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Abstract

Venous thromboembolism (VTE) is the third most common cardiovascular condition that
affects mainly hospitalized and cancer patients and it is associated with high morbidity and
mortality. Some patients heed immediate treatment and monitoring in intensive care units (ICU).
Moreover, cancer patients are at increased risk of developing VTEcia#ip in the immediate
period after ICU hospitalization. It is crucial to predict which of the cancer patients will develop
VTE, as well a&sarly and latanortality in these higkrisk patients and recognize possible treatable
factors in order to improveurvival. Several scoring and predictive models have been developed
for these purposes, but with limited generalizability and they are mostly effective in the
prediction of irhospital mortality. Theyhave severalimitations, for examplethey use data
recordedonly on the first day of admissiorMoreover, no score exists so far to predict late
mortality in ICU patientsWith the advanceduse ofelectronic health records, opesource big
data medical databases andathine learning, predictive modelling could be utilized and become

a powerful tool to guide clinical decision.

The aim of the study was to explore the use and performance of various machine learning
algorithms (ML) in order to predict twesearch questins. (i) VTE risk in ICU hospitalized cancer
patients after discharge andij) early and late mortality in VTE patients hospitalized in ICU. For
that reason, a freely accessible database MHMll@Gas been used that contains a vast amount of
various timeseries healthcare data from thousands of patients, making it ideal for ML based
forecasting.Since it provides information even after discharge from ICU, it gives an opportunity
to predict late mortality.Two groups oflatasetswere extracted from the datadse:D1, consisted
of 4,699 patients with cancer who were admitted to ICU and stratified in two groups based on
whether they were readmitted to ICU within 90 days with a diagnosis of VTE or not. The ML
classification task was to predict which of the canpatientsoriginallyadmitted to ICU will be
readmitted with VTE within 90 dayB2, consisted 02,468 patients who were admitted to ICU
with a VTE diagnosis and stratified in three groups, based on their outcome, that is, died during
their first ICU adnssion (early mortality group), died after their discharge from ICU or in a later

admission (late mortality group) and remained alive for months after their admission in ICU. In



this case, two ML classification tasks were constructed, first to build a nicatetlistinguishes

early mortality and second, a model that distinguishes late mortality.

A very wide range of features were selected, that includes demographic information, clinical
and laboratory data, prescriptions, procedures, well established coitlibyland severity scores
as well as information coming from written notes. Clinically relevant entities from free medical
notes were extracted using the sequence annotator SABER and then they were fitted into a
Latent Dirichlet Allocation (LDA) model d¢f ®pics. In total, 1,471 features were extracted for
each patient, grouped iB categorieseach representing a different type of medical assessment.
Automated ML platform that easily handles witigh dimensional, noisy and missing data, as
well as MonteCarlo simulations based on Random Forests with hyperparameter tuning and class

balancing with Synthetic Minority Oversampling Technique (SMOTE) were trained in parallel.

5dz2S G2 GKS KAIKE@ AYOolflFyOSR Yyl (dN¥o2FAaKS> T
neither of the ML approaches were able to predict DVT in cancer patients even after the use of
SMOTE method. As far as it concerns the prediction of early mortality in ICU patients with VTE,
the best ML model chosen predict ealy mortality was Random Forests (AUC=0,92). Regarding
late mortality, the best ML model was again Random Fordisertheless, the task of predicting
late mortality was less efficient even with the holistic approach (AUC=0,82). Significant clinically
relevant predictive features of early and late mortality were cancer, age, treatment with warfarin,
and red cell transfusions, whereas known severity scores performed well only in the prediction

of early mortality.

The contribution of this study to the currekhowledge was muHieveled,asit explored the
performance of various ML approaches in a-thga driven research approachsing multiple
formats of data from structured to unstructured medical notes,ekamined the effect of
balancing techniques in ginly imbalanced datasetsuch as the case of medical dataseisd
finally discovered possibly new biomarkerarli mortality in criticallyill patients with VTE can
be easily predicted by ML techniques, whereas in the case of late mortality, whicimasea
difficult task,and where medical scores are still lackinglL could probably outperform classic

statistical methods. There is a need for more precise and reliable tools in order to overcome the
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performance with manual selection and parametrization of ML mqadtsch is highly promising
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1 INTRODUCTION

Venous thromboembolism (VTE) is a potentially lethal disease that presents with clots in the
veins, most frequently as deep vein thrombosis (DVT) and pulmonary embolism (PE). Itis a quite
common problem with an annual prevalence rate of apgnamately 1 per 1000 adults Its
prevalence has been reported to increase probably due to a doubling of life expectancy and
quadrupling of the world population during the 20th centéirffhe impact of this disease is
enormous since it has sevephysical and psychological complications, such as-fpastnatic
stress disorder, pogihrombotic syndrome, recurrence, and even death. More specifically - post
thrombotic syndrome impairs negatively the quality of life, and increases the healthcaré.costs
Thrombaeembolic disease is one of the main causes of mortality in the world as it is estimated
that it accounts for 1 in 4 deaths worldwide in 2818 prevalence is even higher in hospitalized,
criticallyill and cancer patient$’. VTE in critiallyill patients is associated with significant
morbidity, prolonged intensive care unit (ICU) and hospital stay and increased mértgtity
these reasons, it is crucial to predict promptly which patients are at high risk, as weli@spital

and hter mortality, and potentially identify new predisposing factors.

VTE is a complex multifactorial disease. Both acquired and hereditary factors interact and play
essential roles in its development and outcome. The acquired risk factors can be transient or
permanent depending on how long they persist. Based on their predictive value, they can be
further stratified as strong (odds ratio >10), moderate (odds ratj@) 2and weak (odds ratio <2).
Examples of strong risk factors are orthopaedic surgery, majwergl surgery and major trauma.
Moderate risk factors include central venous catheters, congestive heart or respiratory failure,
cancer, chemotherapy, hormone replacement therapy, oral contraceptive therapy, and
pregnancy/postpartum. Whereas bed rest (R @ 30> | ANJ N @St By K2dzN
years), and obesity are considered as weak risk faéfSrénherited factors are also classified as
strong, medium and weak. Deficiencies of some natural coagulation inhibitors including
antithrombin, protein C, and its cofactor protein S belong to strong genetic risk factors, as well
as homozygosity of factorMeiden (FVL) causing resistance to activated protein C, homozygosity

of prothrombin G20210A which results in increased prothrombin levels and double



heterozygosity of these mutations. Moderate genetic risk factors consist of heterozygous
mutation in the L or prothrombin G20210A, and blood group (+@1blood group). Weak risk
factors are considered hypdromocysteinemia and homozygosity for factor Xlll 34Val alleles
1011 The abovementioned classification schema is not widely accepted and probably of low
clinical importance since guidelines use different classifications, there are broad confidence
intervals of risk estimates and the risk of thromi®depends on more complex gegene and

geneenvironment interaction¥, but it could be a baseline approach in risk stratification.

VTE is also a frequent complication in patients with active cancer. Cancer itself increases
directly and indirectly thrombembolic risk by various pathophysiological mechanisms. Cancer
cells secrete inflammatory cytokines and migarticles, directly activate coagulation
mechanisms and platelets leading to a prothrombotic state. Moreover, hospitalizations, surgical
interventions, chemotherapy, the presence of central venous catheters, as well as the type and
stage of cancer, the presence of comorbidities and advanced age are important predisposing
superimposed factors. It is crucial for clinicians to prevent thrombosis setheghrisk patients
as well as to realize that prevention is ad#&ving procedure, since VTE development during the
first year from diagnosis of cancer increases mortality and affects negatively the outcome of

diseaséss.

VTE could be prevented ifgmpt and accurate selection of patients at high risk of thrombosis
and prophylactic anticoagulation are applied. Unfortunately, there is no such a simple and
straightforward method to predict thrombosis. Clinicians in their ewveay clinical practice are
constantly confronted with the dilemma of prophylactic anticoagulation in trigk patients,
since the balance of risks between thrombosis and bleeding cannot be quantified by clinical
experience and most frequently there is a tendency to overestimatedite risks*. Moreover,
recent negative personal experiences can affect objective judgment. To overcome this difficulty,
several risk assessment models (RAMSs), scores and tools such as Kharah& OMPASSAT
16score have been developed to predict thrombmbolism in hospitalized or ambulatocancer
patients respectively, but they have so far limited generalizability and valid&ténExternal

validation in large data sets is always necessary before these tools can be broadly implemented



7. The risk stratification in cancer patients has been problematic due to the broad heterogeneity
of different cancers, the uniqueness of differepatients and the coexistence of various

pathologies that predispose both to increased bleeding and thrombotic risk.

Some higkrisk patients that present with thrombosis need immediate hospitalization in ICU
and suffer from high mortality incidence. Theage several scores to predict mostlyhospital
mortality and early mortality in ICU patients. The Simplified Acute Physiology Score!§SAPS)
Acute Physiology and Chronic Health Evaluation (APATEHE) Sequential Organ Failure
Assessment (SOFAXcorg are based on patient measurements during the first 24 hours of
hospitalization and are considered validated tools in predicting early morali®n the other
hand, longterm survival after ICU admission is not well studied and risk assessment maelels ar
missing so far. It has been recognized that this is an important outcome that needs to be
accurately predicted and prevented, since it could assist difficult clinical decision making and
improve medical costd. For example, more accurate estimates afdgdéerm outcomes at the
individual level, could assist clinicians in important decisions regarding rational allocation of the
limited medical resources, an important consideration especially in the era of €QVID

pandemic.

Nevertheless, traditional RAM&be several limitations. They have been developed based on
different target populations with heterogeneous inclusion and exclusion criteria, thus during
validation they provide modest performance. For example, the accuracy of various scores drops
in the eberly populatiort®, since there is a significant correlation of various parameters with age
(e.g. BDdimer and age correlation). Moreover, they are based on multivariate statistical methods,
such as logistic regression models, that disregard thelmaar relationships that exist between
variables in real medical datasets. These scores are built based on health data collected during
the first 24 hours of ICU admission or instant based measurements (e.g. the worst or average
value), and do not consider tirgeries measurements, that could contain important information
for clinical deterioratio”. Changes of organ function variables over time could provide more
useful information with greater prognostic relevance. Simplified intdggsed scoring systems

negkect the complex nature of variables (for example hypertension could both increase



thrombotic as well as bleeding risk). Moreover, it has been reported variable interobserver
agreement in the application of these scores based on the personal experienliei@ags, so
there is a possible bias in the interpretation of RAMAnother significant problem is the use of
different laboratory methodologies with varying specificities, sensitivities andifwalues that

produces difficulties in theomparison between various faciliti€s

As an adjunct in the abow@entioned problems, there has been an increasing interest in the
use of machine learning (ML) approaches in the prediction of various outcomes in méflicine
since ML could recognize coraplpattern changes in data and associations, that could probably
help in improving patient care and survivat well as lower hospitalization costs. On the other
hand, the growing availability of larggeale healthcare big data and automated patient
survallance systems could improve clinical decisipaking®. These data are not only large in
size and dimensionality but also unstructured and heterogeneous. Using a holistic approach,

incorporating large scale healthcare data could advance personalizegracidion medicine.

This study focused on the exploration of automatadtoML)as well as custom ML algorithms
in the prediction of two important clinical questions, such as mortality and thrombosis in ICU
hospitalized patients. A holistic approach wagdi€hoosing a high dimensional dataset, with
thousands features of various formats, and further processing has been applied to manage a high
imbalance ratio with the final goal to improve performance of the proposed model. More
importance has been given tine collection and combination of a very wide selectiboit
thrombosisoriented of heterogeneous clinical and laboratory features as well as-tege
medical notes. Data were identified and selected retrospectively over a period of time and
hospitalizedlCU patients had a loAgrm follow-up in the database. The initial hypothesis was
that use of multiple ML algorithms could outperform existing prognostic scasewell as refine
them by identifying new biomarkers. Finally, an effort towards selectmpgortant clinical
features has resulted in clinically meaningbid-signatures This studyusinga novel approach
that exceeds the classic statistical metholdas contributedin the prediction of early and late

mortality in ICUhospitalizedpatients withthrombosis,the identification of biesignatures and
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rediscovery of candidate new biomarkersingd 6-R B (i dorAblhedwith medical expertisand

ML approaches.
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2 AIM OF THE STUDY

Given that there is no universal consensus in the usespeaific predictive score in patients with
cancer and/or thrombosis and that scores are not rigid and are highly subjectivetutiigaims
to explore the usage, applicability and performance of machine learning algorithatsig-data
driven researclapproach to answertwo important researchquestions

(i) Is it possible to use Min prediction of VTEassociated readmissioof ICU hospitalized

cancer patientsafter discharge
(i) Is it possible to predict early aate mortality in VTE patients hospitalized in ICU?
To fulfil these goalsthe following objectives must be met:

1) Data acquisition and definitionTo correctly assess VTE risk and predict outcome in ICU

hospitalized patients it is necessary to have a wide range ofduglity and higiHrequency
medical dataAttributes must be carefully selected according to current knowledge to avoid
Y2AA&S |y, garBageR Az 8 S Svildpte Qifiededt formas of data need to be
processed in a homogeneous pattern (e.g. conversion of textual information to nunanratal
extraction of metafeaturesy.

2) Application of ML method andhodel training Identification of best ML algorithmis time-

consuming and needs extensive parametrization and-gge@rch For these reasors, a dual
approach will be usedcomparing automated with standard ML algorithms and
hyperparameter tuning.

3) Implementation of balancing methodsiandlingwith highlyimbalanceddata is a frequent

problem in the medicafield, thus impairing the performance ahe proposed models.
Exploration of balncing techniques coultheoreticallyresult in better performance.

4) Evaluation and interpretation of resultdL algorithms can be evaluated with standard

statistical metrics Besidedhat, an important challenge for medical researchers is thitht
algorithms results ideally must be eplainable in order to identify complex biological
relationships and provide new insight$his would allow the identificatiomf clinically
meanindul predictivefeatures that contribute to the predictive model.

5) Comparisonwith other RAMs:Comparisonof the proposed framework with known Risk

Assessment Models or published data.
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3 REVIEW OF LITERATURE

Since the main research questions are focusedhwormbosisprediction incritically-ill cancer
patients and prediction of early and late mortality in ICU patients with thrombosis, in the
following section a review of the existing risk assesdmardels for these two important clinical
problems will be reported. These scores have been developed based on classic statistical
methods. The novelty of the approach in the current study, is thataddress thee research
guestions machine learning inig data will be used. In the following section of the review
background of usindIL algorithms and automated ML platforms will be shoettidressedas

well asthe importance of bigdata in healthcareBig data is a massive volume of both structured
and wstructured data that is so large that it is difficult to process using traditional methods, but
they areideal for machine learning algorithms since the latter need large data for trairimaly,
studies based on prediction of thrombosis using mache&sning algorithms, @.well as their

limitations are discussed shortly.

3.1 Risk assessment models for prediction of thrombosis in cancer
patients

Khorana score was the first tool that was developed to predict thrombotic risk in
chemotherapy naiveatients®. It is simple in use but it has several constraiktsing simple
laboratory parameters before chemotherapy treatmenétignts are divided in three risk groups
(low, intermediate and high) with a large proportion of them falling in the interiaesdrisk
category, making debatable its clinical applicability. Moreover, it has low sensitivity in certain
tumor types and this tool can be used only at diagnosis and before initiation of chemotherapy.
To improve its predictive performance several mawifions have been proposed but with
limited generalizability. VIENNBATS scofé improved the discrimination ability through
addition of two biomarkers, fdimers and Fselection, although the latter is a sophisticated test.
PROTECHT score tried to expafdorana score through incorporating specific types of
chemotherapeutic agents that increase the thrombotic ¥iskhe ONCOTEV scétshowed an
improved discrimination accuracy of Khorana score by adding ultrasound in the diagnostic panel

but it is stillunder validation. Recently a promising risk assessment tool, COMPAES8erived
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from a large prospective cohort and focused in ambulatory cancer patients, has been shown to
have improved sensitivity and specificity but it also needs further validafiorA direct
comparison of different RAMs for VTE prediction in a cohort of lung cancer patients showed that

the COMPASSAT model had an 100% predietiaccuracsf.

3.2 Risk assessment models for prediction of mortality in thrombosis
patients

Another important clinical issue is the prediction of mortality in ICU hospitalized patients with
thrombosis. Several prognostic models that incorporate clinicalardboratory findings have
been derived to predict early mortality in patients with thrombosis, such as the Pulmonary
Embolism Severity Index (PESI) and the simplified PESI for pulmonary embolism which are the
most weltknown® 34. 35 Moreover, there are several other scores, suctsa® 3%, APACHE,
SOFA?, OASI®, that estimate the severity of disease in ICU and that correlate positively mostly
with early mortdity but have varying accuracy depending on the population studied. These
scores are based on data obtained during the first day of admission or the worst value, so they
lack considerable information stemming during their hospital stay and-gssharge.Their
performance is lost over time, since medical practices change significantly. Moreover, they are
not widely customized in different patient groups, such as patients with thrombosis or cancer. It
should be noted that ICU patients are at increasedafgdostdischarge morbidity and mortality.

So far, accurate identification of patients who will stay at risk even months later is lacking.

It is crucial to predict these higlisk patients since proper screening or adequate treatment
could probably improg their survival®’. Moreover, all the abowenentioned tools were
developed in an era without electronic health records, big data storage, and machine learning. In
the last decades, there is an increasing interest in the use of information technology and M

algorithms in order to improve forecasting and possibly guide cliniéfans

33wlraAo a[ FTt3I2NAGKYA ol Ol ANRdzyR
Artificial intelligence (Al) is a system that has the ability to correctly interpret, learn from

external data, and use them to achieve specific goals and tasks through flexible adaptive
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mechanisms like the human brain.i8la regarch area which also disawith the interpretation

of two types of data:

i.  Structured, such as patient characteristics (e.g. demographic), laboratory and imaging

data. These features can be either binary, categorical or continuous.

ii.  Unstructured such asclinical notes in the medical file or publications in medical

journals

Structured data can be analyzed by ML algorithms while natural language processing (NLP)

can be used to extract information from unstructured dé&ta

ML uses a combination of mathetics, statistics and computer science in order to achieve Al
through learning from the available data, and thus the machine can be trained using the data and
based on algorithms, gives the ability to learn how to perform a specific task. ML algorithhms lea
from a vast amount of input data (various patient features such as age, gender, body mass index,
diagnosis) and they produce complex mappings between them in order to create an output (e.g.
outcome of thrombosis or mortality). If the output is knowngtalgorithm is calledupervised
ML, while if the output is unknown it is calleshsupervised Supervised learning performs better
in predictive models since it can build relationships between inputs (patient traits) and output
(outcome) but unsupervise@arning could possibly discover unknown relationships or clusters
of features. The goal of any supervised ML algorithm is to best estimate the mapping function for
the output variable given the input data. The mapping function is often called the tametidn
0SOlFdzaS AG Aa GKS FdzyOlAazy GKFG F FABSY &dzLISN
ML algorithms make different hypotheses about the form of the target function, for that reason

it is necessary to try several algorithms in order to tinel best for each function.

There are two types of algorithms, parametric and fpamametric. Parametric models
summarize data with a set of parameters of fixed size, make large assumptions about the
mapping of the input to the output variables, are simpdad faster to train, and require less data
but may not be as powerful. Examples of parametric algorithms are Logistic Regression and Linear

Discriminant Analysis. Nonparametric methods make few or no assumptions about the target
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function and require a komore data, are slower to train and have a higher model complexity but
can result in more powerful models. Examples of 4pamametric methods are Decision Trees,

Naive Bayes and Support Vector Machines (S¥M)

ML algorithms in some cases fail in the potidn process. There are two types of prediction
errors, bias and variance errdiasis the simplification of the assumptions made by a model to
make the target function easier to learn. Generally parametric algorithms have a high bias making
them fastto learn and easier to understand but generally less flexible. In turn, they have lower
predictive performance on complex problemérianceis the amount that the estimate of the
target function will change if different training data are used. Ideallghduld not change too
much between different training datasets. The ultimate goal of any supervised ML algorithm is
to achieve low bias and low variance. In turn, the algorithm should achieve good prediction
performance. Parametric ML algorithms often ka& high bias and a low variance and the
opposite applies for nonparametric algorithm$radeoff is the strain between the error
introduced by the bias and the variance. A common problem in ML that results in poor
performance of the algorithm igsverfitting. Overfitting happens when a model learns perfectly
from the training data but cannot generalize to new data, resulting in a poor performance of the
algorithm. To avoid overfitting, two methods exist, one-#®kl cross validation and the other is

the partitioning of the data set to train and test validation set.

The most basic and simple ML algorithnlimear regressionwhich is based primarily on
statistics. Linear regression is a statistical model that assumes a linear relationship between one
or more input variables (x, independent variables) and a single output variable (y, dependent
variable). Linear regression has been used for predicting output variables with continuous values
(regression problems). For example, for n number of predictorse(X =) the following
NEINB&&AZY Sl dz bhoebyXbibthd BESNBE I OSX&aelGKS NI yR2Y
regression coefficients). Linear regression calculates the estimators or predicted weights of the
regression coefficientsi€, ¢ X cy)XHat they define the estimated regression functii) =ce
+G®s+E +0ax.. Ideally the estimated or predicted respon&®), for each observatiofd M3 X =

¢, should be as close as possible to the corresponding actual respwrBlee differencesy'-
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"0 for all observation&F ™ &, ar& Glled tk residuals and it is represented as the vertical
distance between the line and the data points. Regression is about determining the best
predicted weights, that is the weights corresponding to the smallest residuals. Linear regression
is a popular statistal tool that has also been applied in ML but it has some limitations. Linear
regression models use linear combinations of variables but in biology it has been demonstrated

that interactions between variables are more complex and nonlifigar

Logistic Rgressiort! is a statistical method for analyzing a dataset in which there are one or
more independent variables (risk factors) that estimate the probability of an outcome to occur
or not (in this case thrombosis or mortality), that is a classification IprabLogistic Regression
works with binary data, where either the event happens (1) or not (0). In contrast with linear
regression, logistic regression does not use linear relationships but the natural logarithm function
to find the relationship between th variables and uses test data to find the coefficients. The
function can then predict the future results using these coefficients in the logistic equation.
Logistic regression uses the concept of odds ratios to calculate the probability. This is defined a
GKS NIXaGA2 2F KS 2RRa 27F |y S@Syd aKIFLIWISyAy3AE

fast but is not suitable for high dimensional d&ta

Naive Bayesmethd#A & | & dzZLJSNIBWAASR f SENYyAy3a fIA2NRGKY
This theorem is based on conditional probability or the likelihood that an A event will happen

given that another B event has already happened, as expresdkd following equation.

06
This algorithm is simple, requires little data but it assumes that the features being evaluated

are independent of each other, an assumption that does not happen in redl life

Linear Discriminant Analysi& is a dimensionality reduction method. It is based on Naive
Bayes theorem and can be applied when the outcome of classification is datd@md has more

than two classes. The model assumes a Gaussian distribution of the input variables. Removing
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outliers and standardization of data (so that they have a mean of 0 and a standard deviation of 1

is considered helpfdf).

K-nearest neighbour (KNNY® is a nonparametric ML algorithm. Neparametric algorithms
do not require a certain distribution of the underlying data. This is particularly helpful in practice
where most of the reaWorld datasets do not follow mathematical theoretical assumptions. It
has been applied in pattern recognition, and data mining. To determine which of the K instances
in the training dataset are most similar to a new inutlistance measure is used. For realued
input variables, the most popular distance measure isi@@gh distance. Euclidean distance is
calculated as the square root of the sum of the squared differences between point a and point b

across all input attributes?®.
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K-NN works well with a small number of input variables.

Decision tree®® split the data multiple times according to certain @ff values in the
features. After splitting, different subsets of the dataset are created, with each instance
belonging to one subset. The final subsets are called leaf nodes and the intermediate subsets are
called internal nodes or split nodes. To predict the outcome in each ledd, e average
outcome of the training data in this node is used. Trees can be used for classification and
regression problems and have been applied for decision support of medical practitioners. One of
the most important drawbacks of classical decisioget algorithms is poor processing of

incomplete, noisy dati.

Support vector machines (SV)# are supervised ML algorithms suitable for both regression
and classification problems. Data are pointed in a space wiimensions (according to the
number of features), and the most suitable hyperplane (decision boundary) that differentiates

between the two classes is estimated. SVM algorithms use a set of mathematical functions that
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are defined as the kernel. Examples of used kernels are linear, nonlaampmial, radial basis
function (RBF), and sigmoid. SVM is effective in high dimensional data, but less efficient in large

noisy data as it takes considerable training time.

Principal Component Analysis (PCGA)Js a dimensionality reduction methotbr large
datasets. For that reason, all variables are initially standardized according to the following
equatior®.

LWaOQWE
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To remove redundant information correlation between input variables is ideaqtifvith a
covariance matrix. By computing the eigenvectors and eigenvalues (linear algebra concepts) from
the covariance matrix it is possible to extract principal components. Principal components are
new variables that are constructed from the initial riadles either by mixture or linear
combination and that have as much condensed information as possible. This is quite

advantageous in the redife dataset with thousands of features that intercorrelate.

Ensemblé&! methods aremeta-algorithms that combine several machine learning algorithms
into one predictive model in order to decrease variance (bagging), bias (boosting), or improve
predictions (stacking). A commonly used class of ensemble algorithms is Random Forests (RF)
where bootstrapping is performed. Each tree in the ensemble is built from a sample drawn with
replacement from the training set. In addition, instead of using all the features, a random subset

of features is selected, further randomizing the tree.

Artificial neural networks (ANN¥ is a network of ML algorithms resembling the human brain
learning function through neurons. ANN can detect patterns andlim@ar interactions in large
complex data. A weight is placed on individual input data (input neurons) adéte fed in
intermediate connections (hidden layers), and the interactions between the neurons are
RSGSNIXYAYSR o6& 2LIWAYATAYy3 GKS FEfIA2NAGKY 2y fFN
multiple iterations are performed in which the propertietbe neurons or nodes are adjusted

in turn, and changes that improve the predictive power of the output are retained for the next
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iteration. Once trained, the neural network is then applied to previously unseen testing data, to

assess its performang®

Reinforcement learning*is another category of ML which is similar to the Marcovian decision
proces$§® and uses interactions with the environment of reward or punishment type to make

decisions$®.

Deep learning’ uses many hidden layers of ANNs that process various information and stimuli
from the surrounding environment. They have an excellent performance in complex tasks and in
high dimensional data, they can learn and make decisions on their own but theyraptecoand
not easy to understan&. An example of deep learning is Convolutional Neural Networks, the

architecture of which is shown figurel.

Natural language processing (NBP)s a scientific topicthat allow machines to extract
information from text or speechSentiment analysis is one popular NLP tool that classifies texts
into different categories relative to a positive, negative or newsaitiment.A freetext is broken
into smaller keywords or tokens of text (e.g. individual words) that can be used as features in an

ML analysis.

A schematic representation of most commonly used ML algorithms is showigume 1
provided by Rashidi et #. In this study supervised ML algorithms such lasgistic Regression,
Decision Tres, Random Forests and Support Vector Machines were employed fim#hé/L

pipeline,andNLP methods were employetb extract information from clinical notes
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Figure 1. Schematic representation of the most commonly usealddkithms(provided by Rashidi et &F).

3.4 Automated Machinelearning

The experimentation and extraction of the best performing ML modéhis-consuming since
it requires substantial human and computational effort, artificial intelligence expertise, and
extensive tuning of hyperparameters. Moreover, the choice of algorithms and hyperparameter
tuning is somewhat arbitrary, since they are d@iffit for humans to understand and they are
treated as black boxeEor that reasons, several academia and industry based automatiodi4L

have been developed to assist scientists (e.g. BEKA®S, auto-sklearn®). An extensive
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comparison between autdL platforms has been recently publisiédAutoML is a rapidly
developing field of ML. Moreover, the development of these autopktforms provides a
benchmark that will allow direct comparison and probably improved performance and

reproducibility of the studies.

The basic pipeline of autoML approach has three steps: a) Data preprocessing and feature
engineering, b) Model selecticand hyperparameter optimization and c) Model interpretation
and prediction analysi& The first step is not yet developed fully in most autoML platforms, since
considerable human interaction is needed in order to preprocess and transform data (e.g.
convesion of categorical data into integers). After feature extraction is completed, the next step
is training different types of models with hyperparameter optimization and selection of the best
model (or an ensemble of models). Each platform uses a colteofi@nown ML algorithms to
build a model.For hyperparameter optimization, some of the most popular methods are grid
search, random search, and Bayesian search. The third step, model interpretation is not

supported yet from all autoML platforms.

3.5 Machine learning and risk assessmanthe era of bigdata

Most of the risk assessment models or prediction scores in medicine have been derived based
on univariate and classic muléiviate statistical analysis of collected data and selection of
features that provide the best prediction accuracy methddsVell established risk factors are
included a priori but preliminary univariate analysis can reveal novel risk factors stiehcase
of platelet and leukocyte counts in Khorana sdér&RAMs are originally structured to fit the
derivation data set. Validation in independent test sets is always necessary but unfortunately

these models do not perform as well during this secondsat’.

Healthcare information has been overflowed by tons of data, such as electronic health
records, freely accessible databases, genaseiguencing, medical imaging, wearable devices
and smartphones, insurance and government recoiid®e use of biglata analysis to deliver
evidencebased information has been lagged so far, due to the difficulties in merging data into a

common database andfterent types of format used. Several attempts so far to usedaita in
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healthcare involve data mining and analysis for diagnostic purposes, prevention of diseases,

precision medicine, medical research, cost reduction and prediction of disease outomes

DA@GSY GKS FFO0 G0KIFIG GKSNBE Aa |y AYyONBlFaiAy3d R
in oncology and with the growing availability of electronic health records (EHRs) and large
healthcare databases (such as MIMIC Il dataas€/K bioban¥), new challenging
2LIR NI dzyAGASEa INB 2LISYSR Ay AYSIRNIOA f 3 eNBlaysIt tNEOEKA
RIFEGFEéd ¢KA& | LIWINRIF OK SEOSSRa (KS O02yO0SLIi 2F O

risk assessment and prediction models.

Artificial intelligence and statistics differ substantially in their objective. ML models are
designed for accurate predictions that can be generalized while statistical models are designed
for inference about the relationships between different variadiesMore spedically, inference
corresponds to a mathematical model of the data generation process and formalizes the
dzy RSNI eAy3d aeaidsSyQa YSOKFIyAay 2N dSada | KeLkR
FAYa Fd F2NBOlIadAy3a dzyaSsSSy. Swiisticdl maléld cqudzibelzNBE &
efficiently applied when the task at hand incorporates a tractable size (or dimension) of features
and data size, while ML/AI could potentially fit better in problems with larger data size and high
dimensional feature spacacluding nonlinearities. To perform well, ML models generally need
more data than statistical models. Limitations of statistical approaches (e.g. logistic regression)
are, that they assume that features have a normal distribution and that a linear nesijo exists
between independent and dependent variafi@dviL approaches have the advantage that they
are not affected by bias and logic, they learn from big and complex data that a nhormal human
brain cannot digest. The disadvantage of this processaisttie machine cannot differentiate if
an association reflects a true biological pathwfyIn contrast to statistical methods, ML/AI
methods usudy have many hypeparameters which need cautious tuning based on a
training/test/validation/ dataset split, otherwise the performance of ML/Al model will be

inferior.

ML/Al models could probably outperform RAMs by providing more accurate predictive results

or possibly refine the parameters of medical scores. Only a few studies have recently tried to
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predict thrombosis using ML techniques, such as support vector machmesificial neural
networks 5370 71 Ferroni et al’® used multiple kernel learning based on SVM and random
optimization (RO) models to predict VTE risk in cancer patients. SVM is used to learn classifiers
and RO to devise relative importance of different groups of clinical attributes in final predictions.
The type of prediction is considered as binary since it is determined whether a patient will have
a high risk of developing a VTE event in the future or not. VTE risk predictors are learned based
on a 3fold crossvalidation on a training set that allows deation of the model parameters. ML
predictor outperformed Khorana score (AUC 0.716 vs 0.589). Qatawneh "étpabposed a
clinical decision system to automate and accurately predict the risk of VTE in hospitalized
patients. They classified patients into five levels of risk based on predisposing factors chosen from
the Caprini score of VTE modél More specificdy, the proposed approach is based on ANN in
evaluating a multifactorial health issue. The system was developed a multilayered perceptron
feed forward neural network which was trained using the Rprop training algorithm, and it
consisted of an input layerithh 35 neurons (representing the input variables for each patient
such as age, gender, etc.), 3 hidden layers (where the number of neurons in the first, second and
third hidden layer were 19, 10 and 5 respectively) and an output layer (that producedpbe ty

of the disease the patient suffered from). A stratified #&td cross validation was applied. This
study was performed in only a few numbers of patients and appropriate metrics of performance

are not reported.

Willan et al®®applied an ANN based method in order to risk stratify490 patients referred
with suspected DVT. This method could be extended for VTE prediction since it corresponds to a
similar ML problem. More speciéily, the authors introduced a system based on a standard
binary classification problem, namely, wheth&r not the patient had a DVT. To address this, a
standard binarnyclassification feedorward artificial neural network was employed. The network
consists of an input layer of 13 dimensions [sex, agdinizr result and the ten individual
components of ts 2 St f | Ca hidder2IN@ consisting of 8 neurons, and an output layer
with one neuron. Each neuron contains a series of weights and biases which are multiplied and
added to the inputs and then passed through an activation function that determiviest

numerical value is passed from a given neuron to the next layer or output from the network. It is
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these weights and biases that are optimized to obtain the best performance from the network in
terms of DVT prediction. This study was designed asaf pfgrinciple and the authors suggest

that ANN could outperform existing scores of risk assessment such as Wells score, but they do
not report metrics of performance and they concluded paradoxical clinical associations (e.g. they
did not find an associain of thrombosis with cancer or older ag&verall, prediction of venous
thromboembolism with machine learning is limited so far, and current studies are sparse and
problematicso further work is needed in that directioexploiting the advantage of bidata.

Tablel summarizes themain characteristics and results of the abawentioned studies. The

only study that refers to cancer patients is by Ferretral.

Tablel. Studies that use ML algorithms to predict thrombosis

Population Attributes ML Train/Test/ Perfor C(_)mparlsqn
Authors . . o mance with classic
studied set algorithm Validation .
metrics scores
- 1179 Multiple .

Ferroni et ambulato 13 kernel ML 20/30 AUC: Khorana

al7 Y (SVM and 0,716 (AUC:0,589)
cancer patients RO)

Recall .
Qatanweh | 150 hospitalized 35 (basgq on ANN 80,7% Caprln! Score,
7 ! Caprini (Multilayer 80/10/10 . no direct
et al patient records score) Perceptron) Precision comparison
P 81,2% P
- Wells score
. 7,080 eligible . : . )
Willan " : 13 (including included in the
ot 253 patients with Wells score) ANN 75125 AUC0,89 Al G

suspected DVT .
no comparison

Abbreviations ANN=Artificial Neural Network, AUC=Area under the curve, DVT= Deep Vein Thrombosis,
RO= Random Optimization, ML= Machine Learning SVM= Support Vector Machine
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4 METHODOLOGY

4.1 Data source

Data were obtained from Medical Information Mart for Intensive Care (MiM|@ersion 1.4)
that is a large, freehavailable database comprising of-tkentified healthrelated data from
38,597 adult patients and 49,785 admissions in ICU of the Be#l Bemconess Medical Center,
between 2001 and 2012. This database includes complex information such as demographics,
time series measurements of vital signs (~1 data point per hour), laboratory tests, procedures,
medications, caregiver notes, and mortalifyncluding posthospital discharge), as shown in
Figure2 8, Clinical Classification Software (C€iS)used to categorize diagnoses accogdin
the International Classification of Diseasése8@lition (ICE9 codes). Diagnosis is given as primary

and secondary diagnosis I@zodes as well as diagnosidated groups (DR®)

Hospital

Bedside monitoring Chart

- Vital signs - Fluids

* Waveforms * Medications

= Trends * Progress notes
= Alarms

Tests
* Laboratory
* Microbiology

De-identification

Orders
* Provider order entry (POE)

MIMIC-ITI

Data archive Database

Billing

= ICD9

* DRG

* Procedures (CPT)

Demographics A ///\

* Admission/discharge dates
* Date of birth/death
= Religion/ethnicity/marital status

1!

Notes and reports

* Discharge summaries Vet (eeoteh
 Radiology (X-ray, CT, MRI, Ultrasound)

L and -
« Cardiology (ECHO, ECG) ~ J corrections <
—‘ External

Social Security Death Index r
/

o

Figure 2. Overview of the MIMIC Ildatabasgprovided by Johnson et &1).

Abbreviations: CCU=Coronary Care Unit; CSRU=Cardiac Surgery Recovery Unit; MICUtbtedv@aCare Unit;

SICU =Surgical Intensive Care Unit; TSICU= Trauma Surgical Intensive Care Unit.
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4.2 Bhics statement

The MIMIGIII database was created in accordance with Health Insurance Portability and
Accountability Act (HIPAA) standards and dataeascwas approved by PhysioNetccount
credentialised on Septembdr7, 2019) Patient data are d&lentified and dateshifted. All pre

processing and data analysis were performed under MiMIf@gulations.

4.3 Dataset description

Two datasets D1 and D2 were extracted in order to develop models for the two prediction
tasks. D1 is identified as the dataset of patients with cancer that subsequently readmitted to ICU
with a primary diagnosis of VTE within 90 days from the first ICUsadm. This dataset was
used in order to predict VTE risk in ICU hospitalised cancer patients after discharge. D2 is the
dataset of patients admitted in ICU with a primary diagnosis of VTE. This dataset was used for

predicting early and late mortality MTE patients hospitalised in ICU.

ForD1, 630 ICD9 codes were selected, related to common solid tumors and hematological
malignancies that have increased thrombotic risk, i.e.gastrointestinal, urogenital, brain, breast,
leukemias and lymphomas. For D1 ab@, 35 ICD9 codes related to deep vein thrombosis,
thrombophlebitis and pulmonary embolism, were selected. Validation of this grouping for

thrombosis diagnosis from an independent panel of physicians showed very good performance

76

D1 database patient alusion criteria All patients aged >15 years old hospitalized in ICU with

a primary diagnosis of canceExclusion criteria Age<15 years old (n=0), pregnancy and

puerperium complications (n= 15), patients that presented with thrombosis in the first agmis
(n=527), patients with previous admission in ICU with thrombosis (n=36) patients with a

subsequent thrombosi?lBf G SR | RYA&daAzy 2F Y2NB GKFyYy dn

R

y2i NB&adzaOAGF GS 02 R $91 cénbeb patientsdwyériglenpfigdo(1#,74%yof ( 2 4 | f

total MIMICIII patients). From this group of patient®642 did not develop thrombosis whereas

only 57 cases of secondary thrombosis have been recognised with a median time to event of 36
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days, mean 36,86 days (minmax 85 days)The clinical characteristics of the D1 database are

presented onTable2.

D2 database patient inclusion criteriall patients aged >15 years didspitalized in ICU with

a primary diagnosis of thrombosis. Three main diagnosis groups were idensifeshown in
Figure3: pulmonary embolism (n=960deep vein thrombosis and thrombophlebitis (n=1543)
and unusual site thrombosis (n=307). Many patients belonged in more than one diagnostic

category.Exclusion criteriaAge< 15 years (n=3), pregnancy and puerperium complications

(n=40) and patients wittbNR (n=169). Overall 2,468 patients were selected (6.4% of total
patients in MIMIC I11) and split in 3 groups. The first, referred as G1 are 348 patients that died
during the first ICU admission in which they were diagnosed with thrombosis. The second,
referred as G2 are 817 patients that died after their discharge from ICU or in a later admission.

On average this group died 549 days after admission with a median of 225 days. The third,
referred as G3 are 1,303 patients that remained alive for months #fisr admission in ICU.

From these groups two ML tasks were formed, the first is to build a model that distinguishes G1
ga® Do LI GASyGa o6O0FftftSR aSINIe Y2NIlIfAGesg 2N
@a® Do LI GASYy(adéo OANIfaSHY @& f o KIS E2ZANIAN @ FAfG OK I NI O

presented orlable3.

Pulmonary
embolism

Unusual site

thrombosis
655

254
16

28
280

1226

Deep vein thrombosis

Figure 3. Venn diagram showinigcluded and excluded cases from MIMIC Ill database in D2 database.
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Table2. Demographic and clinical characteristics of D1 database.

Characteristic Number

Overallpatients with cancer admitted imtensive Care Units 5,691

- 1stadmission with cancer never thrombosis 4,642 (81.5%)

- Readmission with thrombosis within 90 days 57 (1%)
Sex

- Female 2,345( 41.21%)

- Male 3,346 (58.79%)
Ethnicity

- White . 4,315 (75.82%)

- African/Americans 418 (7.34%)

- Other 958 (16.84%)
Age (years)

- Average (Median) 66,19(66.89)

- min-max 18.8798.86
Length of stay in days

- Average (median) 16,68 (10,46)

- min-max 0-211,99
Number of admissions

- Average (Median) 1,43(1)

- Min-max 1-10

Table3. Demographic and clinical characteristics of D2 database.
Characteristic Value Characteristic Value

Overall patients with
thrombosis:

. PE 2,468 LOS, days
- DVT 960 (38.9%) Average (SD): 7.06 (10.06),
. 1,543 (62.5%) Max length stay: 153.9 days
- Unusual site
. 307 (12.4%)
thrombosis
Sex Number of admissions
- Female 1,024(41.5%) - Average (SD): 1.15(0.46)
- Male 1,444 (58.5%) - Median: 1
Ethnicity
- White 1,801 (73%) . . 0
- Black 246 (10%) Cancer diagnosis: 605 (24.5%)
- Other 421 (17%)
Age, years Mortality (%)
Average (SD) G1 orEarly (at the first 348 (14.1%)
admission):
62,64 (16.7) 0
[Min=17.4 max=98.7] G2 or Latg (-}/ear 817 (33.1%)
mortality):

Do 2NJ 4! f 1,303 (52.8%)
Time to death (in days)
Average (SD): 390 (647)
Median: 83
Abbreviations: ICU=intensive care unit, LOS=length of B&ypulmonary embolism, DVT=deep vein thrombosis,

SD=standard deviation.
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4.4 Attributes selection

For each of these patients a very wide selectioattributes (features)was extracted, selected
manually based on factors that could be associated with thrombosis. In order to potentially
investigate novel discriminatorgttributes, a liberal approach oattribute extraction from the
database was chosethat is collecting as much aslevantdata as possibleData extracted
included demographics (age, ethnicity), length of stay in ICU (in days), number of admissions,
body weight, vital signs, basic laboratory indices (hematocrit, hemoglobin, white blood cells,
platelets, renal and liver function tests, hemasis screening tests, sepsis indices), severity

scores, transfusion requirements, procedures, medications and mortality.

Theseattributes are grouped in 7 categories each representing a different type of medical
assessment or interventioand onethat included all featuresThe values of five of these were
directly extracted from the corresponding tables of the database. These hadr&ventsthat
includes laboratory measurements, ChartEvents that includes chartedsdakeas vital signs and
blood pressurelnputEvents that includes transfusions and parenteral nutrition, Procedures and
Prescriptiongmedications) LabEvents were extracted in two values, the value of the first day
and the average value (avg) during th@mission. There are two types of InputEvents files MV,
and CV since two different clinical information systems have been used, CareVue (Philips) and
Metavision (iMDSoft). For these features the number of events and the overall received amount
were recordel. 91 medications were extracted from Prescriptions and grouped in the following
groups: vasopressors, antihypertensive, cardiovascular, antidiabetics, chemotherapy, growth

factors, anticoagulants and antiplatelets.

4.4.1 Concepts
Concepts are metéeatures comaining the values of various scores. These values are not
stored in the database but are available as SQL queries that estimate them from other features
7. Concepts include a set of severity illness scores and organ failure scores such as Simplified
Acute Physiology Score (SAPS), Sequential Organ Failure Assessment (SOFA), Glasgow Coma Scale

(GCS), sepsis scores (Martin, Angus), first day laboratories, first day vital signs and transfusions.
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It also includes comorbidities scores that are described asrdiff Elixhauser indic€8. Overall,

493 concepts were extracted.

4.4.2 NoteEvents

NoteEvents contain unstructured notes written by clinicians in free text format. Since one of
the objectives of the study was to convert this textual information in numericall tiould be
added in the feature set, all clinically relevant entities from the text were extracted using the
SABER sequence annotat8iwhich is a Deep Neural Network framework, tailored for entity
extraction from biomedical documents. SABER usesdit®itional Long Shofferm Memory
(LSTM) architectur® 8 and provides access to pteained models for various types of entities.
One of these is the disease ontoldgy¥3(DO) which is a structured vocabulary of entities related

to various pathologiesrad symptoms.

For each NoteEverdntry all DO entities were extracted, a process that required 30hrs in a
computer equipped with 3 Nvidia GPUs, each with 16GB of memory. On avieraggch patient
161 entities with a median of 133 were extracted. Next, these entities were fitted atent
Dirichlet Allocation (LDA) topic model with the Gensim frame®#drk using 50 topicd.DA isa
topic model that generates topics based on word frequency from a set of t&xispic simply
contains a probability distribution of entities, i.e. entiyLJ- Ay ¢ X YI & o6Sf2y3 o6& H
by 80% in topic 2. Ideally each topic is a thematic cluster that should contain entities with close
semantic proximitiese.g. cardiovascularonditions §eeFigure4). Overal, this produced a 50
dimensional space that contained the topic distribution for each patien¢lse, for eaclpatient
a vector of size 50 with thousands of topic marginal probabilities was obtdtiweaach patient,
the extracted Disease Ontology tokemesre projectednto the 53dimension TopidModel space

and this vasused as NoteEvents features

An exampleof the visualization of this model with the LDAVvis @ shown inFigure 4
Principal Component Analysis on two dimensions was performed only for visualization purposes
and this does not take any part in the text processing pipeliihe. size of eactopic (the circles)

is relative to the sum of the absolute counts of the tokens that they con@uwerall, this process
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transformed the textual content for each patient in an edsyuse numerical format that

contained the basic thematic topics of thesetrées.

Top-30 Most Relevant Terms for Topic 5 (8.2% of tokens)
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Figure 4. A visualization of the distribution of topics generated through the LDA topic modelling. Each circle on the
left is a topic. The red circle is a random topic and the words on the right shows the relativeltiistris its
contained entities. In this example, the topic contains entities akin to cardiovascular conditions.

The overall number of features, the average and median number per patient, the most
commonly found features in the patient group adescribed in detaslin Table4. It is obvious
that each group describes a different view of the clinical picture of the patient. Since one of the
objedives of the study was to locate subsets of discriminatory features, a stratified analysis for
each group was applied. Namely for each ML task, subsets were created that contained only the
features of this group. Yet, all these subsets contained basic geaphbic information that are
known to have strong correlation with mortality in thrombosis such as sex, length of stay and
diagnosis group. Finally, a dataset that contained the entirety of the features was created. In

total, 16 datasets were created, whiccorrespond to the 2 ML tasks combined with the 8

groupings (7 groups plus 1 containing all groups).
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Table4. Description of clinical and laboratory features selected from MiMIGatabase. The first column
described the corrgonding table from the MIMIOI database.

Group Description  Features Avg Median Most common features
Vital signs,
Chart labs, clinical 235 433 77 Common labs, blood gases, blooc
Events . . pressure
information
Hematocrit, hemoglobin, white
Lab Laborator blood cells, platelets, red blood cell:
g y 45 1,237 1,157 renal and liver function tests,
Events indices . . .
hemostasis screening tests, sepsi:
indices
Several
p.roced_ures Venouscatheterization, enteral
including " . :
Proce . nutrition, endotracheal intubation,
transfusion 526 24.3 6 . o
dures mechanical ventilation for more thai
and
. 96 hours
mechanical
ventilation
Transfusion
Input and 12 (MV) RBC transfusion, PLT transfusion:
Events parenteral 10 (CV) plasma transfusions
nutrition
Prescri Medications Heparin, |ns'ul|n, warfarm, aspirin,
. 91 132 14 enoxaparin, norepinephrine,
ptions . .
phytonadione and atorvastatin.
48 entries,
Note Unstructured 2,408 1,382
: 50 chara N/A
Events medical notes chara
cters
cters
Scores, first
day labsfirst Comorbidity indices, severity illnes:
day vitals, scores, organ failure scores, sepsi
Concepts doses and 493 scores, GCS, first day laboratories
durations of first day vital signs, transfusions
medications

Abbreviations: Avg=average, RBC=red blood cell, PLT=platelet, MV= Metavision, CV=CareVue, GCS=Glascow Coma
Scale

4.5 Preprocessing

MIMIC Il has applied an adjustment of the age in patients older than 89 years old to a fixed
age of 300 years old, in order amjust with privacy regulations. For that reason, these older
patients were all assigned as 90 years old, given that risk of thrombosis is homogeneously high

in ages more than 85 years &l The Boolean values were replaced as TRUE:1, FALSE:0, and the
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gender (male/female) as well as the ethnicity (white/black/other) feature were-baeencoded.
Missing values are handled in two different ways. In the autoML approach preprocessing is
automatically applied, by mean imputation and mode imputation, whergaghe custom

approach a median imputation mode is adopted to fill the missing values.

4.6 Automated ML framework description

The AutoML platform, JADBIO uses an Artificial Intelligence (Al) Decision Support System
called Algorithm and HypdParameter Spacselection (AHPS) in order to extract predictive
models and signatures. It employs a recently developed protocol, namely Bootstrap Bias
Corrected @ssValidation (BBGCV), for tuning the hypegparameters of algorithms while
estimating performance and adjuisg for multiple tries. Standard preprocessing applied by
JADBIO includes mean imputation, mode imputation, constant removal and standardization.
JADBIO initially constructs a set of ML configurations consisting of algorithms and
hyperparameters. The algthms are Linear, Ridge and Lasso Regression, Decision Trees,
Random Forests (RF) and Support Vector Machines (SVMs) with gaussian and polynomial kernels.
This selection is based on the fact that these algorithms are most often the top classifier in
extersive evaluation studi€& Subsequently it evaluates these configurations through bootstrap
corrected crossvalidation algorithr®® | FG4SNJ 4SSt SOGA Yy 3 th&iSthabssk yy Ay 3
performing combination of preprocessing stegdsature selection algorithm and predictive
algorithm that were tested during the analysisreports the classification statistics like truth
table, AUC, sensitivity, specificity, precision, selected features along with their classification
ability, sample predied/real values. JADBIO applies all good practices of ML in order to eliminate
any overfitting of the model and any bias in efficiency estimation. Details regarding the ML
pipeline and statistical analysis can be foud® 9 E(i Sy aA @S GSadAy3d akKz2gé
estimations lie towards the lower bound of the efficiency spectrum, or else these metrics are in
fact conservative compared to the real diation ability of the generated mod@l The user
can select between three different types of analyzisliminaty, typicaland extensivewith the
latter extensively searching for an optimal model using high computational potesther

important and clinically relevant task of JADBi@hatit can identify biosignatures, that is a set
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of features with predictive ability, that could probigtenforce knowledge discovery amdrther

identify potentially new biomarkers.

4.7 dass imbalance

JADBIO addresses imbalanced classes through stratifiedvatidation and diversified class
weightsduring SVM learning. For that reason, it is cruciaianeine the class balancing effect in
light of oversampling combined with a statd-the-art ML classifier, in this case RF classifier,
which is robust and efficient when dealing with numerical, categorical and Boolean data. Towards
achieving a balanced rat between the two classes in both datasets, SMOTE method was
adopted®®. In particular, SMOTE generates synthetic minority class samples along the line
segments joining randomly chosen m minority samples (i.e., m is the number of minority samples
to oversanple in order to obtain the desired class balancing ratio) and theedtest minority
class neighbors. After defining m and K, SMOTE generates a new synthetic sample s of the form

& ' E By), where x is the minority sample to oversample, y is one chitsen nearest neighbors

FYR ~ A& F NIYR2Y ydzYoSNIAY (GKS NIy3aS 2F onimé

and thus an enhanced performance, of the used classifier since the generation of similar samples
to the existing minority samplesreates larger and less specific decision boundaries. The default

SMOTE implementatioimncluded in the ImbalancedLearn Python package was uséd

A shuffled stratified75%train / 25% test splits applied on both datasets to divide it into a
training and a test partition. Then, the training partition is divided into five stratified eross
validation folds (using shuffling). Since one of the objectives of the study wastaie SMOTE
2OSNBI YL Ay3ad STFFSOG 2y (GKS FAYIf LISNF2NXIyYyOS
folds during each crosgalidation iteration. The motivation towards applying oversampling
during crossvalidation is that similar patterns/instaes may appear in both training and test
partitions when the oversampling is performed prior to cresdidation which can lead to
overoptimistic error estimates. However, if the oversampling is performed during -cross
validation, only the training patterrisistances are considered both for generating new
patterns/instances and training the model, alleviating cegtimism. In all cases, grgkarch

hyper-parameter tuning was performed ahie numberof estimators®® wasselected out of this
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set: [10, 25, 50, 100]the maximum number of features was set 'asito’,'sqrt' or 'log2’, the
maximum depth was selectedoin the set L0, 20, 30, 40]the minimum samples splf was

selected from the sef5, 10, 15, 20hnd theminimumsampledeaf fron?3[2, 5, 10, 15].

The best hypeparameters combination is computed accorglito an Fiscore rule, i.e., the
model selection is based on the highest# D2 NBE 2y GKS a@FftARFGA2YE
hypemparameters combination. Then, the best {bdsed selected) RF model is trained on the
entire initial (before the crossalidation iterations) training partition. Towards the final
performance evaluation, the average ROC curves are computed, where the results are averaged
over ten Monte Carlo repetitions with different realizations of the train/test split, thiol8

stratified cros validation, and randomizations of the SMOTE method.

4.8 ML algorithm performance assessment

Performance of ML classification algorithms is typically assessed by simple statistical methods.
Assessment of performance is done by the percentage of preelicted cases from the total

cases. Sensitivity (or recall) is the proportion of true positives (true positives/actual positives

0l 981 Vo 10 % qﬂ)dgspecificity the proportion of teinegatives/actual negatives

EIS"o i GO QE0MHR WD

elseb 3 ,gg 'ng@miﬁ; ;;U g%h%tu gre correctly identified. Accuracy is the proportion of the times

@i "Q0&ILEV QOO QL Qi

. e . . .ol g
which the classifier is correcaccording to the following equatior: 5 B IN 050 ¢ |

Balanced accuracy is a better metfitc imbalancel datasets since it takes into accountboth

positive andnegative outcomes, according to the following equation

[ Q& i QOGP TQQH QO @

ol @i Q6 QL 'Q 01 @ @WQMO QL Q
(b I §@i "QEChi® IWIQKh 6 "BOi'GE @ "Qd 6 Qb dvf £ 'Q(';r%zb%{ else

Precision is defined as the percentage of positive predictive values for each subject category.
F1 score is the harmonic mean of the precision and retalis is another measure of test
accuracyDataarealsorepresented in a confusion matrix as showTable5 . Receiver operating
curves (ROC) illustrate the relationship between sensitivity (plotted on-deds) and specificity

(x-axis). ROC curves can be easily interpreted by using area tmelecurve (AUC). AUC
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corresponds to the probability that a random sample would be correctly classified by each

algorithm.
Table5. A confusion matrix describes the performance of a classifier.
Actual outcome
Negative Positive
Negative True negative False negative
Predicted outcome Positive False positive True positive
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5 RESULTS

5.1 Prediction of ICWeadmission otancer patients within 90 daykie
to thrombosis

Total number of patients included in dataset D1 is 4,699, where 4,642 patients have cancer and
no thrombosis (cancer_nevénrombosis) while 57 patients have cancer when admitted in ICU
and then they develop thrombosis (cancer_then thrombosis), i.e., the imbalance ratio for D1 is
1:81.28. As a result, D1 appears to be an extremely imbalanced dataset which is the basic reason
for failing to achieve even modest mortality prediction results, using SMOTE and without
explicitly adopting SMOTE technique. Similarly, JADBIO failed to predict accurately this event as
shown inTable 6. Between 29,190 trained models the winning algorithm was Classification
Random Forests training 1,000 trees with Deviance splitting criterion and minimum leaf size = 4.
Among the most important featuresekected were concepts such as SOFA and sepsis Martin
score, insertion of endotracheal tube, MCH (mean corpuscular hemoglobin, an index of red blood
cells) and red blood cell transfusiofselected by Statistically Equivalent Signature algorithm with
hyperparameters maxK=2, alpha=0.05)

In an effort to reduce the imbalance ratio and the dimensionality of the dataset, patients with
cancer were narrowed down according to the ICD9 codes found in the thrombosis group. So, it
was possible to reduce the size okthegative group (cancer_never thrombosis) to 2,937 vs 57
(cancer_then thrombosis), i.e. the imbalance ratio in this case id 1:51.5, which is slightly better
but still high. Besides that, it was expected that the reduced dataset would be more
homogeneous eégarding cancer diagnosis. Moreover, features such as procedures with many
missing values and Nafeents were discarded, since they cannot be interpreted clinically, ending
with 1,122 features (instead of the initial 1,471 features). Even with this matdit it was
impossible to improve performanad predictive algorithmsTable6). As shown, Area under the
ROC curveAUQ**was59% which means therobability that the model ranks a random positive
example more highly than a random negative examp&t$. The accura@yor the fraction of
the number of correct predictions to the total number of predictions, or dfse fraction of

predictionsthe model got right,has gynificantly improved from 11% t88%in the reduced
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dataset, that is focusing eamore homogeneous patient group acding to their diagnosis seems
helpful. Alsq F1 scor&that measures the model's accuracy the datase, andis acombiration

of the precision and recall of the modé& quite low0.04 Even if these results are not significant,

it is quite interesting that the most important selected features in this case were again packed

red blood cell transfusias) insertion of endotracheal tube and MCH.

Table6. Detailed metrics of the performance for prediction of I€&atdmission with thrombosis in cancer patients
(within 90 days) using all features.

ICU readmission with thrombosis it  ICU readmission with thrombosis

cancer patients (within 90 days) in cancer patientseduced dataset

AUC [95% Confidendeterval) 0.59 [0.560.69] 0.59 [0.460.7]
Accuracy 0.11 0.98
Balanced accuracy 0.52 0.5

F1 score 0.04 -
Precision 0.01 -
Sensitivity 0.93 -
Specificity 0.10 1
Average F1 score 0.52 -

5.2 Prediction of early and late mortality I€Upatientswith
thrombosis

5.2.1 Correlation of sepsis, comorbidities, and organ failure scores

Since MIMIGIl contains a variety of medical scores, the complex interactions between the
parameters of various sepsis (n=20), comorbidities (n=17) and organ failure (n=12) scores were
analyzed. For each of these score groups a Pearson pairwise cometmioix was computed

FYR 0KSaS O2NNBfldA2ya oSNB QGAradzftAaSR gA0K K
0S¥2NB RSIHiGiKE 61& IRRSR a +ty SEGNY TSI GdNB=
in which patients died after their first adssion with a thrombosis diagnosis. For patients that

were alive, this was left blank. Sepsis scores show a strong correlation between each other, as
depicted inFigure5. Surprisingly white blood cells, blood components transfusion and time

before death do not seem to correlate well with sepsis. As far as it concerns comorbidity jndices
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presented inFigure 6, the Quan Elixhauer score was used, since both variants of Elixhauer
measures AHRQ and Quan have comparable efficiency in predictingua#t mortality®’.
Correlation between various diseasis shown, such as diabetes and renal failure, hypertension
and renal failure, liver failure and alcohol abuse, congestive heart failure and chronic pulmonary
disease, peripheral vascular disease and diabé&tiggire7 represents correlation between most
important ICU severity scores. A strong correlation is observed between various severity and
organ failure scores, although none of these scores shaw&dong correlation with time before
death.
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Figure 5.Feature. Featureorrelation results (heatmaps) for sepsis scores
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Figure 7. Feature correlation resulheatmaps¥or ICU severity scores.

AbbreviationsAPS= Acute Physiology Score, LODS= Logistic Organ Dysfunction Score, MLODS=Multiple LODS,
OASIS= Outcome and Assessment Information Set, SAPSfiesirAplite Physiology Score, SIRS=Systemic
Inflammatory Response Syndron®0FA=Sequential Organ Failure Assessr@SMDFA=Quick SOFA score

5.2.2 Classification of early and late mortality

The best ML model chosen by JADBIO to predict early mortality (taslwadliRandom Forests
training 500 trees with Deviance splitting criterion and minimum leaf side/As expected the

best performance had the dataset containing all groups (AUC=0.925), followed by Concepts
(AUC=0.923) and Chart Events (0.917), whereas IBpents had the worst performance
(AUC=0.781), as shownRkigure8. To further evaluate the performance of individual features in
task M1, a dataset with all features except Concepts was used. It is surprising that the
combination of all data preserves itsgghi predictive performance (AUC 0.931). This is probably

attributed to the equally high predictive performance of Chart Events.
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