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Abstract

Threat generalization to novel instances is central to adaptive behavior. Most
previous work has investigated threat generalization based on the perceptual sim-
ilarity between past and novel stimuli. Few studies have explored generalization
based on abstract, non-perceptual relations despite their importance for cognitive
flexibility. In order to measure such rule-based generalization of threat without
perceptual similarity, we developed a novel paradigm that prevents perceptual
features from gaining predictive value. Our results demonstrate that participants
responded according to the correct abstract rule and used it to successfully
generalize their anticipatory behavioural threat responses (expectancy ratings,
sudomotor nerve activity, and heart rate responses). Our results further show
that participants flexibly adapted their responses to an unsignaled mid-session
contingency reversal. We interpret our results in the context of other rule-based
generalization tasks and argue that variations of our paradigm make possible a
wide range of investigations into the conceptual aspects of threat generalization.
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Introduction

Generalization is the expression of a previously learned behavior in response
to a novel stimulus. In a dynamically changing world where conditions never
truly replicate, generalization of behavioral responses to novel stimuli is neces-
sary for any organism to establish beneficial interactions with its environment.
Responding to a novel generalization stimulus (GS) in terms of a previously
learned conditioned stimulus (CS) presupposes that GS and CS are equated
with respect to their reinforcement contingencies even though the GS has not
been reinforced. The behavioral equation of GS and CS with respect to their
reinforcement contingencies, can be motivated by perceptual similarity (e.g.,
Pavlov 1927; Spence 1937; Guttman and Kalish 1956; Honig and Urcuioli 1981)
or by an abstract pattern or rule (e.g., Gershman and Niv 2015; Lange et al.
2017; Meulders, Vandael, and Vlaeyen 2017; Lei et al. 2019; Lovibond, Lee, and
Hayes 2019; Maes et al. 2017; Vervoort et al. 2014).

Perceptual similarity can be defined as the spatial distance between the GS
and CS on a continuously varying psychological dimension, such as, for example,
size or wavelength (Shepard 1987), or as the degree of overlap between the
feature sets of the GS and the CS (Tversky 1977; for a more general Bayesian
account, see Tenenbaum and Griffiths 2001). Experiments have shown that
behavioral and physiological responses are sensitive to the degree of similarity
and generally decrease as the GS increasingly differs perceptually from the CS,
thus forming a generalization gradient (Spence 1937; Lissek et al. 2008).

In contrast to similarity-based generalization, rule-based generalization re-
quires the organism to infer an abstract pattern that specifies when a GS should
be behaviorally equated with a CS. In a paradigmatic study on rule-based gener-
alization, Shanks and Darby (1998) showed that humans who have been trained
on negative (A+, B+, AB-) and positive (C-, D-, CD+) association patterns,
generalized the learned rule of opposites (reinforcement for combined stimuli is
opposite to singular stimuli) to novel stimulus patterns of the same type (E+,
F+, EF?, correctly predicting EF-; GH+, G?, H? correctly predicting G- and
H-).

The main difference between similarity and rule-based generalization is that
the latter requires some degree of abstraction from the identity of the stimulus
and its concrete perceptual features, that is, inductive inference (Dunsmoor
and Murphy 2015). The abstraction required for rule-based generalization in
the patterning task makes it possible to compare similarity-based and rule-
based generalization (Shanks and Darby 1998). However, the patterning task is
focused exclusively on the rule of opposites, which might be a particular type
of abstraction that requires other specific cognitive abilities, such as working
memory or attention (Maes et al. 2015, 2017).

A simpler task to investigate rule-based generalization is based on the
same/different distinction. In the match-to-sample (MTS) task, participants
are first presented with a sample stimulus and then have to select the target
stimulus that matches the sample stimulus from a range of comparison stimuli.
Generalization in MTS is constituted by the selection of a target stimulus based
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on a previously reinforced matching relation between sample and target (e.g.,
color of elemental stimuli, or visual variance of compound stimuli; Urcuioli
and Nevin 1975). In its simpler form, MTS is problematic because successful
performance in MTS generalization can be achieved through perceptual, that is,
similarity-based, generalization using stimulus features such as visual entropy to
assess visual variance (Young, Wasserman, and Garner 1997).

To address this issue with simple MTS tasks and to investigate rule-based
generalization without similarity beyond the rule of opposites, we designed a
novel paradigm that uses a relative - and therefore minimally abstract - property
of compound stimuli to define sameness. The basic structure of our paradigm
is as follows: on each trial, participants are consecutively presented with four
different images, which together constitute a complex relational stimulus that
acts as the CS. The first three images are all instances of the same semantic
category, for example, three images of islands. The fourth image is either another
member of that category (e.g., another image of an island) or not. The rule in
this experiment is defined as a mapping from the relative perceptual properties
of the four images to an abstract binary property of the CS (same/different).
Reinforcement is contingent upon this abstract matching property of the CS,
that is, depending on the CS-US contingency assignment, the CS is reinforced if
the fourth stimulus is the same (CS+) but not otherwise (CS-). Importantly, all
stimuli used in the experiment are trial-unique and each stimulus is presented
only once during the experiment.

We argue that this paradigm requires rule-based rather than similarity-based
generalization because the GS-CS relation is dependent on the abstract matching
property but not any perceptual features of the stimuli. Perceptual similarity is
only relevant to derive the matching property but is otherwise ‘encapsulated’
within each trial. The transfer of a previously learned CS-US association onto
a novel GS is independent of the perceptual similarity between the GS and
any other CS. There are no perceptual properties, for example, associated with
islands, that will allow the learner to generalize to novel stimuli, which depict,
for example, airports.

One feature of abstraction is that it affords a high degree of flexibility.
Commonly, flexibility is experimentally assessed using reversal tasks, where
reinforcement contingencies are reversed after a certain number of trials and
whatever stimulus acted as CS+ now becomes the CS- and vice versa (Clark,
Cools, and Robbins 2004; Izquierdo et al. 2017). Rules, such as the one used
in our paradigm, afford flexibility because the relation between the matching
property of the CS and the US can simply be reversed upon encountering new
evidence without the need to learn a novel abstraction. To test whether rule-
based generalization in our paradigm is associated with behavioral flexibility,
participants undergo a mid-session reversal of reinforcement contingencies.

As behavioral measures of learning, we recorded skin conductance responses
(modeled as sudomotor nerve activity, SNA), stimulus-related changes in heart
rate (heart rate responses, HRR), and online US expectancy ratings. Our
main hypothesis is that participants will demonstrate differential, rule-based
generalization across all three measures, that is, stronger responses to CS+ than
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CS- irrespective of experimental phase. We further predicted that participants
would flexibly adapt their behavioral responses after the contingency reversal,
that is, differential responding to CS+ and CS- would be maintained post
contingency reversal.

Materials and Methods

Participants
53 right-handed young adults (age M = 22.00 years, SD = 3.41 years, range

= 19-39 years; 24 females) took part in the experiment after giving written
consent in exchange for course credits or £10 in Amazon vouchers. The study was
approved by the Research Ethics Committee at Swansea University’s Department
of Psychology.

Procedure and Materials
Participants took part in a novel differential threat generalization task. During

each trial, participants were consecutively presented with four images. The first
three images showed exemplars from a single semantic category (e.g., pictures of
islands). The fourth image either did match the semantic category (e.g., was
also a picture of an island) or did not match the category (e.g., was a picture of
a fire station).

The first three images were each presented for 1.5 sec followed by a fixation
cross for 0.5 sec. The fourth image was presented for 7 sec and followed by a
blank screen for 10 sec. During presentation of the fourth image, participants
were asked to predict the likelihood that the stimulus would be followed by the
US. To record these online expectancy ratings, a sliding scale was presented for
5 sec together with the fourth image and participants used the left and right
keyboard buttons to move an indicator, which was initially centered on the scale.
The scale from 0 to 100 was marked ‘certain no shock’ at point 0 via ‘uncertain’
at point 50 to ‘certain shock’ at point 100 and rating proceeded in 20 steps of 5
(arbitrary) unmarked units (see Figure 1).

Participants completed a total of 80 trials and were not instructed about the
CS-US contingencies or the mid-session reversal. Participants were instructed
that some of the sequences of four pictures would be followed by a brief shock
and that it would be their task to predict at the end of each sequence how
likely the shock would occur. The assignment of matching or non-matching
stimulus sequences as CS+ and CS- was randomized and counter-balanced across
participants and reversed after half the trials when participants were offered a
short break. That is, participants saw 20 CS1+ and 20 CS2- in the first and
20 CS1- and 20 CS2+ in the second half of the experiment. The assignment of
pictures to trials was randomized within subjects as was the order of trial types
with the constraint that there were not more than two consecutive trials of the
same type. During each phase of the experiment, 15 of the 20 CS+ presentations,
that is, 75%, were reinforced at stimulus offset. The order of CS+ reinforcements
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Figure 1: Experimental Paradigm: In each trial, three images of the same category are
presented and followed by a fourth image that either matches that category or not. During
the first 5 sec of the fourth image, a US expectancy scale is presented. The fourth image
co-terminates with the US depending on its category membership.

was randomized within subjects but the first CS+ presentation of each phase
was always reinforced.

Pictures of real-life scenes were used as stimuli. Eighty sets of four pictures
as well as a set of 40 unrelated pictures were selected from the ‘Massive Memory’
scene categories stimulus set (Konkle et al. 2010). Non-matching stimuli were
randomly selected pictures from the set of unrelated pictures. The experiment
was programmed and presented using Presentation (v.20, Neurobehavioural
Systems Ltd, https://www.neurobs.com/).

Transcutaneous electrical stimulation to the outside wrist of the dominant
hand served as US. Stimulation consisted of five 20 msec bursts of electrical
current each spaced 20 msec apart for a total US duration of 180 msec. Stimula-
tion was delivered using a bar electrode (Biopac EL351) and a constant voltage
stimulator (Biopac STM200). The voltage of the electrical stimulation was set
prior to the experiment using a stepwise procedure, which allows the voltage to
be adjusted to each participant’s individual tolerance level so it is perceived as
“uncomfortable but not painful” (LaBar et al. 1998). On average, US strength
was 40.85 V (SD = 7.8 V). The average aversiveness rating of the US strength
was 4.91 (SD = 2.2) on a scale from 0 (‘not at all painful’) to 10 (‘extremely
painful’).

Missing individual mean estimates were imputed on the group level using
multivariate imputation by chained equations as implemented in the ‘mice’
package (v.3.4) for R using predictive mean matching with 10 iterations of 10
imputations (Buuren and Groothuis-Oudshoorn 2011; Azur et al. 2011). This
imputation procedure is based on the assumption that values are missing at
random and preserves the relations in the data as well as the uncertainty about
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these relations (Buuren and Groothuis-Oudshoorn 2011). In total 3.77% of
expectancy ratings, 11.32% of electrodermal data, and 22.64% of electrocardio-
graphic data were imputed. All statistical analyses were conducted using R
statistical language (v.4.0.0; https://www.r-project.org/) in RStudio (v.1.2.1335;
https://rstudio.com/).

Psychophysiological Recording and Analysis
During the task, participants’ electrodermal activity and electrocardiogram

were recorded and digitized at a sampling rate of 2 kHz with 16 bit resolution using
a Biopac MP160 system and Acknowledge 5 software (https://www.biopac.com).
Electrodermal activity was measured on the distal phalanges of the index and
middle fingers of the participant’s non-dominant hand using a pair of 6 mm
Ag-AgCl electrodes (Biopac TSD203), amplified using a Biopac EDA100C am-
plifier, and filtered at acquisition using a 0.1 Hz low-pass hardware filter. The
electrocardiogram was recorded in a three-electrode lead-2 configuration with two
shielded 8 mm Ag-AgCl electrodes (Biopac EL258S) attached to the participant’s
inner upper arm (positive left, negative right) and one unshielded 8 mm Ag-AgCl
electrode (Biopac EL258) attached to the participant’s right ankle bone (ground).
Electrocardiographic data were amplified using a Biopac ECG100C amplifier and
filtered at acquisition using a 0.05 Hz high-pass and a 35 Hz low-pass hardware
filter.

All psychophysiological responses were computed for the fourth image stim-
ulus in each trial. Psychophysiological data were downsampled to 1 kHz and
analyzed using a custom python (v.3.6, https://www.python.org/) script using
the Neurokit module (https://neurokit.readthedocs.io). The electrodermal data
were analyzed using the cvxEDA module (https://github.com/lciti/cvxEDA).
cvxEDA uses a convex optimization approach to fit a model of the skin con-
ductance response to the data and to derive estimates for phasic and tonic
components of sudomotor nerve activity (SNA) as well as noise (Greco et al.
2016). The advantage of model-based analysis approach is that it extends purely
operational approaches and defines an invertible causal relationship between the
underlying psychological state (arousal) and the physiological response (electro-
dermal activity) beyond correlations (Bach and Friston 2013). The inversion of
a causal model then gives an estimate of the psychological state rather than its
physiological correlate. As an indicator of arousal, we calculated the maximum
phasic SNA model estimate in the time window 1-4 sec post stimulus onset.

Cardiac cycles were detected using the approach described in Gamboa (2008).
This algorithm first normalizes the electrocardiographic signal and then identifies
the R peaks as zeros in the first derivative of the signal. Finally, the algorithm
recursively removes R peaks with an interbeat interval smaller than 0.3 sec
(200 bpm) or larger than 3 sec (20 bpm; Gamboa 2008). For the analysis of
event-related cardiac responses, the difference between the mean R-R intervals
two seconds pre stimulus onset (overlapping with the third stimulus) and four
seconds post stimulus onset was calculated and converted to heart rate to give
the heart rate response (HRR).
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While SNA is an indicator of sympathetic arousal, HRRs are the result of
innervation from both branches of the autonomic nervous system and therefore
provide additional evidence about the levels of parasympathetic, vagus nerve
activity. As such, HRR can provide positive evidence for safety learning whereas
SNA can only provide negative evidence, that is, the absence of threat responding
as indicated by lower arousal levels. The combination of SNA and HRR therefore
allows one to assess threat as well as as safety learning and to assess the effects
of contingency awareness on threat generalization.

Results

Expectancy Ratings
Mean expectancy ratings were analyzed using 2x2 repeated measures analyses

of variance (ANOVA) with the factors stimulus type (CS+, CS-) and experimental
phase (pre, post reversal). The results demonstrate a significant interaction
between stimulus type and experimental phase (F(1,52) = 4.12, p = 0.048, η2

G

= 0.02) as well as a main effect of stimulus type (F(1,52) = 96.21, p < 0.001, η2
G

= 0.53; see Figures 2 and 3A). The main effect of experimental phase was not
significaant (F(1,52) = 1.13, p = 0.292). The interaction showed that expectancy
ratings increased post reversal for the CS+ (t(52) = -2.22, p = 0.031, d = 0.33)
but not the CS- (t(52) = 1.50, p = 0.139, d = 0.20). The main effect of stimulus
type shows that participants’ expectancy ratings were significantly stronger in
response to CS+ (M = 68.8, SD = 9.4) than in response to CS- (M = 28.6,
SD = 8.0). The results of this ANOVA of the imputed data are consistent
with the results from the same analysis of 51 non-imputed data, which resulted
in the same effects, i.e., a significant interaction between stimulus type and
experimental phase as well as a significant main effect of stimulus type.

Psychophysiology
In order to investigate learning-related arousal, SNA and HRR were analyzed

using a 2x2 repeated measures ANOVA with the factors stimulus type (CS+, CS-)
and experimental phase (pre, post reversal). For SNA, the results demonstrate a
significant main effect of stimulus type (F(1,52) = 13.67, p < 0.001, η2

G = 0.04;
see Figure 3B). The main effect of experimental phase (F(1,52) = 4.75, p =
0.034) and the interaction between stimulus type and experimental phase were
not significant (F(1,52) = 0.03, p = 0.872). The main effect of stimulus type
shows that participants’ phasic SNA was significantly stronger in response to the
CS+ (M = 0.27, SD = 0.14) than in response to the CS- (M = 0.22, SD = 0.13)
irrespective of experimental phase. The results of this ANOVA are consistent
with the results from the same ANOVA of 47 non-imputed data points, which
resulted in a significant main effect of stimulus type. However, in addition to
the main effect of stimulus type, the ANOVA of non-imputed data additionally
resulted in a significant main effect of phase (F(1,46) = 4.44, p = 0.041, η2

G =
0.01), which demonstrated larger responses pre (M = 0.26, SD = 0.14) than
post reversal (M = 0.23, SD = 0.14).
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Figure 2: Mean (+/- 95% CI) behavioural and psychophysiological responses to conditioned
stimuli pre and post contingency reversal (means of imputed data). Note that the CS+ pre
reversal is the CS- post reversal and vice versa. Left: US Expectancy ratings. Center: Skin
conductance responses (sudomotor nerve activity). Right: Changes in heart rate compared to
pre-stimulus baseline (heart rate responses). [SNA = sudomotor nerve activity; HRR = heart
rate response]

For HRR, the results show a significant main effect of stimulus type (F(1,52)
= 8.32, p = 0.006, η2

G = 0.02; see Figure 3C). The the main effect of experimental
phase (F(1,52) = 0.89, p = 0.349) and interaction between stimulus type and
experimental phase (F(1,52) = 0.67, p = 0.418) were not significant. The main
effect of stimulus type shows that participants’ heart rates generally increased
more strongly in response to CS+ (M = 0.67, SD = 2.29) than in response to
CS- (M = 0.10, SD = 2.18). The results of this ANOVA are not consistent with
the results of the same ANOVA of 38 non-imputed data points, which showed
no significant effects (all p > 0.1). However, the non-imputed data do show the
same pattern with stronger responses to CS+ before (M = 0.64, SD = 2.06) and
after reversal (M = 0.68, SD = 2.67) than to CS- before (M = 0.11, SD = 2.11)
and after reversal (M = 0.49, SD = 2.26).

Discussion

The primary aim of this study was to investigate anticipatory behavioral
responses (US expectancy ratings, sudomotor nerve activity, and heart rate
responses) during a novel rule-based threat generalization paradigm. All three
measures indicated successful learning by showing significantly stronger responses
to CS+ than CS-. The secondary aim of this study was to test the effects of
mid-session contingency reversal on behavior. The results demonstrated no
effect of phase on US expectancy ratings, sudomotor nerve activity, or heart
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rate responses and hence show successful behavioral adaptation to contingency
reversal. For US expectancy ratings, the results even provided evidence for a
post reversal increase in differential responding.

While all three measures converged towards the same general pattern of
results, there were subtle differences. The main effect (generalized η2) of stim-
ulus type was more than ten times larger for expectancy ratings compared to
psychophysiological responses and mostly due to differences in CS- responses.
Given that the task required rule-learning, this difference in effect size might pos-
sibly indicate that participants were consciously aware when a stimulus pattern
signaled safety but emotionally perceived CS- as potential threat and uncon-
sciously mobilized defensive responses (Ohman and Mineka 2001; Hamm and
Weike 2005). However, additional research is required to confirm this speculation.
Within psychophysiological responses, sudomotor nerve activity and heart rate
responses also differed from each other. Sudomotor nerve activity was overall
lower post reversal, which might be indicative of habituation (Boucsein et al.
2012). In contrast, the results indicate that heart rate responses were higher in
response to CS- post compared to pre reversal, which might suggest that heart
rate responses were resistant to contingency reversal as the post reversal CS- is
the same as the pre reversal CS+.

The results of the present study further demonstrate threat conditioned
tachycardia, which stands in contrast to widely reported threat conditioned
bradycardia (e.g., Hugdahl 1979; Castegnetti et al. 2016). Several studies have
shown that tachycardia but not bradycardia is associated with emotional threat
responding whereas both, tachycardia and bradycardia have been associated
with contingency awareness (Hodes, Cook, and Lang 1985; Hamm and Vaitl
1996; López et al. 2009). Increased tachycardia in response to CS- post reversal
therefore suggests a resistance of emotional responding to reversal. Together, the
differences between the three measures suggest that the task might be able to
differentiate between the two aspects of threat responding, contingency awareness
and emotional response. While further evidence is required to investigate this
aspect of our paradigm, our results highlight the benefits of using different
outcome measures in threat conditioning research.

The more general purpose of this experiment was to test whether this novel
paradigm would assess rule-based generalization without similarity beyond the
rule of opposites. While the results clearly demonstrate the effectiveness of
the paradigm, we argue that the paradigm measures rule-based generalization
because several features of its design make it impossible to explain the behavior
observed in our experiment within an associative framework. First, generalization
is based on a relative rather than absolute property of the compound stimulus
and no perceptual feature by itself can gain predictive value. Second, the use of
complex scenes as trial-unique stimuli increases the number and variability of
perceptual features and reduces the probability that any complex feature (e.g.,
entropy) can acquire predictive value (for a threat generalization study based
on perceptual similarity between natural scene stimuli, see Park, Lee, and Lee
2018). Third, prototypical perceptual-semantic features (Dunsmoor and Murphy
2014) are prevented from acquiring predictive value because categories for each
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CS are trial-unique.
We assume that these three design features of our paradigm ensure that

participants have to engage in rule-based generalization. By maintaining these
design features and defining different relative patterns, a large number of vari-
ations of the paradigm can be constructed. For example, if A, B, and C are
exemplars drawn from different semantic categories, then these patterns can
be used to define the abstract rule: ABAB vs ABBA, or ABCC and AABC
vs ABAC and ABBC, or ABC vs ABB, instead of AAAA vs AAAB used in
the current experiment. In addition, it is possible to contrast rule-based and
similarity-based generalization in our paradigm similar to the patterning task
(Shanks and Darby 1998) by controlling the degree of similarity between two
consecutive CS (e.g., using perceptually similar stimuli A and C in two opposing
patterns, such as AAAB+ followed by CCCC-).

It is important to note that our paradigm did not contain separate condition-
ing and generalization phases in contrast to many other studies (e.g., Dunsmoor
et al. 2017; Lissek et al. 2008; Vervliet et al. 2010; Wong and Lovibond 2017).
The effect is that each new CS constitutes a GS and reinforcement of the CS can
be understood as feedback on generalization. Continual reinforcement during
generalization reduces extinction of generalization (Vervliet and Geens 2014) and
might even have enhanced the acquisition of the abstract pattern, yet additional
studies are necessary to investigate this possibility. Intriguingly, however, the
absence of reinforcement during generalization in other paradigms could possibly
explain why not all participants in such experiments generalized based on the
correct abstract pattern (see, e.g., Shanks and Darby 1998; Maes et al. 2017).

Finally, in contrast to other generalization studies, our paradigm included an
unsignaled mid-session contingency reversal, such that the CS+ became the CS-
and vice versa after half the trials. The results do not show any significant main
effects of phase, which suggests that participants reversed their anticipatory
behavioral responses and hence, implies that rule-based generalization affords
high behavioral flexibility. In line with this interpretation, the results suggest
that participants switched their anticipatory behavioral responses without having
to extinguish existing and acquire novel CS-US associations. However, additional
evidence directly contrasting the effects of contingency reversal on rule-based
and similarity-based generalization is necessary to further interpret this finding
and its implications.

One limitation of this study is related to the data imputation procedure,
which is based on the assumption that data are missing at random (Buuren and
Groothuis-Oudshoorn 2011). This assumption has not been validated by the
authors and as a consequence the possibility cannot be excluded that non-random
factors affected the psychophysiological data. Given that the analysis results of
the imputed and non-imputed data are generally consistent, it seems highly likely
that the general pattern of results reported here are due to any such non-random
factors. We follow recommendations from the recent literature on how to deal
with missing data in fear conditioning research and have published all data and
scripts used in this study (Lonsdorf et al. 2019).

Taken together, the results provide evidence that participants in our experi-
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ment were able to infer the correct abstract matching rule, use it to generalize
their threat responses, and to flexibly adapt their responses following mid-session
contingency reversal. The results support the view that the evidence base for
implicit threat conditioning in humans is considerably weaker and explicit pro-
cesses much more important than previously assumed (De Houwer 2019; Mertens
and Engelhard 2020). Overall, our findings support the view that learning of
an abstract rule through inductive inference plays an important role in threat
generalization and our paradigm provides a starting point to further explore
rule-based threat generalization (Dunsmoor, Martin, and LaBar 2012; Dunsmoor
and Murphy 2014; Lovibond, Lee, and Hayes 2019).
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