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Abstract 

Venous thromboembolism (VTE) is the third most common cardiovascular condition that 

affects mainly hospitalized and cancer patients and it is associated with high morbidity and 

mortality. Some patients need immediate treatment and monitoring in intensive care units (ICU). 

Moreover, cancer patients are at increased risk of developing VTE, especially in the immediate 

period after ICU hospitalization. It is crucial to predict which of the cancer patients will develop 

VTE, as well as early and late mortality in these high-risk patients and recognize possible treatable 

factors in order to improve survival. Several scoring and predictive models have been developed 

for these purposes, but with limited generalizability and they are mostly effective in the 

prediction of in-hospital mortality. They have several limitations, for example they use data 

recorded only on the first day of admission. Moreover, no score exists so far to predict late 

mortality in ICU patients. With the advanced use of electronic health records, open-source big-

data medical databases and machine learning, predictive modelling could be utilized and become 

a powerful tool to guide clinical decision.  

The aim of the study was to explore the use and performance of various machine learning 

algorithms (ML) in order to predict two research questions: (i) VTE risk in ICU hospitalized cancer 

patients after discharge and, (ii) early and late mortality in VTE patients hospitalized in ICU. For 

that reason, a freely accessible database MIMIC-III has been used that contains a vast amount of 

various time-series healthcare data from thousands of patients, making it ideal for ML based 

forecasting. Since it provides information even after discharge from ICU, it gives an opportunity 

to predict late mortality. Two groups of datasets were extracted from the database: D1, consisted 

of 4,699 patients with cancer who were admitted to ICU and stratified in two groups based on 

whether they were readmitted to ICU within 90 days with a diagnosis of VTE or not. The ML 

classification task was to predict which of the cancer patients originally admitted to ICU will be 

readmitted with VTE within 90 days. D2, consisted of 2,468 patients who were admitted to ICU 

with a VTE diagnosis and stratified in three groups, based on their outcome, that is, died during 

their first ICU admission (early mortality group), died after their discharge from ICU or in a later 

admission (late mortality group) and remained alive for months after their admission in ICU. In 
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this case, two ML classification tasks were constructed, first to build a model that distinguishes 

early mortality and second, a model that distinguishes late mortality.  

A very wide range of features were selected, that includes demographic information, clinical 

and laboratory data, prescriptions, procedures, well established comorbidity and severity scores 

as well as information coming from written notes. Clinically relevant entities from free medical 

notes were extracted using the sequence annotator SABER and then they were fitted into a 

Latent Dirichlet Allocation (LDA) model of 50 topics. In total, 1,471 features were extracted for 

each patient, grouped in 8 categories, each representing a different type of medical assessment. 

Automated ML platform that easily handles with-high dimensional, noisy and missing data, as 

well as Monte Carlo simulations based on Random Forests with hyperparameter tuning and class-

balancing with Synthetic Minority Oversampling Technique (SMOTE) were trained in parallel.  

5ǳŜ ǘƻ ǘƘŜ ƘƛƎƘƭȅ ƛƳōŀƭŀƴŎŜŘ ƴŀǘǳǊŜ ƻŦ ǘƘŜ ŦƛǊǎǘ ŘŀǘŀǎŜǘ όάŎŀƴŎŜǊ ǇŀǘƛŜƴǘǎ ǿƛǘƘ ǘƘǊƻƳōƻǎƛǎέύΣ 

neither of the ML approaches were able to predict DVT in cancer patients even after the use of 

SMOTE method. As far as it concerns the prediction of early mortality in ICU patients with VTE, 

the best ML model chosen to predict early mortality was Random Forests (AUC=0,92). Regarding 

late mortality, the best ML model was again Random Forests. Nevertheless, the task of predicting 

late mortality was less efficient even with the holistic approach (AUC=0,82). Significant clinically 

relevant predictive features of early and late mortality were cancer, age, treatment with warfarin, 

and red cell transfusions, whereas known severity scores performed well only in the prediction 

of early mortality. 

The contribution of this study to the current knowledge was multi-leveled, as it explored the 

performance of various ML approaches in a big-data driven research approach, using multiple 

formats of data from structured to unstructured medical notes, it examined the effect of 

balancing techniques in highly imbalanced datasets, such as the case of medical datasets, and 

finally discovered possibly new biomarkers. Early mortality in critically-ill patients with VTE can 

be easily predicted by ML techniques, whereas in the case of late mortality, which is a more 

difficult task, and where medical scores are still lacking, ML could probably outperform classic 

statistical methods. There is a need for more precise and reliable tools in order to overcome the 
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ƴŀǘǳǊŜ ƻŦ ƘƛƎƘƭȅ ƛƳōŀƭŀƴŎŜŘ ƳŜŘƛŎŀƭ ŘŀǘŀǎŜǘǎΣ ǎǳŎƘ ŀǎ ǘƘŜ ŎŀǎŜ ƻŦ άŎŀƴŎŜǊ ǇŀǘƛŜƴǘǎ ǿƛǘƘ 

ǘƘǊƻƳōƻǎƛǎέ ŘŀǘŀǎŜǘΦ ¢Ƙƛǎ ǎǘǳŘȅ ǎhowed that automated ML approaches have similar 

performance with manual selection and parametrization of ML models, which is highly promising 

ƛƴ ǘƘŜ ǎŜǘǘƛƴƎ ƻŦ ƘŜŀƭǘƘŎŀǊŜ άōƛƎ-Řŀǘŀέ ƳŜŘƛŎŀƭ ŘŀǘŀōŀǎŜǎΦ  



6 

TABLE OF CONTENTS 
1 INTRODUCTION ................................................................................................................................................................. 7 

2 AIM OF THE STUDY ........................................................................................................................................................ 12 

3 REVIEW OF LITERATURE ............................................................................................................................................ 13 

3.1 RISK ASSESSMENT MODELS FOR PREDICTION OF THROMBOSIS IN CANCER PATIENTS ...................................................... 13 
3.2 RISK ASSESSMENT MODELS FOR PREDICTION OF MORTALITY IN THROMBOSIS PATIENTS ............................................... 14 
3.3 ɛASIC ML ALGORITHMS BACKGROUND ...................................................................................................................................... 14 
3.4 AUTOMATED MACHINE LEARNING ............................................................................................................................................. 21 
3.5 MACHINE LEARNING AND RISK ASSESSMENT IN THE ERA OF BIG-DATA .............................................................................. 22 

4 METHODOLOGY .............................................................................................................................................................. 26 

4.1 DATA SOURCE .................................................................................................................................................................................. 26 
4.2 ETHICS STATEMENT ....................................................................................................................................................................... 27 
4.3 DATASET DESCRIPTION ................................................................................................................................................................. 27 
4.4 ATTRIBUTES SELECTION ............................................................................................................................................................... 30 

4.4.1 Concepts ................................................................................................................................................................................... 30 
4.4.2 NoteEvents .............................................................................................................................................................................. 31 

4.5 PREPROCESSING.............................................................................................................................................................................. 33 
4.6 AUTOMATED ML FRAMEWORK DESCRIPTION .......................................................................................................................... 34 
4.7 CLASS IMBALANCE .......................................................................................................................................................................... 35 
4.8 ML ALGORITHM PERFORMANCE ASSESSMENT.......................................................................................................................... 36 

5 RESULTS............................................................................................................................................................................. 38 

5.1 PREDICTION OF ICU READMISSION OF CANCER PATIENTS WITHIN 90 DAYS DUE TO THROMBOSIS .............................. 38 
5.2 PREDICTION OF EARLY AND LATE MORTALITY IN ICU PATIENTS WITH THROMBOSIS...................................................... 39 

5.2.1 Correlation of sepsis, comorbidities, and organ failure scores......................................................................... 39 
5.2.2 Classification of early and late mortality .................................................................................................................. 42 
5.2.3 Mortality prediction based on SMOTE and Random Forest .............................................................................. 45 
5.2.4 Feature Discriminative Analysis .................................................................................................................................... 48 

6 DISCUSSION ...................................................................................................................................................................... 53 

7 CONCLUSION .................................................................................................................................................................... 61 

8 ABBREVIATIONS ............................................................................................................................................................. 63 

9 REFERENCES .................................................................................................................................................................... 66 

 



7 

1 INTRODUCTION 

Venous thromboembolism (VTE) is a potentially lethal disease that presents with clots in the 

veins, most frequently as deep vein thrombosis (DVT) and pulmonary embolism (PE). It is a quite 

common problem with an annual prevalence rate of approximately 1 per 1000 adults 1. Its 

prevalence has been reported to increase probably due to a doubling of life expectancy and 

quadrupling of the world population during the 20th century2. The impact of this disease is 

enormous since it has severe physical and psychological complications, such as post-traumatic 

stress disorder, post-thrombotic syndrome, recurrence, and even death. More specifically, post-

thrombotic syndrome impairs negatively the quality of life, and increases the healthcare costs3. 

Thrombo-embolic disease is one of the main causes of mortality in the world as it is estimated 

that it accounts for 1 in 4 deaths worldwide in 20104. Its prevalence is even higher in hospitalized, 

critically-ill and cancer patients5,6,7. VTE in critically-ill patients is associated with significant 

morbidity, prolonged intensive care unit (ICU) and hospital stay and increased mortality8. For 

these reasons, it is crucial to predict promptly which patients are at high risk, as well as in-hospital 

and later mortality, and potentially identify new predisposing factors. 

VTE is a complex multifactorial disease. Both acquired and hereditary factors interact and play 

essential roles in its development and outcome. The acquired risk factors can be transient or 

permanent depending on how long they persist. Based on their predictive value, they can be 

further stratified as strong (odds ratio >10), moderate (odds ratio 2ς9), and weak (odds ratio <2). 

Examples of strong risk factors are orthopaedic surgery, major general surgery and major trauma. 

Moderate risk factors include central venous catheters, congestive heart or respiratory failure, 

cancer, chemotherapy, hormone replacement therapy, oral contraceptive therapy, and 

pregnancy/postpartum. Whereas bed rest (>3 ŘŀȅǎύΣ ŀƛǊ ǘǊŀǾŜƭ Ҕу ƘƻǳǊǎΣ ƛƴŎǊŜŀǎƛƴƎ ŀƎŜ όҗпл 

years), and obesity are considered as weak risk factors 9,10. Inherited factors are also classified as 

strong, medium and weak. Deficiencies of some natural coagulation inhibitors including 

antithrombin, protein C, and its cofactor protein S belong to strong genetic risk factors, as well 

as homozygosity of factor V Leiden (FVL) causing resistance to activated protein C, homozygosity 

of prothrombin G20210A which results in increased prothrombin levels and double 



8 

heterozygosity of these mutations. Moderate genetic risk factors consist of heterozygous 

mutation in the FVL or prothrombin G20210A, and blood group (non-O blood group). Weak risk 

factors are considered hyper-homocysteinemia and homozygosity for factor XIII 34Val alleles 

10,11. The above-mentioned classification schema is not widely accepted and probably of low 

clinical importance since guidelines use different classifications, there are broad confidence 

intervals of risk estimates and the risk of thrombosis depends on more complex gene-gene and 

gene-environment interactions12, but it could be a baseline approach in risk stratification. 

VTE is also a frequent complication in patients with active cancer. Cancer itself increases 

directly and indirectly thromboembolic risk by various pathophysiological mechanisms. Cancer 

cells secrete inflammatory cytokines and micro-particles, directly activate coagulation 

mechanisms and platelets leading to a prothrombotic state. Moreover, hospitalizations, surgical 

interventions, chemotherapy, the presence of central venous catheters, as well as the type and 

stage of cancer, the presence of comorbidities and advanced age are important predisposing 

superimposed factors. It is crucial for clinicians to prevent thrombosis in these high-risk patients 

as well as to realize that prevention is a life-saving procedure, since VTE development during the 

first year from diagnosis of cancer increases mortality and affects negatively the outcome of 

disease 13.  

VTE could be prevented if prompt and accurate selection of patients at high risk of thrombosis 

and prophylactic anticoagulation are applied. Unfortunately, there is no such a simple and 

straightforward method to predict thrombosis. Clinicians in their every-day clinical practice are 

constantly confronted with the dilemma of prophylactic anticoagulation in high-risk patients, 

since the balance of risks between thrombosis and bleeding cannot be quantified by clinical 

experience and most frequently there is a tendency to overestimate bleeding risks14. Moreover, 

recent negative personal experiences can affect objective judgment. To overcome this difficulty, 

several risk assessment models (RAMs), scores and tools such as Khorana 15 and COMPASS-CAT 

16 score have been developed to predict thrombo-embolism in hospitalized or ambulatory cancer 

patients respectively, but they have so far limited generalizability and validation15,16. External 

validation in large data sets is always necessary before these tools can be broadly implemented 
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17. The risk stratification in cancer patients has been problematic due to the broad heterogeneity 

of different cancers, the uniqueness of different patients and the coexistence of various 

pathologies that predispose both to increased bleeding and thrombotic risk.  

Some high-risk patients that present with thrombosis need immediate hospitalization in ICU 

and suffer from high mortality incidence. There are several scores to predict mostly in-hospital 

mortality and early mortality in ICU patients. The Simplified Acute Physiology Score (SAPS)18, 

Acute Physiology and Chronic Health Evaluation (APACHE)19 and Sequential Organ Failure 

Assessment (SOFA)20 score, are based on patient measurements during the first 24 hours of 

hospitalization and are considered validated tools in predicting early mortality21. On the other 

hand, long-term survival after ICU admission is not well studied and risk assessment models are 

missing so far. It has been recognized that this is an important outcome that needs to be 

accurately predicted and prevented, since it could assist difficult clinical decision making and 

improve medical costs22. For example, more accurate estimates of long-term outcomes at the 

individual level, could assist clinicians in important decisions regarding rational allocation of the 

limited medical resources, an important consideration especially in the era of COVID-19 

pandemic. 

Nevertheless, traditional RAMs have several limitations. They have been developed based on 

different target populations with heterogeneous inclusion and exclusion criteria, thus during 

validation they provide modest performance. For example, the accuracy of various scores drops 

in the elderly population23, since there is a significant correlation of various parameters with age 

(e.g. D-dimer and age correlation). Moreover, they are based on multivariate statistical methods, 

such as logistic regression models, that disregard the non-linear relationships that exist between 

variables in real medical datasets. These scores are built based on health data collected during 

the first 24 hours of ICU admission or instant based measurements (e.g. the worst or average 

value), and do not consider time-series measurements, that could contain important information 

for clinical deterioration24. Changes of organ function variables over time could provide more 

useful information with greater prognostic relevance. Simplified integer-based scoring systems 

neglect the complex nature of variables (for example hypertension could both increase 
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thrombotic as well as bleeding risk). Moreover, it has been reported variable interobserver 

agreement in the application of these scores based on the personal experience of clinicians, so 

there is a possible bias in the interpretation of RAMs25. Another significant problem is the use of 

different laboratory methodologies with varying specificities, sensitivities and cut-off values that 

produces difficulties in the comparison between various facilities26. 

As an adjunct in the above-mentioned problems, there has been an increasing interest in the 

use of machine learning (ML) approaches in the prediction of various outcomes in medicine27, 

since ML could recognize complex pattern changes in data and associations, that could probably 

help in improving patient care and survival, as well as lower hospitalization costs. On the other 

hand, the growing availability of large-scale healthcare big data and automated patient 

surveillance systems could improve clinical decision-making28. These data are not only large in 

size and dimensionality but also unstructured and heterogeneous. Using a holistic approach, 

incorporating large scale healthcare data could advance personalized and precision medicine. 

This study focused on the exploration of automated (autoML) as well as custom ML algorithms 

in the prediction of two important clinical questions, such as mortality and thrombosis in ICU 

hospitalized patients. A holistic approach was used choosing a high dimensional dataset, with 

thousands features of various formats, and further processing has been applied to manage a high 

imbalance ratio with the final goal to improve performance of the proposed model. More 

importance has been given to the collection and combination of a very wide selection, but 

thrombosis-oriented of heterogeneous clinical and laboratory features as well as free-text 

medical notes. Data were identified and selected retrospectively over a period of time and 

hospitalized ICU patients had a long-term follow-up in the database. The initial hypothesis was 

that use of multiple ML algorithms could outperform existing prognostic scores, as well as refine 

them by identifying new biomarkers. Finally, an effort towards selecting important clinical 

features has resulted in clinically meaningful bio-signatures. This study using a novel approach 

that exceeds the classic statistical methods, has contributed in the prediction of early and late 

mortality in ICU-hospitalized patients with thrombosis, the identification of bio-signatures and 
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rediscovery of candidate new biomarkers using άōƛƎ-ŘŀǘŀέΣ combined with medical expertise and 

ML approaches. 
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2 AIM OF THE STUDY  

Given that there is no universal consensus in the use of a specific predictive score in patients with 

cancer and/or thrombosis and that scores are not rigid and are highly subjective, this study aims 

to explore the usage, applicability and performance of machine learning algorithms in a big-data 

driven research approach, to answer two important research questions:  

(i) Is it possible to use ML in prediction of VTE-associated readmission of ICU hospitalized 

cancer patients, after discharge? 

(ii) Is it possible to predict early and late mortality in VTE patients hospitalized in ICU? 

To fulfil these goals, the following objectives must be met: 

1) Data acquisition and definition: To correctly assess VTE risk and predict outcome in ICU 

hospitalized patients it is necessary to have a wide range of high-quality and high-frequency 

medical data. Attributes must be carefully selected according to current knowledge to avoid 

ƴƻƛǎŜ ŀƴŘ άƎŀǊōŀƎŜ-in, garbage-ƻǳǘέ ŜŦŦŜŎǘǎΦ Multiple different formats of data need to be 

processed in a homogeneous pattern (e.g. conversion of textual information to numerical and 

extraction of meta-features). 

2) Application of ML method and model training: Identification of best ML algorithms is time-

consuming and needs extensive parametrization and grid-search. For these reasons, a dual 

approach will be used comparing automated with standard ML algorithms and 

hyperparameter tuning.  

3) Implementation of balancing methods: Handling with highly-imbalanced data is a frequent 

problem in the medical field, thus impairing the performance of the proposed models. 

Exploration of balancing techniques could theoretically result in better performance. 

4) Evaluation and interpretation of results: ML algorithms can be evaluated with standard 

statistical metrics. Besides that, an important challenge for medical researchers is that ML 

algorithms results, ideally must be explainable in order to identify complex biological 

relationships and provide new insights. This would allow the identification of clinically 

meaningful predictive features that contribute to the predictive model.  

5) Comparison with other RAMs: Comparison of the proposed framework with known Risk 

Assessment Models or published data. 
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3 REVIEW OF LITERATURE 

Since the main research questions are focused on thrombosis prediction in critically-ill cancer 

patients and prediction of early and late mortality in ICU patients with thrombosis, in the 

following section a review of the existing risk assessment models for these two important clinical 

problems will be reported. These scores have been developed based on classic statistical 

methods. The novelty of the approach in the current study, is that to address these research 

questions, machine learning in big data will be used. In the following section of the review, 

background of using ML algorithms and automated ML platforms will be shortly addressed, as 

well as the importance of big-data in healthcare. Big data is a massive volume of both structured 

and unstructured data that is so large that it is difficult to process using traditional methods, but 

they are ideal for machine learning algorithms since the latter need large data for training. Finally, 

studies based on prediction of thrombosis using machine learning algorithms, as well as their 

limitations are discussed shortly.  

3.1 Risk assessment models for prediction of thrombosis in cancer 

patients 

Khorana score was the first tool that was developed to predict thrombotic risk in 

chemotherapy naïve patients15. It is simple in use but it has several constraints. Using simple 

laboratory parameters before chemotherapy treatment, patients are divided in three risk groups 

(low, intermediate and high) with a large proportion of them falling in the intermediate risk 

category, making debatable its clinical applicability. Moreover, it has low sensitivity in certain 

tumor types and this tool can be used only at diagnosis and before initiation of chemotherapy. 

To improve its predictive performance several modifications have been proposed but with 

limited generalizability. VIENNA-CATS score29 improved the discrimination ability through 

addition of two biomarkers, D-dimers and P-selection, although the latter is a sophisticated test. 

PROTECHT score tried to expand Khorana score through incorporating specific types of 

chemotherapeutic agents that increase the thrombotic risk30. The ONCOTEV score 31 showed an 

improved discrimination accuracy of Khorana score by adding ultrasound in the diagnostic panel 

but it is still under validation. Recently a promising risk assessment tool, COMPASS-CAT derived 
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from a large prospective cohort and focused in ambulatory cancer patients, has been shown to 

have improved sensitivity and specificity but it also needs further validation 16. A direct 

comparison of different RAMs for VTE prediction in a cohort of lung cancer patients showed that 

the COMPASS-CAT model had an 100% predictive accuracy32. 

3.2 Risk assessment models for prediction of mortality in thrombosis 

patients 

Another important clinical issue is the prediction of mortality in ICU hospitalized patients with 

thrombosis. Several prognostic models that incorporate clinical and or laboratory findings have 

been derived to predict early mortality in patients with thrombosis, such as the Pulmonary 

Embolism Severity Index (PESI) and the simplified PESI for pulmonary embolism which are the 

most well-known33, 34 , 35. Moreover, there are several other scores, such as SAPS 18 , APACHE 19, 

SOFA 20 , OASIS 36, that estimate the severity of disease in ICU and that correlate positively mostly 

with early mortality but have varying accuracy depending on the population studied. These 

scores are based on data obtained during the first day of admission or the worst value, so they 

lack considerable information stemming during their hospital stay and post-discharge. Their 

performance is lost over time, since medical practices change significantly. Moreover, they are 

not widely customized in different patient groups, such as patients with thrombosis or cancer. It 

should be noted that ICU patients are at increased risk of post-discharge morbidity and mortality. 

So far, accurate identification of patients who will stay at risk even months later is lacking.  

It is crucial to predict these high-risk patients since proper screening or adequate treatment 

could probably improve their survival 37. Moreover, all the above-mentioned tools were 

developed in an era without electronic health records, big data storage, and machine learning. In 

the last decades, there is an increasing interest in the use of information technology and ML 

algorithms in order to improve forecasting and possibly guide clinicians 27. 

3.3 ɰŀǎƛŎ a[ ŀƭƎƻǊƛǘƘƳǎ ōŀŎƪƎǊƻǳƴŘ 

Artificial intelligence (AI) is a system that has the ability to correctly interpret, learn from 

external data, and use them to achieve specific goals and tasks through flexible adaptive 
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mechanisms like the human brain. AI is a research area which also deals with the interpretation 

of two types of data:  

i. Structured, such as patient characteristics (e.g. demographic), laboratory and imaging 

data. These features can be either binary, categorical or continuous. 

ii. Unstructured, such as clinical notes in the medical file or publications in medical 

journals.  

Structured data can be analyzed by ML algorithms while natural language processing (NLP) 

can be used to extract information from unstructured data 38.  

ML uses a combination of mathematics, statistics and computer science in order to achieve AI 

through learning from the available data, and thus the machine can be trained using the data and 

based on algorithms, gives the ability to learn how to perform a specific task. ML algorithms learn 

from a vast amount of input data (various patient features such as age, gender, body mass index, 

diagnosis) and they produce complex mappings between them in order to create an output (e.g. 

outcome of thrombosis or mortality). If the output is known this algorithm is called supervised 

ML, while if the output is unknown it is called unsupervised. Supervised learning performs better 

in predictive models since it can build relationships between inputs (patient traits) and output 

(outcome) but unsupervised learning could possibly discover unknown relationships or clusters 

of features. The goal of any supervised ML algorithm is to best estimate the mapping function for 

the output variable given the input data. The mapping function is often called the target function 

ōŜŎŀǳǎŜ ƛǘ ƛǎ ǘƘŜ ŦǳƴŎǘƛƻƴ ǘƘŀǘ ŀ ƎƛǾŜƴ ǎǳǇŜǊǾƛǎŜŘ ɾ[ ŀƭƎƻǊƛǘƘƳ ŀƛƳǎ ǘƻ ŀǇǇǊƻȄƛƳŀǘŜΦ 5ƛŦŦŜǊŜƴǘ 

ML algorithms make different hypotheses about the form of the target function, for that reason 

it is necessary to try several algorithms in order to find the best for each function. 

There are two types of algorithms, parametric and non-parametric. Parametric models 

summarize data with a set of parameters of fixed size, make large assumptions about the 

mapping of the input to the output variables, are simpler and faster to train, and require less data 

but may not be as powerful. Examples of parametric algorithms are Logistic Regression and Linear 

Discriminant Analysis. Nonparametric methods make few or no assumptions about the target 
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function and require a lot more data, are slower to train and have a higher model complexity but 

can result in more powerful models. Examples of non-parametric methods are Decision Trees, 

Naive Bayes and Support Vector Machines (SVM)39. 

ML algorithms in some cases fail in the prediction process. There are two types of prediction 

errors, bias and variance error. Bias is the simplification of the assumptions made by a model to 

make the target function easier to learn. Generally parametric algorithms have a high bias making 

them fast to learn and easier to understand but generally less flexible. In turn, they have lower 

predictive performance on complex problems. Variance is the amount that the estimate of the 

target function will change if different training data are used. Ideally, it should not change too 

much between different training datasets. The ultimate goal of any supervised ML algorithm is 

to achieve low bias and low variance. In turn, the algorithm should achieve good prediction 

performance. Parametric ML algorithms often have a high bias and a low variance and the 

opposite applies for nonparametric algorithms. Trade-off is the strain between the error 

introduced by the bias and the variance. A common problem in ML that results in poor 

performance of the algorithm is overfitti ng. Overfitting happens when a model learns perfectly 

from the training data but cannot generalize to new data, resulting in a poor performance of the 

algorithm. To avoid overfitting, two methods exist, one is k-fold cross validation and the other is 

the partitioning of the data set to train and test validation set. 

The most basic and simple ML algorithm is linear regression which is based primarily on 

statistics. Linear regression is a statistical model that assumes a linear relationship between one 

or more input variables (x, independent variables) and a single output variable (y, dependent 

variable). Linear regression has been used for predicting output variables with continuous values 

(regression problems). For example, for n number of predictors (x1,x2, ΧΣ Ȅn) the following 

ǊŜƎǊŜǎǎƛƻƴ Ŝǉǳŀǘƛƻƴ ǘŀƪŜǎ ǇƭŀŎŜΥ ȅҐʲ0Ҍ1̡x1ҌΧҌʲnxnҌ ʁόǿƘŜǊŜ ʶ ƛǎ ǘƘŜ ǊŀƴŘƻƳ ŜǊǊƻǊ ŀƴŘ ʲ ƛǎ ǘƘŜ 

regression coefficients). Linear regression calculates the estimators or predicted weights of the 

regression coefficients (ὦє, ὦѕΣ ΧΣ ὦn) that they define the estimated regression function Ὢ(ὀ) = ὦє 

+ ὦѕὼѕ + Ễ + ὦnxn. Ideally the estimated or predicted response, Ὢ(ὀַײ), for each observation Ὥ Ґ мΣ ΧΣ 

ὲ, should be as close as possible to the corresponding actual response ώַײ. The differences ώַײ - 
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Ὢ(ὀַײ) for all observations Ὥ Ґ мΣ ΧΣ ὲ, are called the residuals and it is represented as the vertical 

distance between the line and the data points. Regression is about determining the best 

predicted weights, that is the weights corresponding to the smallest residuals. Linear regression 

is a popular statistical tool that has also been applied in ML but it has some limitations. Linear 

regression models use linear combinations of variables but in biology it has been demonstrated 

that interactions between variables are more complex and nonlinear 40. 

Logistic Regression41 is a statistical method for analyzing a dataset in which there are one or 

more independent variables (risk factors) that estimate the probability of an outcome to occur 

or not (in this case thrombosis or mortality), that is a classification problem. Logistic Regression 

works with binary data, where either the event happens (1) or not (0). In contrast with linear 

regression, logistic regression does not use linear relationships but the natural logarithm function 

to find the relationship between the variables and uses test data to find the coefficients. The 

function can then predict the future results using these coefficients in the logistic equation. 

Logistic regression uses the concept of odds ratios to calculate the probability. This is defined as 

ǘƘŜ Ǌŀǘƛƻ ƻŦ ǘƘŜ ƻŘŘǎ ƻŦ ŀƴ ŜǾŜƴǘ άƘŀǇǇŜƴƛƴƎέ ǘƻ άƴƻǘ ƘŀǇǇŜƴƛƴƎέΦ ¢Ƙƛǎ ƳŜǘƘƻŘ ƛǎ ǉǳƛǘŜ Ŝŀǎȅ ŀƴŘ 

fast but is not suitable for high dimensional data40. 

Naive Bayes method42 ƛǎ ŀ ǎǳǇŜǊǾƛǎŜŘ ƭŜŀǊƴƛƴƎ ŀƭƎƻǊƛǘƘƳ ǘƘŀǘ ƛǎ ŦƻǳƴŘŜŘ ƻƴ .ŀȅŜǎΩ ǘƘŜƻǊŜƳ43. 

This theorem is based on conditional probability or the likelihood that an A event will happen 

given that another B event has already happened, as expressed in the following equation.  

ὖ!ȿ"
ὖὄȿὃὖὃ

ὖὄ
 

This algorithm is simple, requires little data but it assumes that the features being evaluated 

are independent of each other, an assumption that does not happen in real life40.  

Linear Discriminant Analysis 44 is a dimensionality reduction method. It is based on Naive 

Bayes theorem and can be applied when the outcome of classification is categorical and has more 

than two classes. The model assumes a Gaussian distribution of the input variables. Removing 
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outliers and standardization of data (so that they have a mean of 0 and a standard deviation of 1 

is considered helpful40).  

K-nearest neighbour (K-NN)45 is a non-parametric ML algorithm. Non-parametric algorithms 

do not require a certain distribution of the underlying data. This is particularly helpful in practice 

where most of the real-world datasets do not follow mathematical theoretical assumptions. It 

has been applied in pattern recognition, and data mining. To determine which of the K instances 

in the training dataset are most similar to a new input, a distance measure is used. For real-valued 

input variables, the most popular distance measure is Euclidean distance. Euclidean distance is 

calculated as the square root of the sum of the squared differences between point a and point b 

across all input attributes i 40. 

ὉόὧὰὭὨὩὥὲὈὭίὸὥὲὧὩ ὥȟὦ ὥ ὦ  

 

K -NN works well with a small number of input variables.  

Decision trees46 split the data multiple times according to certain cut-off values in the 

features. After splitting, different subsets of the dataset are created, with each instance 

belonging to one subset. The final subsets are called leaf nodes and the intermediate subsets are 

called internal nodes or split nodes. To predict the outcome in each leaf node, the average 

outcome of the training data in this node is used. Trees can be used for classification and 

regression problems and have been applied for decision support of medical practitioners. One of 

the most important drawbacks of classical decision tree algorithms is poor processing of 

incomplete, noisy data47. 

Support vector machines (SVM)48 are supervised ML algorithms suitable for both regression 

and classification problems. Data are pointed in a space with n-dimensions (according to the 

number of features), and the most suitable hyperplane (decision boundary) that differentiates 

between the two classes is estimated. SVM algorithms use a set of mathematical functions that 
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are defined as the kernel. Examples of used kernels are linear, nonlinear, polynomial, radial basis 

function (RBF), and sigmoid. SVM is effective in high dimensional data, but less efficient in large 

noisy data as it takes considerable training time.  

Principal Component Analysis (PCA)49 is a dimensionality reduction method for large 

datasets. For that reason, all variables are initially standardized according to the following 

equation50. 

ᾀ
ὺὥὰόὩάὩὥὲ

ίὸὥὲὨὥὶὨ ὨὩὺὭὥὸὭέὲ
 

 

To remove redundant information correlation between input variables is identified with a 

covariance matrix. By computing the eigenvectors and eigenvalues (linear algebra concepts) from 

the covariance matrix it is possible to extract principal components. Principal components are 

new variables that are constructed from the initial variables either by mixture or linear 

combination and that have as much condensed information as possible. This is quite 

advantageous in the real-life dataset with thousands of features that intercorrelate. 

Ensemble51 methods are meta-algorithms that combine several machine learning algorithms 

into one predictive model in order to decrease variance (bagging), bias (boosting), or improve 

predictions (stacking). A commonly used class of ensemble algorithms is Random Forests (RF) 

where bootstrapping is performed. Each tree in the ensemble is built from a sample drawn with 

replacement from the training set. In addition, instead of using all the features, a random subset 

of features is selected, further randomizing the tree. 

Artificial neural networks (ANN)52 is a network of ML algorithms resembling the human brain 

learning function through neurons. ANN can detect patterns and non-linear interactions in large 

complex data. A weight is placed on individual input data (input neurons) and they are fed in 

intermediate connections (hidden layers), and the interactions between the neurons are 

ŘŜǘŜǊƳƛƴŜŘ ōȅ ƻǇǘƛƳƛȊƛƴƎ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ƻƴ ƭŀǊƎŜ ōƻŘƛŜǎ ƻŦ άǘǊŀƛƴƛƴƎέ ŘŀǘŀΦ 5ǳǊƛƴƎ ǘƘƛǎ ǇǊƻŎŜǎǎΣ 

multiple iterations are performed in which the properties of the neurons or nodes are adjusted 

in turn, and changes that improve the predictive power of the output are retained for the next 
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iteration. Once trained, the neural network is then applied to previously unseen testing data, to 

assess its performance53. 

Reinforcement learning54 is another category of ML which is similar to the Marcovian decision 

process55 and uses interactions with the environment of reward or punishment type to make 

decisions56. 

Deep learning57 uses many hidden layers of ANNs that process various information and stimuli 

from the surrounding environment. They have an excellent performance in complex tasks and in 

high dimensional data, they can learn and make decisions on their own but they are complex and 

not easy to understand 58. An example of deep learning is Convolutional Neural Networks, the 

architecture of which is shown in Figure 1. 

Natural language processing (NLP)59 is a scientific topic that allow machines to extract 

information from text or speech. Sentiment analysis is one popular NLP tool that classifies texts 

into different categories relative to a positive, negative or neutral sentiment. A free-text is broken 

into smaller keywords or tokens of text (e.g. individual words) that can be used as features in an 

ML analysis. 

A schematic representation of most commonly used ML algorithms is shown in Figure 1 

provided by Rashidi et al 56. In this study, supervised ML algorithms such as Logistic Regression, 

Decision Trees, Random Forests and Support Vector Machines were employed in the final ML 

pipeline, and NLP methods were employed, to extract information from clinical notes.  
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Figure 1. Schematic representation of the most commonly used ML algorithms (provided by Rashidi et al 56). 

3.4 Automated Machine Learning 

The experimentation and extraction of the best performing ML model is time-consuming since 

it requires substantial human and computational effort, artificial intelligence expertise, and 

extensive tuning of hyperparameters. Moreover, the choice of algorithms and hyperparameter 

tuning is somewhat arbitrary, since they are difficult for humans to understand and they are 

treated as black boxes. For that reasons, several academia and industry based automatic ML tools 

have been developed to assist scientists (e.g. auto-WEKA 60, auto-sklearn 61). An extensive 
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comparison between auto ML platforms has been recently published62. AutoML is a rapidly 

developing field of ML. Moreover, the development of these autoML platforms provides a 

benchmark that will allow direct comparison and probably improved performance and 

reproducibility of the studies. 

The basic pipeline of autoML approach has three steps: a) Data preprocessing and feature 

engineering, b) Model selection and hyperparameter optimization and c) Model interpretation 

and prediction analysis63. The first step is not yet developed fully in most autoML platforms, since 

considerable human interaction is needed in order to preprocess and transform data (e.g. 

conversion of categorical data into integers). After feature extraction is completed, the next step 

is training different types of models with hyperparameter optimization and selection of the best 

model (or an ensemble of models). Each platform uses a collection of known ML algorithms to 

build a model. For hyperparameter optimization, some of the most popular methods are grid 

search, random search, and Bayesian search. The third step, model interpretation is not 

supported yet from all autoML platforms.  

3.5 Machine learning and risk assessment in the era of big-data 

Most of the risk assessment models or prediction scores in medicine have been derived based 

on univariate and classic multivariate statistical analysis of collected data and selection of 

features that provide the best prediction accuracy methods64. Well established risk factors are 

included a priori but preliminary univariate analysis can reveal novel risk factors such as the case 

of platelet and leukocyte counts in Khorana score15. RAMs are originally structured to fit the 

derivation data set. Validation in independent test sets is always necessary but unfortunately 

these models do not perform as well during this second phase 17 .  

Healthcare information has been overflowed by tons of data, such as electronic health 

records, freely accessible databases, genomic sequencing, medical imaging, wearable devices 

and smartphones, insurance and government records. The use of big-data analysis to deliver 

evidence-based information has been lagged so far, due to the difficulties in merging data into a 

common database and different types of format used. Several attempts so far to use big-data in 
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healthcare involve data mining and analysis for diagnostic purposes, prevention of diseases, 

precision medicine, medical research, cost reduction and prediction of disease outcomes 65. 

DƛǾŜƴ ǘƘŜ ŦŀŎǘ ǘƘŀǘ ǘƘŜǊŜ ƛǎ ŀƴ ƛƴŎǊŜŀǎƛƴƎ ŘŜƳŀƴŘ ŦƻǊ άǇǊŜŎƛǎƛƻƴ ƳŜŘƛŎƛƴŜέ ƳƻŘŜƭǎΣ ŜǎǇŜŎƛŀƭƭȅ 

in oncology and with the growing availability of electronic health records (EHRs) and large 

healthcare databases (such as MIMIC III database66, UK biobank67), new challenging 

ƻǇǇƻǊǘǳƴƛǘƛŜǎ ŀǊŜ ƻǇŜƴŜŘ ƛƴ ƳŜŘƛŎŀƭ ǊŜǎŜŀǊŎƘ ǘƻǿŀǊŘǎ ŀ άƳŀŎƘƛƴŜ-ƭŜŀǊƴƛƴƎέ ŀƴŀƭȅǎƛǎ ƻŦ άōƛƎ-

ŘŀǘŀέΦ ¢Ƙƛǎ ŀǇǇǊƻŀŎƘ ŜȄŎŜŜŘǎ ǘƘŜ ŎƻƴŎŜǇǘ ƻŦ ŎƭŀǎǎƛŎ ǎǘŀǘƛǎǘƛŎŀƭ ǎŀƳǇƭƛƴƎ ŀƴŘ ǎŜŜƳǎ ǇǊƻƳƛǎƛƴƎ ƛƴ 

risk assessment and prediction models. 

Artificial intelligence and statistics differ substantially in their objective. ML models are 

designed for accurate predictions that can be generalized while statistical models are designed 

for inference about the relationships between different variables 68. More specifically, inference 

corresponds to a mathematical model of the data generation process and formalizes the 

ǳƴŘŜǊƭȅƛƴƎ ǎȅǎǘŜƳΩǎ ƳŜŎƘŀƴƛǎƳ ƻǊ ǘŜǎǘǎ ŀ ƘȅǇƻǘƘŜǎƛǎ ŀōƻǳǘ Ƙƻǿ ǘƘŜ ǎȅǎǘŜƳ ōŜƘŀǾŜǎΦ tǊŜŘƛŎǘƛƻƴ 

ŀƛƳǎ ŀǘ ŦƻǊŜŎŀǎǘƛƴƎ ǳƴǎŜŜƴ Řŀǘŀ ƻǊ ŦǳǘǳǊŜ ǎȅǎǘŜƳΩǎ ōŜƘŀǾƛƻr. Statistical models could be 

efficiently applied when the task at hand incorporates a tractable size (or dimension) of features 

and data size, while ML/AI could potentially fit better in problems with larger data size and high-

dimensional feature space including non-linearities. To perform well, ML models generally need 

more data than statistical models. Limitations of statistical approaches (e.g. logistic regression) 

are, that they assume that features have a normal distribution and that a linear relationship exists 

between independent and dependent variables69. ML approaches have the advantage that they 

are not affected by bias and logic, they learn from big and complex data that a normal human 

brain cannot digest. The disadvantage of this process is that the machine cannot differentiate if 

an association reflects a true biological pathway 27. In contrast to statistical methods, ML/AI 

methods usually have many hyper-parameters which need cautious tuning based on a 

training/test/validation/ dataset split, otherwise the performance of ML/AI model will be 

inferior. 

ML/AI models could probably outperform RAMs by providing more accurate predictive results 

or possibly refine the parameters of medical scores. Only a few studies have recently tried to 
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predict thrombosis using ML techniques, such as support vector machines or artificial neural 

networks 53 ,70 71. Ferroni et al 70 used multiple kernel learning based on SVM and random 

optimization (RO) models to predict VTE risk in cancer patients. SVM is used to learn classifiers 

and RO to devise relative importance of different groups of clinical attributes in final predictions. 

The type of prediction is considered as binary since it is determined whether a patient will have 

a high risk of developing a VTE event in the future or not. VTE risk predictors are learned based 

on a 3-fold cross-validation on a training set that allows derivation of the model parameters. ML 

predictor outperformed Khorana score (AUC 0.716 vs 0.589). Qatawneh et al. 71 proposed a 

clinical decision system to automate and accurately predict the risk of VTE in hospitalized 

patients. They classified patients into five levels of risk based on predisposing factors chosen from 

the Caprini score of VTE model 72. More specifically, the proposed approach is based on ANN in 

evaluating a multifactorial health issue. The system was developed a multilayered perceptron 

feed forward neural network which was trained using the Rprop training algorithm, and it 

consisted of an input layer with 35 neurons (representing the input variables for each patient 

such as age, gender, etc.), 3 hidden layers (where the number of neurons in the first, second and 

third hidden layer were 19, 10 and 5 respectively) and an output layer (that produced the type 

of the disease the patient suffered from). A stratified ten-fold cross validation was applied. This 

study was performed in only a few numbers of patients and appropriate metrics of performance 

are not reported.  

Willan et al.53 applied an ANN based method in order to risk stratify 11,490 patients referred 

with suspected DVT. This method could be extended for VTE prediction since it corresponds to a 

similar ML problem. More specifically, the authors introduced a system based on a standard 

binary classification problem, namely, whether or not the patient had a DVT. To address this, a 

standard binary-classification feed-forward artificial neural network was employed. The network 

consists of an input layer of 13 dimensions [sex, age, D-dimer result and the ten individual 

components of thŜ ²ŜƭƭǎΩ ǎŎƻǊŜ 73], a hidden layer consisting of 8 neurons, and an output layer 

with one neuron. Each neuron contains a series of weights and biases which are multiplied and 

added to the inputs and then passed through an activation function that determines what 

numerical value is passed from a given neuron to the next layer or output from the network. It is 
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these weights and biases that are optimized to obtain the best performance from the network in 

terms of DVT prediction. This study was designed as a proof of principle and the authors suggest 

that ANN could outperform existing scores of risk assessment such as Wells score, but they do 

not report metrics of performance and they concluded paradoxical clinical associations (e.g. they 

did not find an association of thrombosis with cancer or older age). Overall, prediction of venous 

thromboembolism with machine learning is limited so far, and current studies are sparse and 

problematic so further work is needed in that direction exploiting the advantage of big-data. 

Table 1 summarizes the main characteristics and results of the above-mentioned studies. The 

only study that refers to cancer patients is by Ferroni et al.  

Table 1. Studies that use ML algorithms to predict thrombosis 

Authors 
Population 

studied 
Attributes 

set 
ML 

algorithm 
Train/Test/ 
Validation 

Perfor-
mance 
metrics 

Comparison 
with classic 

scores 

Ferroni et 
al 70 

1,179 
ambulatory 

cancer patients 
13 

Multiple 
kernel ML 
(SVM and 

RO) 

70/30 
AUC: 
0,716 

Khorana 
(AUC:0,589) 

Qatanweh 
et al 71 

150 hospitalized 
patient records 

35 (based on 
Caprini 
score) 

ANN 
(Multilayer 
Perceptron) 

80/10/10 

Recall: 
80,7% 

Precision: 
81,2% 

Caprini score, 
no direct 

comparison 

Willan 
et al 53 

7,080 eligible 
patients with 

suspected DVT 

13 (including 
Wells score) 

ANN 75/25 AUC: 0,89 

Wells score 
included in the 
attribute set, 

no comparison 

 

Abbreviations: ANN=Artificial Neural Network, AUC=Area under the curve, DVT= Deep Vein Thrombosis, 
RO= Random Optimization, ML= Machine Learning SVM= Support Vector Machine. 
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4 METHODOLOGY 

4.1 Data source 

Data were obtained from Medical Information Mart for Intensive Care (MIMIC-III, version 1.4) 

that is a large, freely-available database comprising of de-identified health-related data from 

38,597 adult patients and 49,785 admissions in ICU of the Beth Israel Deaconess Medical Center, 

between 2001 and 2012. This database includes complex information such as demographics, 

time series measurements of vital signs (~1 data point per hour), laboratory tests, procedures, 

medications, caregiver notes, and mortality (including post-hospital discharge), as shown in 

Figure 2 66. Clinical Classification Software (CCS)74 is used to categorize diagnoses according to 

the International Classification of Diseases 9th edition (ICD-9 codes). Diagnosis is given as primary 

and secondary diagnosis ICD-9 codes as well as diagnosis-related groups (DRG)75.  

 

Figure 2. Overview of the MIMIC III database (provided by Johnson et al 66 ).  

Abbreviations: CCU=Coronary Care Unit; CSRU=Cardiac Surgery Recovery Unit; MICU=Medical Intensive Care Unit; 

SICU =Surgical Intensive Care Unit; TSICU= Trauma Surgical Intensive Care Unit. 
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4.2 Ethics statement 

The MIMIC-III database was created in accordance with Health Insurance Portability and 

Accountability Act (HIPAA) standards and data access was approved by PhysioNet (account 

credentialised on September 17, 2019). Patient data are de-identified and date-shifted. All pre-

processing and data analysis were performed under MIMIC-III regulations. 

4.3 Dataset description 

Two datasets D1 and D2 were extracted in order to develop models for the two prediction 

tasks. D1 is identified as the dataset of patients with cancer that subsequently readmitted to ICU 

with a primary diagnosis of VTE within 90 days from the first ICU admission. This dataset was 

used in order to predict VTE risk in ICU hospitalised cancer patients after discharge. D2 is the 

dataset of patients admitted in ICU with a primary diagnosis of VTE. This dataset was used for 

predicting early and late mortality in VTE patients hospitalised in ICU. 

For D1, 630 ICD9 codes were selected, related to common solid tumors and hematological 

malignancies that have increased thrombotic risk, i.e.gastrointestinal, urogenital, brain, breast, 

leukemias and lymphomas. For D1 and D2, 35 ICD9 codes related to deep vein thrombosis, 

thrombophlebitis and pulmonary embolism, were selected. Validation of this grouping for 

thrombosis diagnosis from an independent panel of physicians showed very good performance 

76.  

D1 database patient inclusion criteria: All patients aged >15 years old hospitalized in ICU with 

a primary diagnosis of cancer. Exclusion criteria: Age<15 years old (n=0), pregnancy and 

puerperium complications (n= 15), patients that presented with thrombosis in the first admission 

(n=527), patients with previous admission in ICU with thrombosis (n=36) patients with a 

subsequent thrombosis-ǊŜƭŀǘŜŘ ŀŘƳƛǎǎƛƻƴ ƻŦ ƳƻǊŜ ǘƘŀƴ фл Řŀȅǎ όƴҐрсύΣ ŀƴŘ ǇŀǘƛŜƴǘǎ ǿƛǘƘ άŘƻ 

ƴƻǘ ǊŜǎǳǎŎƛǘŀǘŜ ŎƻŘŜέ ό5bwύ όƴҐоруύΦ Lƴ ǘƻǘŀƭ р,691 cancer patients were identified (14,74% of 

total MIMIC-III patients). From this group of patients 4,642 did not develop thrombosis whereas 

only 57 cases of secondary thrombosis have been recognised with a median time to event of 36 
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days, mean 36,86 days (min 4 -max 85 days). The clinical characteristics of the D1 database are 

presented on Table 2. 

D2 database patient inclusion criteria: All patients aged >15 years old hospitalized in ICU with 

a primary diagnosis of thrombosis. Three main diagnosis groups were identified, as shown in 

Figure 3: pulmonary embolism (n=960), deep vein thrombosis and thrombophlebitis (n=1543) 

and unusual site thrombosis (n=307). Many patients belonged in more than one diagnostic 

category. Exclusion criteria: Age< 15 years (n=3), pregnancy and puerperium complications 

(n=40) and patients with DNR (n=169). Overall 2,468 patients were selected (6.4% of total 

patients in MIMIC III) and split in 3 groups. The first, referred as G1 are 348 patients that died 

during the first ICU admission in which they were diagnosed with thrombosis. The second, 

referred as G2 are 817 patients that died after their discharge from ICU or in a later admission. 

On average this group died 549 days after admission with a median of 225 days. The third, 

referred as G3 are 1,303 patients that remained alive for months after their admission in ICU. 

From these groups two ML tasks were formed, the first is to build a model that distinguishes G1 

ǾǎΦ Dо ǇŀǘƛŜƴǘǎ όŎŀƭƭŜŘ άŜŀǊƭȅ ƳƻǊǘŀƭƛǘȅέ ƻǊ aмύ ŀƴŘ ǘƘŜ ǎŜŎƻƴŘ ƛǎ ŀ ƳƻŘŜƭ ǘƘŀǘ ŘƛǎǘƛƴƎǳƛǎƘŜǎ Dн 

ǾǎΦ Dо ǇŀǘƛŜƴǘǎ όŎŀƭƭŜŘ άƭŀǘŜ ƳƻǊǘŀƭƛǘȅέ ƻǊ aнύΦ ¢ƘŜ ŎƭƛƴƛŎŀƭ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎ ƻŦ ǘƘŜ 5н ŘŀǘŀōŀǎŜ ŀǊŜ 

presented on Table 3. 

 

Figure 3. Venn diagram showing included and excluded cases from MIMIC III database in D2 database. 
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Table 2. Demographic and clinical characteristics of D1 database. 

Characteristic Number 

Overall patients with cancer admitted in Intensive Care Units 
- 1st admission with cancer never thrombosis 
- Readmission with thrombosis within 90 days 

5,691 
4,642 (81.5%) 

57 (1%) 

Sex 
- Female 
- Male 

 
2,345( 41.21%) 
3,346 (58.79%) 

Ethnicity 
- White 
- African/Americans 
- Other 

 
4,315 (75.82%) 

418 (7.34%) 
958 (16.84%) 

Age (years) 
- Average (Median) 
- min-max 

 
66,19(66.89) 
18.87-98.86 

Length of stay in days 
- Average (median) 
- min-max 

 
16,68 (10,46) 

0-211,99 

Number of admissions 
- Average (Median) 
- Min-max 

 
1,43(1) 
1-10 

Table 3. Demographic and clinical characteristics of D2 database. 

Characteristic Value Characteristic Value 

Overall patients with 
thrombosis: 

- PE 
- DVT 
- Unusual site 

thrombosis 

 
2,468 

960 (38.9%) 
1,543 (62.5%) 
307 (12.4%) 

LOS, days 
Average (SD): 

Max length stay: 

 
7.06 (10.06), 
153.9 days 

Sex 
-  Female 
- Male 

 
1,024 (41.5%) 
1,444 (58.5%) 

Number of admissions 
- Average (SD): 

- Median: 

 
1.15 (0.46) 

1 

Ethnicity 
- White  
- Black 
- Other 

 
1,801 (73%) 
246 (10%) 
421 (17%) 

Cancer diagnosis: 605 (24.5%) 

Age, years 
Average (SD) 

 
62,64 (16.7) 

[min=17.4 max=98.7] 

Mortality (%) 
G1 or Early (at the first 

admission): 
G2 or Late (1-year 

mortality): 
Dо ƻǊ ά!ƭƛǾŜέΥ 

 
348 (14.1%) 

 
817 (33.1%) 

 
1,303 (52.8%) 

 
 

Time to death (in days) 
Average (SD): 

Median: 

 
390 (647) 

83 

Abbreviations: ICU=intensive care unit, LOS=length of stay, PE=pulmonary embolism, DVT=deep vein thrombosis, 

SD=standard deviation. 
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4.4 Attributes selection 

For each of these patients a very wide selection of attributes (features) was extracted, selected 

manually based on factors that could be associated with thrombosis. In order to potentially 

investigate novel discriminatory attributes, a liberal approach on attribute extraction from the 

database was chosen, that is collecting as much as relevant data as possible. Data extracted 

included demographics (age, ethnicity), length of stay in ICU (in days), number of admissions, 

body weight, vital signs, basic laboratory indices (hematocrit, hemoglobin, white blood cells, 

platelets, renal and liver function tests, hemostasis screening tests, sepsis indices), severity 

scores, transfusion requirements, procedures, medications and mortality.  

These attributes are grouped in 7 categories each representing a different type of medical 

assessment or intervention and one that included all features. The values of five of these were 

directly extracted from the corresponding tables of the database. These were LabEvents, that 

includes laboratory measurements, ChartEvents that includes charted data such as vital signs and 

blood pressure, InputEvents that includes transfusions and parenteral nutrition, Procedures and 

Prescriptions (medications). LabEvents were extracted in two values, the value of the first day 

and the average value (avg) during the admission. There are two types of InputEvents files MV, 

and CV since two different clinical information systems have been used, CareVue (Philips) and 

Metavision (iMDSoft). For these features the number of events and the overall received amount 

were recorded. 91 medications were extracted from Prescriptions and grouped in the following 

groups: vasopressors, antihypertensive, cardiovascular, antidiabetics, chemotherapy, growth 

factors, anticoagulants and antiplatelets.  

4.4.1 Concepts 

Concepts are meta-features containing the values of various scores. These values are not 

stored in the database but are available as SQL queries that estimate them from other features 

77. Concepts include a set of severity illness scores and organ failure scores such as Simplified 

Acute Physiology Score (SAPS), Sequential Organ Failure Assessment (SOFA), Glasgow Coma Scale 

(GCS), sepsis scores (Martin, Angus), first day laboratories, first day vital signs and transfusions. 
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It also includes comorbidities scores that are described as different Elixhauser indices 78. Overall, 

493 concepts were extracted.  

4.4.2 NoteEvents 

NoteEvents contain unstructured notes written by clinicians in free text format. Since one of 

the objectives of the study was to convert this textual information in numerical that could be 

added in the feature set, all clinically relevant entities from the text were extracted using the 

SABER sequence annotator 79 which is a Deep Neural Network framework, tailored for entity 

extraction from biomedical documents. SABER uses a Bi-directional Long Short-Term Memory 

(LSTM) architecture 80 81 and provides access to pre-trained models for various types of entities. 

One of these is the disease ontology 82 83(DO) which is a structured vocabulary of entities related 

to various pathologies and symptoms.  

For each NoteEvent entry all DO entities were extracted, a process that required 30hrs in a 

computer equipped with 3 Nvidia GPUs, each with 16GB of memory. On average, for each patient 

161 entities with a median of 133 were extracted. Next, these entities were fitted into Latent 

Dirichlet Allocation (LDA) topic model with the Gensim framework84 by using 50 topics. LDA is a 

topic model that generates topics based on word frequency from a set of texts. A topic simply 

contains a probability distribution of entities, i.e. entity άǇŀƛƴέΣ Ƴŀȅ ōŜƭƻƴƎ ōȅ нл҈ ƛƴ ǘƻǇƛŎ м ŀƴŘ 

by 80% in topic 2. Ideally each topic is a thematic cluster that should contain entities with close 

semantic proximities, e.g. cardiovascular conditions (see Figure 4). Overall, this produced a 50-

dimensional space that contained the topic distribution for each patient, or else, for each patient 

a vector of size 50 with thousands of topic marginal probabilities was obtained. For each patient, 

the extracted Disease Ontology tokens were projected into the 50-dimension Topic-Model space 

and this was used as NoteEvents features. 

  An example of the visualization of this model with the LDAvis tool85 is shown in Figure 4. 

Principal Component Analysis on two dimensions was performed only for visualization purposes 

and this does not take any part in the text processing pipeline. The size of each topic (the circles) 

is relative to the sum of the absolute counts of the tokens that they contain. Overall, this process 
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transformed the textual content for each patient in an easy-to-use numerical format that 

contained the basic thematic topics of these entries.  

 

Figure 4. A visualization of the distribution of topics generated through the LDA topic modelling. Each circle on the 

left is a topic. The red circle is a random topic and the words on the right shows the relative distribution of its 

contained entities. In this example, the topic contains entities akin to cardiovascular conditions.  

The overall number of features, the average and median number per patient, the most 

commonly found features in the patient group are described in details in Table 4. It is obvious 

that each group describes a different view of the clinical picture of the patient. Since one of the 

objectives of the study was to locate subsets of discriminatory features, a stratified analysis for 

each group was applied. Namely for each ML task, subsets were created that contained only the 

features of this group. Yet, all these subsets contained basic demographic information that are 

known to have strong correlation with mortality in thrombosis such as sex, length of stay and 

diagnosis group. Finally, a dataset that contained the entirety of the features was created. In 

total, 16 datasets were created, which correspond to the 2 ML tasks combined with the 8 

groupings (7 groups plus 1 containing all groups).  
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Table 4. Description of clinical and laboratory features selected from MIMIC- III database. The first column 
described the corresponding table from the MIMIC-III database. 

Group Description Features Avg Median Most common features 

Chart 
Events 

Vital signs, 
labs, clinical 
information 

235 433 77 
Common labs, blood gases, blood 

pressure 

Lab 
Events 

Laboratory 
indices 

45 1,237 1,157 

Hematocrit, hemoglobin, white 
blood cells, platelets, red blood cells, 

renal and liver function tests, 
hemostasis screening tests, sepsis 

indices 

Proce 
dures 

Several 
procedures 
including 

transfusion 
and 

mechanical 
ventilation 

526 24.3 6 

Venous catheterization, enteral 
nutrition, endotracheal intubation, 

mechanical ventilation for more than 
96 hours 

Input 
Events 

Transfusion 
and 

parenteral 
nutrition 

12 (MV) 
10 (CV) 

  
RBC transfusion, PLT transfusions, 

plasma transfusions 

Prescri 
ptions 

Medications 
 

91 132 14 
Heparin, insulin, warfarin, aspirin, 

enoxaparin, norepinephrine, 
phytonadione and atorvastatin. 

Note 
Events 

Unstructured 
medical notes 

50 

48 entries, 
2,408 
chara 
cters 

1,382 
chara 
cters 

N/A 

Concepts 

Scores, first 
day labs, first 

day vitals, 
doses and 

durations of 
medications 

493   

Comorbidity indices, severity illness 
scores, organ failure scores, sepsis 
scores, GCS, first day laboratories, 
first day vital signs, transfusions 

 
Abbreviations: Avg=average, RBC=red blood cell, PLT=platelet, MV= Metavision, CV=CareVue, GCS=Glascow Coma 

Scale 

 

4.5 Preprocessing 

MIMIC III has applied an adjustment of the age in patients older than 89 years old to a fixed 

age of 300 years old, in order to adjust with privacy regulations. For that reason, these older 

patients were all assigned as 90 years old, given that risk of thrombosis is homogeneously high 

in ages more than 85 years old 86. The Boolean values were replaced as TRUE:1, FALSE:0, and the 
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gender (male/female) as well as the ethnicity (white/black/other) feature were one-hot encoded. 

Missing values are handled in two different ways. In the autoML approach preprocessing is 

automatically applied, by mean imputation and mode imputation, whereas in the custom 

approach a median imputation mode is adopted to fill the missing values. 

4.6 Automated ML framework description 

 The AutoML platform, JADBIO uses an Artificial Intelligence (AI) Decision Support System 

called Algorithm and Hyper-Parameter Space selection (AHPS) in order to extract predictive 

models and signatures. It employs a recently developed protocol, namely Bootstrap Bias 

Corrected Cross-Validation (BBC-CV), for tuning the hyper-parameters of algorithms while 

estimating performance and adjusting for multiple tries. Standard preprocessing applied by 

JADBIO includes mean imputation, mode imputation, constant removal and standardization. 

JADBIO initially constructs a set of ML configurations consisting of algorithms and 

hyperparameters. The algorithms are Linear, Ridge and Lasso Regression, Decision Trees, 

Random Forests (RF) and Support Vector Machines (SVMs) with gaussian and polynomial kernels. 

This selection is based on the fact that these algorithms are most often the top classifier in 

extensive evaluation studies87. Subsequently it evaluates these configurations through bootstrap 

corrected cross-validation algorithm88Φ !ŦǘŜǊ ǎŜƭŜŎǘƛƴƎ ǘƘŜ άǿƛƴƴƛƴƎ ŎƻƴŦƛƎǳǊŀǘƛƻƴέ that is the best 

performing combination of preprocessing steps, feature selection algorithm and predictive 

algorithm that were tested during the analysis, it reports the classification statistics like truth 

table, AUC, sensitivity, specificity, precision, selected features along with their classification 

ability, sample predicted/real values. JADBIO applies all good practices of ML in order to eliminate 

any overfitting of the model and any bias in efficiency estimation. Details regarding the ML 

pipeline and statistical analysis can be found on 88. 9ȄǘŜƴǎƛǾŜ ǘŜǎǘƛƴƎ ǎƘƻǿŜŘ ǘƘŀǘ W!5.LhΩǎ 

estimations lie towards the lower bound of the efficiency spectrum, or else these metrics are in 

fact conservative compared to the real classification ability of the generated model89. The user 

can select between three different types of analysis preliminary, typical and extensive with the 

latter extensively searching for an optimal model using high computational power. Another 

important and clinically relevant task of JADBIO is that it can identify biosignatures, that is a set 
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of features with predictive ability, that could probably enforce knowledge discovery and further 

identify potentially new biomarkers.  

4.7 Class imbalance 

JADBIO addresses imbalanced classes through stratified cross-validation and diversified class 

weights during SVM learning. For that reason, it is crucial to examine the class balancing effect in 

light of oversampling combined with a state-of-the-art ML classifier, in this case RF classifier, 

which is robust and efficient when dealing with numerical, categorical and Boolean data. Towards 

achieving a balanced ratio between the two classes in both datasets, SMOTE method was 

adopted90. In particular, SMOTE generates synthetic minority class samples along the line 

segments joining randomly chosen m minority samples (i.e., m is the number of minority samples 

to oversample in order to obtain the desired class balancing ratio) and their K-nearest minority 

class neighbors. After defining m and K, SMOTE generates a new synthetic sample s of the form 

ǎҐȄҌˊόȄ-y), where x is the minority sample to oversample, y is one of its chosen nearest neighbors 

ŀƴŘ ˊ ƛǎ ŀ ǊŀƴŘƻƳ ƴǳƳōŜǊ ƛƴ ǘƘŜ ǊŀƴƎŜ ƻŦ ώлΣмϐΦ !ƴ ƛƴŎǊŜŀǎŜŘ ƎŜƴŜǊŀƭƛȊŀǘƛƻƴ ŎŀǇŀōƛƭƛǘȅ ƛǎ ŜȄǇŜŎǘŜŘΣ 

and thus an enhanced performance, of the used classifier since the generation of similar samples 

to the existing minority samples, creates larger and less specific decision boundaries. The default 

SMOTE implementation included in the Imbalanced - Learn Python package was used 91. 

A shuffled stratified 75% train / 25% test split is applied on both datasets to divide it into a 

training and a test partition. Then, the training partition is divided into five stratified cross-

validation folds (using shuffling). Since one of the objectives of the study was to examine SMOTE 

ƻǾŜǊǎŀƳǇƭƛƴƎ ŜŦŦŜŎǘ ƻƴ ǘƘŜ Ŧƛƴŀƭ ǇŜǊŦƻǊƳŀƴŎŜ ŜǾŀƭǳŀǘƛƻƴΣ {ah¢9 ǿŀǎ ŀǇǇƭƛŜŘ ƻƴ ŀƭƭ ǘƘŜ άǘǊŀƛƴƛƴƎέ 

folds during each cross-validation iteration. The motivation towards applying oversampling 

during cross-validation is that similar patterns/instances may appear in both training and test 

partitions when the oversampling is performed prior to cross-validation which can lead to 

overoptimistic error estimates. However, if the oversampling is performed during cross-

validation, only the training patterns/instances are considered both for generating new 

patterns/instances and training the model, alleviating over-optimism. In all cases, grid-search 

hyper-parameter tuning was performed as: the number of estimators 92 was selected out of this 
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set: [10, 25, 50, 100], the maximum number of features was set as 'auto','sqrt' or 'log2', the 

maximum depth was selected from the set [10, 20, 30, 40], the minimum samples split 93 was 

selected from the set [5, 10, 15, 20] and the minimum samples leaf from93 [2, 5, 10, 15].  

The best hyper-parameters combination is computed according to an F1-score rule, i.e., the 

model selection is based on the highest F1-ǎŎƻǊŜ ƻƴ ǘƘŜ άǾŀƭƛŘŀǘƛƻƴέ ŦƻƭŘ ŦƻǊ ŀ ǎǇŜŎƛŦƛŎ 

hyperparameters combination. Then, the best (F1-based selected) RF model is trained on the 

entire initial (before the cross-validation iterations) training partition. Towards the final 

performance evaluation, the average ROC curves are computed, where the results are averaged 

over ten Monte Carlo repetitions with different realizations of the train/test split, the 5-fold 

stratified cross validation, and randomizations of the SMOTE method. 

4.8 ML algorithm performance assessment 

Performance of ML classification algorithms is typically assessed by simple statistical methods. 

Assessment of performance is done by the percentage of true predicted cases from the total 

cases. Sensitivity (or recall) is the proportion of true positives (true positives/actual positives or 

else 
ὸὶόὩ ὴέίὭὸὭὺὩ

ὸὶόὩ ὴέίὭὸὭὺὩὪὥὰίὩ ὲὩὫὥὸὭὺὩ
) and specificity the proportion of true negatives/actual negatives or 

else 
ὸὶόὩ ὲὩὫὥὸὭὺὩ

ὸὶόὩ ὲὩὫὥὸὭὺὩὪὥὰίὩ ὴέίὭὸὭὺὩ
 that are correctly identified. Accuracy is the proportion of the times 

which the classifier is correct, according to the following equation: 
ὸὶόὩ ὴέίὭὸὭὺὩίὸὶόὩ ὲὩὫὥὸὭὺὩί

ὸέὸὥὰ ὴὶὩὨὭὧὸὭέὲί
. 

Balanced accuracy is a better metric for imbalanced datasets, since it takes into account both 

positive and negative outcomes, according to the following equation:  

(
ὸὶόὩ ὴέίὭὸὭὺὩ

ὸὶόὩ ὴέίὭὸὭὺὩὪὥὰίὩ ὲὩὫὥὸὭὺὩ

ὸὶόὩ ὲὩὫὥὸὭὺὩ

ὸὶόὩ ὲὩὫὥὸὭὺὩὪὥὰίὩ ὴέίὭὸὭὺὩ
Ⱦς , or else  

ίὩὲίὭὸὭὺὭὸώίὴὩὧὭὪὭὧὭὸώ

ς
 

Precision is defined as the percentage of positive predictive values for each subject category. 

F1 score is the harmonic mean of the precision and recall, thus is another measure of test 

accuracy. Data are also represented in a confusion matrix as shown in Table 5 . Receiver operating 

curves (ROC) illustrate the relationship between sensitivity (plotted on the y-axis) and specificity 

(x-axis). ROC curves can be easily interpreted by using area under the curve (AUC). AUC 
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corresponds to the probability that a random sample would be correctly classified by each 

algorithm. 

Table 5. A confusion matrix describes the performance of a classifier. 

 
Actual outcome 

Negative Positive 

 

Predicted outcome 

Negative True negative False negative 

Positive False positive True positive 
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5 RESULTS 

5.1 Prediction of ICU readmission of cancer patients within 90 days due 

to thrombosis 

Total number of patients included in dataset D1 is 4,699, where 4,642 patients have cancer and 

no thrombosis (cancer_never thrombosis) while 57 patients have cancer when admitted in ICU 

and then they develop thrombosis (cancer_then thrombosis), i.e., the imbalance ratio for D1 is 

1: 81.28. As a result, D1 appears to be an extremely imbalanced dataset which is the basic reason 

for failing to achieve even modest mortality prediction results, using SMOTE and without 

explicitly adopting SMOTE technique. Similarly, JADBIO failed to predict accurately this event as 

shown in Table 6. Between 29,190 trained models the winning algorithm was Classification 

Random Forests training 1,000 trees with Deviance splitting criterion and minimum leaf size = 4. 

Among the most important features selected were concepts such as SOFA and sepsis Martin 

score, insertion of endotracheal tube, MCH (mean corpuscular hemoglobin, an index of red blood 

cells) and red blood cell transfusions (selected by Statistically Equivalent Signature algorithm with 

hyperparameters maxK=2, alpha=0.05). 

In an effort to reduce the imbalance ratio and the dimensionality of the dataset, patients with 

cancer were narrowed down according to the ICD9 codes found in the thrombosis group. So, it 

was possible to reduce the size of the negative group (cancer_never thrombosis) to 2,937 vs 57 

(cancer_then thrombosis), i.e. the imbalance ratio in this case id 1:51.5, which is slightly better 

but still high. Besides that, it was expected that the reduced dataset would be more 

homogeneous regarding cancer diagnosis. Moreover, features such as procedures with many 

missing values and Noteɳvents were discarded, since they cannot be interpreted clinically, ending 

with 1,122 features (instead of the initial 1,471 features). Even with this modification it was 

impossible to improve performance of predictive algorithms (Table 6). As shown, Area under the 

ROC curve (AUC)94 was 59%, which means the probability that the model ranks a random positive 

example more highly than a random negative example is 59%. The accuracy95 or the fraction of 

the number of correct predictions to the total number of predictions, or else the fraction of 

predictions the model got right, has significantly improved from 11% to 98% in the reduced 
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dataset, that is focusing in a more homogeneous patient group according to their diagnosis seems 

helpful. Also, F1 score96 that measures the model's accuracy on the dataset, and is a combination 

of the precision and recall of the model, is quite low 0.04. Even if these results are not significant, 

it is quite interesting that the most important selected features in this case were again packed 

red blood cell transfusions, insertion of endotracheal tube and MCH. 

Table 6. Detailed metrics of the performance for prediction of ICU readmission with thrombosis in cancer patients 
(within 90 days) using all features. 

 
ICU readmission with thrombosis in 

cancer patients (within 90 days) 

ICU readmission with thrombosis 

in cancer patients reduced dataset 

AUC [95% Confidence interval) 0.59 [0.50-0.69] 0.59 [0.46-0.7] 

Accuracy 0.11 0.98 

Balanced accuracy 0.52 0.5 

F1 score 0.04 - 

Precision 0.01 - 

Sensitivity 0.93 - 

Specificity 0.10 1 

Average F1 score  0.52 - 

5.2 Prediction of early and late mortality in ICU patients with 

thrombosis 

5.2.1 Correlation of sepsis, comorbidities, and organ failure scores 

Since MIMIC-III contains a variety of medical scores, the complex interactions between the 

parameters of various sepsis (n=20), comorbidities (n=17) and organ failure (n=12) scores were 

analyzed. For each of these score groups a Pearson pairwise correlation matrix was computed 

ŀƴŘ ǘƘŜǎŜ ŎƻǊǊŜƭŀǘƛƻƴǎ ǿŜǊŜ ǾƛǎǳŀƭƛǎŜŘ ǿƛǘƘ ƘŜŀǘƳŀǇǎΦ CƻǊ ǎŜǇǎƛǎ ŀƴŘ ǎŜǾŜǊƛǘȅ ǎŎƻǊŜǎ ǘƘŜ άǘƛƳŜ 

ōŜŦƻǊŜ ŘŜŀǘƘέ ǿŀǎ ŀŘŘŜŘ ŀǎ ŀƴ ŜȄǘǊŀ ŦŜŀǘǳǊŜΣ ǿƘƛŎƘ Ŏƻƴǘŀƛƴǎ ǘƘŜ ƴŜƎŀǘƛǾŜ ƻŦ ǘƘŜ ǘƛƳŜ όƛƴ Řŀȅǎύ 

in which patients died after their first admission with a thrombosis diagnosis. For patients that 

were alive, this was left blank. Sepsis scores show a strong correlation between each other, as 

depicted in Figure 5. Surprisingly white blood cells, blood components transfusion and time 

before death do not seem to correlate well with sepsis. As far as it concerns comorbidity indices, 
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presented in Figure 6, the Quan Elixhauer score was used, since both variants of Elixhauer 

measures AHRQ and Quan have comparable efficiency in predicting all-cause mortality 97. 

Correlation between various diseases is shown, such as diabetes and renal failure, hypertension 

and renal failure, liver failure and alcohol abuse, congestive heart failure and chronic pulmonary 

disease, peripheral vascular disease and diabetes. Figure 7 represents correlation between most 

important ICU severity scores. A strong correlation is observed between various severity and 

organ failure scores, although none of these scores showed a strong correlation with time before 

death. 

 

Figure 5.Feature. Feature correlation results (heatmaps) for sepsis scores 
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Figure 6.Feature correlation results (heatmaps) for comorbidities 
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Figure 7. Feature correlation results (heatmaps) for ICU severity scores. 

Abbreviations: APS= Acute Physiology Score, LODS= Logistic Organ Dysfunction Score, MLODS=Multiple LODS, 

OASIS= Outcome and Assessment Information Set, SAPS= Simplified Acute Physiology Score, SIRS=Systemic 

Inflammatory Response Syndrome, SOFA=Sequential Organ Failure Assessment, QSOFA=Quick SOFA score 

5.2.2 Classification of early and late mortality 

The best ML model chosen by JADBIO to predict early mortality (task M1) was Random Forests 

training 500 trees with Deviance splitting criterion and minimum leaf size = 3. As expected the 

best performance had the dataset containing all groups (AUC=0.925), followed by Concepts 

(AUC=0.923) and Chart Events (0.917), whereas Input Events had the worst performance 

(AUC=0.781), as shown in Figure 8. To further evaluate the performance of individual features in 

task M1, a dataset with all features except Concepts was used. It is surprising that the 

combination of all data preserves its high predictive performance (AUC 0.931). This is probably 

attributed to the equally high predictive performance of Chart Events. 


















































