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This study examined the reproducibility of prefrontal–hippocampal connectivity estimates obtained by stochastic
dynamic causalmodeling (sDCM). 180 healthy subjectsweremeasured by functionalmagnetic resonance imaging
(fMRI) during a standardworkingmemoryN-Back task at three different sites (Mannheim, Bonn, Berlin; eachwith
60 participants). The reproducibility of regional activations in key regions for working memory (dorsolateral pre-
frontal cortex, DLPFC; hippocampal formation, HF) was evaluated using conjunction analyses across locations.
These analyses showed consistent activation of right DLPFC and deactivation of left HF across all three different
sites. The effective connectivity between DLPFC and HF was analyzed using a simple two-region sDCM. For each
subject, we evaluated sixty-seven alternative sDCMs and compared their relative plausibility using Bayesian
model selection (BMS). Across all locations, BMS consistently revealed the same winning model, with the
2-Back working memory condition as driving input to both DLPFC and HF and with a connection from DLPFC to
HF. Statistical tests on the sDCM parameter estimates did not show any significant differences across the three
sites. The consistency of both the BMS results and model parameter estimates indicates the reliability of sDCM
in our paradigm. This provides a basis for future genetic and clinical studies using this approach.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Estimates of functional and effective brain connectivity are essential
for accounts of human brain function. Particularly, when trying to under-
stand brain pathology in major psychiatric disorders like schizophrenia,
the connectivity between brain regions (Fornito et al., 2012; Friston
and Frith, 1995; Stephan et al., 2009a) plays an important role. However,
to describe brain connectivity and its disturbances in psychiatric condi-
tions, reliable methods have to be developed and evaluated that provide
robust and replicable estimates of these processes.

In this study, we investigate the applicability and robustness of sto-
chastic dynamic causalmodeling (sDCM; Daunizeau et al., 2012; Friston
et al., 2011; Li et al., 2011) to investigate effective connectivity between
the dorsolateral prefrontal cortex (DLPFC) and the hippocampal for-
mation (HF) during working memory (WM). These regions play an
tional Neuroscience Heidelberg-
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important role in pathophysiological theories of schizophrenia (Barch,
2005; Fletcher, 1998; Weinberger et al., 1992), and their connectivity
has been studied in numerous studies on the disorder. Impaired PFC–
HF connectivity has been described in mouse models of schizophrenia
(Sigurdsson et al., 2010), in healthy individuals carrying a genome
wide significant gene variant for the disorder (Esslinger et al., 2009;
Paulus et al., 2013; Rasetti et al., 2011) as well as in individuals with
increased psychosis risk and in first episode patients (Benetti et al.,
2009; Crossley et al., 2009). In schizophrenia patients, altered PFC–HF
coupling was found under both resting conditions (Zhou et al., 2007,
2008) and during WM tasks (Crossley et al., 2009; Meyer-Lindenberg
et al., 2005; Wolf et al., 2009). In fact, the disconnection hypothesis
was motivated by a very similar finding of abnormal dorsal lateral pre-
frontal cortical connectivitywithposterior temporal activity during a ver-
bal fluency paradigm which has a significant WM component (Friston
et al., 1992).

WM concerns the maintenance and on-line manipulation of infor-
mation; and is an essential component of executive control for guiding
behavior. WM processes temporary store contents; which are con-
tinually updated, scanned and manipulated in response to immediate
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processing demands (Baddeley, 1992). WM deficits in schizophrenia
have been consistently described (Forbes et al., 2009; Lee and Park,
2005), they are known to be resilient to the treatment and thus may
underlie many of the cognitive deficits and symptoms in the disorder
(Silver et al., 2003). These deficits cause longer reaction time and less
accurate performance in schizophrenic subjects, especially whenmem-
ory load increases (Goldman-Rakic, 1994; He et al., 2012; Manoach
et al., 1999; Park and Holzman, 1992).

Given this background of the importance of WM for theories of
schizophrenia, indices of prefrontal–hippocampal coupling during WM
could provide markers of cognitive state that may have diagnostic and
predictive utility. In a first step, it is important, however, to examine the
robustness and reliability of any such measure of connectivity in healthy
volunteers. In fact, even without the clinical motivation, examining the
reliability of effective connectivity estimates during WM is, in itself, a
valuable goal. WM has been studied extensively in human volunteers
using fMRI (Callicott et al., 1999; Gazzaley et al., 2004), including several
studies of effective connectivity (Deserno et al., 2012; Schlosser et al.,
2003). However, to our knowledge, none of these previous studies had
the opportunity to conduct a multi-center comparison across different
sites and examine the reliability of effective connectivity estimates
during WM in depth.

Here, we examined the reproducibility of prefrontal–hippocampal
connectivity estimates across 180 healthy subjects, measured under
the sameparadigmbut at three different sites (Mannheim, Bonn, Berlin;
each with 60 participants). We used functional magnetic resonance
imaging (fMRI) and a well-established task of WM, the N-Back task.
The reproducibility of regional activationswas evaluated using conjunc-
tion analyses. These analyses showed consistent activation of right
DLPFC and deactivation of left HF across the three different sites, in
accordance with previous studies of the N-back task (Crossley et al.,
2009; Meyer-Lindenberg et al., 2005; Wolf et al., 2009). The effective
connectivity between DLPFC and HF was then analyzed using a simple
two region model whose parameters were estimated using stochastic
dynamic causal modeling (sDCM; Daunizeau et al., 2012; Friston et al.,
2011; Li et al., 2011). DCM is a framework for formulating physiolog-
ically interpretable and generative models of brain responses, such as
measuredwith fMRI (Friston et al., 2003). It rests on Bayesian inversion
and comparison of state space models formulated in terms of differen-
tial equations (Stephan et al., 2010).

Importantly, stochastic dynamic causal models (sDCMs) allow for
uncertainty about both the states and parameters of the model. Previ-
ous DCM studies of neuroimaging time series have been limited largely
to deterministic DCMs, where uncertainty about the states is ignored
(Friston et al., 2003). These are based on ordinary differential equations
and assume that there are no random variations in the hidden neuronal
and physiological states thatmediate the effects of knownexperimental
inputs on observed fMRI responses. Thismay be a limitation in some in-
stances, because several studies suggest that physiological noise due to
stochastic fluctuations in neuronal and vascular responses may need to
be taken into account (Biswal et al., 1995; Kruger and Glover, 2001;
Riera et al., 2004). As a consequence, there has been growing interest
in estimating both the parameters and hidden states of DCMs based
upon stochastic differential equations with state noise. Examples of dif-
ferent inversion schemes have been in the DCM literature for a while
(Daunizeau et al., 2009; Friston et al., 2008), including a “generalized
filtering” scheme (Friston et al., in press).

In ourwork, we used sDCMbased on generalized filtering to estimate
the effective connectivity between right DLPFC and left HF and to exam-
ine, in a multi-center study, the robustness of these estimates across
three different sites (Mannheim, Bonn, Berlin). For each subject, we
inverted (fitted) a set of sixty-seven alternative sDCMs and compared
their relative plausibility using Bayesian Model Selection (BMS; Penny
et al., 2004a; Stephan et al., 2009b). Statistical analyses were employed
to test for potential differences across the three sites, both with regard
to optimal model structure and concerning the posterior parameter
estimates. The consistency of our BMS results and parameter estimates
across the three sites indicates the reliability of sDCM in our particular
paradigm.

Methods

Summary of dynamic causal modeling (DCM)

DCM models the brain as a dynamic system of interconnected
regions; while, an experiment is defined as a designed perturbation
of the system's dynamics (Friston et al., 2003; Stephan et al., 2010).
Any given DCM represents a particular mechanistic model for ex-
plaining experimentally obtained measures of brain activity. Even
though the mathematical formulation of DCMs differs significantly
across different techniques, common neural mechanisms modeled
by all DCMs include synaptic connection strengths and their experi-
mental modulation. In contrast to purely statistical models of effec-
tive connectivity which characterize inter-regional connectivity in a
phenomenological fashion, DCMs strive for neurobiological interpret-
ability of their parameters and this is a core feature which distin-
guishes them from alternative approaches.

DCMs for fMRI responses are hierarchical models, consisting of
two layers. The first layer is a neuronal model that describes the
dynamics of interacting neuronal populations in the context of exper-
imental inputs. The second layer is a hemodynamic forward model
that characterizes how a given neuronal state translates into observed
fMRI responses and serves to account for variations in neurovascular
coupling across brain regions and individual subjects. Experimental
inputs u(t) enter the model in two different ways: they can elicit re-
sponses through direct influences on specific regions (driving inputs),
or they can modulate the strength of coupling among regions (mod-
ulatory inputs).

Assuming, for simplicity, a single input u(t), the state and mea-
surement equations of a conventional deterministic DCM for fMRI
are:

Neuronal state model :
dx tð Þ
dt

¼ f x tð Þ; θn;u tð Þð Þ ¼ Aþ Bu tð Þð Þx tð Þ þ Cu tð Þ
ð1Þ

Hemodynamic forward model : y tð Þ ¼ g θhð Þ � x tð Þ þ ε tð Þ ð2Þ

where x(t) represents the neuronal state, θn = (A,B,C) are the neuronal
parameters, A is a matrix of endogenous connection strengths, B is a
matrix of modulatory input strengths, C denotes the strength of direct
(driving) inputs, g(θh) is a nonlinear convolution operator that links
the neuronal state x(t) to a predicted BOLD signal y(t) via changes in
vasodilatation, blood flow, blood volume, and deoxyhemoglobin con-
tent (Stephan et al., 2007), θh are the hemodynamic parameters, and
ε(t) denotes Gaussian measurement error.

Critically, the neuronal parameters θn have some degree of neurobi-
ological interpretability, representing, for instance, synaptic weights
and their context-specific modulation. The hemodynamic parameters
θh are not of scientific research interest because they exhibit strong in-
terdependencies and thus high posterior covariances and low precision,
which make it difficult to determine the distinct contribution provided
by each parameter.

To summarize, DCM for fMRI responses provides a generativemodel
for explaining measured BOLD time series as the outcome of hidden
dynamics in an interconnected network of neuronal populations and
its experimentally induced perturbations. Inverting such amodel refers
to estimate the posterior distribution of the parameters of both the neu-
ronal and the hemodynamicmodel from observed fMRI responses of an
individual subject.
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Stochastic dynamic causal modeling (sDCM)

Stochastic DCMs differ from conventional deterministic DCMs by
allowing for endogenous or randomfluctuations in unobserved (hidden)
neuronal and physiological states, i.e., system or state-noise. Practically,
this means that the states are free to fluctuate, in addition to the pa-
rameter estimates, to model spontaneous and experimentally induced
responses. The mathematical form we use here corresponds to that in-
troduced in Li et al. (2011) which extend Eqs. (1) and (2) by including
fluctuation terms for both states and causes:

Neuronal state model :
dx tð Þ
dt

¼ f x tð Þ; θn; v tð Þð Þ þω xð Þ

¼ Aþ Bv tð Þð Þx tð Þ þ Cv tð Þ þω xð Þ
ð3Þ

Hidden causes model : v tð Þ ¼ u tð Þ þω vð Þ ð4Þ

Hemodynamic forward model : y tð Þ ¼ g θhð Þ � x tð Þ þ ε tð Þ ð5Þ

The variables have the same meaning as in Eqs. (1) and (2) above.
Additionally, v(t) represents the hidden causes,ω(x) are randomneuronal
fluctuations, and ω(v) are random fluctuations in experimental inputs.
Importantly, both types of stochastic innovations are assumed to be
non-Markovian but show a degree of temporal smoothness; this is a typ-
ical feature of biological systems (Friston et al., 2011). In other words, the
random state fluctuationsω(x) are characterized by two hyperparameters
π,σ which describe their precision (inverse variance) and smoothness,
given a particular temporal autocorrelation function V; for details, see Li
et al. (2011).

The same sort of parameterization applies to the random fluctuations
in the inputsω(v). States, parameters and hyperparameters fromEqs. (3),
(4), and (5) are inferred using generalized filtering, a triple-estimation
scheme that employs variational Bayesian techniques (Friston et al., in
press). Notably, the presence of stochastic innovations makes sDCMs
applicable to both task-driven and “resting-state” fMRI data.

Bayesian model selection (BMS)

In this paper, we used BMS to compare sDCMs that are applied to
empirical fMRI data (Penny et al., 2004a; Stephan et al., 2009b). Decid-
ing between several competingmodels cannot just consider the relative
fit to the data but also needs to take into account differences in model
complexity; i.e., the number of free parameters and the functional
form of the generative model which, for example, determines parame-
ter interdependencies (Pitt and Myung, 2002). Penalizing for model
complexity is important: as complexity increases, so does model fit
(monotonically). At some point, however, the model will start fitting
noise that is specific to a particular measurement (i.e., “over-fitting”).
In other words, overly complex models are less generalizable across
multiple realizations of the same underlying generative process. There-
fore, assuming that allmodels are equally likely a priori, searching for an
optimalmodel (given a set of alternatives) corresponds to searching the
model that represents the best balance between fit and complexity. This
Table 1
Demographics and behavioral data of participants for each location.

Mannheim

Age [years] 33.95 ± 9.64
Range 19–49

Sex [male/female] 27/33
School education [years] 15.40 ± 2.43
Performance on the 2-Back [%] 81.42 ± 17.22
Reaction time on the 2-Back [ms] 472.02 ± 262.93

a Kruskal–Wallis test.
is themodel that maximizes the model evidence or marginal likelihood
which integrates out uncertainty about hidden parameters and states:

pðy mj Þ ¼ ∫p y θ;mj Þp θ;mð Þdθð ð6Þ

In this study, we use an estimate of the negative free-energy as an ap-
proximation to the logmodel evidence (Friston et al., 2007) and employ a
random effects BMS scheme at the group level that accounts for potential
heterogeneity across subjects (Penny et al., 2010; Stephan et al., 2009b).

fMRI data-sets

Participants

A total of 180 healthy Germanparticipants from three different loca-
tions: Mannheim (60), Bonn (60), and Berlin (60), have been analyzed.
All participants gavewritten informed consent, and the study had ethics
committee approval by the Universities of Heidelberg, Bonn, and Berlin.
Table 1 shows the demographics and behavioral data of participants.
We tested for potential systematic differences between subjects exam-
ined at the three different locations using a one-way ANOVA or a
Kruskal–Wallis test depending on the distribution of the sDCM param-
eter estimates previously assessed by a Lilliefors test. Regarding age,
gender, and education (years of study), no significant differences were
found. Concerning the behavioral data, no significant differences in
performance and reaction times were found either.

WM paradigm: N-Back task

We utilized the N-Back task (Owen et al., 2005), which requires the
temporal tagging and updating of information on each trial, and there-
fore has a steep difficulty slope with increasing demand (i.e., from
0-Back to 2-Back).

Our N-Back paradigm used a block design with two conditions:
0-Back condition and 2-Back condition. In the 0-Back condition (a base-
line condition requiring no WM), subjects were asked to press the
button of the number that they were seeing. In the 2-Back condition,
subjects were asked to press the button of the number that they saw
two trials before. The study comprised a sequence of 0-Back blocks
alternating with 2-Back blocks. Subjects performed four 0-Back blocks
and four 2-Back blocks with 15 trials per block.

fMRI data acquisition and preprocessing

At all three sites, fMRI data were acquired at 3 T using a Trio TIM
(Siemens, Erlangen) whole-body MRI system. 128 contiguous multi-
slice images were obtained with a gradient echo-planar sequence
(orientation = AC–PC line, number of slices = 28; slice thickness =
4 mm; slice gap = 1 mm; FOV = 192 mm; TE = 30 ms; TR =2.00 s;
flip angle = 90°; matrix size = 64 × 64 × 28; voxel size = 3.0 ×
3.0 × 5.0 mm3).

The fMRI data were analyzed using procedures implemented in
Statistical Parametric Mapping (SPM8, Welcome Trust Centre for
Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). All
Bonn Berlin P-Value

31.47 ± 9.60
Range 18–50

34.88 ± 8.72
Range 18–50

p = 0.14a

29/31 29/31 p = 0.92a

15.48 ± 2.93 15.57 ± 2.57 p = 0.90a

77.67 ± 21.28 74.58 ± 19.45 p = 0.14a

461.66 ± 297.70 577.08 ± 350.21 p = 0.13a

http://www.fil.ion.ucl.ac.uk/spm
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functional images and the structural image of each subject were
preprocessed prior to the statistical analyses. We conducted rigid body
motion correction of the functional time-series and “unified segmenta-
tion” (Ashburner and Friston, 2005) of the structural image. After
co-registration of the realigned functional images to the subject specific
structural image, the images were normalized to MNI space using the
warping parameters obtained from the unified segmentation procedure
applied to the structural image. Finally the functional images were
smoothed by applying a 6 mm full-width at half maximum Gaussian
kernel.

fMRI analyses using the general linear model (GLM)

Following preprocessing, we specified a voxel-wise general linear
model (GLM) with two conditions of interest for each participant
(0-Back and 2-Back). Each regressor was convolved with a canonical
hemodynamic function and its temporal and dispersion derivatives.
Contrasts of interest were defined as [2-Back–0-Back] for identifying
WM activations in the right DLPFC and [0-Back–2-Back] contrast for
identifying deactivations of the left HF.

At the group level, the first-level contrast images were entered
into a full factorial design. To identify regions that were consistently
(de)activated in participants from all three sites, we used a conjunction
analysis (i.e., a “logical AND” analysis based on the conjunction null
hypothesis; Nichols et al., 2005). Given our a priori hypothesis, based on
the rich literature of N-back fMRI studies (see above), of activation in
the right DLPFC and deactivation of left HF during 2-Back vs. 0-Back, we
restricted this analysis to our regions of interest whichwere anatomically
defined using the PickAtlas software (WFU PickAtlas, ANSIR Laboratory,
Winston-Salem, NC, USA; http://fmri.wfubmc.edu/software/PickAtlas).
Significant results were corrected for multiple comparisons using family
wise error correction based on Gaussian random field theory.

The significant conjunction results within these anatomical masks
were used to specify functionally defined region-of-interest masks for
subsequent time series extraction in each subject. Specifically, time se-
ries were extracted for each subject by computing the first eigenvariate
across all voxels within 6 mm radius from his/hermaximumwithin the
functionally defined ROIs from the group level.

sDCM

The time series extracted from individualmaximawithin the ROIs de-
fined at the group level were used to fit a set of sixty-seven alternative
sDCMs per subject. In relation to the experimental input (cognitive set as-
sociated with working memory) we considered two classes of model. In
the first set (models 1–7), experimental inputs exerted a driving effect
on one or both regions. In the second set (models 8–22) the experimental
input changed extrinsic or intrinsic connectivity—such that observed
memory related responses weremodeled by an interaction between hid-
den neuronal activity and the connection strengths that shape this activ-
ity. Finally, in the third set (23–67), experimental inputs exerted a driving
Models 1-7 Models 

Fig. 1. Space-st
effect on one or both regions and also changed intrinsic connectivity. The
structure of these sixty-seven sDCMs is shown by Fig. 1.

In models 1–7, we systematically examine all combinations of direct-
ed connections between DLPFC and HF (from DLPFC to HF, from HF to
DLPFC, or both) and where driving inputs enter (in DLPFC, HF, or both).
In this set of models, we did not considermodels without any driving in-
puts or without any inter-regional connections. Driving inputs encode
the influence of task on the DLPFC–HF network (set to 1 during 2-Back
and 0 during 0-Back). Together with the stochastic innovations whose
precision and temporal smoothness are estimated separately for each
area (see above), the driving inputs represent and absorb influences
from unknown (hidden) regions (Daunizeau et al., 2012; Friston et al.,
2011; Li et al., 2011) that change their inputs to the DLPFC–HF network
depending on WM load. In other words, in these models, we are not
modeling WM load dependent changes in DLPFC–HF connectivity by
(bilinear) modulation of activity induced by any condition (i.e., a driving
input representing any trial), as is often the case in DCM, but via changes
in input to the network. The reason for this choice is that in our experi-
mental design 0-Back and 2-Back blocks are continuously following
each other, whichmeans that a driving input representing all task condi-
tions would simply correspond to a constant.

In models 8–22, we consider another type of mechanism. These
additional models do not consider the 2-Back WM condition as driv-
ing input to HF or DLPFC, instead these regions are purely driven by
the stochastic innovations and the 2-Back WM condition modulates
all possible combinations of inter-regional and self-connections. In
other words, DLPFC and HF are not directly affected by changes in
working memory load (in terms of load-dependent driving inputs as
in models 1–7 above), but we are modeling WM dependent changes
in DLPFC andHF activity through (bilinear)modulation of their connec-
tivity by the 2-Back condition.

In models 23–67, we examine a third set of models. These alterna-
tive models consider the 2-Back WM condition as driving input to
DLPFC, HF, or both, and modulatory input to all possible combinations
of inter-regional and self-connections. In other words, we assume
that the 2-Back WM condition elicits responses through direct influ-
ences on the regions of interest and modulates the strength of cou-
pling within and between these regions.

For the analyses presented in this paper, we used stochastic DCM
for fMRI as implemented in DCM10 in the software package SPM12
(alpha version), code release 4579.
Results

SPM

The conjunction maps depicted in Figs. 2 and 3 show the common
(de)activation pattern across three locations in our anatomically
constrained regions of interest. These conjunction analyses showed
a consistent activation in the right DLPFC (x, y, z = 45, 41, 20; T =
8.94; p = 0.05, FWE-corrected) and consistent deactivation in the left
8-22 Models 23-67

ate model.

http://fmri.wfubmc.edu/software/PickAtlas


Mannheim Bonn Berlin

Mannheim, Bonn, and Berlin

Fig. 2. Activation maps for each location and conjunction map in the right DLPFC.
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HF (x, y, z = −27, −31, −10; T = 8.99; p = 0.05, FWE-corrected)
across all three sites.

As described in the Methods section, these conjunction results
were subsequently used as group-level functional ROIs to guide the
subsequent time series extraction in the right DLPFC and left HF of
each individual subject.
Mannheim Bonn

Mannheim, Bon

Fig. 3. Deactivation maps for each location
BMS

We used random effects BMS to determine, from our model space
of sixty-seven alternative sDCMs (Fig. 1), the model that provided the
best balance between accuracy and complexity for explaining the
measured data. The results were fully consistent across the three sites,
Berlin

n, and Berlin

and conjunction map in the left HF.



Comparison of RFX BMS results

Mannheim Bonn Berlin

Fig. 4. Comparison of RFX BMS results across the three locations.
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revealing the same winning model (model 2; Fig. 1) in Mannheim,
Bonn, and Berlin. This model includes a driving influence of the
2-Back condition on both DLPFC and HF, and a unidirectional influ-
ence from DLPFC to HF.

Fig. 4 shows the results of BMS Random Effects (RFX) for each loca-
tion. The exceedance probabilities of model 2 (i.e., the probability that
this model is a more likely model than any other model considered)
were 0.97 (for the Mannheim cohort), 1.00 (for the Bonn cohort), and
0.93 (for the Berlin cohort), respectively.

sDCM parameter estimates

As described above, BMS revealed the same winning model in
Mannheim, Bonn, and Berlin. For this model, Fig. 5 shows the mean
sDCM parameter estimates across participants from each site and
the grand average across all sites.

As a further test of consistency of sDCMresults across the three sites,
we examined potential differences in the parameter estimates of the
Location 

Mannheim Bonn
Grand avera

Mannheim, Bon

Fig. 5. Mean sDCM parameter estimates across participants from
winning model by performing one-way ANOVA or a Kruskal–Wallis
test depending on the distribution of the sDCM parameter estimates
previously assessed by a Lilliefors test, see Fig. 6. Even without correc-
tion for multiple comparisons, none of the five parameters contained
by model 2 were statistically different across sites.

Clearly we cannot infer that there are no differences between the
parameter estimates among the sites (because this would rest upon
accepting the null hypothesis). However, we can use a two-way anal-
ysis of variance and check if we have sufficient power to detect differ-
ences among connections. If this is the case and we are, at the same
time, unable to find a significant site by connection interaction, then
this absent interaction effect cannot be explained trivially by an under-
powered analysis. In other words, we tested whether our analyses were
sufficiently sensitive to detect departures from the null hypothesis of dif-
ferences in connection strengths and yet failed to show any differences
between sites.

Based on this rationale,we performed two-way analyses of variance,
with connection strengths (adjusted by subtracting the prior mean
models

Berlin
ge model

n, and Berlin

each location and the grand average across all locations.



Comparison of statistical tests on sDCM parameter estimates  
Parameter a11 Parameter a21 Parameter a22 

p = 0.11* p = 0.62** p = 0.72*
Parameter c1 Parameter c2 

p = 0.52* p = 0.12**

Fig. 6. Comparison of statistical tests on the sDCMparameter estimates across the three locations: Mannheim (MA), Bonn (BN), and Berlin (BL). *One-way ANOVA; **Kruskal–Wallis test.
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from the posterior mean to avoid trivially significant departures from
the null hypothesis of no differences in connection strengths) and
sites as the two factors. We found no significant differences between
sites using either a non-parametric Friedman-rank test (p = 0.20; nor-
mality was rejected according to Lilliefors test only in 3 out of 15 repe-
titions, p b 0.01) and a two-way ANOVA (p = 0.51). Similarly, we did
notfind a significant interaction between sites andmodel parameter es-
timates (p = 0.85). In contrast, the main effect of connection strength
was highly significant (p b 0.01).

Discussion

In this study, 180 healthy German participants from three different
locations were analyzed: Mannheim (60), Bonn (60), and Berlin (60).
A conjunction analysis showed that rightDLPFC and leftHFwere consis-
tently activated in participants from all three sites. We then proceeded
to constructing a set of sixty-seven sDCMs describing interactions
between right DLPFC and left HF during WM. Random effects BMS re-
vealed the same winning model in Mannheim, Bonn, and Berlin. Statis-
tical tests of the sDCM parameter estimates from the winning model
revealed no significant difference across the three sites.

In summary, our multi-center study demonstrates a consistent
pattern of activation in and connectivity between DLPFC and HF dur-
ing WM across three different sites. While certainly not an exhaustive
test of the robustness of sDCM, this initial reproducibility study
speaks favorably to the reliability of sDCM as a method for assessing
effective connectivity from fMRI data.

For deterministic DCM, two studies of reliability exist, showing high
reproducibility of parameter estimates (Schuyler et al., 2010) and
model selection (Rowe et al., 2010) respectively. While reliability tests
do not directly address questions of model validity, reliability is an im-
portant prerequisite for validity. For deterministic DCM, several studies
have been performed that assessed different aspects of its validity. For
example, construct validity of deterministic DCM for fMRI has been
demonstrated in relation to SEM (Penny et al., 2004b) or large-scale
neuronal models (Lee et al., 2006). Predictive validity has been demon-
strated in a multimodal rodent study, showing that regional origins of
epilepsy spread can be detected (David et al., 2008), and in studies of
stroke patients where DCM applied to data from non-lesioned parts of
the brain could predict, with nearly perfect accuracy, the absence or
presence of a “hidden” lesion, i.e., out of the field of view (Brodersen
et al., 2011). Stochastic DCM for fMRI is a more recent development,
and so far, only one validation study exists (Daunizeau et al., 2013).

It is notable that in our winning model the maximum a posteriori
(MAP) estimates of both our inter-regional connection strengths
and driving inputs are rather small (Fig. 5), while visual inspection
of our models shows good fit to the data. This implies that the activ-
ity in DLPFC and HF can be largely explained by the stochastic inno-
vations (fluctuation terms) that drive activity in DLPFC and HF. This
suggests that future refinements of sDCM in SPM should consider
the relative precision of priors on stochastic innovations and con-
nectivity parameters.

Nevertheless, the additional (small) explanatory contribution of
inter-regional connectivity is very stable across subjects, as demon-
strated by our analyses (Fig. 6). Furthermore, removing the influence
of task as driving input (models 8–22) or disallowing for the endoge-
nous connection fromDLPFC to HF (in models 1–7) clearly deteriorated
model goodness, as shown by the results of our BMS analyses. This
means that despite their small MAP values, both driving inputs and
inter-regional connections play a sufficiently important role in
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explaining regional activity (in DLPFC and HF) that the respective
models can be clearly distinguished in terms of their model evidence.

Another interesting (and unexpected) aspect of the quantitative re-
sults was that the parameters that scale experimental input (2-Back)
were negative for both regions—despite the fact that one region activat-
ed and the other deactivated in the SPM. This again speaks to the subtle-
ties of stochastic DCM, in which experimental effects can be modeled by
condition-specific fluctuations in hidden neuronal states. In otherwords,
despite the fact that the cognitive set associated with task performance
appears to produce an inhibitory afferent drive to both regions, the
estimated changes in neuronal activity must more than compensate in
theprefrontal region showing an activation (which drives thehippocam-
pal region showing a deactivation). In future work, it may be interesting
to test this conjecture using the estimates of hidden neuronal activity in
the two regions directly as the basis for statistical analyses. Our hypoth-
esis here would be that the estimated activity in the prefrontal region
would be higher, on average, during the 2-Back workingmemory condi-
tion and the converse for the hippocampal region.

It may be helpful to remember that the lumped neuronal activity
modeled by DCM for fMRI does not correspond to evoked responses
in electrophysiology; rather, it probably reflects very slow fluctua-
tions in the power of high frequency dynamics—that have much
slower rate constants than the underlying neuronal activity itself.

Our initial reliability study of sDCM provides a basis for forthcom-
ing clinical and imaging genetics studies. After demonstrating that
sDCM provides reliable estimates of prefrontal–hippocampal interac-
tions, we will use this modeling approach in future studies to identify
connectivity alterations in genetic risk carriers and patients. Specifi-
cally, we will investigate relations between sDCMparameter estimates,
behavior, and genetic risk variants that have been implicated in WM
and prefrontal–hippocampal connectivity, in healthy volunteers and
schizophrenia patients.
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