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Abstract

Non-alcoholic steatohepatitis (NASH) is characterized by liver steatosis and inflammation.

Currently, the underlying mechanisms leading to hepatic inflammation are not fully under-

stood and consequently, therapeutic options are poor. Non-alcoholic steatohepatitis (NASH)

and atherosclerosis share the same etiology whereby macrophages play a key role in dis-

ease progression. Macrophage function can be modulated via activation of receptor-ligand

binding of Notch signaling. Relevantly, global inhibition of Notch ligand Delta-Like Ligand-4

(DLL4) attenuates atherosclerosis by altering the macrophage-mediated inflammatory

response. However, the specific contribution of macrophage DLL4 to hepatic inflammation is

currently unknown. We hypothesized that myeloid DLL4 deficiency in low-density lipoprotein

receptor knock-out (Ldlr-/-) mice reduces hepatic inflammation. Irradiated Ldlr-/- mice were

transplanted (tp) with bone marrow from wild type (Wt) or DLL4f/fLysMCre+/0 (DLL4del) mice

and fed either chow or high fat, high cholesterol (HFC) diet for 11 weeks. Additionally, gene

expression was assessed in bone marrow-derived macrophages (BMDM) of DLL4f/fLysM-

Cre
WT

and DLL4f/fLysMCre+/0 mice. In contrast to our hypothesis, inflammation was not

decreased in HFC-fed DLL4del-transplanted mice. In line, in vitro, there was no difference in

the expression of inflammatory genes between DLL4-deficient and wildtype bone marrow-

derived macrophages. These results suggest that myeloid DLL4 deficiency does not contrib-

ute to hepatic inflammation in vivo. Since, macrophage-DLL4 expression in our model was

not completely suppressed, it can’t be totally excluded that complete DLL4 deletion in macro-

phages might lead to different results. Nevertheless, the contribution of non-myeloid Kupffer

cells to notch signaling with regard to the pathogenesis of steatohepatitis is unknown and as

such it is possible that, DLL4 on Kupffer cells promote the pathogenesis of steatohepatitis.
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Introduction

NASH is characterized by an increase in fat accumulation (steatosis) and inflammation in the

liver. The prevalence of steatosis is estimated to be ranging from 84% to 96% whereas in this

population the prevalence of NASH is ranging from 25% to 55% [1]. Although steatosis is a

rather benign and reversible condition, the presence of inflammation is the key feature of

NASH, which can lead to further disease progression and eventually lead to liver cirrhosis [2,

3]. The exact mechanisms leading to hepatic inflammation are unknown and more insights

are needed in order to discover novel therapeutic strategies.

Current research recognizes the critical role of Notch signaling in the context of immune

cells [4]. Notch signaling occurs upon interaction of Notch receptors (e.g. Notch-1, -2, -3 or

-4) on signal receiving cells and their membrane ligands (e.g. Jagged-1 (J1), Jagged-2 (J2),

Delta-Like Ligand-1 (DLL1), Delta-Like Ligand-3 (DLL3) or Delta-Like Ligand-4 (DLL4)) on

signal sending cells. Notch signaling has been implicated in the innate and adaptive immunity,

which play an important role in various metabolic disorders [4–7]. An increasing amount of

evidence point towards the existence of a shared inflammatory etiology between NASH and

atherosclerosis with a central role for macrophages [8]. Fukuda et al. showed that global inhibi-

tion of DLL4 ameliorates atherosclerosis by altering macrophage-induced inflammatory

responses, suggesting the importance of DLL4 on macrophage-mediated vascular inflamma-

tion [9, 10]. In NASH, Kupffer cells (KCs), the resident macrophages of the liver, play a central

role in the initiation of hepatic inflammation and disease progression [8, 11, 12]. Relevantly, it

was shown that Notch downstream targets are positively correlated with steatosis and inflam-

mation in a cohort of non-alcoholic fatty liver disease (NAFLD) patients [13]. Furthermore,

hepatic Notch activation lead to lipogenic gene expression and steatosis in chow fed mice

whereas (DLL4)-Notch signaling promotes a fatty liver [9, 10, 14].

So far, the exact contribution DLL4-Notch in macrophages has not been investigated in

the context of NASH. We hypothesized that myeloid DLL4 deficiency in low-density lipopro-

tein receptor knock-out (Ldlr-/-) mice reduces hepatic inflammation. To test this hypothesis,

bone marrow of wild-type (Wt) or myeloid DLL4-deficient (DLL4del) mice was transplanted

(-tp) into lethally irradiated Ldlr-/- recipient mice and were fed chow or HFC for 11 weeks

after a recovery period of 9 weeks. In contrast to our expectations, myeloid deletion of DLL4

did not reduce hepatic inflammation. These results suggest that myeloid DLL4 deficiency

does not contribute to hepatic inflammation in vivo. Since, macrophage-DLL4 expression in

our model was not completely suppressed, it can’t be totally excluded that complete DLL4

deletion in macrophages might lead to different results. Nevertheless, the contribution of

non-myeloid Kupffer cells to notch signaling with regard to the pathogenesis of steatohepati-

tis is unknown and as such it is possible that, DLL4 on Kupffer cells promote the pathogenesis

of steatohepatitis.

Materials and Methods

Mice, bone marrow transplantation and diet

All animals were housed under standard conditions and had access to food and water ad libi-
tum. The animal experiments were approved by the committee for Animal Welfare of Maas-

tricht University and were performed according to Dutch regulations. The DLL4flox/flox mice

were kindly donated by Prof. Freddy Radtke [15], and crossbred with LysMCre mice [16] to

generate the myeloid DLL4 specific knock-out mice. Ldlr-/- mice were obtained from in-house

breeding. To generate the myeloid DLL4 deficient Ldlr-/- mice, bone marrow transplantation

was performed. Ldlr-/- mice received one week before and four weeks after irradiation
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antibiotic water containing 100 mg/l neomycin (Gibco, Breda, the Netherlands) and 6�104 U/l

polymycin B Sulphate (Gibco, Breda, the Netherlands). One day before and on the day of the

transplantation Ldlr-/- mice were lethally irradiated with 6 Gray of γ-radiation, thus receiving

12 Gray in total. Lethally irradiated Ldlr-/- mice were then injected with 1�107 bone marrow

cells donated from DLL4f/fLysMCreWT (Wt) or DLL4f/fLysMCre+/0 (DLL4del) mice. In order

the fully ensure bone marrow replacement mice had a nine week recovery period. After nine

weeks of recovery, transplanted (-tp) mice received either a chow (Wt-tp: n = 12, DLL4del-tp:

n = 12) or HFC (Wt-tp: n = 20, DLL4del-tp: n = 20) diet, containing 21% butter and 0.2% cho-

lesterol (diet 1635; Scientific Animal Food and Engineering, Villemoissonsur-Orge, France) for

11 weeks. Blood was collected form the tail vein at the end of the experiment and mice were

sacrificed afterwards. Liver tissue was harvested and snap-frozen in liquid nitrogen or fixed in

4% formaldehyde/PBS.

Bone marrow efficiency

In order to determine of the chimerism in the transplanted mice, we used donor bone marrow

which has an LdlrWT origin, whereas recipient bone marrow an Ldlr-/- origin. Genomic DNA

was isolated using the PureLink1 Genomic DNA (K182002; ThermoFisher Scientific). A stan-

dard curve was generated by mixing DNA from Ldlr-/- and LdlrWT bone marrow cells at differ-

ent ratios. Chimerism was determined by quantifying the amount of Ldlr-/- DNA in samples

from 70 μL peripheral blood. To standardize for the amount of input DNA, the non-relevant

p50 gene was quantified. Samples were assayed in duplicate on a 7900HT real-time PCR sys-

tem by using 25 ng DNA, SensiMix™ Sybr & Fluorescein kit (QT615-05, Bioline), according to

the manufacturer’s instructions.

Ldlr-/- specific primers are forward 50-GCTGCAACTCATCCATATGCA-30 and reverse

50GGAGTTGTTGACCTCGACTCTAGAG-3. Forward and reverse p50-specific primers are

50ACCTGGGAATACTTCATGTGACTAA-30 and 50ACACCAGAAGTCCAGGATTATAGC-30,
respectively. A standard curve was generated by plotting the mean threshold cycle (Ct) ΔCt

(Ct p50—Ct Ldlr-/-) against the logarithm of the percentage Ldlr-/- and calculation of a regres-

sion line. Chimerism was calculated from the percentage of Ldlr-/- DNA in the blood samples

(representing the remaining recipient bone marrow), determined by applying the mean ΔCt of

the sample to the standard curve. Efficiency of the bone marrow transplantation in both

groups was approximately 99% (data not shown).

Plasma/Liver lipid measurements

Plasma cholesterol and triglycerides were measured via enzymatic colorimetric assay accord-

ing to the manufacturer protocol (Cholesterol Liquicolor CHOD_PAD; Human #10028, Instru-
chemie, Delfzijl) (Sigma Triglyceride (GPO Trinder) kit (Sigma Tr0100)). Absorbance was

measured with the BioRad Benchmark Plate Reader (170-6750XTU;Bio-Rad, Hercules, CA).
To measure liver cholesterol and triglycerides, liver homogenates were made. About 40–50 mg

of frozen liver tissue was homogenized in 1 ml SET buffer (250 mM Sucrose, 2 mM EDTA, 10

mMTris) with 1 mm glass beads (art. 11079110)on the max setting of the Biospec Mini Bead

Beater-1. Afterwards, samples underwent two freeze-thaw cycles for complete cell destruction.

To optimize cell destruction, samples were taken through a 25Gx5/8” needle several times and

a final thaw cycle was added. Total protein content was measured via bicinchoninic acid

(BCA) assay (23225; Pierce, Rockford, IL). Liver cholesterol and triglycerides were measured via

enzymatic colorimetric assay (Cholesterol Liquicolor CHOD_PAD; Human #10028, Instru-
chemie, Delfzijl) (Triglyceride Liquicolor CHOD_PAD; Human #10724, Instruchemie, Delfzijl)

Myeloid DLL4 in NASH

PLOS ONE | DOI:10.1371/journal.pone.0167199 November 29, 2016 3 / 16



Liver histology

Livers of Wt-tp and DLL4del-tp mice were embedded in paraffin and sections of 4 μm thick

were cut. H&E staining was performed according to the manufacturer’s protocol. Slides were

scored for steatosis and liver cell injury (e.g. necrosis, inflammation, bile duct formation) by

an experienced mouse pathologist (MJJG). For immunohistological stainings, frozen mouse

liver tissue was cryo-embedded in Tissue-Tek1 (Sakura Finetek Europe B.V., Alphen aan den
Rijn, The Netherlands) and sections of 7 μm thick were cut. For immunohistological stainings,

cryosections of the liver were dried and fixated in dry acetone for 15 min. To block endoge-

nous peroxidase activity, sections were incubated with 3% H2O2 solution for about 5 min.

Tissue sections were also treated with Avidin/Biotin solution (Vector; SP2001) for 30 min.

Afterwards, sections were incubated for 1 hour at room temperature (RT) with primary anti-

body for infiltrated macrophages (MAC-1; MAB1124; clone M1/70; 1:500) or Neutrophils

(NIMP-1; rat anti-mouse Ly6-C, supernatant; clone: NIMP-R14, 1:100). Subsequently, tissue

sections were incubated with secondary antibody (Rabbit anti-Rat IgG Biotin (6180–08), South-
ernBiotech, Birmingham, AL, USA) for 1 hour at RT. To amplify the signal, sections were incu-

bated for 30 min in Peroxidase Vectastain Elite ABC solution (Vector Laboratories, PK-6100,

Peterborough, United Kingdom). For detection of the secondary antibody, the Peroxidase Sub-

strate kit AEC (Vector Laboratories, SK-4200, Peterborough, United Kingdom) was used. Slides

were counterstained with heamatoxylin. Pictures were taken with a Nikon digital camera

DMX1200 and ACT-1 v2.63 software (Nikon Instruments Europe, Amstelveen, The Nether-
lands). Immune cells were counted in 6 microscopical views (original magnification, 200x)

and were noted as cells/square millimeter.

Kupffer cell isolation

Whole liver (n = 4) of each experimental group were digested individually in digestion buffer

(33.9 μg/ml Liberase TM, 0.002% DNaseI) for 20 min at 37˚C. The digested liver solution was

further disrupted by pushing it through a 100 μm cell strainer using wash buffer (PBS, 1% FCS

and 2.5 mM EDTA). Cells were then centrifuged at 1500 rpm for 10 min at 4˚C. Pellet was

resuspended in wash buffer, removal of hepatocytes was accomplished by one low-spin centri-

fugation step at 300 rpm for 3 min. Supernatant, which was lysed from red blood cells, was col-

lected and centrifuged. Next, Kupffer cells were isolated from the supernatant by using

magnetic beads coated with a macrophage-specific monoclonal antibody (F4/80-APC, 1 μl/

80x106 cells) (Biolegend) and incubated for 20 min at 4˚C. Afterwards, cells were washed and

incubated with anti-APC microbeads (200 μl/100x106 cells) (Militenyi Biotec, Auburn, CA) for

20 min at 4˚C in the dark. After washing, samples were run into LS columns, put on a Quadro

MACS magnet (Militenyi Biotec, Auburn, CA) and rinsed with wash buffer. Positively selected

cells were flushed using wash buffer and collected for further analysis.

RNA isolation and quantitative polymerase chain reaction

Total RNA was isolated from frozen mouse liver and Kupffer cells as described previously [17,

18]. To isolate total RNA from BMDM, FavorPrep™ Blood/Culture cell total RNA purification

mini kit (FABRK001, Favorgen, Vienna, Switzerland) was used. First-strand complementary

DNA (cDNA) was made from 500 ng total RNA of each mouse according to the manufactur-

er’s protocol (iScript™ cDNA Synthesis Kit (170–8891),Bio-Rad, Veenendaal, The Netherlands).
As for total RNA of isolated Kupffer cells, approximately 50 ng of total RNA was used. Relative

quantitative gene expressions of inflammatory markers were measured by quantitative PCR

on an SDS 7900HT by using SensiMix SYBR HIROX (Cat No QT605-05 Bioline, London,

United Kingdom) and 10 ng of cDNA template. For normalization, the geometric mean of two
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references genes were used (Cyclophillin A and ribosomal protein S12). Primers sets were

developed with Primer Express version 2.0 (Applied Biosystems) using default settings. The

primer sequences can be found in Table 1. Data from qPCR were analyzed with the Lin-

RegPCR, Analysis of RT PCR data, Version 2015.3 [19–21].

Cell culture

Bone marrow was isolated from hind limbs of DLL4f/fLysMCreWT (Wt; n = 3) and

DLL4f/fLysMCre+/0 (DLL4del; n = 3) mice. In short, the femur and tibiae were flushed with

cold PBS. Bone marrow cells were cultured for 8 days in RPMI1640 cell culture medium

(10% Fetal Calf Serum (FCS) (Bodinco BV, Alkmaar, The Netherlands), 1% penicillin/strepto-

mycin, 1% L-Glutamine, 20mM HEPES) (GIBCO by Life technologies, Bleiswijk, the Nether-
lands) supplemented with 20% LCM (L929 cell conditioned medium which contains

M-CSF) to differentiate into BMDM. All cells were cultured at 37˚C in the presence of 5%

CO2 atmosphere. Cells were seeded in a 24-wells plate (Greiner, 662102, Alphen a/d Rijn)
(350,000 cells/well) and stimulated for 4 hours with LPS (100 ng/ml). For experiments with

immobilized DLL4, cells were coated overnight with recombinant DLL4 (1 μg/ml; R&D Sys-
tems) and 0.2% gelatin in PBS at 4˚C. Wells were rinsed once with PBS before plating Wt

BMDM (350.000 cells/well) followed by 4 hrs incubation at 37˚C. Tumor necrosis factor

alpha (TNFα) protein was measured via ELISA (88-7324-88; Affymetrix, eBioscience, Vienna,

Austria) according to the manufacturer’s protocol.

Western blot

BMDM of Wt and DLL4del mice were lysed in RIPA buffer (50 mM Tris-HCL pH 7.5, 150

mM NaCl, 0.5% Sodium deoxycholate, 1% Triton X-100, 0.1% SDS) supplemented with prote-

ase and phosphatase inhibitor mixture. For making liver homogenates, about 40–50 mg of fro-

zen liver tissue was homogenized in 1 ml RIPA About 40–50 mg of frozen liver tissue was

Table 1. Primer sequences.

Gene Primer forward Primer reverse

Cyclophillin A TTCCTCCTTTCACAGAATTATTCCA CCGCCAGTGCCATTATGG

S12 GGAAGGCATAGCTGCTGGAGGTGT CCTTCGATGACATCCTTGGCCTGA

Abca1 CCCAGAGCAAAAAGCGACTC GGTCATCATCACTTTGGTCCTTG

Abcg1 TCGGACGCTGTGCGTTTT CCCACAAATGTCGCAACCT

Cd36 GCCAAGCTATTGCGACATGA AAAAGAATCTCAATGTCCGAGACTTT

LXRα CAACAGTGTAACAGGCGCT TGCAATGGGCCAAGGC

Notch-1 AGGACCTCATCAACTCACACGC TCTTTGTTAGCCCCGTTCTTCAG

Notch-2 CCGTGTTGACTTCTGCTCTCTCAC CCTACTACCCTTGGCATCCTTTG

Notch-3 TCTCAGACTGGTCCGAATCCAC ACACTTGCCTCTTGGGGGTAAC

Notch-4 ATGCGAGGAAGATACGGAGTGG TCGGAATGTTGGAGGCAGAAC

Dll1 CTACTACGGAGAGGGCTGCT CCAGGGTTGCACACTTTCTC

Dll4 ACAACTTGTCGGACTTCCAG CAGCTCCTTCTTCTGGTTTG

Jagged-1 ATCGTGCTGCCTTTCAGTTT ACTGTCAGGTTGAACGGTGTC

Jagged-2 GTCGTCATCCCCTTCCAGT CTCCTCATTCGGGGTGGTAT

Hey1 GAAACTTGAGTTCGGCTCTAGG GCTTAGCAGATCCTTGCTCCAT

Hes1 AGGCGGACATTCTGGAAATG CGGTACTTCCCCAGCACACTT

Tnf-α CATCTTCTCAAAATTCGAGTGACAA TGGGAGTAGACAAGGTACAACCC

Itgam ACTTTCAGAAGATGAAGGAGTTTGTCT TGTGATCTTGGGCTAGGGTTTC

Icam CTACCATCACCGTGTATTCGTTTC CGGTGCTCCACCATCCA

doi:10.1371/journal.pone.0167199.t001
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homogenized in 1 ml SET buffer (250 mM Sucrose, 2 mM EDTA, 10 mMTris) with 1 mm

glass beads (art. 11079110)on the max setting of the Biospec Mini Bead Beater-1. To optimize

cell destruction, samples were taken through a 25Gx5/8” needle several times and a final thaw

cycle was added. Total protein content was measured via bicinchoninic acid (BCA) assay

(23225; Pierce, Rockford, IL). For western blot analysis, equal amounts of protein (30 μg) were

loaded on the gel. After SDS/PAGE electrophoresis, protein was transferred on nitrocellulose

membrane (Biorad). The membrane was blockade with 5% non-fat dry milk for 1 hr at room

temperature. Afterwards, the membrane was incubated overnight at 4˚C with primary anti-

body against DLL4 (0.3 ug/ml, ab183532, Cambridge, United Kingdom) or β-actin (1:1000 dilu-
tion, Cell Signaling Technology, Danvers, MA, USA) which was us as a reference protein.

Detection was performed according to its primary antibody using anti-goat (Santa Cruz) or

anti-rabbit (Cell Signaling) horse-radish peroxidase (HRP)-conjugated secondary antibodies,

followed by chemiluminescence.

Statistical analysis

Significant differences between the experimental groups were analyzed with the two-way

ANOVA followed by a Tukey post-hoc test using the IBM1 SPSS Statistics program (Ver-

sion 22.0.0.). In vitro results were analyzed for significant differences with the two-tailed

unpaired t-test using GraphPad Prism (Version 5.03). Outliers were determined via the

Grubbs’ Test. Data were expressed as the mean ±SEM and considered significant at p < 0.05.
�, �� and ��� indicate p < 0.05, 0.01 and 0.001 resp.

Results

Myeloid DLL4 deficiency has no effect on plasma and liver lipid levels

To investigate the effect of myeloid DLL4 deficiency on the health status of Wt-tp and

DLL4del-tp mice, relative weight gain and liver/body weight ratio were determined. As

expected, upon HFC, both the relative weight gain and liver/body weight ratio were increased

compared to chow. No differences were observed between Wt-tp and DLL4del-tp mice (Fig 1A

and 1B). To determine the extent of liver damage, the liver enzyme alanine aminotransferase

(ALT) was measured. Upon HFC feeding, ALT levels were increased in Wt-tp and DLL4del-tp

mice compared to chow, but levels remained similar between both groups (Fig 1C). Next, we

investigated the effect of myeloid DLL4 on plasma and liver lipid levels. Upon HFC feeding,

cholesterol and triglyceride levels were increased in Wt-tp and DLL4del-tp mice. However, no

significant differences were observed between both groups in both plasma and liver (Fig 2A–

2D). To further determine the effects of myeloid DLL4 deficiency on cholesterol metabolism,

gene expression of ATP-binding cassette subfamily A member 1 (Abca1), ATP-binding cas-

sette subfamily G member 1 (Abcg1), Liver X receptor alpha (Lxrα) and Cluster of Differentia-

tion 36 (Cd36) were analyzed in the livers of Wt-tp and DLL4del-tp mice. Gene expression of

Abca1 and Cd36 were significantly upregulated in the livers of Wt-tp and DLL4del-tp mice on

an HFC diet compared to chow-fed mice. Similar hepatic mRNA levels were detected between

Wt-tp and DLL4del-tp mice when fed chow or HFC (Fig 2E). Altogether, these data suggest

that myeloid DLL4 signaling has no effect on lipid metabolism.

Hepatic inflammation is not changed in myeloid DLL4-deficient mice

To investigate that DLL4 is knocked down specifically in myeloid cells, we first determined

DLL4 expression in whole livers of Wt- and DLL4del–tp mice. We found that Dll4 expression

both on mRNA and protein level in whole livers was similar between Wt-tp and DLL4del-tp
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mice (Fig 3A and 3C, respectively). Next, protein expression of DLL4 was assessed in Wt and

DLL4del BMDM. In line with our gene expression data regarding DLL4 in Kupffer cells (Fig

3D), DLL4 protein expression was reduced in DLL4del BMDM compared to Wt BMDM (Fig

3B). Altogether, these data indicate that DLL4 deficiency is selective for myeloid cells. To deter-

mine the effect on myeloid DLL4 deficiency on Notch signaling, the expression of Notch target

genes was investigated in the livers of Wt-tp and DLL4del-tp mice. Gene expression analysis of

the downstream targets of DLL4, Hairy/enhance of split-1 (Hes1) and Hairy/enhancer-of-split

related with YRPW motif protein 1 (Hey1), was analyzed. Upon HFC feeding, Hey1 and Hes1
expression was increased in Wt-tp and DLL4del-tp mice, indicative for increased Notch signal-

ing activation. However, no changes in Hey1 and Hes1 were observed between both groups (Fig

3F and 3G). Additionally, Hes1 gene expression in KCs of Wt-tp and DLL4del-tp mice on chow

and HFC diet was determined. No differences were observed in Hes1 gene expression between

KCs of Wt and DLL4del-tp mice (Fig 3E). Next, gene expression of Notch-receptors and ligands

were measured in the livers of Wt-tp and DLL4del-tp mice. Upon HFC, gene expression of

Notch-1, Notch-3, and Jagged-1 was increased compared to chow-fed mice in both Wt-tp and

DLL4del-tp mice, whereas Dll1 gene expression was reduced. However, no differences were

observed between Wt-tp and DLL4del-tp mice in either the chow or HFC group (S1 Fig). Simi-

lar findings were observed in BMDM of Wt and DLL4del mice; upon LPS stimulation, the

expression of Notch-1, Notch-2 and Dll1 was increased in both Wt and DLL4del BMDM,

whereas Jagged-2 gene expression was reduced compared to non-stimulated conditions. No

Fig 1. Body and liver weights of Wt-tp and DLL4del-tp mice. (A) Relative weight gain was calculated from the body weights of

Wt-tp and DLL4del-tp mice. (B) Relative liver/total body ratio was measured from the liver and body weights of Wt-tp and DLL4del-tp

mice. (C) Plasma ALT levels were measured of Wt-tp and DLL4del-tp mice. All data are represented as mean +/- SEM. Data are

significant at * p< 0.05, ** p< 0.01, *** p< 0.001. Significance is compared to the chow group of the respective genotype.

doi:10.1371/journal.pone.0167199.g001
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Fig 2. Lipid level measurements in Wt-tp and DLL4del-tp mice. (A-D) Cholesterol and triglyceride levels were

measured in plasma and in the liver of Wt-tp and DLL4del-tp mice. (E). Gene expression of Abca1, Abcg1, Cd36 and Lxrα
were measured in the liver of Wt-tp and DLL4del-tp mice. All data are represented as mean +/- SEM. Data are significant

at * p< 0.05, ** p< 0.01, *** p< 0.001. Significance is compared to the chow group of the respective genotype.

doi:10.1371/journal.pone.0167199.g002
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Fig 3. Hepatic gene and protein expression analysis of DLL4 and its downstream targets. (A) Gene expression of Dll4

in the livers of Wt-tp and DLL4del-tp mice. (B-C) DLL4 protein expression in BMDM and livers of mice, respectively. (D-E)

Gene expression analysis of Dll4 and Hes1 in isolated KCs from Wt-tp and DLL4del-tp mice. (F-G) Gene expression of Hey1

and Hes1 in the livers of Wt-tp and DLL4del-tp mice. All data are represented as mean +/- SEM. Data are significant at * p<
0.05, ** p< 0.01, *** p< 0.001. Significance is compared to the chow group of the respective genotype.

doi:10.1371/journal.pone.0167199.g003
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differences in Notch ligands and receptors were observed between Wt and DLL4del BMDM (S2

Fig). Altogether, these findings suggest that hematopoietic deletion of DLL4 is not associated

with changes in the expression of other Notch receptors or ligands. Next, to investigate whether

myeloid DLL4 deficiency lowers hepatic inflammation, immunohistological stainings and gene

expression analysis were performed on liver tissue of Wt-tp and DLL4del-tp mice. First, we per-

formed an H&E staining on liver sections of Wt-tp and DLL4del-tp mice. These sections were

scored for steatosis and liver cell injury (e.g. necrosis, inflammation, bile duct formation) by an

experienced mouse pathologist in a blinded manner. Histological analysis revealed that, upon

an HFC diet, steatosis and liver cell injury was pronounced in both Wt-tp and DLL4del-tp mice.

These findings were also supported by ALAT plasma levels, which is a marker for liver injury

(Fig 1C). In line with our previously obtained results, no differences were observed between the

two genotypes (S3 Fig). These data further support the conclusion that myeloid DLL4 defi-

ciency does not affect liver steatosis and hepatic inflammation. Additionally, liver sections were

stained for infiltrated macrophages (MAC-1 staining) and neutrophils (NIMP staining). Upon

HFC feeding, infiltrated macrophages were increased in Wt-tp and DLL4del-tp mice compared

to chow-fed mice. Similar effects were observed for neutrophils. However, no differences were

observed between the two genotypes in the chow- and HFC-fed group for infiltrated macro-

phages and neutrophils (Fig 4A–4C). Moreover, gene expression levels of Tnfα, Integrin Alpha

M (Itgam) and Intercellular Adhesion Molecule 1 (Icam) were similar between Wt-tp and

DLL4del-tp mice (Fig 4D). To determine foam cell formation a CD68 staining was performed

on livers of Wt-tp and DLL4del-tp mice. There were no differences in foam cell formation

between Wt-tp and DLL4del-tp HFC fed mice (data not shown). Overall, these results suggest

that myeloid DLL4 deficiency does not lower hepatic inflammation.

DLL4 deficiency does not affect inflammatory gene expression in bone

marrow-derived macrophages

As we did not observe differences on hepatic inflammation in vivo, we next investigated

whether bone marrow-derived macrophages (BMDM) of myeloid DLL4-deficient mice are

less susceptible for inflammation. Bone marrow from DLL4f/fLysMCreWt (Wt) and

DLL4f/fLysMCre+/0 (DLL4del) was isolated and differentiated to BMDM followed by an LPS

stimulus. As expected, DLL4del BMDM showed a significant reduction of DLL4 expression

when compared to Wt macrophages (Fig 5A). However, no significant differences in TNFα
cytokine production, Tnfα and Itgam expression were detected when compared to Wt BMDM

upon LPS stimulation (Fig 5B–5D). While the differences between the groups for Dll4 and

Itgam gene expression remain similar in the condition without LPS, TNFα cytokine produc-

tion was not detectable. Tnfα gene expression levels were increased significantly in Wt and

DLL4del BMDM due to the LPS stimulus. These data show that DLL4del BMDM can contribute

to inflammation to the same extent as compared to Wt BMDM. To investigate the relative con-

tribution of DLL4 to LPS-induced inflammation, DLL4 was immobilized in culture plates,

where it acts as an inflammatory stimulus on Wt BMDM in the absence of LPS. Upon DLL4

stimulation, gene expression of Tnfα was significantly increased. A similar trend was observed

in TNFα cytokine production. However, in the absence of LPS, the levels of TNFα cytokine

production are extremely low (±1.5–3.0 pg/ml) (Fig 5E). These data suggest a minor role for

myeloid DLL4 in triggering inflammation.

Discussion

Notch signaling is involved in various metabolic diseases [7, 9, 13, 22] and has been described

as an essential modulator for inflammation and macrophage function [7, 23–27]. While many
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Fig 4. Hepatic inflammation in Wt-tp and DLL4del-tp mice. (A) Representative pictures of the MAC-1 staining on the livers of Wt-

tp and DLL4del-tp mice. Original magnification: 200x. (B-C) Quantification of the MAC-1 and NIMP staining for infiltrated

macrophages and amount of neutrophils, respectively. (D) Gene expression of Tnfα, Itgam and Icam were measured in the livers of

Wt-tp and DLL4del-tp mice. All data are represented as mean +/- SEM. Data are significant at * p< 0.05, ** p< 0.01, *** p< 0.001.

Significance is compared to the chow group of the respective genotype.

doi:10.1371/journal.pone.0167199.g004
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Notch ligands have been investigated thoroughly, in the current study, we investigated for the

first time the contribution of myeloid DLL4 in the context of hepatic inflammation.

Macrophage activation is essential for atherosclerotic plaque development [28–31] and

recent studies have implicated Notch signaling in this process [9, 23, 32]. These studies showed

that DLL4 ligand-expressing macrophages are found in human atherosclerotic lesions and that

Fig 5. Inflammatory response of bone marrow-derived macrophages from Wt and DLL4del mice. (A) Gene expression of Dll4 was

measured in BMDM of Wt and DLL4del mice. (B-C) Gene expression of Tnfα and Itgam were measured in BMDM of Wt and DLL4del mice.

(D) TNFα cytokine production was measured in BMDM of Wt and DLL4del mice. (E) Wt BMDM stimulated with immobilized recombinant

DLL4. All data are represented as mean +/- SEM. Data are significant at * p< 0.05, ** p< 0.01, *** p< 0.001. Significance is compared to Wt

BMDM.

doi:10.1371/journal.pone.0167199.g005
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pro-inflammatory stimuli can increase DLL4 expression in macrophages [23]. Furthermore, it

has been shown in vivo that plaque progression was reduced in apolipoprotein E-deficient

mice after treatment with a γ-secretase, in order to inhibit Notch signaling [32]. Taken into

account the prominent role of Notch signaling in atherosclerosis, and since NASH and athero-

sclerosis share similar disease mechanisms [8], the results obtained in the current study were

unexpected. In contrast to our results, global inhibition of DLL4 using specific antibodies

resulted in a reduction in plaque development and decreased fat accumulation in Ldlr-/- mice.

Next to that, they showed that F4/80 gene expression in the liver was reduced in these mice [9,

10], while our result showed no differences in hepatic inflammation. In vitro data from our

group and others demonstrated the pro-inflammatory role of DLL4 on macrophages. How-

ever, data regarding the role of DLL4 on cells other than macrophages is lacking. In our experi-

mental design, the DLL4 deletion is restricted to myeloid cells. In contrast, Fukuda et al. used a

global inhibition of DLL4 (via anti-DLL4 antibodies) [9]. It is therefore possible that in vivo,

the contribution of DLL4 on myeloid cells is minor and cells other than macrophages contrib-

ute to the inflammatory response, as observed by Hoebe et al. [33]. For example, when stromal

cells, that express DLL4, were co-cultured with macrophages, the inflammatory response was

increased, compared to stromal cells without DLL4 co-incubated with macrophages [23].

These data demonstrate the contribution of other DLL4-expressing cells to inflammation. In

line, there is evidence that Notch receptors can be activated through other Notch ligands [34–

37]. Furthermore, Notch-1, -2 and -3 are highly expressed on monocytes and macrophages

and in vitro studies have shown that these cells can undergo cytokine specific apoptosis by

interaction of DLL1 which could influence the macrophage inflammatory response [23, 25,

38]. Next to that, it can be speculated that DLL4-expressing hepatocytes may also affect mye-

loid DLL4-Notch signaling, as myeloid DLL4 signaling is mediated through all four Notch

receptors [23, 39, 40]. Additionally, DLL4 induces Notch-1, -2, -3 cleavages [41]. As such it is

likely that, macrophages in DLL4del-tp mice could still be activated via hepatic DLL4. Interest-

ingly, Koga et al, showed that Ldlr-/- hyperlipidemic mice showed high levels of soluble DLL4

in the plasma compared to Wt mice [42]. Fung et al, already showed that soluble DLL4 is able

to activate Notch signaling in macrophages [23]. Based on these observations it can be sug-

gested that in our model hepatocytes could still be functioning as suitable donor for DLL4 acti-

vation as they still express DLL4.

In conclusion, our data suggest that the inhibition of one single Notch-ligand in the mye-

loid linage is not sufficient to overcome hepatic inflammation. Nevertheless, since the macro-

phage-Dll4 expression in our model was not completely suppressed, it can’t be totally excluded

that complete DLL4 deletion in macrophages might lead to different results. Furthermore,

there is a possibility that Kupffer cell isolation using magnetic beads may contain other cells

such as endothelial cells, which could explain for these findings. Finally, the contribution of

non-myeloid Kupffer cells to notch signaling with regard to the pathogenesis of steatohepatitis

is unknown and as such it is possible that, DLL4 on Kupffer cells promote the pathogenesis of

steatohepatitis. Therefore, further research should emphasize on the effects of complete DLL4

deletion in myeloid cells and the contribution of non-myeloid cells to DLL4-Notch signaling.

Supporting Information

S1 Fig. Gene expression of Notch receptors/ligands in the livers of Wt-tp and DLL4del-tp

mice.

(TIF)

S2 Fig. Gene expression of Notch receptors/ligands in BMDM from Wt and DLL4del mice.

(TIF)
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S3 Fig. Representative pictures of H&E staining on the livers of Wt-tp and DLL4del-tp

mice.

(TIF)
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