee", "ori", "in "] [81.6,313.5,339.5] during 
["ahs", "sc"] [236.6,321.8] ask 

Table E 1: Original timing database entries 

Segmented Word Segmental Durations (ms) Original 
Word 

["li u", "unas"] [188.0,348.1 ] one 
[" losr", "ra ", "a "] [46.1,123.1,346.4] great 

"e en" "nd"] ["frice e" [169.4 345 7 266 1] find , , , . , . 
["fricur", "urs", "st"] [465.5,0,260.1] first 
["frica" "at"] [128.5 295.9] that , , 
["nasa", "an"] [155.9,330.9] man 
["nase", "en", "nee"] [164.2,128.2,380.0] many 
["nasu", "us", "st"] [168.8,209.8,380.8] must 
[" losa", "an"] [90.3,330.9] can 
["li o", "ot"] [195.1,484.0] what 
["li oo", "ood"] [234.3,319.9] would 
["li u", "un"] [188.0,348.1] one 
["li e e" "e ec"] 437.0] [131 1 like 

, . , 
["li i" "ich"] 374.9] [170.1 which , , 
Ito losu" "ut"] 387.3] [53 9 but 

, . , 
[" losi" "iv"] 389.9] [42.2 give , , 
[" losa "] [273.1] day 
["li i" "il"] 249.9] [224.5 will , , 
["lie", "en"] [154.7,360.0] when 
["nasa ", "a c"] [143.0,330.0] make 
["nasor"] [439.9] more 
["frice", "e-r"] [127.0,294.0] there 
[" lose e", "e em"] [86.8,548.7] time 
[" plosoh"] [339.9] o 
["nasoh"] [450.0] no 
["ust "] [423.1] up 
["fricro", "om"] [174.2,92.4,400.0] from 

["frica" "av"] 380.0] [68.6 have 
, , 

["frici" "in "] r123.0,339.5] thing 
, ["frice", "e-r", "ree"] [150.4,166.1,304.0] very 

"oz"] [" losi" "co" "ic" [37.3,120.8,88.5,419.9] because 
, , , 
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["nasah", "ahc"] [136.1,474.9] mark 
["frica", "an", "nd"] [76.0,169.2,266.11 hand 
[" losow", "own"] [42.2,470.4] down 
["nase", "ev", "vu"] [289.8,0,320.11 never 
["li ah", "ahs", "st"] [122.2,268.2,273.5] last 
["ust ", "bow", "owt"] [230.3,0,480.0] about 
["fricoh"] [550.4] so 
["li u", "un", "nt"] [326.1,0,500.0] want 
[" losl", "la ", "a s"] [47.8,111.5,363.7] place 
["nasu", "um", "mb", "bu"] [ 142.5,299.5,0,292.4] number 
["fricee", "eel"] [144.1,279.9] feel 
["li i", "ith", "thow", "owt"] [ 166.3,245.8,0,480.0] without 
[" losi", "i It ," i", "in"] [122.9,0,60.0,287.2] begin 
[" losoo", "ood"] [109.6,319.9] could 
Table E2: Default duration entries (where some speech segments are categorised by 

articulation manner) 

Segmented Word Segmental Durations (ms) Original 
Word 

[" *e", "e-r", "ree"] [150.4,166.1,304.0] very 
["*e e", "e em"] [86.8,548.7] time 

"ith"] ["*i" [177.6 329 9] with , , . 
["*a", "av"] [68.6,380.0] have 
["*o", "ot"] [141.7,484.0] not 
["*a", "at"] [128.5,295.9] that 
["*a", "a* "] [128.5,295.9] that 
["*i" "is"] 1] [158 7 402 this , . . , 
["*ro", "om"] [174 . 2,92.4,400.0] from 
["*u" "ut"] [53 387 3] 9 but 

, . . , 
["*i" "ich"] 374 [170 1 9] which , . . , 
["*oo" "ood"] 319 9] [234 3 would , . , . 
["*u", "un"] [188 . 0,348.1 ] one 
["*e" "en"] 360.0] [154 7 when , . , 
["*a " "a c"] 330.0] [143 0 make , . , 
["*e" "e-r"] 294.0] [127 0 there 

, . , 
["*a", "an"] [90.3,330.9] can 
["*o" "ot"] 484 0] 1 [195 what , . , . 
["*i" "ic" "co" "oz"] 419.9] 88.5 120 8 3 [37 because 

, , , , . , . , 
["*ow", "own"] [42.2,470.4] down 
["*e" "ev" "vu"] 320.1] 0 8 [289 never 

, , , , . 
["*ah" "ahs" "st"] 273.5] 268.2 [122.2 last 

, , , , 
["*b" "bow" "owt"] 480.0] 0 3 [230 about 

, , , . , 
["*oh"] [550.4] so 
["*u" "un" "nt"] 500.01 1 0 [326 want 

, , , , . 
["*1" "la " "a s"] 363.7] 111.5 [47 8 place 

, , , , . 
["*u", "um" "bu"] "mb" [1 42.5,299.5,0,292.4] number 

, , 
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["*ee", "eel"J [144.1,279.9] feel 
["*ill , "ith", "thow", "owt"] [ 166.3,245.8,0,480.0] without 

, 
"i i, "in"] [ 122.9,0,60.0,287.2] begin 

["*ah", "ahc"] [136.1,474.9] mark 
[224.5,249.9] will 

Table E3: General default duration entries (containing `wild-card' elements) 

Segmented Word Segmental Durations (ms) Original 
Word 

["te", "el", "lu", "uv", [[0,81.9], [0,253.2], televise 
"veye", "eyez"] [0,0], [68.0,284.2], 

[0,151.6], 
[81.5,579.2]] 

["cay", "aym", "mb", [[0,38.4], [0,349.2], Cambridge 
"br", "ri", "idg"] [0,0], [0,82.4], [0,1 10.0, 

[0,336.7]] 
["sp", "pee", "eec"] [[0,289.9] , [49.0,296.5], speak 

[189.2,350.0]] 
["st", "to", "op"] [[0,260.6], [0,0], stop 

[0,322.0]] 
["ne", "ev", "vu"] [[0,299.1], [0,0], never 

[49.9,415.4] ] 
["si", "ing", "gl"] [[21.4,171.8], single 

[0,248 . 2], [0,289.9] ] 
["mu", "us", "st"] [[0,136.0], [0,298.6], must 

[ 148.5,380.8]] 
["way", "ayv", "vf", "for", "orm"] [[0,1 84.0], [28.7, waveform 

372.8], [0,0], [0,92.0], 
[0,420.0]] 

"owt"] ["wi" "ith" "thow" [[0,279.7], [0,329.9], without , , , [0,86.9], [0,480.0]] 
"sc"] ["ahs" [[0,387.9], ask , [ 159.5,210.8]] 

["moh" "ohs" "st"] [[0,369.7], [0,0], most 
, , [0,380.8]] 

["st", "ti" "il"] [[0,249.9], [0,0], still 
, [0,249.9]] 

"ut", ["de" "nu" "ef" "in" "fi" [[0,45 . 0], [21.9, definitely 
, , , , , "tl" "lee"] 247.1 ], [0,0], [5.2,200.272], 

, [22.3,310.9], 
[0,0], [24.2,302.2]] 

["st", "tay", "ayt"] [[ 10.7,263.3], [0,0], state 
[22.4,345.91] 

["tor", "orc", "ci", "ing"] [[0,83.3], [12.9,269.274], talking 
[3.0,91.6], [0,339.5]] 

["Coll "tu", "at" "ca" "on" "nc" [[0,62.8], [ 18.7,282.5], [0,0], [ concatenation 
, , , , , "un", "nay", "aysh", "shu", "un"] 34.1,111.6], [35.0,197.5], 

[84.7,281.0], [0,0], 
[0,354.4], [0,0], 
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[24.5,161.71, [43.1,348.111 
["cu", "um", "mp", "pew", [[0,73.8], [0,222.2], computer 

"tu"] "ooht" [0,0], [0,343.0], [0,0], 
, [0,382.5]] 

["le", "ecs", "si", "ic", "co", "on"] [[0,214.2], lexicon 
[ 165.4,499.9], 
[ 178.5,341.9], 
[0,208.9], 
[0,37.5], [0,286.3]] 

Table E4: Example timing database entries for use with the TDCSS2 concatenation 
method 
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13. Appendix F- Timing Module Code 

This section contains LINGO code for the Timing Module, which predicts segmental 
durations, when given an input string of speech segments. LINGO is a scripting 
language for Macromedia's Director software (Macromedia, 1998). 

This code includes the Default Duration Procedure, which is carried out whenever the 
duration look-up algorithm produces incomplete timing information. 

--Initialisation routine, executed before the main procedure 
on startMovie 
global InDifs 
set InDifs=[] 
global TmpRec 
set TmpRec=[] 
setListUp 
setTypesUp 
global difcount 
global tmpstr 
set tmpstr=EMPTY 

--set up Timing Database 

--define speech segment categories 

--a temporary string variable 

set the text of cast "output" to EMPTY 
set the text of cast "newBox" to EMPTY 
set the text of cast "TimeRezBox" to EMPTY 
set the text of cast "AltBox" to EMPTY 
global piws --contains position-in-word information 

set piws=[] 
end 

--This is the main procedure in the Timing Module 

on enterFrame 
pause --wait for input from keyboard 

end 

on exitFrame 
global phons, FinalVals, InDifs, ErrList 
set phons=[] 
set FinalVals=[] 
altSearch 
output 
if count(ErrList)>O then 
getRest 

end if 
set phons=InDifs 
set tlist=FinalVals 

end 
--end of main procedure 

--search for segmental durations 

--get any missing durations 
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--input speech segments from keyboard 
on keyUp 
global InDifs, tmpstr --InDifs is the list of speech segments 
if the key=ENTER then --for which durations must be predicted 
doctorString 
append InDifs, tmpstr 
continue 

else if the key=" " then 
doctorString 
append InDifs, tmpstr 
set tmpstr=EMPTY 

else if the key>="a" and the key<="z" or the key="*" then 
set tmpstr=tmpstr && the key 

end if 
end 

--tidy up the input characters 
on doctorString 
global tmpstr 
set i=1 

repeat while i<=length(tmpstr) 
if char i of tmpstr=" " then 
delete char i of tmpstr 

end if 
set i=i+1 

end repeat 
end 

--default duration prediction 
--involving re-categorisation of speech segments 
on getRest 
global ErrList, inDifs, typeList --ErrList contains the `missing' segments 
set typeList=[] 
repeat with i=1 to count(ErrList) --re-categorise `missing' segments 
set rez=getSegType(getAt(ErrList, i)) 

append typeList, rez 
end repeat 
set the text of cast "A1tBox" to string(typeList) 
newSearch --search Timing Database again 

end 

--this is a search which looks for the `missing' segments 
on newSearch 
global temp, typeList, InDifs, FinalVals, ErrList 
set typeCnt=1 
repeat with i=1 to count(Indifs) 
set rez=getPos(ErrList, getAt(Indifs, i)) 
if rez>O then --it was a missing segment 
setAt InDifs, i, getAt(typeList, typeCnt) 
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set typeCnt=typeCnt+ 1 
end if 

end repeat 
set FinalVals=[] 
secondSearch --now call the search engine again 
classifyAgain --recategorise any missing segments 
set errCt=1 
repeat with i=1 to count(finalVals) 
if getAt(FinalVals, i)=-1 then 
setAt(Indifs, i, getAt(errlist, errCt)) 
set errCt=errCt+ 1 

end if 
end repeat 
set FinalVals=[] 
secondSearch --call the search engine a final time 
Output --output final list of durations 

end 

-- segment recategorization procedures 
on classifyAgain 
global errList 
--reclassify ErrList (ie replace phoneme types with wild-card segments) 
repeat with i=1 to count(ErrList) 
set str=replaceWithStar(getAt(errList, i)) 
setAt(errList, i, str) --put updated segment types into ErrList 

end repeat 
end 

on replaceWithStar myStr 
if mystr starts "stp" or myStr starts "liq" or myStr starts "nas" then 
put "*" into char 1 of myStr 
delete char 2 to 3 of myStr 
return mystr 

else if mystr starts "plos" or myStr starts "fric" then 
put "*" into char 1 of myStr 
delete char 2 to 4 of myStr 
return mystr 

else if mystr contains "plos" or myStr contains "fric" then 
delete char (the number of chars in myStr-3) to the number of chars in myStr of 

myStr 
put "*" after myStr 
return mystr 

else if mystr contains "stp" or myStr contains "liq" or myStr contains "nas" then 
delete char (the number of chars in myStr-2) to the number of chars in myStr of 

myStr 
put "*" after myStr 
return mystr 

else 
RETURN EMPTY 

end if 
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end 
--end of segment recategorization procedures 

--the main segmental duration prediction procedure 
on AltSearch 

--various initialisations of variables 
global difcount, NUMTEMPS, PosArray, InDifs, Ltemp, Temp, times, Enlist, 

sizes, piws 
set the text of cast "NewBox" to "Segments not in database: it 
set ErrList=[] 
set difcount=count(InDifs) 
set posArray=[] 
global TmpRec, TmpNumRec 
set TmpRec=[] 
set TmpNumRec=[] 
set CurrentD=1 
set stop=FALSE 
--end of initialisation section 
repeat while (CurrentD<=difcount) 
set diph=getAt(InDifs, currentD) 
set piw=1 
set sizes=[] 
set found=FALSE 
repeat with i=1 to count(temp) 
set rez=getPos(getAt(temp, i), diph) 
if rez>O then 
checkAhead(i, rez, currentD) 
set found=true 

append sizes, count(getAt(temp, i)) 
setAt(PosArray, piw, rez) 
set piw=piw+1 

end if 
end repeat 
if not found then 

--found current segment, 
--so look for further matches 

--note position in word 

set the text of cast "NewBox" to the text of cast "NewBox" && 
getAt(InDifs, CurrentD) 

append ErrList, getAt(InDifs, CurrentD) 
set phonType=GetSegType(getAt(InDifs, CurrentD)) 
append FinalVals, -1 
set currentD=currentD+ 1 

else 
set largest=nBS(currentD) --find largest sub-string 
AppendToFinal(largest, currentD- 1) --use its duration values 
piwstuff(largest) -position-in-word checks 
set currentD=currentD+(count(getAt(TmpRec, largest))) 

set TmpRec=[] 
set TmpNumRec=[] 

end if 
end repeat 
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end 

--checks the current Timing Database entry for further matches 
on checkAhead Templnd, TempJ, curD 
global InDifs, Temp, Times, TmpRec, TmpNumRec 
set scratchTlist=[] 
set scratchNameList=[] 
append scratchTlist, getAt(getAt(times, TempInd), TempJ) 
append scratchNameList, getAt(getAt(Temp, Templnd), TempJ) 
set endReached=FALSE 
set i=2 

set nextOne=TempJ+ 1 
repeat while not endReached and (curD+l<=count(InDifs)) ands 

(nextOne<=count(getAt(Temp, Templnd)) ) 
if getAt(getAt(Temp, TempInd), nextOne)=getAt(InDifs, curD+l) then 
set tval=getAt(getAt(Times, Templnd), nextOne) 
set nval=getAt(getAt(Temp, Templnd), nextOne) 
append scratchTlist, tval 
append scratchNameList, nval 
set nextOne=nextOne+ 1 
set curD=curD+ 1 
set i=i+ 1 

else 
set endReached=TRUE 

end if 
end repeat 
append TmpRec, scratchNameList 
append TmpNumRec, scratchTlist 

end 

--function to return the largest sub-string of several candidates 
on nBS InPos 
global PosArray, TmpRec 
set BestSize=O 
set BestOne=O 
repeat with i=1 to count(TmpRec) 
set tmpcount=count(getAt(TmpRec, i)) 
if (tmpcount>BestSize) then 
set BestOne=i 
set BestSize=tmpcount 

else if (tmpcount=BestSize) then 
set dif 1=getAt(PosArray, i)-InPos 
set dif2=getAt(PosArray, BestOne)-InPos 
if (dif 1 <0) then set dif 1=-1 *dif 1 
if (dif2<0) then set dif2=- 1 *dif2 
if (dif 1 <dif2) then set BestOne=i 
if dif 1=dif2 then 
set sizeDif 1=count(InDifs)-getAt(sizes, BestOne) 
set sizeDif2=count(InDifs)-getAt(sizes, i) 
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if sizeDif 1 <0 then set sizeDif 1=-1 *sizeDif 1 
if sizeDif2<0 then set sizeDif2=-1 *sizeDif2 
if sizeDif2<=sizeDif 1 then 

set BestOne=i 
end if 

end if 
end if 

end repeat 
return BestOne 

end 

--position-in-word checks 
on piwStuff largest 
global piws, PosArray 

set startpos=getAt(PosArray, largest) 
repeat with i=1 to count(getAt(TmpRec, largest)) 

append piws, (startpos+i)-1 
end repeat 

end 

--procedure to perform a further search if the first one fails 

--to return a duration for each input segment 
on SecondSearch 
global difcount, NUMTEMPS, PosArray, InDifs, Ltemp, Temp, times, Errlist, 

sizes, piws, TmpRec, TmpNumRec, FinalVals 

--initialisation section 
set ErrList=[] 

set difcount=count(InDifs) 
set posArray=[] 
set TmpRec=[] 
set TmpNumRec=[] 
set CurrentD=1 
set stop=FALSE 
--end of initialisation section 
repeat while (CurrentD<=difcount) 
set diph=getAt(InDifs, currentD) 
set piw=1 
set sizes=[] 
set found=FALSE 
repeat with i=1 to count(temp) 
set rez=getPos(getAt(temp, i), diph) 
if rez>O then 
checkAhead(i, rez, currentD) 
set found=true 
append sizes, count(getAt(temp, i)) 
setAt(PosArray, piw, rez) 
set piw=piw+1 

end if 
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end repeat 
if not found then --output error message 

set the text of cast "NewBox" to the text of cast "NewBox" && "After Second 
Search: " 

set the text of cast "NewBox" to the text of cast "NewBox" && 
getAt(InDifs, CurrentD) 

append ErrList, getAt(InDifs, CurrentD) 
append FinalVals, -1 
set currentD=currentD+1 

else 
set largest=nBS(currentD) --select the largest sub-string 
AppendToFinal(largest, currentD- 1) --note the relevant duration values 
piwstuff(largest) -position-in-word checks 
set currentD=currentD+(count(getAt(TmpRec, largest))) 
set TmpRec=[] 
set TmpNumRec=[] 

end if 
end repeat 

end 

--output predicted segmental duration values to text boxes 
on output 
global InDifs 
global FinalVals 
set the text of field "output" to 
set the text of field "TimeRezBox" to "" 
repeat with i=1 to count(InDifs) 
put getAt(InDifs, i) after field "output" 
put "" after field "output" 

end repeat 
repeat with i=1 to count(FinalVals) 
put getAt(FinalVals, i) after field "TimeRezBox" 
put "" after field "TimeRezBox" 

end repeat 
end 

--procedure to append the segmental duration values to the final duration list 

on AppendToFinal biggest, prevpos 
global FinalVals --final duration list 

global TmpNumRec 
if TmpNumRec=[] then 
alert "error! " 

else 
setj=l 
repeat while j<=count(getAt(TmpNumRec, biggest)) 

set val=getAt(getAt(TmpNumRec, biggest), j ) 

setAt(FinalVals, prevpos+ l , val) 
set j j+l 
set prevpos=prevpos+ 1 

end repeat 
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end if 
end 

--function to automatically identify a segment's category 
--in terms of liquid, fricative, nasal or plosive 

on GetSegType seg 
global plos, nas, fric, stp, vowels, fricMenu, plosMenu, liqMenu, nasMenu 
--check liquids 
repeat with i=1 to count(liqMenu) 
set res=getPos(getAt(liqMenu, i), seg) 
if res>O then --segment found 

set segType=getAt(liqMenu, i) 

set st=reverseLookUp(segType) 
return st 

end if 

end repeat 

--check fricatives 
repeat with i=1 to count(fricMenu) 
set res=getPos(getAt(fricMenu, i), seg) 
if res>O then --segment found 
set segType=getAt(fricMenu, i) 
set st=reverseLookUp(segType) 
return st 

end if 
end repeat 

--check nasals 
repeat with i=1 to count(nasMenu) 
set res=getPos(getAt(nasMenu, i), seg) 
--res is the position within the "Menu" type lists 
if res>O then --segment found 
set segType=getAt(nasMenu, i) 
set st=reverseLookUp(segType) 
return st 

end if 
end repeat 

--check plosives 
repeat with i=1 to count(plosMenu) 
set res=getPos(getAt(plosMenu, i), seg) 
if res>O then --segment found 
set segType=getAt(plosMenu, i) 
set st=reverseLookUp(segType) 
return st 

end if 
end repeat 

end 
--end of section 
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-function to categorise segments 
on reverseLookUp segType 

--plosive-vowel combinations 
if segType=["ca", "ba", "pa", "ta", "da", "ga"] then 
return "plosa" 

else if segType=["cah", "bah", "pah", "tah", "dah", "gah"] then 
return "plosah" 

else if segType=["cay", "bay", "pay", "tay", "day", "gay"] then 
return "plosay" 

else if segType =["ce", "be", "pell , "te", "de", "ge"] then 
return "plose" 

else if segType=[ "ceye", "beye", "peye", "teye", "deye", "geye"] then 
return "ploseye" 

else if segType=["cee", "bee", "pee", "tee", "dee", "gee"] then 
return "plosee" 

else if seg ype=[ ci , bi , pi , ti , di 
, gi ] then 

return "plosi" 
else if segType=[ "cl", "bl", "pl", "tl", "dl", "gl"] then 
return "plosl" 

else if segType=["co", "bo", "poll , "to", "do", "go"] then 
return "ploso" 

else if segType=["coo", "boo", "poo", "too", "doo", "goo"] then 
return "plosoo" 

else if segType=["cor", "bor", "por", "tor", "dor", "gor"] then 
return "plosor" 

else if segType=["coh", "boh", "poh", "toh", "doh", "goh"] then 
return "plosoh" 

else if segType=[ "coy", "boy", "poy", "toy", "doy", "goy"] then 
return "plosoy" 

else if segType=[ "cook", "booh", "pooh", "tooh", "dooh", "gooh"] then 
return "plosooh" 

else if segType=["cu", "bu", "pu", "tu", "du", "gu"] then 
return "plosu" 

else if segType=["cew", "bew", "pew", "tew", "dew", "gew"] then 
return "plosew" 

--assorted diphones 
else if segType=["cl", " bl", "pl", "tl", "dl", "gl"] then 
return "plosl" 

else if segType=["cn", "bn", "pn", "tn", "dn", "gn"] then 
return "plosn" 

else if segType=["cr", " br", "pr", "tr", "dr", "gr"] then 
return "plosr" 

else if segType=["cs", "bs", "ps", "ts", "ds", "gs "] then 
return "ploss" 

else if segType=["shn" , "dgn", "thn", "vn", "fn", "sn", "zn", "chn"] then 
return "fricn" 
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--nasal-vowel combinations 
else if segType=["na", "ma"] then 

return "nasa" 
else if segType=["nah", "mah"] then 
return "nasah" 

else if segType=["nay", "may"] then 
return "nasay" 

else if segType=["ne", "me"] then 
return "nase" 

else if segType=["nee", "mee"] then 
return "nasee" 

else if segType=["neye", "meye"] then 
return "naseye" 

else if segType=["ni", "mi"] then 
return "nasi" 

else if segType=["no", "mo"] then 
return "naso" 

else if segType=["noo", "moo"] then 
return "nasoo" 

else if segType=["nooh", "mooh"] then 
return "nasooh" 

else if segType=["nor", "mor"] then 
return "nasor" 

else if segType=["noh", "moh"] then 
return "nasoh" 

else if segType=["noy", "moy"] then 
return "nasoy" 

else if segType=["nu", "mu"] then 
return "nasu" 

else if segType=["nur", "mur"] then 
return "nasur" 

else if segType=["new", "mew"] then 
return "nasew" 

--liquid-vowel combinations 
else if segType=["wa", "la"] then 
return "lip" 

else if segType=["wah", "lah"] then 
return "liqah" 

else if segType=["way", "lay"] then 
return "liqay" 

else if segType=["we", "le"] then 
return "liqe" 

else if segType=["weye", "leye", "reye"] then 
return "liqeye" 

else if segType=["wee", "lee"] then 
return "ligee" 

else if segType=["wi", "li"] then 
return "liqi" 

else if segType=["wo", "lo"] then 
return "liqo" 
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else if segType=["woo", "loo"] then 
return "liqoo" 

else if segType=["wooh ", "looh"] then 
return "liqooh" 

else if segType=["wor", "lor"] then 
return "liqor" 

else if segType=["woh", "loh"] then 
return "liqoh" 

else if segType=["woy", "loy"] then 
return "liqoy" 

else if segType=["wu", " lu"] then 
return "liqu" 

else if segType=["wew" , 
"lew"] then 

return "liqew" 
else if seg ype= sa, ga , tha , va , fa 

, sa , za , ha , cha ] then 
return "frica" 

else if segType=["shah" , "dgah", "thah", "vah", "fah", "sah ", "zah", "hah", "chah"] then 
return "fricah" 

else if segType=["shay" , "dgay", "thay", "vay", "fay", "say", "zay", "hay", "chay"] then 
return "fricay" 

else if segType=["she", " dge", "the", "ve", "fe", "se", "ze", "he", "che"] then 
return "frice" 

else if 
segType=["sheye", "dgeye", "theye", "veye", "feye", "seye", "zeye", "heye", "cheye"] then 

return "friceye" 
else if segType=["shee" , "dgee", "thee", "vee", "fee", "see", "zee", "hee", "chee"] then 
return "fricee" 

else if segType=["shi", " dgi", "thi", "vi", "fi", "si", "zi", "hi", "chi"] then 
return "frici" 

else if segType=["sho", " dgo", "tho", "vo", "fo", "so", "zoll, "ho", "cho"] then 
return "frico" 

else if segType=["shoo" , "dgoo", "thoo", "voo", "foo", "soo", "zoo", "hoo", "choo"] then 
return "fricoo" 

else if 
segType=["shooh", "dgoo h", "thooh", "vooh", "fooh", "sooh", "zooh", "hooh", "chooh"] 
then 

return "fricooh" 
else if segType=["shor", "dgor", "thor", "vor", "for", "sor", "zor", "hor", "chor" ] then 
return "fricor" 

else if segType=["shoh" , "dgoh", "thoh", "voh", "foh", "soh", "zoh", "hoh", "choh"] then 

return "fricoh" 
else if segType=["shoy" , "dgoy", "thoy", "voy", "foy", "soy", "zoy", "hoy", "choy"] then 

return "fricoy" 
else if segType=["shu", "dgu", "thu", "vu", "fu", "su", "zu", "hu""chu"] then 

return "fricu" 
else if segType=["shew", "dgew", "thew", "vew", "few", "sew", "zew", "hew", "chew"] 

then 
return "fricew" 

else if segType=["ac", "ab", "ap", "at", "ad", "ag"] then 
return "astp" 
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else if segType=[" ahc", "ahb", "ahp", "aht", "ahd", "ahg"] then 
return "ahstp" 

else if segType=[" ayc", "ayb", "ayp", "ayt", "ayd", "ayg"] then 
return "aystp" 

else if segType=[" ec", "eb", "ep", "et", "ed", "eg"] then 
return "estp" 

else if segType=[ " eyec", "eyeb", "eyep", "eyet", "eyed", "eyeg"] then 
return "eyestp" 

else if segType=[" eec", "eeb", "eep", "eet", "eed", "eeg"] then 
return "eestp" 

else if segType=[" ic", "ib", "ip", "it", "id", "ig"] then 
return "istp" 

else if segType=[" oc", "ob", "op", "ot", "od", "og"] then 
return "ostp" 

else if segType=[" ooc", "oob", "oop", "oot", "ood", "oog"] then 
return "oostp" 

else if segType=[" orc", "orb", "orp", "oft", "ord", "org"] then 
return "orstp" 

else if segType=[" ohc", "ohb", "ohp", "oht", "ohd", "ohg"] then 
return "ohstp" 

else if segType=[" oyc", "oyb", "oyp" , "oyt", "oyd", "oyg"] then 
return "oystp" 

else if segType=[" oohc", "oohb", "oohp", "ooht", "oohd", "oohg"] then 
return "oohstp" 

else if segType=[" uc", "ub", "up", "ut", "ud", "ug"] then 
return "ustp" 

else if segType=[" ewc", "ewb", "ewp", "ewt", "ewd", "ewg"] then 
return "ewstp" 

--vowel-nasal combinations 
else if segType=["an", "ang", "am"] then 
return "anas" 

else if segType=["ahn" 
return "ahnas" 

, "ahm"] then 

else if segType=["ayn" 
return "aynas" 

, "aym"] then 

else if segType=["en", " 
return "enas" 

eng", "em"] then 

else if segType=["een" 
return "eenas" 

, "eem"] then 

else if segType=["eyen 
return "eyenas" 

", "eyem"] then 

else if segType=["in", " 
return "inas" 

ing", "im"] then 

else if segType=["on", " 
return "onas" 

ong", "om"] then 

else if segType=["oon" 
return "oonas" 

, "oom"] then 

else if segType=["oohn", "oohm"] then 
return "oohnas" 
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else if segType=[" 
return "ornas" 

orn", "orm"] then 

else if segType=[" 
return "ohnas" 

ohn", "ohm"] then 

else if segType=[" 
return "oynas" 

oyn", "oym"] then 

else if segType=[" 
return "unas" 

un", "ung", "um"] then 

else if segType=[" 
return "urnas" 

urn", "urm"] then 

else if segType=[" 
return "ewnas" 

ewn", "ewm"] then 

--vowel-liquid combinations 
else if segType=["aw", "al"] then 
return "aliq" 

else if segType=["ahw", "ahl"] then 
return "ahliq" 

else if segType=["ayw", "ayl "] then 
return "ayliq" 

else if segType=["ew", "el"] then 
return "eliq" 

else if segType=["eyew", "eye! "] then 
return "eyeliq" 

else if segType=["eew", "eel"] then 
return "eeliq" 

else if segType=["iw", "il"] then 
return "iliq" 

else if segType=["ow", "ol"] then 
return "oliq" 

else if segType=["oow", "ool"] then 
return "ooliq" 

else if segType=["oohw", "oohl"] then 
return "oohliq" 

else if segType=["orw", "orl"] then 
return "orliq" 

else if segType=["ohw", "ohl"] then 
return "ohliq" 

else if segType=["oyw", "oyl"] then 
return "oyliq" 

else if segType=["uw", "ul"] then 
return "uliq" 

else if segType=["eww", "ewl"] then 
return "ewliq" 

--vowel-fricative combinations 
else if segType=["ash", "adg", "ath", "av", "af", "as", "az", "ah", "ach"] then 
return "afric" 

else if segType=["ahsh", "ahdg", "ahth", "ahv", "ahf", "ahs", "ahz", "ahh", "ahch"I then 
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return "ahfric" 
else if segType=["aysh", "aydg", "ayth", "ayv", "ayf", "ays", "ayz", "ayh", "aych"] then 
return "ayfric" 

else if segType=["esh", "edg", "eth", "ev", "ef", "es", "ez", "eh", "ech"] then 
return "efric" 

else if 
segType=["eyesh", "eyedg", "eyeth", "eyev", "eyef", "eyes", "eyez", "eyeh", "eyech"] then 

return "eyefric" 
else if segType=["eesh", "eedg", "eeth", "eev", "eef", "ees", "eez", "eeh", "eech"] then 
return "eefric" 

else if segType=["ish", "idg", "ith", "iv", "if", "is", "iz" "ih", "ich"] then 
return "ifric" 

else if segType=["osh", "odg", "oth", "ov", "of", "os", "oz", "oh", "och"] then 
return "ofric" 

else if segType=["oosh", "oodg", "ooth", "oov", "oof", "oos", "ooz", "ooh", "ooch "] then 
return "oofric" 

else if 
segType=["oohsh", "oohdg", "oohth", "oohv", "oohf", "oohs", "oohz", "oohh", "oohch"] 
then 

return "oohfric" 
else if segType=["orsh", "ordg", "orth", "orv", "orf", "ors", "orz", "orh", "orch"] then 
return "orfric" 

else if segType=["ohsh", "ohdg", "ohth", "ohv", "ohf", "ohs", "ohz", "ohh", "ohch"] then 
return "ohfric" 

else if segType=["oysh", "oydg", "oyth", "oyv", "oyf", "oys", "oyz", "oyh", "oych"] then 
return "oyfric" 

else if segType=["ush", "udg", "uth", "uv", "uf", "us", "uz", "uh", "uch"] then 
return "ufric" 

else if segType=["ewsh", "ewdg", "ewth", "ewv", "ewf", "ews", "ewz", "ewh", "ewch"] 
then 

return "ewfric" 
end if 

end 
--end of section 

--set up the Timing Database 
on setListUp 
global temp, times 
set temp=[] 
set times=[] 

--NB plos=plosive 

--temp contains the list of segmented words 
--times contains the corresponding durations 

nas=nasal fric=fricative stp=stop liq=liquid 

append temp, ["liqu", "unas "] 
append times, [ 188.005,348.186] 
append temp, ["plosr", "ray", "ayt"] 
append times, [46.168,123.129,346.485] 
append temp, ["friceye", "eyen", "nd"] 
append times, [ 169.456,345.737,266.190] 
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append temp, ["fricur", "urs", "st"] 
append times, [465.510,0,260.136] 
append temp, ["frica", "at"] 
append times, [ 128.526,295.986] 
append temp, ["nasa", "an"] 
append times, [ 155.918,330.998] 

.. append temp, [.. nase.., en.., .. nee.. ] 
append times, [ 164.263,128.277,380.000] 
append temp, ["nasu", "us", "st"] 
append times, [168.889,209.887,380.816] 
append temp, ["plosa", "an"] 
append times, [90.385,330.998] 
append temp, ["ligo", "ot"] 
append times, [ 195.193,484.036] 
append temp, ["ligoo", "ood"] 
append times, [234.331,319.977] 
append temp, ["plosoo", "ood"] 
append times, [ 109.637,3 19.977] 
append temp, ["liqu", "un"] 
append times, [ 188.005,348.186] 
append temp, ["ligeye", "eyec"] 
append times, [ 131.179,437.029] 
append temp, ["ligi", "ich"] 
append times, [ 170.113,374.989] 
append temp, ["plosu", "ut"] 
append times, [53.968,387.330] 
append temp, ["plosi", "iv"] 
append times, [42.268,389.977] 
append temp, ["plosay"] 
append times, [273.197] 
append temp, ["ligi", "il"] 
append times, [224.558,249.977] 
append temp, ["lige", "en"] 
append times, [ 154.739,360.000] 
append temp, ["nasay", "ayc"] 
append times, [ 143.039,330.000] 
append temp, ["nasor"] 
append times, [439.977] 
append temp, ["frice", "e-r"] 
append times, [ 127.007,294.082] 
append temp, ["ploseye", "eyem"] 
append times, [86.848,548.776] 
append temp, ["plosoh"] 
append times, [339.977] 
append temp, ["nasoh"] 
append times, [450.000] 
append temp, ["ustp"] 
append times, [423.15] 
append temp, ["fricro", loom"] 
append times, [ 174.286,92.426,400.000] 
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append temp, ["frica", "av"] 
append times, [68.662,380.00] 
append temp, ["frici", "ing"] 
append times, [ 123.016,339.569] 
append temp, ["frice", "e-r", "ree"] 
append times, [ 150.408,166.100,304.036] 
append temp, ["plosi", "ic", "co", "oz"] 
append times, [37.370,120.884,88.526,419.977] 
append temp, ["nasah", "ahc"] 
append times, [ 136.19,474.989] 
append temp, ["frica", "an", "nd"] 
append times, [76.054,169.229,266.190] 
append temp, ["plosow", "own"] 
append times, [42.268,470.431 ] 
append temp, ["nase", "ev", "vu"] 
append times, [289.864,0,320.181] 
append temp, ["ligah", "ahs", "st"] 
append times, [ 122.245,268.299,273.537 ] 
append temp, ["ustp", "bow", "owt"] 
append times, [230.340,0,480] 
append temp, ["fricoh"] 
append times, [550.454] 
append temp, ["liqu", "un", "nt"] 
append times, [326.168,0,500.000] 
append temp, ["plosl", "lay", "ays "] 
append times, [47.823,111.519,363.7411 
append temp, ["nasu", "um", "mb", "bu"] 
append times, [ 142.540,299.546,0,292.494] 
append temp, ["fricee", "eel"] 
append times, [ 144.195,279.977] 
append temp, ["ligi", "ith", "thow", "owt"] 
append times, [ 166.327,245.850,0,480.0] 
append temp, ["plosi", "ig", "gi", "in"] 
append times, [ 122.902,0,60.000,287.279] 

--entries containing `wild-card' segments 
append temp, ["*e", "e-r", "ree"] 
append times, [ 150.408,166.100,304.036] 
append temp, ["*eye", "eyem"] 
append times, [86.848,548.776] 
append temp, ["*i", "ith"] 
append times, [ 177.687,329.977] 
append temp, ["* a", "av"] 
append times, [68.662,380.00] 
append temp, ["*o", "ot"] 
append times, [ 141.791,484.036] 
append temp, ["* a", "at"] 
append times, [ 128.526,295.986] 
append temp, ["*a", "a* "] 
append times, [ 128.526,295.986] 
append temp, ["*i", "is"] 
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append times, [ 158.730,402.154] 
append temp, ["*ro", "om"] 
append times, [ 174.286,92.426,400.000] 
append temp, ["*u", "ut"] 
append times, [53.968,387.330] 
append temp, ["*i", "ich"] 
append times, [ 170.113,374.989] 
append temp, ["*oo", "ood"] 
append times, [234.331,319.977] 
append temp, ["*u", "un"] 
append times, [ 188.005,348.186] 
append temp, [" *i", "il"] 
append times, [224.558,249.977] 
append temp, ["*e", "en"] 
append times, [ 154.739,360.000] 
append temp, ["* ay", "ayc"] 
append times, [ 143.039,330.000] 
append temp, ["*e", "e-r"] 
append times, [ 127.007,294.082] 
append temp, ["*a", "an"] 
append times, [90.385,330.998] 
append temp, ["* o", "ot"] 
append times, [ 195.193,484.036] 
append temp, ["* i", "ic", "co", "oz"] 
append times, [37.370,120.884,88.526,419.977] 
append temp, ["*ow", "own"] 
append times, [42.268,470.431 ] 
append temp, ["*e", "ev", "vu"] 
append times, [289.864,0,320.181] 
append temp, ["*ah", "ahs", "st"] 
append times, [ 122.245,268.299,273.537 ] 
append temp, ["*b", "bow", "owt"] 
append times, [230.340,0,480] 
append temp, ["*oh"] 
append times, [550.454] 
append temp, [" *u", "un", "nt"] 
append times, [326.168,0,500.000] 
append temp, ["*1", "lay", "ays"] 
append times, [47.823,111.519,363.741] 
append temp, [" *u", "um", "mb", "bu"] 
append times, [ 142.540,299.546,0,292.494] 
append temp, ["*ee", "eel"] 
append times, [ 144.195,279.977] 
append temp, [" *i", "ith", "thow", "owt"] 
append times, [ 166.327,245.850,0,480.0] 
append temp, ["*i", "ig", "gi", "in-"] 
append times, [ 122.902,0,60.000,287.279] 
append temp, ["*ah", "ahc"] 
append times, [136.19,474.989] 
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-- "'pure" entries containing no re-categorised segments 
append temp, ["in"] 

append times, [282.063] 
append temp, ["hee"] 
append times, [290.000] 
append temp, ["tooh"] 
append times, [352.449] 
append temp, ["ha", "av"] 
append times, [68.662,380.00] 
append temp, ["it"] 
append times, [350.000] 
append temp, ["eye"] 
append times, [368.322] 
append temp, [ "thay"] 
append times, [520.227] 
append temp, ["wi", "ith"] 
append times, [ 177.687,329.977] 
append temp, ["no", "ot"] 
append times, [ 141.791,484.036] 
append temp, ["tha", "at"] 
append times, [ 128.526,295.986] 
append temp, ["on"] 
append times, [379.977] 
append temp, ["shee"] 
append times, [420.658] 
append temp, ["az"] 
append times, [388.367] 
append temp, ["at"] 
append times, [295.986] 
append temp, ["beye"] 
append times, [380.000] 
append temp, ["thi", "is"] 
append times, [ 158.730,402.154] 
append temp, ["wee"] 
append times, [435.193] 
append temp, ["yooh"] 
append times, [498.617] 
append temp, ["fro", "om"] 
append times, [ 174.286,92.426,400.000] 
append temp, ["dooh"] 
append times, [330.000] 
append temp, ["bu", "ut"] 
append times, [53.968,387.330] 
append temp, [ "or"] 
append times, [359.048] 
append temp, ["an"] 
append times, [330.998] 
append temp, ["wi", "ich"] 
append times, [ 170.113,374.989] 
append temp, ["woo", "ood"] 
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append times, [234.331,319.977] 
append temp, ["say"] 
append times, [430.227] 
append temp, ["orl"] 
append times, [404.626] 
append temp, ["wu", "un"] 
append times, [ 188.005,348.186] 
append temp, ["wi", "il"] 
append times, [224.558,249.977] 
append temp, ["hooh"] 
append times, [395.351 ] 
append temp, ["tha", "at"] 
append times, [ 161.497,295.986] 
append temp, ["we", "en"] 
append times, [ 154.739,360.000] 
append temp, ["may", "ayc"] 
append times, [ 143.039,330.000] 
append temp, ["the", "e-r"] 

append times, [ 127.007,294.082] 
append temp, ["if"] 
append times, [351.882] 
append temp, ["ca", "an"] 
append times, [90.385,330.998] 
append temp, ["ma", "an"] 
append times, [155.918,330.998] 
append temp, ["wo", "ot"] 
append times, [ 195.193,484.03 6] 
append temp, ["teye", "eyem"] 
append times, [86.848,548.776] 
append temp, ["goh"] 
append times, [339.977] 
append temp, ["noh"] 
append times, [450.000] 
append temp, ["in", "nt", "tooh"] 
append times, [281.587,0,304.286] 
append temp, ["coo", "ood"] 
append times, [ 109.637,319.977] 
append temp, [ "up"] 
append times, [423.152] 
append temp, ["uth", "thu"] 
append times, [ 166.440,451.474] 
append temp, ["tha", "at"] 
append times, [ 137.868,295.986] 
append temp, ["yee", "eeu"] 
append times, [146.553,410.000] 
append temp, ["owt"J 
append times, [480.000] 
append temp, ["new"] 
append times, [400.000] 
append temp, ["su", "um"J 
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append times, [ 156.372,282.902] 
append temp, ["tay", "ayc"] 
append times, [63.311,330.000] 
append temp, ["thee", "eez"] 
append times, [145.306,380.000] 
append temp, ["cu", "um"] 
append times, [ 103.220,322.585] 
append temp, ["see"] 
append times, [439.977] 
append temp, ["ge", "et"] 
append times, [56.780,340.000] 
append temp, ["noh"] 
append times, [450] 
append temp, ["st", "tay", "ayt"] 
append times, [264.263,0,346.485] 
append temp, ["tooh"] 
append times, [352.449] 
append temp, ["ohn", "nl", "lee"] 
append times, [343.810,0,270.839] 
append temp, ["the", "en"] 
append times, [ 173.129,360.000] 
append temp, [ "en", "nee"] 
append times, [83.152,380.000] 
append temp, ["now"] 
append times, [430.000] 
append temp, ["may"] 
append times, [ 367.982] 
append temp, ["tha", "an"] 
append times, [168.073,330.998] 
append temp, ["gi", "iv"] 
append times, [42.268,389.977] 
append temp, ["ub", "bow", "owt"] 
append times, [ 168.299,49.592,480.000] 
append temp, ["az"] 
append times, [388.367] 
append temp, ["day"] 
append times, [273.197] 
append temp, ["orl", "ls", "soh"] 
append times, [268.980,0,563.968] 
append temp, ["fur", "urs", "st"] 
append times, [465.510,0,260.136] 
append temp, ["feye", "eyen", "nd"] 
append times, [ 169.456,345.737,266.190] 
append temp, ["fur", "urs", "st"] 
append times, [465.510,0,260.136] 
append temp, ["way"] 
append times, [475.125] 
append temp, [ "mu", "us", "st"] 
append times, [168.889,209.887,380.816] 
append temp, ["yooh", "oohz"] 
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append times, [ 197.755,469.977] 
append temp, ["mor"] 
append times, [439.977] 
append temp, ["leye", "eyec"] 
append times, [ 131.179,437.029] 
append temp, ["eev", "vu", "un"] 
append times, [233.878,145.941,348.186] 
append temp, ["me", "en", "nee"] 
append times, [ 164.263,128.277,380.000] 
append temp, ["eech"] 
append times, [390] 
append temp, ["thoh", "ohz"] 
append times, [224.649,400] 
append temp, ["mi", "is ", "st", "tu"] 
append times, [ 164.444,349.297,0,281.043] 
append temp, ["ohv", "vu"] 
append times, [275.646,294.875] 
append temp, ["wur", "url", "ld"] 
append times, [ 195.556,263.220,283.696] 
append temp, ["see", "eem"] 
append times, [ 187.143,379.977] 
append temp, ["dgu", "us", "st"] 
append times, [ 121.224,227.778,380.8161 
append temp, ["leye", "eyef" ] 
append times, [ 123.424,479.524] 
append temp, ["bee", "eec", "cu", "um"] 
append times, [ 163.946,0,100.726,330.023] 
append temp, ["te", "el "] 
append times, [ 117.778,253.243] 
append temp, ["hee", "eeu"] 
append times, [73.129,410.000] 
append temp, ["dow", "own"] 
append times, [49.025,474.739] 
append temp, [ "ba", "ac"] 
append times, [40,300] 
append temp, ["boh", "ohth"] 
append times, [35.125,439.977] 
append temp, ["goo", "ood"] 
append times, [45.329,319.977] 
append temp, [ "bi", "it", "tw", "wee", "een"] 
append times, [45.261,199.161,90.476,102.358,342.086] 
append temp, ["st", "ti", "il"] 
append times, [231.701,95.828,249.977] 
append temp, [ "ha", "an", "nd"] 
append times, [76.054,169.229,266.190] 
append temp, [ "bi", "ic", "co", "oz"] 
append times, [37.370,120.884,88.526,419.9771 
append temp, ["ve", "e-r", "ree"] 
append times, [ 150.408,166.100,304.036] 
append temp, ["thi", "ing"] 
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append times, [ 123.016,339.569] 
append temp, ["ahf", "ft", "tu"] 
append times, [280.635,225.215,296.508] 
append temp, ["dow", "own"] 
append times, [42.268,470.431 ] 
append temp, ["ne", "ev", "vu"] 
append times, [289.864,0,320.181 ] 
append temp, ["un", "nu", "uth", "thu"] 
append times, [ 189.796,260.816,0,451.474] 
append temp, ["un", "nd", "du"] 
append times, [331.020,0,300] 
append temp, ["sc", "cooh", "oohl"] 
append times, [ 192.676,0,320] 
append temp, ["cay", "aym"] 
append times, [ 114.082,427.483] 
append temp, ["wur", "urc "] 
append times, [ 188.027,399.977] 
append temp, ["sl", "loh"] 
append times, [ 133.832,410] 
append temp, ["ohl", "ld"] 
append times, [ 165.669,283.696] 
append temp ["gr" "ray" "ayt"] 
append times, [46.168,123.129,346.485] 
append temp, [ "ha", "av"] 
append times, [75.692,373.039] 
append temp, ["moh", "ohs", "st"] 
append times, [334.603,0,380.816] 
append temp, ["weye", "eyel"] 
append times, [ 134.354,511.111 ] 
append temp, [ "pah", "aht"] 
append times, [83.832,358.844] 
append temp, ["thr", "ree"] 
append times, [ 135.737,419.977] 
append temp, ["ta", "ad"] 
append times, [90.385,290091 ] 
append temp, ["few"] 
append times, [479.977] 
append temp, [ "cheye", "eyel", "ld"] 
append times, [ 125.215,283.628,283.696] 
append temp, ["wu", "un"] 
append times, [ 163.107,348.186] 
append temp, ["bi", "ig", "gi", "in"] 
append times, [ 122.902,0,60.000,287.279] 
append temp , ["wi", "ith", "thow", "owt"] 
append times, [ 166.327,245.850,0,480.0] 
append temp, ["fee", "eel"] 
append times, [ 144.195,279.977] 
append temp, ["nu", "um", "mb", "bu"] 
append times, [ 142.540,299.546,0,292.494] 
append temp, [ "pl ", "lay", "ays "] 
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append times, [47.823,111.519,363.741] 
append temp, ["wu", "un", "nt"] 
append times, [326.168,0,500.000] 
append temp, ["soh"] 
append times, [550.454] 
append temp, ["ub", "bow", "owt"] 
append times, [230.340,0,480] 
append temp, ["lah", "ahs", "st"] 
append times, [122.245,268.299,273.537] 
append temp, ["dee", "ori", "ing"] 
append times, [81.678,313.537,339.569] 
append temp, ["ahs", "sc"] 
append times, [236.621,321.882] 

end 
--finish setting up Timing Database 

--set up various speech segment categories 
on setTypesUp 
--plos=plosive nas=nasal fric=fricative stp=stop 
global plos, liq, nas, fric, stp, vowels, liqMenu, fricMenu, plosMenu, nasMenu 

-plosive-vowel combinations 
set plosa=["ca", "ba", "pa", "ta", "da", "ga"] 
set plosah=["cah", "bah", "pah" , "tah", "dah", "gah"] 
set plosay=["cay", "bay", "pay" , "tay", "day", "gay"] 
set plose=["ce", "be", "pe", "te", "de", "ge"] 
set ploseye=["ceye", "beye", "peye", "teye", " deye", "geye"] 
set plosee=["cee", "bee", "pee", "tee", "dee", " gee"] 
set plosi=[ "ci", "bi", "pi", "ti", "di", "gi"] 
set ploso=["co", "bo", "po", "to", "do", "go"] 
set plosoo=["coo", "boo", "poo", "too", "doo", "goo"] 
set plosor=["cor", "bor", "por", "tor", "dor", "gor"] 
set plosoh=["coh", "boh", "poh", "toh", "doh", "goh"] 
set plosoy=["coy", "boy", "poy", "toy", "doy", "goy"] 
set plosooh=["cooh", "booh", "pooh", "tooh", "dooh", "gooh"] 
set plosu=["cu", "bu", "pu", "tu", "du", "gu"] 
set plosew=["cew", "bew", "pew", "tew", "dew", "gew "I 

--nasal-vowel combinations 
set nasa=["na", "ma"] 
set nasah=["nah", "mah"] 
set nasay=["nay", "may"] 
set nase=["ne", "me"] 
set nasee=["nee", "mee"] 
set naseye=[ "neye", "meye"] 
set nasi=["ni", "mi"] 
set naso=["no", "mo"] 
set nasoo=["noo", "moo"] 
set nasooh=["nooh", "mooh"] 
set nasor= ["nor", "mor"] 
set nasoh=["noh", "moh"] 
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set nasoy=[ "noy", "moy"] 
set nasu=["nu", "mu"] 
set nasur=["nur", "mur"] 
set nasew=["new", "mew"] 

--liquid-vowel combinations 
set liga=["wa", "la"] 
set liqah=["wah", "lah"] 
set liqay=["way", "lay"] 
set liqe=["we", "le"] 
set ligeye= weye , eye , reye ] 
set liqee=["wee", "lee"] 
set liqi=["wi", "li"] 
set liqo=["wo", "lo"] 
set liqoo=["woo", "loo"] 
set liqooh=["wooh", "looh"] 
set liqor=["wor", "lor"] 
set liqoh=["woh", "loh"] 
set liqoy=["woy", "loy"] 
set liqu=["wu", "lu"] 

set liqew=["wew", "lew"] 

--fricative-vowel combinations 
set frica=["sha", "dga", "tha", "va", "fa", " sa", "za", "ha", "cha"] 
set fricah=["shah", "dgah", "than", "vah" , "fah", "sah", "zah", "hah", "chah"] 
set fricay=["shay", "dgay"thay", "vay "fay", "say", "zay", "hay", "chay"] 
set frice=["she", "dge", "the", I've", "fe", " sell , "ze", "he", "che"] 
set friceye=["sheye", "dgeye", "theye", " veye", "feye", "seye", "zeye", "hege", "cheye"] 
set fricee=["shee", "dgee", "thee", "vee", "fee", "see", "zee", "hee", "chee"] 
set frici=["shi", "dgi", "thi", "vi", ''fi", "si" , "Ziff, "hi", "chi "I 
set frico=["sho", "dgo", "tho", "vo", "fo", "so", "zo", "ho", "cho"] 
set fricoo=["shoo", "dgoo", "thoo", "voo ", "foo", "soo", "zoo", "hoo", "choo"] 
set fricooh=["shooh", "dgooh", "thooh", "vooh", "fooh", "sooh", "zooh", "hooh", "chooh"] 
set fricor=["shor", "dgor", "thor", "vor", " for", "sor", "zor", "hor", "chor"] 
set fricoh= ["shoh", "dgoh", "thoh", "voh", "foh", "soh", "zoh", "hoh", "choh"] 
set fricoy=["shoy", "dgoy", "thoy", "voy", "foy", "soy", "zoy", "hoy", "choy"] 
set fricu=["shu", "dgu", "thu", "vu", ''fu'', "su", "zu", "hu", "chu"] 
set fricew=["shew", "dgew", "thew", "ve w", "few", "sew", "zew", "hew", "chew"] 

--consonant clusters (under construction) 
set plosl=["cl", "bl", "pl", "tl", "dl", "gl"] 
set plosn= ["cn", "bn", "pn", "tn", "dn", "gn"] 
set plosr=["cr", "br", "pr", "tr", "dr", "gr"] 
set ploss=["cs", "bs", "ps", "ts", "ds", "gs"] 
set fricn=["shn", "dgn", "thn", "vn", "fn", "sn", "zn", "chn"] 

--vowel-stop combinations 
set astp=["ac", "ab", "ap", "at", "ad", "ag"] 
set ahstp= ["ahc", �ahb", "ahp", "aht", "ahd", "ahg 

set aystp=["ayc", "ayb", "aypto, itaytit, "ayd", "aygoi] 

set estp=[ "ec", "eb", "ep", "et", "ed", "eg"] 
set eyestp=["eyec", "eyeb", "eyep", "eyet", "eyed", "eyeg"] 
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set eestp=["eec", "eeb", "eep", "eet", "eed", "eeg"] 
set istp=["ic", "ib", "ip", "it", "id", "ig"] 
set ostp=[ "oc", "ob", "op", "ot", "od", "og "] 
set oostp=["ooc" "oob" "oop" "oot" 

, "ood" "" , oog ] 
set orstp=["orc", "orb", "orp", "ort", "ord", "org"] 
set ohstp=["ohc", "ohb", "ohp", "oht", "ohd", "ohg"] 
set oystp=["oyc", "oyb", "oyp", "oyt", "oyd", "oyg"] 
set oohstp=["oohc" "oohb" "oohp" "ooht", "oohd", " " oohg ] 
set ustp=["uc", "ub", "up", "ut", "ud", 'lug"] 
set ewstp=[ "ewc", "ewb", "ewp", "ewt", "ewd", "ewg"] 

--vowel nasals 
set anas=[11an11,11ang11, 

IIam11] 

set ahnas=["ahn", "ahm"I 
set aynas=["ayn", "aym" 
set enas=[11en11,11eng11,11em11] 
set eenas=["een11,11eem11J 
set eyenas=["eyen", "eyem"] 

set inas=["in", "ing", "irn"J 
set onas=["on", "ong", "om"] 
set oonas=["oon", "oom"J 
set oohnas=["oohn", "oohm"I 
set ornas=["orn", "orrn"] 
set ohnas=["ohne", "ohm"] 
set oynas=["oyn", 

"oym"J 

set unas=["un", 
"ung", "um" 

set urnas=["urn", "urrn"] 
set ewnas=["ewn", "ewm"] 

--vowel liquids 
set aliq=["aw", "al"] 
set ahliq=["ahw", "ahl"] 
set ayliq=["ayw", "ayl "] 
set eliq=["ew", "el "] 
set eyeliq=["eyew", "eyel"] 
set eeliq=["eew ", "eel "] 
set iliq=["iw", "il"] 
set oliq=["ow", "ol "] 
set ooliq=["oow", "ool"] 
set oohliq=["oohw", "oohl"] 
set orliq=["orw", "orl"] 
set ohliq=["ohw", "ohl "] 
set oyliq=["oyw", "oyl "] 
set uliq=["uw", "ul"] 
set ewliq=["eww", "ewl"] 

--vowel fricatives 
set afric=["ash", "adg", "ath", "av",, ' of", "as", "az", "ah'", "ach"] 

set ahfric=["ahsh", "ahdg", "ahth", "ahv", "ahf", "ahs", "ahz",, 'ahh", "ahch"] 

set aYfric=["aYsh", "aYdg", "aYth", "aYv", "aYf", "aYs", "aYz", "ayh", "aych"] 
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set efric =["esh", "edg", "eth' , 
"ev", "ef", "es'' 

, ''ez'', "eh", "ech"] 
set eYefric=["eYesh", "eYedg", "eYeth", "eYev", "eYef" "eyes" "eyez" "eyeh", "eyech"] 
set eefric=["eesh", "eedg", "eeth", "eev", "eef ', "ees", "eez", "eeh", "eech"] 
set ifric=["ish", "idg", "ith", "iv", "if", "is", "iz", "ih", "ich"] 
set ofric=["osh", "odg", "oth", "ov", ''of'', "os", "oz", "oh", "och "] 
set oofric=["oosh", "oodg", "ooth", "oov", "oof", "oos", "ooz", "ooh", "ooch"] 
set oohfric=["oohsh", "oohdg", "oohth", "oohv", "oohf", "oohs", "oohz", "oohh", "oohch"] 
set orfric=[ ors , or g, orth , orv , orf , ors , orz , orh , orch ] 
set ohfric=["ohsh", "ohdg", "ohth", "ohv", "ohf", "ohs", "ohz", "ohh", "ohch "] 
set oyfric=["oysh", "oydg", "oyth", "oyv", "oyf", "oys", "oyz", "oyh", "oych"] 
set ufric=[ "ush", "udg", "uth", "uv", "uf", "us", "uz", "uh", "uch"] 
set ew ric= ews , ewdg , ewth , ewv , ewf , ews , ewz , ewh , ewch ] 

set 
plosMenu=[plosa, plosah, plosay, plose, ploseye, plosee, plosi, ploso, plosoo, plosor, plosoh 

, plosoy, plosu, plosew, plosooh, plosl, plosn, plosr, ploss, astp, ahstp, aystp, estp, eyestp, eestp 

, 
istp, ostp, oostp, orstp, ohstp, oystp, ustp, ewstp, oohstp] 

set 
ligMenu=[liga, ligah, ligay, lige, ligeye, liqee, liqi, liqo, liqoo, liqooh, liqor, liqoh, liqoy, liqu, 
ligew, aliq, ahliq, ayliq, eliq, eyeliq, eeliq, iliq, oliq, ooliq, oohliq, orliq, ohliq, oyliq, uliq, 
ewliq] 

set 
fricMenu=[frica, fricah, fricay, frice, friceye, fricee, frici, fricn, frico, fricoo, fricooh, fricor, 
fricoh, fricu, fricew, afric, ahfric, ayfric, efric, eyefric, eefric, ifric, ofric, oofric, oohfric, orfric 

, ohfric, ufric, ewfric] 

set 
nasMenu=[nasa, nasah, nasay, nase, naseye, nasee, nasi, naso, nasoo, nasooh, nasor, nasoh, 
nasoy, nasu, nasur, nasew, anas, ahnas, aynas, enas, eyenas, eenas, inas, onas, oonas, oohnas, 
ornas, ohnas, oynas, unas, urnas, ewnas] 
end 
--end of section 
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14. Appendix G- Letter-To-Sound Rules 

This section contains the Letter-to-Sound rules used in the Text-to-phoneme 
conversion program. NB. These rules are for American English. 

/* *******xý*** English. c ********** */ 

1* 

** 
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** 

** 

** 

English to Phoneme rules. 

Derived from: 

AUTOMATIC TRANSLATION OF ENGLISH TEXT TO PHONETICS 
BY MEANS OF LETTER-TO-SOUND RULES 

NRL Report 7948 

January 21st, 1976 
Naval Research Laboratory, Washington, D. C. 

Published by the National Technical Information Service as 
document "AD/A021 929". 

The Phoneme codes: 

IY bEEt IH bIt 
EY gAte EH gEt 
AE fAt AA fAther 
AO IAWn OW lone 
UH füll UW fOOl 
ER mURdER AX 
AH bUt AY hIde 
AW hOW OY tOY 

p Pack b Back 
t Time d Dime 
k Coat g Goat 
f Fault v Vault 
TH eTHer DH eiTHer 
s Sue z Zoo 
SH leaSH ZH leiSure 
HH How m sum 
n suN NG suNG 
1 Laugh w Wear 

y Young r Rate 
CH CHar j Jar 

About 

175 



** WH WHere 
** 
** 
** Rules are made up of four parts: 
** 
** The left context. 
** The text to match. 
** The right context. 
** The phonemes to substitute for the matched text. 
** 
** Procedure: 
** 
** Seperate each block of letters (apostrophes included) 
** and add a space on each side. For each unmatched 
** letter in the word, look through the rules where the 
** text to match starts with the letter in the word. If 
** the text to match is found and the right and left 
** context patterns also match, output the phonemes for 
** that rule and skip to the next unmatched letter. 
** 
** 
** Special Context Symbols: 
** 
**# One or more vowels 
** Zero or more consonants 
** A One consonant. 
** One of B, D, V, G, J, L, M, N, R, W or Z (voiced 
** consonants) 
** % One of ER, E, ES, ED, ING, ELY (a suffix) 
** (Found in right context only) 
** + One of E, I or Y (a "front" vowel) 
** 
*ý 

/* Context definitions */ 
static char Anything[] /* No context requirement 
static char Nothing[] _/ Context is beginning or end of word */ 

/* Phoneme definitions */ 
static char Pause[] _ /* Short silence 
static char Silent[] - ""; /* No phonemes */ 

#define LEFT_PART 0 
#define MATCH-PART 
#define RIGHT-PART 2 
#define OUT PART 3 

typedef char *Rule[4]; /* Rule is an array of 4 character pointers */ 
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/*0 = Punctuation 
/* 
** LEF17-PART MATCH- PART RIGHT 

-PART 
*1 
static Rule punct_rules [] _ 

{ 
{ Anything, Anything, Pause 
{Anything, Anything, Silent 
{ 11.11 "'S", Anything, "Z" 

9 { "#:. E" it 'Sit I 
Anything, "z" 

, { 11#11 ß�S11' Anything, ''7fl 

' 

{ Anything, ""' Anything, Silent 
{ Anything, Anything, Pause 
{Anything, ". " Anything, Pause 
{ Anything, "? ", Anything, Pause 
{ Anything, "! ", Anything, Pause 
{ Anything, 0, Anything, Silent 

** LEFT-PART MATCH 
-PART 

RIGHT-PART 

static Rule A_rules [] _ 
{ 
{ Anything, "A", Nothing, "AX" 

{ Nothing, "ARE", Nothing, "AAr" } 

Nothing, { .. AR", "0", "AXr" } 

{Anything, "AR", 11#11, "EHr" 

{A �AS� 11#11 �EYs" } 
, { Anything, "A", �WA" ,. } ' 

{ Anything, "AW", Anything, "AO" ' " { 11: 11 "ANY" Anything, }, "EHnIY 
11 {Anything, "A", .. A+#� 11 "EY" }, 

" { �##:,, "ALLY" , 
Anything, }, "AX1IY 

, 
{Nothing, "AI-", 1111 # "AXl" 

" {Anything, "AGAIN", Anything, }, "AXgEHn 

{ �#:,, "AG", "E,., IHj 
, 

{Anything, "A", .. A+: #", } �ýll ' 
E' .. +� "EY } 

{Anything, "A", .. A%II "EY" }' 
" { Nothing, "ARR", Anything, "AXr 

{Anything, "ARR", Anything, ' 
" 

{ 11: 11 "AR" Nothing, "AAr 
, 

{ Anything, 
, 

"AR", Nothing, "ER" }' 
" 

{ Anything, "AR", Anything, �fir } 
' { Anything, "AIR", Anything, } VIEW , 

11 
{ Anything, "AI", Anything, } �EY , 

" 
{Anything, "AY", Anything, } "EY , 

" 
{ Anything, "AU", Anything, }' "AO 

OUT_PART 

OUT PART 
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Nothing, 
{ "#: ", "ALS", Nothing, "AXlz" 
{Anything, "ALK", Anything, "AOk" 
{Anything, "AL", "A", "AOl" 
11: 11 , 

"ABLE", Anything, "EYbAXI" }, 
{ Anything, "ABLE", Anything, "AXbAXI" }, 
{ Anything, "ANG", "+", "EYnj" }, 
{Anything, "A", Anything, "AE" 
{Anything, 0, Anything, Silent 
}; 

** LEFT PART MATCH_PART RIGHT_PART 

static Rule B_rules[] _ 
{ 
{Nothing, 
{ Anything, 
{Nothing, 
{Nothing, 
{ Anything, 
{ Anything, 
{ Anything, 
}; 

�BE" �A#1,, �bam� }, 
, "BEING", Anything, "bIYIHNG" 

"BOTH", Nothing, "bOWTH" }, 
"BUS % "#" "bil 

lz" 

"BUIL", 
, 

Anything, "blHl" 
"B", Anything, "b" 
0, Anything, Silent }, 

** LEFT PART MATCH_PART RIGHT_PART 
*1 
static Rule C_rules [] _ 

{ 
[Nothing, 
{ "^E" 
{ Anything, 
{" S" 
{Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{Anything, 
{ Anything, 
{ Anything, 

�CH� �A� �k� 
"CH" Anything, "k" 

, 
"CH" Anything, "CH" 

, 
1 

�CI� �A�% �SH� } 
9 �cl, 

1 

. �O�' �SH� } 

' 

�CI� �EN,,, �SH� } 
9 

�c� �+� S} 
"CK" Anything, "k" }, 

�COM" �%,,, � rn" 
, 

', C,, Anything, "k" 
0, Anything, Silent }, 

** LEFT_PART MATCH_PART 
*1 

RIGHT_PART 

OUT_PART 

OUT PART 

OUT_PART 
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static Rule D_rules[] = 

{ V: ", "DED", Nothing, "dIHd" }, 
{ "E' 9 

"D", Nothing, "d" }, 
{ "#: ̂ E", "D", Nothing, "t" 
{Nothing, "DE", "A#11, "dIH" 
{ Nothing, "DO", Nothing, "dUW" }, 
{Nothing, "DOES", Anything, "dAHz" }, 
{Nothing, "DOING", Anything, "dUWIHNG" }, 
{Nothing, "DOW", Anything, "dAW" }, 
{ Anything, "DU", "A", "jUW" 
{ Anything, "D", Anything, "d" 
{Anything, 0, Anything, Silent 

}; 

** LEFT PART MATCH- PART RIGHT 
-PART 

static Rule E_rules[] _ 
{ 

"E", Nothing, Silent 
{ ""': "" "E" Nothing, Silent } 

{ "" : "" 
, 

"E" Nothing, Illy" } 
"ED", Nothing, , 'd" } 

{ �#:,, "E", "D ", Silent } 
, 

{ Anything, "EV", "ER", "EHv" } , 
{Anything, "E", .. "9" } IlIYll ' 
{ Anything, "ERI", "#", "IYrIY" 

{ Anything, "ERI", Anything, "EHrIH" 

{ #: �ER"q �#,,, �ER� } 
, 

{Anything, "ER", # } "EHr" 

{ Anything, "ER", Anything, "ER" ' " {Nothing, "EVEN", Anything, "IYvEHn 
"E", "W", Silent 
"EW", Anything, limit 

{ visit "EW", Anything, oi 11 

"EW", Anything, limit 

{ "D" "EW", Anything, ""13w� 
, 

{ "L" "EW" Anything, 
SIT TWO } 

ý 

{ liZil "EW", Anything, "U\Tý' 

"EW" Anything, �mit } 
{ "J" "EW" Anything, , lam� } 

"TH" "EW" Anything, "juw" } 

{ "CH" "EW" Anything, 
, 

{ "SH" "EW", Anything, 
} III 

ýJVT" ý/ý 
, 

{ Anything, "EW", Anything, "yam" 

{ Anything, "E", ' " { "#: S" "ES", Nothing, "1HZ 

{ "#: C" "ES", Nothing, "IHz" ' , 

OUT PART 
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{ "#: X" 
{ "#: J" , 
{"#: CH", 
{ "#: SH", 
{ "#: '' 
{ "'' , 

{ Anything, 
{ Anything, 
(Anything, 
{ Nothing, 
{ Anything, 
{"#: " 
{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{ Nothing, 
{ Anything, 
{Anything, 
{ Anything, 
{ Anything, 

/* 

''ES" 
"ES" , 
"ES" 
"ES" 
"ES" 
"ES" 
"E" 
"ELY 
"EMENT", 
"EFUL", 
"EE" 
"EARN", 
"EAR", 
�EAD� 
"EA" 
"EA" 
"EA" 
"EIGH", 
"EI" 
�EYE� 
"EY" 
"EU" , 
�E" 
0, 

Nothing, 
Nothing, 
Nothing, 
Nothing, 
Nothing, 
Nothing, 
'IS I, 

Nothing, 
Anything, 
Anything, 
Anything, 
Anything, 
"All 
Anything, 
Nothing, 
"SU" 
Anything, 
Anything, 
Anything, 
Anything, 
Anything, 
Anything, 
Anything, 
Anything, 

"IHZ" } 

} "lHz" 
Iý 

} "lHz" 
"lHz" 

"lHz" } 
Silent 
"lIY" 
"mEHnt" 
"f[. JHl" }, 
"1Y" } 
"ERn" } 
"ER" } 
"EHd" 1, 
"IYAX" 
�EH" } 
"IY� } 
�BY" } 
�IY" } 
�AY" } 

�yuw�} 
�EH� } 
Silent }, 

** LEFT PART MATCH-PART RIGHT-PART 
*1 
static Rule F_rules[] _ 

{ 
J, {Anything, "FUL", Anything, "fUHI" 

{ Anything, "F", Anything, "f" 
{Anything, 0, Anything, Silent 
}; 

** LEFT PART MATCH_PART RIGHT_PART 

*1 
static Rule G_rules[] 

{ 
{ Anything, "GN", 
{Nothing, "G", 
{ Anything, "GE", 
{ "SU" "GGES", 

9 { Anything, "GG", 
I" B#,,, �G,,, 
{ Anything, "G", 

Anything, 
fII"l. 
"T� 
Anything, 
Anything, 
Anything, 
If+11 

llgIHv" } 
�g?, } 
"gEH" } 
"gjEHs" 
ugly } 

it g', } 
Ili II l 

J! 

OUT PART 

OUT PART 
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{ Anything, 

{ Anything, 
{ Anything, 
}; 

"GREAT", 
"GH" 
�G� 
0, 

Anything, 
Anything, 
Anything, 
Anything, 

"grEYt" }, 
Silent 
�g� } 
Silent }, 

** LEFT-PART MATCH- PART RIGHT 
-PART */ r 

static Rule H_rules [] _ 
{ 
{Nothing, "HAV", Anything, "hAEv" }, 
{Nothing, "HERE", Anything, "hlYr" 
{Nothing, "HOUR", Anything, "AWER" }, 
{ Anything, "HOW"9 Anything, "hAW" }, 
{ Anything, "H", "#',, "h" } 
{ Anything, "H", Anything, Silent 
{Anything, 0, Anything, Silent 

** LEFT-PART MATCH 
-PART 

RIGHT-PART 

*1 
static Rule I_rules [] _ 

{ 
{ Nothing, "IN"7 Anything, "IHn" 

{Nothing, "I", Nothing, "AY" 

Anything, "IN", "D", "AYn" } 

{Anything, "IER", Anything, "IYER"}, 

{ "#: R" "IED", Anything, "IYd" 

{ Anything, "IED", Nothing, "AYd" 
" {Anything, "IEN", Anything, }, "IYEHn 
" {Anything, "IE", "T", "AYEH }, 

" ll: lt 11111 11%11 5 
"AY 

(Anything, "I", 9 
illyff ' 

" { Anything, "IE", Anything, "IY }' 
" {Anything, "I", .. A+: #", } "IH ' 

" {Anything, "IR", 11#11 "AYr 
" {Anything, "IZ", �%" "AYz 
" 

{Anything, "IS" 11%11 "AYz 
" {Anything, "I", .. D%", } "AY ' 

" } "IH 

{Anything, "T%", 
�W } 

{Anything, "I", "A+" } ,. AY.. , 
" 

{ Anything, "IR", Anything, } "ER ' 
{ Anything, "IGH", Anything, ' 

" 
{ Anything, "ILD", Anything, }, "AYId 

OUT_PART 

OUT PART 
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{Anything, "IGN", Nothing, "AYn" 
{ Anything, "IGN", "A", "AYn" 
{ Anything, "IGN", "%", "AYn" 
{ Anything, "IQUE", Anything, "IYk" 
{Anything, "I", Anything, "IH" 
{ Anything, 0, Anything, Silent }, 

** LEFT PART MATCH PART RIGHT PART 
*1 
static Rule J_rules[] 

{ 
{ Anything, "J", 
{ Anything, 0, 
}; 

** LEFT_PART MATCH_PART RIGHT_PART 

static Rule K_rules 
{ 
I Nothing, 
{ Anything, 
{ Anything, 
}; 

Anything, "j" 1, 
Anything, Silent }, 

"N" Silent 
, 

Anything, "k" 
Anything, Silent }, 0, 

** LEFT PART MATCH_PART RIGHT_PART 

static Rule L_rules[] _ 
{ 
{ Anything, 
{"L" 

{ Anything, 
{ Anything, 
{ Anything, 

,. LO'% �C#, Iý "low" 
"U Anything, Silent 

, 
�L,, �%,,, 1, f 

, 
"LEAD", Anything, "IIYd" 
"L" Anything, 11111 
0, Anything, Silent }, 

OUT_PART 

OUT_PART 

OUT PART 

** LEFTPART MATCH-PART RIGHT-PART OUT 
- 

PART 

static Rule M_rules[] _ 
l 11 

{ Anything, 11MOV 11, Anything, 
t1mUWv 
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{Anything, "M", Anything, "m" 
{Anything, 0, Anything, Silent 

i* 
** LEFT_PART MATCH_PART RIGHT_PART 
*! 
static Rule N_rules[I _ 

{ "E", "NG", .. +ý �nj " }, 
{Anything, "NG", "NGg" 
{ Anything, "NG", "NGg" 
{ Anything, "NGL", , 

"NGgAXI" }, 
{ Anything, "NG", Anything, "NG" 
{ Anything, "NK"9 Anything, "NGk" 
{ Nothing, "NOW", Nothing, "nAW" 
{ Anything, "N", Anything, "n" } 
{Anything, 0, Anything, Silent 

}; 

1* 
** LEFT_PART MATCH-PART RIGHT 

-PART 
*1 
static Rule O_rules [] _ 

{ Anything, "OF", Nothing, } 

{ Anything, "OROUGH", Anything, "EROW" }, 

{ �#:,, "OR", Nothing, "ER" 
9 

{ �#: ,, "ORS % Nothing, "ERz" 
9 

{Anything, "OR", Anything, "AOr" }, 
" {Nothing, "ONE", Anything, }, "wAHn 

{Anything, "OW"1 Anything, "OW" }, 
" {Nothing, "OVER", Anything, "OWvER 

" {Anything, "OV", Anything, "AHv 
"" {Anything, "O", "A%" } ""OW ' 
� {Anything, "O", � EN�, } �OW ' 
ýý { Anything, "O" ", .. Alf "OW } 
" 

(Anything, .. OL"., "D", } "OWl ' 
" 

{ Anything, "OUGHT", Anything, "AOt 
" 

{ Anything, "OUGH", Anything, "AHf }' 
ýý 

{ Nothing, "OU"9 Anything, } �AW , 
{ �H,, ''OU1I 11S#11 AW 

{ Anything, "OUS"7 Anything, } "AXs" ;ý' 

{Anything, "OUR", Anything, AOr 
" 

{ Anything, "OULD", Anything, } "UHd ' 
11 ,1 } AH 

{ Anything, "OUP", Anything, 
" " 

{Anything, "OU", Anything, }, AW 

OUT_PART 

OUT PART 
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{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{Anything, 
{ Nothing, 
{ Nothing, 
{ Anything, 
{ "C" 
{ Anything, 
{ It All 

{"I" 
{ ""#: '' 
{"#A" 

{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{ "#: ^" 

{ Anything, 
{ Anything, 

floyll 
"DING'% 
"OI" 

"OOR", 
"OOK ' 
"OOD", 
"00" 
�O� 
�O� 
"OA" 
"ONLY", 
"ONCE", 
"ON'T", 
�O., 
�O� 
�O� 
"ON" 
"ON" 
"ON" 
�O., 
"OF" 
"OTHER", 
"OSS", 
"OM" 31 
110� 
0, 

Anything, 
Anything, 
Anything, 
Anything, 
Anything, 
Anything, 
Anything, 
�E� 
Nothing, 
Anything, 
Anything, 
Anything, 
Anything, 
"N� 
"NG" 
�N" 
Anything, 
Nothing, 
Anything, 
"ST " 
"All 

Anything, 
Nothing, 
Anything, 
Anything, 
Anything, 

"OY" } 
"OWIHNG" }, 
"OY" 1, 
"AOr" } 
"UHk" } 
"UHd" 

"OW" } 
"OW" } 
"OW" } 
"OWn1IY" }, 
"wAHns" }, 
"OWnt" 
"AA" } 
"AO" } 
"AH" } 
"A(n" } 
"AXn" } 
"AXn" } 
"OW" } 

} "AOf" 
"AHDHER" 
"AOs" } 
"AHm" } 
"AA" } 

, 
Silent }, 

** LEFT_PART MATCH_PART RIGHT_PART 

*1 
static Rule P_rules [] _ 

{ 
{ Anything, 
{ Anything, 
{ Anything, 
{ Anything, 
{Anything, 
[Anything, 
}; 

"PH" 
"PEOP", 
"POW"9 
"PUT", 
�P, t 
0, 

Anything, 
Anything, 
Anything, 
Nothing, 
Anything, 
Anything, 

Iffil 

11plYp" } 
�pAW" } , 
"pUHt" } 
�p" } 
Silent }, 

LEF F_PART MATCH_PART RIGHTPART **_ 
*1 
static Rule Q_rules[] _ 

{ 
{Anything, "QUAR", 
{ Anything, "QU", 

Anything, 
Anything, 

"kwAOr" 
"kw" 19 

OUT PART 

OUT_PART 
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{ Anything, "Q", Anything, "k" 
{ Anything, 0, Anything, Silent 

** LEFT_PART MATCH_PART RIGHT PART 

static Rule R_rules 
{ 
t Nothing, 
{ Anything, 
{ Anything, 

Iln ý^It 

It ýll 

0, 

"^#", rIY" 
Anything, "r" 
Anything, Silent }, 

** LEFT_PART MATCH_PART RIGHT_PART 

static Rule S_rules[] _ 
{ 
{ Anything, 

{ Anything, 

{ Anything, 

{ Anything, 
{ "All 

{ Anything, 
{ fill 

, 

{ .. #: A "If , 
{ "#: ̂ #" 
{"U" 
{" : #" 

{Nothing, 
{ Anything, 

{ Anything, 
{ Anything, 

"SH", Anything, "SH" }, 
"SION", Anything, "ZHAXn" }, 
"SOME", Anything, "sAHm" }, 
"SUR", "#", "ZHER" 1, 
"SUR", "#", "SHER" 19 
UU5T ff9 

` J 
11#11' IIZH1 nV}, 

ýý 
U", liS S 11#11' ýýSHLW " 

"SED", Nothing, "zd" }, 
visit 11#11 I, zI, } 

"SAID", Anything, "sEHd" }, 
"SION", Anything, "SHAXn" }, 
""5"" visit 1) 

Silent 
, "S" Nothing, "z" 
9 

fisit Nothing, "z" 
9 

"S"1 Nothing, "z" }, 
) 

visit Nothing, "s" }, 
9 

"S" 'Nothing, visit }, 
11511 Nothing, "z� }, 
"SCH", Anything, "sk" 
""5"" ""C+It, Silent 

, 
"SM", Anything, "zm" 
"SN,, '��' "zAXn" 

, 
115, f Anything, "s" 

, 
0, Anything, Silent }, 

** LEFT_PART MATCH_PART RIGHT_PART 

OUT_PART 

OUT_PART 

OUT_PART 
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static Rule T_rules[] _ 

{Nothing, "THE", Nothing, "DHAX"}, 
{ Anything, "TO", Nothing, "tUW" }, 
{ Anything, "THAT", Nothing,. "DHAEt" }, 
{Nothing, "THIS", Nothing, "DHIHs" }, 
{Nothing, "THEY", Anything, "DHEY" 
{ Nothing, "THERE", Anything, "DHEHr" }, 
{ Anything, "THER", Anything, "DHER" 1, 
{ Anything, "THEIR", Anything, "DHEHr" }, 
{Nothing, "THAN", Nothing, "DHAEn"}, 
{ Nothing, "THEM", Nothing, "DHEHm" }, 
{ Anything, "THESE", Nothing, "DHIYz" }, 
{Nothing, "THEN", Anything, "DHEHn" }, 
{ Anything, "THROUGH" , Anything, "THrUW" 
{ Anything, "THOSE", Anything, "DHOWz" }, 
{ Anything, "THOUGH", Nothing, "DHOW" }, 
{Nothing, "THUS", Anything, "DHAHs" }, 
{ Anything, "TH", Anything, "TH" 
{ 14: 11 "TED", Nothing, "t] Hd" 
{ fl5IV, , 7. I, I", ''#N'', "CH" 
{ Anything, "TI", "O", "SH" 
{Anything, "TI", "A", "SH" 
{Anything, "TIEN", Anything, "SHAXn"}, 
{Anything, "TUR", "#", "CHER"}, 
{ Anything, "TU", "A", "CHUW" 
{Nothing, "TWO", Anything, "tUW" 
{ Anything, "T", Anything, 
{Anything, 0, Anything, Silent 

** LEFT PART MATCH-PART RIGHT-PART 

static Rule U_rules[] _ 
{ 
{Nothing, .. UN.., .... I, fin� .. y } 

{Nothing, "UN", Anything, "AHn" 

{Nothing, "UPON", Anything, "AXpAOn" }, 

{'IT" "UR'S "UHr" 
, 

{ II511 �UR, ', �UHr" 
5 

{.. R.. "UR", .... ## } "UHr" 

{ I'D" "UR", .. #ý "UHr" }, 
, 

{L �UR, ', .. #, ý 
�UHr" } 

, 
{ 1711 "UR", .. #, �UHr" 

, 
{'IN" "UR�, .. #, "UHr" 

, { ,'J,, 'SUR,,, ''#'', "UHr" 
{ �TH" "URH, ''#' "UHr" }, 

, 

OUT PART 
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{ "CH", "UR", "#", "UHr" 

{ "SH", "UR", "#", "UHr" 

{ Anything, "UR", "#", "yUHr" } , { Anything, "UR", Anything, "ER" 
{ Anything, "U", "A it 1) "AH" 
{Anything, "U", "AA" "AH" 
{ Anything, "UY", Anything, "AY" 
{" G", "U", "#", Silent 
{ "G", "U", "%" Silent 
{ "G", fl '' 11#11, ',, 

\v,, 
Y 

{ "#N", "U" , Anything, "y UW" 
{ "T", "U", Anything, "UW" 
{ "S" "U", Anything, "UW" 

, 
{ "R", "U", Anything, "UW" 
{ "D", "U", Anything, 11m" 
{ "L" "U" Anything, foliwil 
{ "Z" "U", Anything, "UW" 

, 
{'IN�, "U", Anything, it } 
{ "J" "U" Anything, ,i liw ,l 
{ �TH" "U" Anything, II]LJWII 

, 
{ �CH" "U" Anything, "mit 

, 
j"SHI% fluffy Anything, "UVI" 
{ Anything, "U", Anything, "yUW" 
{Anything, 0, Anything, Silent 
}; 

I* 
** LEFT PART MATCH-PART RIGHT-PART 
*1 

_ static Rule V_rules[] 
{ 
{ Anything, "VIEW", Anything, "vyUW" }, 

{ Anything, "V", Anything, "v" 
{Anything, 0, Anything, Silent 
}; 

** LEFT PART MATCH-PART RIGHT 
-PART 

*1 
static Rule W_rules[] _ 

{ 
{Nothing, "WERE", Anything, . "wER" 
{Anything, "WA", "S", "wAA" } 

" {Anything, "WA", "T", "wAA 
" {Anything, "WHERE", Anything, }, , WHEHr 
" {Anything, "WHAT", Anything, }, "WHAAt 

" { Anything, "WHOL", Anything, "hOWI 
" { Anything, "WHO", Anything, "hUW }, 

OUT_PART 

OUT PART 
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{ Anything, "WH", Anything, 
{ Anything, "WAR", Anything, 
{ Anything, "WOR", "^", 
{ Anything, "WR", Anything, 
{ Anything, "W", Anything, 
{ Anything, 0, Anything, 

"WH" } 
"wAOr" 
"wER" } 
"r" } 
"w" } 
Silent }, 

** LEFT_PART MATCH_PART RIGHT_PART 

static Rule X_rules [I _ 
{ 
{ Anything, "X", Anything, 
{ Anything, 0, Anything, 
}; 

"ks" } 
Silent }, 

** LEFT PART MATCH_PART RIGHT_PART 
*1 
static Rule Y_rules [I _ 

{ 
f Anything, "YOUNG", Anything, "yAHNG" }, { Anything, 
(Nothing, 
{Nothing, 
{Nothing, 

I V: All 

it it 

of 11 

11 if 

{ Anything, 
{ Anything, 

"YOU", Anything, "yUW" 
"YES", Anything, "yEHs" }, 
"Yep, Anything, "y" 
""Y", Nothing, "}Y" 
flyll 11I11 1 

''IY'f }, 
"Y" Nothing, "AY" 

, ''Y,, 11#11' "AY" }7 

�YII "^+: #" "IHIe }, 
�Y, l �A#. 1, �AY, " 
flyff Anything, "IH" 
0, Anything, Silent }, 

** LEFT PART MATCH_PART RIGHT_PART 

static Rule Z_rules[] _ 
{ 
{ Anything, "Z", 
{ Anything, 0, 

}; 

Rule *Rules[] _ 
{ 

Anything, "z" 
Anything, Silent }, 

OUT_PART 

OUT_PART 

I* 

OUT_PART 
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punct_rules, 
A_rules, B_rules, C_rules, D_rules, E_rules, F_rules, G_rules, 
H_rules, I_rules, J_rules, K_rules, L_rules, M_rules, N_rules, 
O_rules, P_rules, Q_rules, R_rules, S_rules, T_rules, U_rules, 
V_rules, W_rules, X_rules, Y_rules, Z_rules 
}; 
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Abstract 

A segmental timing module for English text-to-speech synthesis has been developed which allocates 
time durations to speech segments. - Segmental duration plays an important part in the quality of 
concatenative speech synthesis. It is essential that the overall timing of the synthesised speech is 
correct, so that the speech will sound more natural to listeners. Traditional timing modules use sets of 
duration rules which attempt to account for a range of timing factors. These include syntactic, lexical 
and semantic factors. 

The system developed avoids an explicit set of rules, and is based on diphones. It uses a database to 
obtain appropriate diphone durations for whole words. Contextual and positional effects are accounted 
for where possible, by extracting the largest possible sub-string of duration values from any database 
entry. Initial results show a noticeable improvement in the intelligibility of speech produced, compared 
with the output of a timing module which uses only a single duration value for any diphone. The paper 
also contains a brief discussion on the synchronisation of the speech with lip-readable animation. 



Introduction 

A segmental timing module for use in an English text-to-speech synthesiser has been developed. The timing module allocates suitable time durations to speech segments for output. The speech segments are concatenated to form continuous speech. In concatenative speech synthesis, segments are output sequentially, each for a certain length of time before the next one is played. Every speech segment must, therefore, be assigned an appropriate time duration for which it will be output. 

Many factors have an influence upon segmental timing. These include semantic factors, syntactic factors, and lexical factors (Klatt, 1976). Semantic factors include contrastive stress and variations in 
speaking rate. For instance, speakers will often slow their speaking rate when semantically novel words 
are encountered. The main syntactic factors that influence segmental timing are the locations of phrase 
and clause boundaries. These may be determined manually, or identified from the input text using a 
stochastic approach (Edgington et al., 1996). Lexical factors incorporate the combination of speech 
segments that is used for synthesis, along with stress markers, which define a speech segment's stress level. This representation is produced from text by the lexical component of a speech synthesiser, and is 
then input to a timing module, which predicts a time duration for each speech segment (Klatt, 1976). 

It is essential that the overall timing of the synthesised speech is correct, in order to make speech sound 
more natural to listeners. Segmental duration also plays an important part in the prosody of 
concatenative speech. For example, it can be used to slow the speaking rate to emphasize a particular 
word. If natural-sounding speech is to be produced, then considerable attention should be paid to the 
time duration allocated to each segment. 

Duration Models 

Segmental duration models for text-to-speech synthesis attempt to account for some or all of the timing 
factors, including syntactic, lexical and semantic factors. Durations are usually predicted by modifying 
a default set of time durations using rules or formulae, or by directly specifying the typical durations of 
each segment for every type of context. Duration models fall into four categories: sequential rule 
systems, equation systems, table look-up systems and binary trees (Campbell, 1990). Segmental 
duration models mostly use phonemes as the underlying unit for measurement (Klatt 1976, Pitrelli & 
Zue 1989), although models exist for other segments such as diphones (Huber, 1990) and syllables 
(Edgington et al., 1996). (N. B. A diphone consists of the transition from the centre of one phoneme to 
the centre of the next). 

Klatt's (1979a) rule-based model is widely used, and forms the basis for many other models. In this 
model, an `inherent' duration is assigned to each phoneme. This duration is derived by considering a 
phoneme at the start of a word, preceding a stressed vowel. Durational rules cause a percentage change 
in the segment's inherent duration, taking into account factors like syntactic information, position in a 
word, stress markers, etc. In such models, a second value must be supplied in order to limit the extent to 
which a phoneme can be shortened. Klatt termed this a `minimum' duration value, corresponding to the 
minimum duration for that phoneme if stressed. One problem with such models is that the inherent 
durations for phonemes are difficult to estimate (Huber, 1990), and vary between different studies 
(Carlson & Granstrom 1986, Umeda 1977; Klatt 1979b). A further difficulty is that it is difficult for 

such models to express a relationship between a context effect and an inherent duration modification 
(Port, 1981). 

Many duration models differ in complexity and scope. For diphones, it is possible to limit the major 
duration considerations to vowel-consonant diphones, i. e. diphones containing the transition from a 
vowel to a consonant (O'Shaughnessy et al., 1988). It may not be appropriate to adapt a phoneme 
duration model for diphones, since a decision must be made as to how a phoneme's duration should be 

shared between two diphones (O'Shaughnessy et al., 1988). 

Duration models are generally based upon studies of recorded utterances. Durational rules may be 
developed using a speech database (Carlson & Granstrom, 1986). Carlson et al used context sensitive 

rules when searching the database for data relevant to the particular rule being formulated. The main 
disadvantage of rule-based models is that they have failed to reach an integrated view of how timing 

should be used in speech synthesis (Port, 1981). When so many factors such as position within a word, 

semantic prominence and lexical stress have an influence upon duration, it becomes a difficult task to 



account for them all. Alternative techniques for investigating segmental durations are becoming more 
widespread, such as statistical approaches (Edgington et al. 1996, Riley 1992). 

The approach taken in this project is to avoid explicit sets of rules. The system developed uses a look- 
up from a duration database to obtain relevant time durations for English words. Input words are initially converted to a list of diphones, and then the timing module provides a set of corresponding duration values for the diphones. A concatenative speech synthesiser produces speech output using a database of pre-recorded human speech segments and the duration values obtained from the duration 
database. 

Concatenative Speech Synthesiser 

The concatenative speech synthesiser produces speech output by concatenating pre-recorded diphone 
waveforms. The waveforms were digitally recorded using the voice of a single, male speaker. Factors 
such as pitch, volume and distance from the microphone were kept as constant as possible. Diphones 
were obtained by manually editing the waveforms. The speech for any input diphone list is produced 
for the durations specified, by concatenating these waveforms. 

Timing Module 

When a new word is presented to the text-to-speech system, it is first converted to a set of diphone 
symbols, which are then input to the duration module. The duration module assembles a set of time 
durations from a database, corresponding to the diphone list. The database consists of diphone labels 
for English words, along with their corresponding duration values. 

To construct the database, diphone time durations were collected experimentally for commonly used 
English words (see figure 1). For each word, an input string of diphones was supplied, along with an 
initial set of time values. These values were used to synthesise speech for the word, using a 
concatenative speech synthesiser, and the results were judged by a human listener. For each word, the 
time values were iteratively altered, until the speech output was judged to be the best possible. The final 
string of diphone values were then stored in the database along with the appropriate diphone symbols. 
Using synthesised speech to support the building of a duration database is an alternative approach that 
is being tested. A more common method is to use recordings of continuous speech, labelled with 
segmental durations, when constructing timing systems. However, it is possible that durations derived 
from spoken speech may not be as appropriate for use in speech synthesis, compared to those obtained 
from synthesised speech. 

Input diphones Input durations 

Speech Store 
Speech synthesis Acceptable in 

? Ye s Datab se 

T 
Alter one or more No 
duration parameters 

Fig. 1: Creation of diphone duration database 

To assign time durations, an algorithm has been developed which attempts to preserve any contextual 

effects due to neighbouring diphones. Context is accounted for by extracting the largest possible sub- 

strings of duration values from the database when assembling the output set of duration values. The 

algorithm also makes use of positional information within a word. If several identical sub-strings are 

found in the database which correspond to a section of the input diphone string, then the one that is 

most similar to the input sub-string, with respect to position, is chosen. In this look-up procedure, if a 

diphone is not represented in the database, then it is assigned an average duration value by default. 



An initial approach that was investigated was the use of a genetic algorithm (Goldberg, 1989) to 
optimise duration values. This was one way of predicting diphone durations without relying upon grammatical or syntactic rules. The present database system was derived from the genetic algorithm investigation, although the use of a genetic algorithm itself has been discontinued. 

The accuracy of the extracted time durations may be increased by using a larger duration database. For 
any output string of time durations, a sub-string of values taken from a single database entry is more likely to be accurate. By increasing the database size, it is more likely that any output string will be 
derived from fewer sub-strings, and hence will have a greater contextual accuracy. Further study is now 
required into the optimum number of words for the database. 

Synchronisation issues 

Concatenative speech has been combined with moving lip images, producing animated speech 
synthesis. In a prototype system, a set of stored lip images forms the necessary visual phonemes, or `visemes', for portraying speech. Speech animation is achieved with a minimal set of nine visemes 
since one viseme can correspond to several acoustic classes. The animation consists of displaying pre- 
stored lip images in sequence according to the speech output. 

For synchronisation with speech, the length of the image sequence for each diphone is adjustable. This 
is achieved by displaying a smaller or larger number of intermediate images as the diphone is output. 
This method is convenient from a speech production point of view: the duration for which a diphone 
can be output is a controllable parameter, and so the animation sequence is automatically adjusted to 
last for this time. At present, three pre-stored lip images are specified for each diphone. Thus, each 
different lip image is displayed repeatedly for a third of the total duration. The animation is currently 
being improved so that a greater number of intermediate images are specified for each diphone. This 
will improve the `lip-readability' of the system. 

Results 

The output of the current timing module was used to synthesise speech using a waveform concatenation 
synthesiser. When compared with the output of a timing module which only contained a single duration 
value for any diphone, the resulting speech was noticeably superior, although some discontinuities were 
still present. However, the timing module could be further improved by increasing the size of the 
duration database, since the database may not contain entries for some diphones. In such cases, a single 
default value is used. Increasing the database size would fill these `gaps' in the database, and supply a 
greater number of contexts for any particular diphone. The performance and accuracy of the system will 
be monitored as the database size increases. No comparisons have yet been made with traditional rule- 
based timing systems. 

Conclusions 

A method has been described for producing optimal time durations for speech segments, for use in 

concatenative speech synthesis. A database has been produced, consisting of manually edited speech 
segment durations for commonly used English words. For any input diphone string, duration values are 
extracted from this database, in such a way as to account for contextual and positional data where 
possible. Whilst this method has been used for English diphone synthesis, it may also be used for other 
speech segment types and for other languages, providing that an appropriate database is created. 
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Segmental Duration Prediction for Concatenative Speech Synthesis. 

Abstract 

Speech synthesis via waveform concatenation requires a database of of highly accurate 
segmental timing data for smooth, intelligible speech to be output. Timing accuracy is 
essential for smooth transitions at segment boundaries. A concatenative speech 
synthesizer using a waveform inventory consisting of consonant-vowel (CV), vowel- 
consonant (VC) and vowel-consonant-vowel (CVC) syllables is discussed. Speech is 
formed by outputting these segments sequentially, with given duration values. If 
appropriate durations are chosen, acceptable speech can be synthesized without the need 
to apply smoothing algorithms. 

A timing database for waveform concatenation synthesis has been built. The database 
consists of segmented words with their corresponding duration values, and is constructed 
using an iterative synthesis/adjustment approach. A segmental duration prediction 
algorithm produces duration values independently of segment type. This is achieved by 

assembling sub-strings of duration values taken from one or more database entries. The 

algorithm is guided by three rules which do not require a lengthy text analysis, and allows 
segmental durations to be output given only an input stream of phonemes. An assessment 
of the timing system indicates the need for a larger timing database. 



Segmental Duration Prediction for Concatenative Speech Synthesis. 

1. Introduction 

Speech synthesis via waveform concatenation requires a database of highly accurate 
segmental timing data for smooth, intelligible speech to be output. Accuracy in timing is 
essential since it determines the quality of concatenative speech output. In this research, a 
concatenative speech synthesizer uses a waveform inventory consisting of consonant- 
vowel (CV), vowel-consonant (VC) and vowel-consonant-vowel (CVC) syllables. The 
syllables are pre-recorded segments of human speech. Continuous speech is synthesized 
for whole words by outputting waveforms from the inventory in sequence, with a 
duration value being applied to each segment. 

In waveform concatenation, accurate segmental timing data is necessary, since the 
segmental duration determines the initial portion of each waveform to be output, 
enabling smoother speech to be produced at segment boundaries. In this manner, each 
waveform is output from its initial position up to a point determined by the segment 
duration value. This is shown in figure 1, in which portions of the syllables /DI/ and /Is/ 
are used to synthesize the word `this' (the portions are indicated by arrows). The first two 
windows show the complete syllables, as stored in the waveform inventory and the final 
window shows the synthesized word 'this'. As the diagram shows, only the portion of the 
/DI/ waveform is output before /Is/. For intelligible speech to be output, waveform 
concatenation requires a high degree of timing accuracy, since the timing data is specific 
to a particular inventory of speech waveforms. This is unlike other speech production 
methods in which each segment is squashed or stretched to fit a particular duration (Isard 
& Miller, 1986). Since such speech synthesis methods use smoothing procedures at 
segmental boundaries, a wider range of segmental durations can be tolerated. 

A timing database for waveform concatenation synthesis has been built. An iterative 
synthesis/adjustment approach involving a human listener was adopted to assign 
appropriate segmental durations to segmented words (Vine & Sahandi, 1996). This 
technique implicitly enhances the speech rhythm through the listening and improving 
cycle. Thus, timing data is produced that goes some way towards incorporating a correct 
perception of speech rhythm. This is advantageous, because traditional timing systems 
have no explicit speech rhythm model, and as a result, the speech rhythm may not be 

correct (Breen, 1992). 

The timing database consists of segmented words along with their corresponding duration 

values. Speech can be synthesized using a simple look-up method for each word 
contained in the timing database. A database consisting of pre-defined words has only a 
limited application. It is much more beneficial to use a timing database to predict 
segmental durations for novel words. The following section describes a segmental 
duration prediction system for unrestricted text input, using such a database. 
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Figl : Portions of waveforms used to synthesize the word `this' 

2. Segmental Duration Prediction 

An input word is first converted into a segmental representation, for which timing 
information must be predicted. The segmented word is input to the timing system, which 
uses the timing database to predict appropriate segmental durations. The database 

consists of a list of segmented words that are commonly used in English. This list is 

accompanied by a list of corresponding durations for each segmented word. So, for 

example, the words `card' and `this' could be stored as follows, where the numerical 
values represent segmental duration in milliseconds: 

[[kA:, A: d][106,381], [DI, Is][189,396],... ]. 

The duration prediction algorithm works by assembling sub-strings of durations from the 
database. In this paper, a `sub-string' refers to an unbroken sequence of segmental 
duration values, taken from a single database entry. When a list of input segments 

representing the input word is received, the duration prediction algorithm searches the 

database for sub-strings that match some or all of the input list. If several sub-strings 



containing the same segment are found, the prediction algorithm applies a series of three 
rules to determine which duration sub-string to use in the output list of durations. These 
rules are described in section 2.1. If no duration value is available for a particular 
segment, a default value is used. 

Input segments: wur urc cs 

Timing Database 

wur urm mz 
tla t1b t1c 

har and 
t2a t2b 

ca at 
t3a t3b 

ray ayz zu 
t4a t4b t4c 

sc cooh oohl 
t5a t5b t5c 

pee eet tu 
t6a t6b t6c 

lur urc cs 
tja t7b t7c 

Extracted Durations: tla " tab t7c 

Fig. 2 Duration prediction algorithm 

The duration prediction algorithm is illustrated in figure 2, which shows a representation 
of timing database. The database shows the words `worms', `hard', `cat', `razor', 
`school', `Peter' and `lurks' with a simplistic, segmental representation, accompanied by 

their corresponding durations. To predict durations for the input word `works', the 

algorithm looks for all instances of the initial segment, 'wur'. This is found in the first 
database entry, and so the corresponding duration, tla, is used as the first predicted 
duration. The final segments (`urc cs') are found together as part of the final database 

entry, and so their respective durations are added to the output duration list. 



It should be noted that the duration prediction algorithm operates independently of the 
types of segment used, and even allows a mixture of segment types to be stored in the 
waveform inventory. A range of segment sizes and types can thus be used to synthesize 
speech, allowing great flexibility. As a result, CV, VC and CVC syllables can coexist in 
the waveform inventory. This is highly convenient for waveform concatenation synthesis, 
because its output can be significantly improved through the availability of larger speech 
segments (Tatham, 1991). The timing database is thus capable of simultaneously storing 
a mixture of segment types. For example, the word `connect' can be synthesized using 
the segments /k@n/, /ne/, /ek/, /kt/. This word would simply be stored in the timing 
database, along with appropriate segmental duration data. 

2.1 Duration Look-up Rules 

Rule 1: Largest possible sub-string 

The duration prediction algorithm should extract the largest possible sub-strings of 
durations from the timing database (where `largest' refers to the number of segments in 
the string). 

This rule takes into account the fact that a segment's duration is affected by its 
neighbouring ones (Van Santen, 1992). This rule works on the basis that it is more likely 
that a sub-string taken from one database entry will produce more natural speech than 
durations taken from a variety of locations. It should be noted that the largest possible 
sub-string rule is similar to Hunt and Black's (1996) approach to the selection of 
concatenation units from a large speech database. Hunt and Black used a "concatenation 

cost function", which encouraged the selection of multiple consecutive phonemes from 
the synthesis database. 

Rule 2: Position in word 

If several sub-strings of equal length are found, the sub-string closest in position to the 
input sub-string is selected. 

When searching through large duration databases, it is likely that several sub-strings of 
the same length may be found by Rule 1. In such cases, the `position in word' rule is used 
to differentiate between them. This rule is used because a segment's position within a 
word has an effect on its duration (Oller, 1973). 

Rule 3: Length of database entry 

If rules I and 2 fail to arrive at a single sub-string, the sub-string whose database entry 
length most closely matches the input segment string's length is chosen. 

If the first two rules fail to arrive. at a single sub-string, then a `length of database entry' 

rule is used, since there remain some sub-strings of identical size and position-in-word. 
This rule examines the database entries for these remaining sub-strings, and compares 



their respective database entry lengths. The entry whose length (in terms of number of 
segments) most closely matches that of the input segment string is noted. The sub-string 
of durations corresponding to that database entry is then appended to the output duration 
list. 

2.2 Database size issues 

When the timing system is presented with unrestricted text, it is possible that duration 
data for a particular segment is not available in the desired context. Therefore, the larger 
the database size, the greater the likelihood of obtaining an appropriate match. If timing 
data is absent altogether for a particular speech segment, a default duration must be used, 
which tends to decrease the naturalness of the output speech. It is therefore imperative 
that the timing database is of sufficient size. 

According to Nation (1993), 89% coverage of a written academic text can be achieved 
with a vocabulary size of 5,000 words. A timing database of 5,000 words would thus 
cater for a considerable percentage of the likely text inputs. The possible number of 
unfamiliar input words for which segmental durations must be predicted would be 
reduced substantially. 

It has been found that the smaller the sub-strings of durations used when synthesizing a 
word, the worse the naturalness of the speech. This is of particular significance for the 
waveform concatenation method, and is used in a performance measure described in the 
next section. 

3. Evaluating the current system 

An experiment was conducted to test the effect of increasing database size on the 
duration prediction algorithm's output. The experiment monitored the percentage of an 
input set of test words for which a complete set of durations was produced by the 
duration prediction algorithm. Complete sets of durations were defined as a `complete 
word match'. If no duration could be found for a segment, a default value had to be used, 
due to the lack of timing data. Ideally, no default values should be used, since they are 
likely to degrade the intelligibility of the output speech. 

In the experiment, a set of 150 words taken randomly from a dictionary was input to the 
timing system and the number of complete word matches was noted for this set. This was 
carried for every 100 words added to the timing database. Figure 2 shows the percentage 
of all input words, for which a complete word match was recorded. The results show that 
as more words were added to the database, this percentage increased. Figure 3 indicates 
that a larger database size reduces the number of necessary default durations. 
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Fig. 3: Database performance 

The speech output quality for a word can be judged in terms of the number of database 
entries from which its set of durations is taken (i. e. the number of sub-strings which make 
up the final set of time values). Thus, the database is of better quality if, for a set number 
of input words, fewer sub-strings are used, compared to the total number of segments 
required. 

In the above experiment, the number of sub-strings making up the predicted time values 
for each word was recorded. Thus, for a test set size n, where n=150 words, equation (1) 
is defined. This ratio R is shown in figure 4, for increasing database sizes. 

n 

R= E Number of sub-strings required for test word W; 
i=1 (Equation 1) 

n 
E Number of segments required for test word W; 
i=l 
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Fig. 4: Sub-strings/segments ratio R 

Figure 4 shows an overall decrease in the sub-string/segment ratio R, as the database size 
is increased. This is in accordance with the trend that a larger database allows better 
duration prediction. 

4. Conclusion 

A timing system has been discussed, which predicts segmental durations for text-to- 
speech synthesis via waveform concatenation. The timing system makes use of a timing 
database and a duration look-up algorithm which is guided by a small set of rules. The 
timing system is independent of segment type, and requires only a string of phonemes as 
its input. A quantitative assessment of the timing system was carried out using 
performance measures relating to database size. The results indicate the need for a larger 
timing database. 
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A Concatenation Framework for Text-to-Speech Synthesis using CVC 
Syllables 

Abstract 

Speech synthesis produced by concatenation of speech waveforms has several associated 
problems. Speech waveforms are inherently random in nature, and often produce 
waveform discontinuities when concatenated. A framework for waveform concatenation 
speech synthesis is described, that produces natural-sounding speech at the word level 
with minimal discontinuities. The concatenation framework utilises a mixture of 
waveform types, including consonant-vowel (CV), vowel-consonant (VC) and consonant- 
vowel-consonant (CVC) syllables. Smoothing at segment boundaries is avoided by 
outputting only a portion of each segment, specified by a segmental duration parameter. 
Waveform discontinuities are also minimised by using larger speech segments where 
possible. 

A text-to-segment module converts the input text to a suitable stream of segments for 
output by selecting the largest speech segments currently available in the waveform 
inventory. Segmental durations are then predicted for the segment stream. This is 
achieved using a database of durations for segmented whole words, which has been 
created manually by synthesizing commonly used words. A duration look-up algorithm 



enables the prediction of segmental durations for individual words using a pattern 
matching approach. 



1. Introduction 

Speech synthesis produced by concatenation of speech waveforms has several associated 
problems. Speech waveforms are generally unpredictable in nature, and often produce 
waveform discontinuities in the form of `clicks' when simply concatenated 
(O' Shaughnessy, 1987). Furthermore, speech waveforms require additional processing to 
manipulate prosodic attributes such as intonation, rhythm and variability (Tatham & 
Lewis, 1996). For this reason, speech waveforms are often converted to a form that 
allows some parametric control, such as linear predictive coded (Witten, 1982). 
Alternatively, concatenation can be assisted via Pitch-Synchronous Overlap-Add 
techniques (Charpentier & Moulines, 1990), which allow prosodic attributes of the 
speech to be altered (Edgington et al., 1996). 

Different types and sizes of segment can be concatenated, including phonemes, diphones 
(Isard & Miller, 1986), demisyllables (Dettweiler & Hess, 1985) and syllables (Tatham & 
Lewis, 1996). In general, using smaller segments has the advantage of requiring a smaller 
number of stored units; larger-sized segments have greater storage requirements, but can 
represent coarticulation effects with a lesser degree of processing. Some approaches use a 
combination of different types of segment (Dettweiler & Hess, 1985). It is common for 
concatenative techniques to involve minimising a concatenation cost function, which 
takes into account factors such as potential waveform distortion between consecutive 
segments (Iwahashi & Sagisaka 1995, Hunt & Black 1996). 

In this research, a concatenative speech synthesizer generates speech for individual words 
using a mixture of consonant-vowel (CV), vowel-consonant (VC) and consonant-vowel- 
consonant (CVC) syllables. Whilst the units for concatenation are syllables, they are used 
in a manner which has much in common with diphone and demisyllable speech synthesis. 
An inventory of syllable waveforms has been digitally recorded by a single, male speaker, 
at a sampling rate of 44100 Hz. 

Speech, when synthesized solely by concatenating entire waveforms selected from an 
inventory, intelligibility can be seriously degraded. However, this approach can be 

substantially improved by outputting a specified portion of each selected waveform. The 

portion of each waveform to be output is specified by a segmental duration parameter 
(Vine & Sahandi, 1996). This `portion' refers to a section of the stored segment starting 
from the onset of the segment to, and finishing at any point to+s, where s is the specified 
segmental duration. Thus, depending on s, a smaller or larger portion of a waveform is 

output. Segmental duration plays a major part in the intelligibility of the resulting 
synthetic speech, and will be discussed briefly later in the paper. 

With this technique, a segmental duration can be specified so that concatenation occurs at 
an acoustically stable portion of the current waveform. In this way, the current waveform 
can finish with an amplitude similar to that of the following waveform. This minimises 
the probability of waveform discontinuities at segment boundaries, which normally cause 

audible 'clicks'. Thus, by using an optimal choice of segmental timing data alone, 

smoothing algorithms are dispensed with at concatenation boundaries. 



To generate text-to-speech, a timing database of segmental durations is required. A 
timing database has been developed which includes segmental durations for commonly 
used English words. For any input word, a duration look-up algorithm uses the timing 
database to assemble an appropriate set of segmental duration values using a pattern 
matching approach. This approach involves selecting sequences of appropriate segments 
from the timing database along with their corresponding time durations, and is described 
in the following sections. 

2. Concatenation Scheme 

The units for concatenation are CV, VC and CVC syllables, which are digitally recorded 
by a single, male speaker. At present, the CVC inventory is still being developed. 
However, CVC syllables can be made up by concatenating CV and VC syllables. Using 
CVC segments has the advantage that coarticulation effects rarely extend beyond syllable 
boundaries (Fujimura & Lovins, 1978). When concatenating segments, the choice of 
segments making up the output word is important, whilst the duration assigned to each 
segment is crucial. These aspects of the concatenation scheme are discussed below. 

2.1 Formation of CVC syllables 

When CV segments are concatenated to VC syllables to form CVC units, it is important 
to avoid concatenation points within vowels where possible (Saito, 1992), because this is 
detrimental to the vowel quality. However, whilst this is sometimes unavoidable, better 
results can be obtained by making a demi-syllabic cut where the consonant-to-vowel 
transition ends and the vowel portion begins (Bhaskararao, 1994). This allows for 
coarticulation effects and enables the listener to anticipate the following VC segment. 
However this can sometimes produce an audible waveform discontinuity; in such cases, 
only the consonant portion of the CV syllable should be output. 

In creating a CV-VC pair, the initial consonant can accept some degree of duration 
variation. For instance, a CV segment beginning with a fricative or affricate can take a 
wide duration range without the likelihood of introducing waveform discontinuities. For 
example, the words `shoot' or `jig' allow considerable variation in their initial `sh' and `j' 
portions respectively. To some extent, CV-VC pairs starting with sustained sounds such 
as liquids can also vary in duration without compromising the speech output. Finally, 

even unsustained sounds such as unvoiced plosives can tolerate some duration variation. 
For example, in synthesizing the word `ton', the initial /t/ can have any duration value 
between 45 and 348 ms. 

2.2 Concatenation Nodes 

When CV and VC syllables are concatenated, there is a risk that a waveform 
discontinuity will result. This problem can be reduced by choosing specific concatenation 
points in the CV segment's waveform. These points will be referred to as nodes. Figure 1 



shows a series of concatenation nodes for the CV segment /m{/, which is recorded in 
stereo. These are labelled C, 2, where n is an integer between 1 and 5. The nodes indicate 
the instants in the `m' allophone where the signal crosses the time axis shown. The 
corresponding segmental durations are shown by the arrows. 

An experiment was carried out to verify 
synthesizing different CVC words which 

the efficacy of the concatenation nodes, by 
share the same initial CVC segment. For 

instance, the concatenation nodes for the /m{/ segment were established by visual 
inspection of the waveforms in the time domain. Initially they were tested by synthesizing 
the word 'mat', using a /m {/ segment followed by an entire /{ t/ segment. The efficacy of 
using the same concatenation nodes for /m{/ was then tested by synthesizing other CVC 
syllables. These consisted of an initial /m{/ segment, followed by various VC syllables 
starting with /{/, e. g. /{n/ or /{d/. It was found that for the concatenation nodes shown, 
minimal waveform discontinuities were produced compared to CVC segments 
synthesized using random durations for the initial /m{/ syllable. 

2.3 Speech Segment Omission 

It is sometimes necessary to omit segments from the output stream, in order to reduce the 
number of concatenation points required and to improve the overall fluency of the output 
speech. For example, the word `dogmatic' can be represented initially by the following 
CV and VC symbols: 

dQQggmm{ it tIDc 

In the above segmental representation there is a trade-off between coarticulation and 
rhythm. For instance, whilst the /gm/ segment provides a transition from the /g/ to the /m/ 

sound, it could have the effect of reducing the overall speaking rate for the synthesized 
word. This would be detrimental to the word's overall rhythm, making it sound 
'laboured'. The /gm/ segment should therefore be omitted from the final utterance. Such 

an omission would not degrade the overall smoothness of the word too dramatically, 

since the remaining segments correspond well with syllable boundaries. 

Fig. 1: Concatenation nodes for the syllable /m{/ 



2.4 Phonemic Category Shifts 

When concatenating a CV segment followed by a VC, the CV segment's duration is 
highly important. Apart from the challenges of creating realistic coarticulation and 
minimising waveform discontinuities, one must also consider the basic intelligibility of 
the synthesized speech. If the duration of an initial CV segment is shortened too much, a 
shift is produced in the phonemic category perceived by the listener (Ferrero et at., 1979). 
For example, if the `sh' sound in the word `ship' is shortened beyond a certain point, 
listeners often perceive the word 'chip'. 

It is therefore evident that for the method of waveform concatenation described, it is 
meaningful to record a `minimum duration' permissible for each CV segment. Let us 
assume that the CV will be followed by a VC segment, where the second segment's 
initial vowel is the same as the final vowel of the CV. A CV segment's minimum 
duration is defined as the minimum duration that a word-initial CV segment can be 
assigned without listeners experiencing a perceptual category shift. This definition is 
related in concept to Klatt's (1976) `minimum duration' term. However, Klatt's concepts 
of a minimum and maximum duration for a phoneme apply to a different synthesis 
method in which segments are `squashed' or `stretched' to fit a specified duration. This 
concatenative scheme does not require a maximum duration for segments, since its value 
depends upon the actual duration of the recorded waveform. 

3. Applying the Concatenation Framework to Text-to-Speech 

3.1 Timing Database Creation 

To automate the concatenation scheme, a segmental duration module has been designed, 
which produces segmental durations using a timing database (Vine & Sahandi, 1996). 
The database consists of segmental duration details for commonly used English words. 
Each word is synthesized by concatenating the segments according to the concatenation 
scheme. 

3.2 Text-to-Segment Conversion Module 

The speech synthesizer uses CV, VC and CVC syllables to produce speech for an input 

text. The text must therefore be converted to a stream of symbols which correspond to 
CV, VC and CVC syllables. This is achieved by a text-to-segment conversion module 
(see figure 2). The module contains a text-to-phoneme conversion system, which breaks 

up the input text into a stream of phoneme symbols, using a set of letter-to-sound rules. 
Since the phoneme symbols produced may not correlate with the stored segments in the 
inventory, the phonemes are thus converted to CV and VC syllables by grouping them 
into pairs. For example, the word `cats', is converted from the phoneme stream to CV and 
VC segments as shown: 

k{is => k{ {tts 



Speech output can be improved by using larger speech segments (Tatham, 1991). This 
reduces the number of segment boundaries per word and hence the likelihood of 
waveform discontinuities. The text-to-segment conversion module ensures that for any 
given text, the largest possible speech segments are selected from the waveform 
inventory. Where possible, CV-VC syllable pairs are replaced by a single CVC syllable, 
when available in the waveform inventory. The text-to-segment conversion module relies 
upon a Segment Equivalency Table, which contains equivalencies between CV-VC pairs 
and CVC syllables that are stored in the waveform inventory. For each consecutive pair of 
syllables in the stream of segments for output, the text-to-segment module searches the 
Segment Equivalency Table for an appropriate CVC syllable. For example, for the word 
`cats', the /k{/, /{ t/ pair could be replaced by a single segment /k { t/, if it is contained in 
the Segment Equivalency Table. This reduces the number of segment boundaries for a 
word. 

INPUT TEXT 

TEXT-TO-PHONEME 
CONVERSION 

PHONEME STREAM 

PHONEME-TO-CVf\TC 
SYLLABLE CONVERSION 

CV or VC SYLLABLES 
i 

Convert CV & VC pairs to 
CVC SYLLABLES 

where possible 

comparison 

CST, VC and/or CVC SYLLABLES 

Segment 
Equivalency 
Table 

Fie2" Text-to-segment conversion 

The text-to-segment conversion module at present deals with CV, VC and CVC syllables, 

and is potentially independent of segment type. Currently, the CVC inventory is not 

exhaustive, but is continuously being developed. Whenever additional speech segments 

are added to the waveform inventory, the Segment Equivalency Table is also updated 



with appropriate equivalencies. This allows the speech waveform inventory to contain a 
range of segment types. 

3.3 Segmental Duration Module 

The segmental duration module assigns a time value to each speech segment for output, 
using a timing database and a duration look-up algorithm. The main principle is to extract 
sequences of durations from entries in the timing database for the relevant segments of 
the input word. The first rule is to take the largest unbroken sequences of consecutive 
segments possible from the timing database, along with their associated durations. If 
several segment sequences of equal length are found, then their respective `position in 
word' attributes are taken into account. If each segment sequence has the same position in 
word, then a final rule is used which favours the sequence whose original database entry 
is closest in length to the input word's length in segments. 

At present, the segment omission principle which was discussed earlier, is included 
inherently in the database. So when a word such as `instigated' is included in the 
database, any segments omitted are simply assigned a duration of zero. In this example, 
this word would initially be segmented as follows: 

In ns st tI Ig gel elt tI Id 

Experimental results show that superior speech is output if the /Ig/ segment is omitted 
altogether. So when this word is stored in the timing database, /Ig/ is assigned a duration 

of zero, effectively omitting it. When a novel word is being synthesized, this segment 
omission is transparent to the duration look-up algorithm. For instance, the input word 
`unmitigated' would be segmented as follows: 

Vn nm ml It tI Ig gel elt tI Id 

The duration look-up algorithm searches the timing database for the largest unbroken 
sequences of segments possible. It is likely that the last five segments for the word 
`unmitigated' would be extracted from the timing database entry for the word `instigated' 
(the first five segments would be compiled from other database entries). Since the /Ig/ 

segment was originally assigned a duration of zero, /Ig/ is also omitted from the word 
`unmitigated' during the speech synthesis. Whilst at present, segment omission is `built 

in' to the timing database, it would be possible to implement this process using a set of 

segment omission rules. Further study is needed to define the contexts in which segment 

omissions should occur in the text-to-segment conversion module. 

4. Results 

The concatenation scheme described produces natural-sounding speech synthesized for 

whole words. On the sentence level, whilst no prosodic manipulation such as pitch 

alteration is possible, the speech is nonetheless intelligible. This is no doubt due to the 



listener being assisted by the presence of surrounding words to give contextual clues. 

5. Conclusion 

A concatenation scheme based on CV, VC and CVC syllables for waveform speech 
synthesis has been described. The scheme is used in building a database of timing data for 

segmented whole words, which is later used to predict segmental durations for text-to- 
speech. A text-to-segment module automatically controls the translation of text to an 
appropriate combination of segments, attempting to make optimal use of the available 
waveforms in the inventory. Segmental durations are assigned automatically via a 
duration look-up algorithm which makes use of the timing database. Once the segment 
stream is chosen, the waveforms are output according to the concatenation scheme 
described. The text-to-segment module requires further work with respect to 
implementing an omission scheme for segments at syllable boundaries. 
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ABSTRACT 

The potential of a time-domain concatenative speech synthesis (TDCSS) method, based on joining 
portions of CV, VC, CVC and CC waveforms, is evaluated. In TDCSS, a segmental duration parameter 
specifies a portion of each stored waveform, to be concatenated. This paper compares the output of 
TDCSS with five established text-to-speech synthesisers, ranking a set of stimuli according to 
naturalness. 

1. INTRODUCTION 

A time-domain concatenative speech synthesis (TDCSS) technique for text-to-speech (TTS) has been 
developed at Bournemouth University. Speech is synthesised using an inventory of stored CV, VC, CC 
and CVC waveforms. To synthesise a word, appropriate waveforms are selected from the inventory and a 
segmental duration value is assigned to each waveform. The segmental duration parameter specifies the 
portion to be selected from each waveform for concatenation (see Figure 1). Each portion is taken from 
the start of a stored waveform, and finishes at a point t milliseconds later, where t is the segmental 
duration. In effect, the segmental duration variable determines the number of speech samples that are 
extracted from a stored waveform. In the concatenation process, the speech segments are abutted, 
without either an overlap or a gap between segments. In TDCSS, the segmental duration parameter 
actually controls both the speech timing and smoothness of the join between acoustic segments. Accurate 
segmental durations are essential if the resulting speech is to sound natural, since the duration value 
effectively determines the choice of concatenation point and hence, the quality of the synthetic speech. 

In TDCSS, the speech portions for concatenation are not stretched or squashed in any way. Rather, the 
intrinsic duration of each extracted speech segment is used. With this method, overall word duration can 
be adjusted, by varying segmental durations. Furthermore, the number of `clicks' in the synthetic speech 
can by reduced by choosing concatenation points that correspond to appropriate zero crossings in the 
time domain. Vowel quality can be preserved by avoiding concatenation points within vowels where 
possible (Saito, 1992). For instance, when using CV and VC segments, to form CVC syllables, vowel 
onset time can be controlled, by varying the portion of CV segment to be concatenated. Good results can 
usually be obtained using a demi-syllabic cut, where the consonant-to-vowel transition ends and the 
vowel portion begins. This allows for coarticulation effects and enables the listener to anticipate the 
following VC segment. A more detailed explanation can be found in Sahandi and Vine (1997). 
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Figure 1: An overview of TDCSS 

TDCSS reduces the need for smoothing at segmental boundaries, by attempting to choose optimal groups 
of speech segments. Some concatenation systems select an optimal set of segments from a segment 
inventory (e. g. Iwahashi & Sagisaka, 1995), on the basis of minimising a concatenation cost function 
(based on measures such as spectral distance). In contrast, for TDCSS, concatenation points are selected 
via the segmental duration parameter. For TTS, a statistical segmental duration prediction system is 
used, based on a database of segmental duration information. It should be noted that the segmental 
duration database was compiled by an `expert judge', who listened to the synthetic speech and adjusted 
the timing according to their perception of speech quality. 

In this paper, the potential of the TDCSS synthesis method is evaluated. This is an exploratory 
investigation, to examine the output achievable using TDCSS, before fully developing an entire TTS 
synthesis system. For optimal naturalness, hand-refined segmental durations were chosen for the TDCSS 
stimuli. This study assumes that appropriate segmental durations will be predicted via a statistical 
segmental timing algorithm (see Vine & Sahandi, 1997). In future, TDCSS will be applied to TTS, and 
may be combined with techniques, such as TD-PSOLA (Moulines & Charpentier, 1990), for pitch 
manipulation. In a preliminary listening test, the intelligibility of TDCSS was also evaluated. Four 

participants listened to ten synthetic words of between one and five syllables. All subjects correctly 
identified the ten words. 

1.1 EVALUATION TECHNIQUES 
The assessment of TI'S systems is a necessary task, since there are "no physical measurements which 
result in indices that quantify perceptual attributes of synthesised speech" (Pavlovic, Rossi & Espesser, 
1990). Anyone who investigates synthetic speech for any great period of time finds it increasingly 
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difficult to judge its naturalness effectively (Dixon & Maxey, 1968). It is also necessary to compare rival 
commercial speech synthesisers. Researchers need to study which aspects of a synthesis technique 
improve the overall speech (Morton, 1991), and yet the task of assessing synthetic speech is complicated 
by many interacting factors. Since there are few objective procedures for assessing synthetic speech, 
subjective assessment techniques are often favoured (Arden, 1997). 

Some aspects of speech can be measured quantitatively, such as intelligibility and comprehension. 
Quantitative speech quality measures such as Reference Distortion techniques have been described 
(Johnston, 1996). Other attributes can only be measured qualitatively, including ease of listening, ease of 
comprehension and naturalness. Although intelligibility and naturalness are desirable, they remain ill- 
defined. Dutoit (1997) has defined intelligibility as being linked to how well the phoneme-to-phoneme 
transitions are realised, whilst naturalness is a result of how well the segmental features harmonise with 
the supra-segmental features. A further term, acceptability has been defined by Pavlovic, Rossi and 
Espesser (1990) as being "the overall users' satisfaction with the communication situation". Whilst this 
criterion is useful, the perception of acceptability may be relative to the user's expected application for 
the speech. In concatenative speech synthesis, it is important that discontinuities in the form of clicks are 
eliminated when conjoining speech segments (Hess 1992, Kraft 1993), since they may affect both 
intelligibility and naturalness. This is particularly the case for TDCSS, so in this study, naturalness is 
defined as "human-sounding" (e. g. Childers & Lee, 1991). 

Intelligibility can be investigated in a reasonably straightforward manner, using segmental intelligibility 
tests. Segmental intelligibility tests examine intelligibility at the phoneme level (Carlson et al., 1992) and 
include the Modified Rhyme Test, Diagnostic Rhyme Test (Voiers, 1983) and Cluster Identification Test 
(Jekosch & Pols, 1994). The Modified Rhyme Test involves the presentation of isolated, monosyllabic 
words to subjects (Logan, Greene & Pisoni, 1989), and can be used with untrained listeners. In the 
Diagnostic Rhyme Test, listeners are presented with an isolated word taken from a 192-word vocabulary, 
and must identify it in a pair of words (which differ only by their initial consonant). Cluster 
Identification Tests involve the presentation of nonsense words within short carrier phrases to subjects, 
who then attempt to identify the word (Kraft & Portele, 1995). The nonsense words usually have a given 
syllable structure, such as CiVC f (where i and f indicate the number of initial and final consonants in the 
cluster). Each stimulus is only presented once, and subjects are given the overall list of words to be 

played. Responses are then scored according to correctness. Cluster Identification Tests are more 
inclusive and reproducible than Diagnostic Rhyme Tests, requiring fewer trained listeners (usually four 
is, enough). 

Sentence-level intelligibility tests include the Semantically Unpredictable Sentences (SUS) test. This test 
minimises the contextual semantic information given in sentences by using raw sentence structures filled 
by a random selection of words taken from predefined lists of possible candidates (Benoit & Pols, 1992). 
An example sentence is "The table walked through the blue truth " (Dutoit, 1997). One approach for 

evaluating synthetic speech is to use single pair comparison tests. These operate on the word or sentence 
level, and are used to determine the ranking of systems. According to Johnston (1996), these tests can 
either focus on specific attributes (e. g. loudness, distortion, etc. ) or allow an open response (e. g. "Which 
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do you prefer? "). In this paper, a single pair comparison test was used to rank the TDCSS synthesiser 
against five established TTS synthesisers, in terms of perceived naturalness. 

2. INVESTIGATING NATURALNESS IN TDCSS 

In this investigation, the potential of the TDCSS method was assessed by comparing its output with that 
of five established TTS synthesisers. In the experiment, hand-refined TDCSS stimuli were used, in order 
to explore the potential naturalness of unsmoothed TDCSS stimuli, given the availability of appropriate 
segmental durations. It is also intended in future to investigate a smoothed version of TDCSS. 

2.1 STIMULI 
Six different speech synthesisers were used to produce the stimuli for comparison. These include 
TDCSS, KTH, Laureate, Festival, Bell Labs and TruVoice. KTH refers to the interactive multilingual 
TTS service of KTH in Stockholm (KTH, 1998). Laureate refers to BT's TTS synthesiser (Edgington et 
al. 1996, Laureate 1998). Festival refers to Edinburgh University's Festival TTS synthesiser, version 
1.2.1 (Festival, 1997). Bell Labs and TruVoice refer to TTS synthesisers produced by AT&T and 
Centigram respectively (Bell Labs 1998, TruVoice 1998). Half of these speech synthesisers are for 
American English and half are for a British English accent. All stimuli were synthesised using the above 
TTS synthesisers' default settings. Male voices were chosen, to be comparable with the TDCSS stimuli. 

The stimuli consisted of isolated, single words of between one and five syllables (see Table 1). Isolated 
words were chosen in order to reduce the contribution of prosodic elements, such as intonation, to the 
subjects' perception of naturalness. 

Still Computer Hurts Concatenation 
Definitely State Talking - 

Table 1: Words used as synthetic stimuli 

For the TDCSS stimuli, an initial phonetic transcription was produced by hand for each word. This was 
converted to an appropriate sequence of CC, CV and VC speech units. The syllables were taken from a 
waveform inventory (Sahandi & Vine, 1997) recorded by a male speaker, with a 16-bit depth, and a 
sampling rate of 44100 Hz. A variable portion of each syllable was selected for concatenation, following 

the scheme outlined in Section 1. Segmental durations were initially produced using a data-driven 

segmental duration prediction algorithm (Vine & Sahandi, 1996). They were then hand-refined where 
necessary according to the author's judgement, to increase the naturalness of the final synthetic speech. 
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2.2 SUBJECTS 
Fifteen subjects were used, aged between 21 and 50. Nine subjects were male and six were female. Nine 
subjects were native speakers of English whilst six were not. All subjects had normal hearing, and did 
not have extensive experience of speech synthesis. Experienced listeners were avoided, because synthetic 
speech tends to sound more natural as listening experience increases (Nusbaum, Francis & Henly, 1995). 
Subjects were told that the purpose of the experiment was to compare the naturalness of a number of 
different speech synthesisers. 

2.3 METHOD 
In a pair comparison experiment, six speech synthesisers were ranked in terms of perceived naturalness. 
The experiment was carried out in a quiet room and conducted using an interactive computer program. 
Seven different words were produced by each synthesiser, and the total set of synthetic words were 
arranged in such a way that every possible combination of stimuli was used. The pairs of stimuli were 
presented in a randomised order, so as to minimise any possible boredom that may arise. After each pair 
was presented, the subject indicated which of the stimuli they thought was "the most natural sounding". 
A `Repeat' button was provided. Subjects were provided with a list of the words that they would 
encounter, in order to reduce the cognitive load associated with word identification, and to enable them 
to concentrate purely on judging naturalness. 

2.4 RESULTS 
Figure 2 shows the overall rankings for the speech synthesisers in terms of average number of times 
preferred per subject. When ranked against five established TTS synthesisers, the TDCSS stimuli were 
judged to be the fifth most natural out of six. It was noted that several subjects favoured a British speech 
accent to an American one. This is perhaps unsurprising, since none of the subjects were American. It 

was often the case that shorter TDCSS stimuli, such as monosyllables and disyllables, tended to be 
judged more favourably. It should be pointed out that only CV, VC and CC speech segments were used 
to synthesise the TDCSS stimuli; further improvements are attainable if CVC syllables are introduced. 

The speech synthesisers used were based on a variety of different synthesis methods, including TD- 
PSOLA (Laureate), LPC (Bell Labs) and formant synthesis (KTH). The overall results follow the general 
trend that concatenative synthesisers (particularly the TD-PSOLA method) are perceived as being more 
natural (Klaus, Fellbaum & Sotscheck, 1997). It is also interesting that a relatively unsophisticated 
synthesis method, such as TDCSS, was perceived as slightly more natural than an established formant 

TTS synthesiser (KTH). 

It is important to consider that in this experiment, only a small set of isolated words was used for the 

stimuli. It is likely that further differences between the synthesisers would emerge, in terms of predicted 
intonation at the sentence level. Indeed, the evaluation of prosodic features remains a difficult task, and it 

is not fully clear as to how synthetic speech should be assessed on the sentence level (Morton, 1991). 
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This is because the various components of a TTS synthesiser can interact with the prosodic component. 
A potential solution to this problem is to reduce the experimental stimuli to their prosodic content, such 
as fundamental frequency contour, intensity or rhythm (Sonntag & Portele, 1997). 

Figure 2: Speech synthesisers ranked by perceived naturalness 

3. CONCLUSION 

The naturalness of speech produced using TDCSS has been evaluated, relative to five TTS synthesisers. 
In a single pair comparison experiment, TDCSS stimuli were ranked against speech produced by five 
established TTS synthesisers. TDCSS was ranked fifth most natural out of the six synthesisers. If 
accurate segmental durations can be predicted, and appropriate smoothing techniques used, the TDCSS 
speech synthesis method can potentially be adapted to practical applications. 
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