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Abstract—Non-intrusive load monitoring (NILM) aims at sepa-
rating a whole-home energy signal into its appliance components.
Such method can be harnessed to provide various services
to better manage and control energy consumption (optimal
planning and saving). NILM has been traditionally approached
from signal processing and electrical engineering perspectives.
Recently, machine learning has started to play an important
role in NILM. While most work has focused on supervised
algorithms, unsupervised approaches can be more interesting
and of practical use in real case scenarios. Specifically, they
do not require labelled training data to be acquired from
individual appliances and the algorithm can be deployed to
operate on the measured aggregate data directly. In this paper,
we propose a fully unsupervised NILM framework based on
Bayesian hierarchical mixture models. In particular, we develop
a new method based on Gaussian Latent Dirichlet Allocation
(GLDA) in order to extract global components that summarise
the energy signal. These components provide a representation of
the consumption patterns. Designed to cope with big data, our
algorithm, unlike existing NILM ones, does not focus on appliance
recognition. To handle this massive data, GLDA works online.
Another novelty of this work compared to the existing NILM is
that the data involves different utilities (e.g, electricity, water and
gas) as well as some sensors measurements. Finally, we propose
different evaluation methods to analyse the results which show
that our algorithm finds useful patterns.

Index Terms—Unsupervised non-intrusive load monitoring,
pattern recognition, Bayesian hierarchical mixture model, online
Gaussian LDA.

I. INTRODUCTION

The monitoring of human behaviour is highly relevant to

many real-word domains such as safety, security, health and

energy management. Research on human activity recognition

(HAR) has been the key ingredient to extract pattern of

human behaviour. There are three main types of HAR, sensor-

based [1], vision-based [2] and radio-based [3]. A common

feature of these methods is that they all require equipping

the living environment with embedded devices (sensors). On

the other hand, non-intrusive load monitoring (NILM) requires

only single meter per house or a building that measures

aggregated electrical signals at the entry point of the meter.

Various techniques can then be used to disaggregate per-load

power consumption from this composite signal providing en-

ergy consumption data at an appliance level granularity. In this

This work was supported by the Energy Technology Institute (UK) as part
of the project: High Frequency Appliance Disaggregation Analysis (HFADA)

sense, NILM focus is not extracting general human behaviour

patterns but rather identifying the appliances in use. This,

however, can provide insight into the energy consumption

behaviour of the residents and therefore can express users’ life

style in their household. The idea of abandoning the high costs

induced by various sensors entailed by traditional HAR makes

NILM an attractive approach to exploit in general pattern

recognition problems. On the other hand, taking the human

behaviour into account can leverage the performance of NILM;

thus, providing finer understanding of the resident’s energy

consumption behaviour. In this paper, we do not distinguish

between patterns and appliances recognition. The main goal of

our approach is to encode the regularities in a massive amount

of energy consumption data into a reduced dimensionality

representation. This is only possible by the fact that human

behaves in certain pattern and not randomly. We are also lucky

to have an extra large amount of real world data which makes

this approach more viable.

Since the earliest work on NILM [4], most NILM work

has been based on signal processing and engineering ap-

proaches [5], [6]. This can explain the fact that even with

the economical attractive tools that NILM can provide for

PR and HAR communities, it has not been widely exploited.

Most of existing machine learning approaches to NILM adopt

supervised algorithms [4], [7]–[13]. Such algorithms could

damage the attractiveness of NILM as they require individual

appliance data for training, prior to the system deployment.

Hence, there is a need to install one energy meter per appliance

to record appliance-specific energy consumption. This incurs

extra costs and a complex installation of sensors on every

device of interest. In contrast, unsupervised algorithms can

be deployed to operate directly from the measured aggre-

gate data with no need for annotation. Hence, unsupervised

algorithms are clearly more suitable for NILM. To the best

of our knowledge, all existing unsupervised approaches to

NILM [14] concentrate on disaggregating the whole house

signal into its appliances’ ones. In contrast, our approach, as

mentioned earlier, does not focus on identifying per-appliance

signal. We instead propose a novel approach that seeks to

extract human behaviour patterns from home utility usage data.

These patterns could be exploited for HAR as well as energy

efficiency applications.
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Fig. 1: Elements of the proposed approach

The proposed approach is based on a hierarchical Bayesian

mixture model. More precisely, this model is a member

of the family of graphical models proposed by [15] where

observations, global hidden variables, local hidden variables,

and fixed parameters are involved. Under further assumptions

in addition to the ones in [15], we end up with a Gaussian

version of Latent Dirichlet Allocation (GDLA) where the

observations are continuous and not discrete. In particular,

we assume that the hidden local variables are conditionally

independent; hence, the observations can be treated as a bag of

words. This approach has drawn inspiration from the success

that LDA has achieved in the domain of text modelling. To

explain the analogy between LDA and the proposed approach,

we show in Fig. 1 an example where three components

have been extracted from the utility usage data. Here, the

components are equivalent to topics in LDA. Because the

features extracted from the data are in continuous space, the

components represent Gaussian distributions over the input

features instead of categorical distributions over words as

in LDA. A pattern is a mixture of components generating

the input features over a fixed period of time. In LDA,

patterns are associated with documents that can be expressed

by mixture of corpus-wide topics. One can clearly notice that

this bag-of-words assumption, where temporal dependency

in the data is neglected, is a major simplification. However,

this simplification leads to methods that are computationally

efficient. Such computational efficiency is essential in our case

where massive amount of data (around 4 Tb) is used to train

the model.

In this work, we demonstrate that, similar to LDA in the

domain of text mining, this approach can capture significant

statistical structure in a specified window of data over a period

of time. This structure provides understanding of regular

patterns in the human behaviour that can be harnessed to

provide various services including services to improve energy

efficiency. For example, understanding of the usage and energy

consumption patterns could be used to predict the power

demand (load forecasting), to apply management policies and

to avoid overloading the energy network. Moreover, pro-

viding consumers with information about their consumption

behaviour and making them aware of abnormal consumption

patterns compared to others can influence their behaviour to

moderate energy consumption [16].

As already mentioned, this algorithm is going to be trained

over a very huge amount of data resulting from the high sam-

pling rate around 205 kHz of the electricity signal which gives

us an advantage compared to the data used in other research

studies except for [17]–[19]. Specifically, high sampling rate

allows extraction of rich features in contrast to the limited

number of features that can be extracted from low frequency

data. To handle such big amount of data, online version of

GLDA is developed. This can be done by defining particular

distributions for the exponential family in the class of models

described in [15]. More details can be found in Sec. III.

Besides the advantage the data size offers, apart from [20],

[21] whose sampling rate is very low, our data is the only one

including water and gas usage data. Moreover, measurements

provided by additional sensors are also exploited to refine the

performance of the pattern recognition algorithm. More details

on the data can be found in Sec. IV. The diversity of the data is

another motivation for adopting a pattern recognition approach

rather than traditional disaggregation approach.

The rest of the paper is organised as follows. Section II

presents the related work. Section III presents the proposed

approach. Section IV describes the data and discusses the

obtained results. Finally, Sec. V concludes the paper and hints

to future work.

II. RELATED WORK

We divide the related work into two parts: (i) machine

learning approaches to NILM and (ii) NILM data used in the

literature.

As we have discussed in the introduction, most of existing

NILM studies are not based on machine learning algorithms

and most of machine learning NILM algorithms are supervised

ones [4], [7]–[13]. Such algorithms requires training on la-

belled data which is expensive and laborious to obtain. In fact,

the practicality of NILM is stemmed from the fact that it comes

with almost no setup cost. Recently, researchers have started

exploring unsupervised machine learning algorithms to NILM.

These methods have mainly focused on performing energy

disaggregation to discern appliances from the aggregated load

data directly without performing any sort of event detection.

The most prominent of these methods are based on Dynamic

Bayesian Network models, in particular different variants of

Hidden Markov Model (HMM) [22]–[24].

Authors in [22] proposes to use Factorial Hidden Markov

Model (FHMM) and three of its variants: Factorial Hid-

den Semi-Markov Model (FHSMM), Conditional FHMM

(CFHMM) and Conditional FHSMM (CFHSMM) to achieve

energy disaggregation. The main idea is that the dynamics of

the state occupancy of each appliance evolves independently

and the observed aggregated signal is some joint function

of all the appliances states. To better model the state occu-
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pancy duration, that is modelled with a geometric distribution

by FHMM, authors propose to use FHSMM which allows

modelling the durations of the appliances states with gamma

distribution. Authors also propose CFHMM to incorporate

additional features, such as time of day, other sensor mea-

surements, and dependency between appliances. To harness

the advantages of FHSMM and CFHMM, authors propose

a combination of the two models resulting in CFHSMM. In

that work, the electricity signal was sampled at low frequency

which is in contrast to our work.

Similar approach was taken in [23] where Additive Facto-

rial Hidden Markov Model (AFHMM) was used to separate

appliances from the aggregated load data. The main motivation

and contribution of this approach is that it addresses the

local optima problems that existing approximate inference

techniques [22] are highly susceptible to experience. The

idea is to exploit the additive structure of AFHMM to de-

velop a convex formulation of approximate inference that is

more computationally efficient and has no issues of local

optima. Although, this approach was applied on relatively

high frequency electricity data [19], the data scale is not close

to ours. Hierarchical Dirichlet Process Hidden Semi-Markov

Model (HDP-HSMM) is used in [24] to incorporate duration

distributions (Semi Markov) and allows to infer the number of

states from the data (Hierarchical Dirichlet Process). On the

contrary, the AFHMM algorithm in [23] requires the number

of appliances (states) to be set a-priori.

The common feature of the approaches discussed so far

is that the considered data sets are collected only from the

electricity signals. In contrast, our data involves different

utilities namely electricity, water and gas data as well some

sensors measurements that provide contextual features. To the

best of our knowledge, the only data that considers water and

gas usage data is [20], [21]. However, the sampling rate of

this data is very low compared to ours. Authors in [25] ex-

ploit the correlation between appliances and side information,

in particular temperature, in a convex optimisation problem

for energy disaggregation. This algorithm is applied on low

sampling rate electricity data with contextual supervision in

the form of temperature information.

To wrap up this section, three features distinguish our ap-

proach from existing ones. It bridges the gap between pattern

recognition and NILM making it beneficial for a variety of

different applications. Driven by massive amount of data, our

method is computationally efficient and scalable, unlike state-

of-the-art probabilistic methods that posit detailed temporal

relationships and involve complex inference steps. The avail-

able data has a high sampling rate electricity data allowing

extracting more informative features and includes data from

other utility usage and additional sensors measurements. Thus,

our work also covers the research aspect of NILM concerned

with the acquisition of data, prepossessing steps and evaluation

of NILM algorithms.

III. THE APPROACH

In this section, we present the proposed approach which

consists of two steps: features extraction and pattern mining.

First, a background on stochastic variational inference for a

family of graphical models is provided. Next, we derive the

pattern mining algorithm, online GLDA, which is an instance

of the family of graphical models and operates online to

accommodate high volume and speed data streams. Finally,

we present the feature extraction step and summarise the full

algorithm.

A. Background: Stochastic Variational Inference
In the following, we describe the model family of which

GLDA is a member and review SVI.

Model family. The family of models considered here con-

sists of three random variables: observations x = x1:D, local

hidden variables z = z1:D, global hidden variables β and

fixed parameters α. The model assumes that the distribution

of the D pairs of (xi, zi) is conditionally independent given

β. Furthermore, their distribution and the prior distribution of

β belong to the exponential family.

p(β,x, z|α) = p(β|α)

D∏
i=1

p(zi,xi|β) (1)

p(zi,xi|β) = h(xi, zi) exp
(
βT t(xi, zi)− a(β)

)
(2)

p(β|α) = h(β) exp
(
αT t(β)− a(α)

)
(3)

Here, we overload the notation for the base measures h(.),
sufficient statistics t(.) and log normalizer a(.). While the

soul of the proposed approach is generic, for simplicity we

assume a conjugacy relationship between (xi, zi) and β. That

is, the distribution p(β|x, z) is in the same family as the prior

p(β|α).
Note that this innocent looking family of models includes

(but is not limited to) latent Dirichlet allocation [26], Bayesian

Gaussian mixture, probabilistic matrix factorization, hidden

Markov models, hierarchical linear and probit regression, and

many Bayesian non-parametric models.

Mean-field variational inference. Variational inference

(VI) approximates intractable posterior p(β, z|x) by positing a

family of simple distributions q(β, z) and find the member of

the family that is closest to the posterior (closeness is measured

with KL divergence). The resulting optimization problem is

equivalent maximizing the evidence lower bound (ELBO):

L(q) = Eq[log p(x, z,β)]− Eq[log p(zβ)] ≤ log p(x) (4)

Mean-field is the simplest family of distribution, where the

distribution over the hidden variables factorizes as follows:

q(β, z) = q(β|λ)
D∏
i=1

p(zi|φi) (5)

Further, each variational distribution is assumed to come

from the same family of the true one. Mean-field variational

inference optimizes the new ELBO with respect to the local

and global variational parameters φ and λ.

L(λ,φ) = Eq

[
log

p(β)

q(β)

]
+

D∑
i=1

Eq

[
log

p(xi, zi|β)
q(zi)

]
(6)
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It iteratively updates each variational parameter holding the

other parameters fixed. With the assumptions taken so far, each

update has a closed form solution. The local parameters are a

function of the global parameters.

φ(λt) = argmax
φ
L(λt,φ) (7)

We are interested in the global parameters which summarise

the whole dataset (clusters in Bayesian Gaussian mixture,

topics in LDA).

L(λ) = max
φ
L(λ,φ) (8)

To find the optimal value of λ given that φ is fixed, we

compute the natural gradient of L(λ) and set it to zero by

setting

λ∗ = α+
D∑
i=1

Eφi(λt)[t(xi, zi)] (9)

Thus, the new optimal global parameters are λt+1 = λ∗. The

algorithm works by iterating between computing the optimal

local parameters given the global ones
(
Eq. 7

)
and computing

the optimal global parameters given the local ones
(
Eq. 9

)
.

Stochastic variational inference. Rather than analysing

all the data to compute λ∗ at each iteration, stochastic op-

timization can be used. Assuming that the data samples are

uniformly randomly selected from the dataset, an unbiased

noisy estimator of L(λ,φ) can be developed based on a single

data point.

Li(λ,φi) = Eq

[
log

p(β)

q(β)

]
+DEq

[
log

p(xi, zi|β)
q(zi)

]
(10)

The unbiased stochastic approximation of the ELBO as a

function of λ can be written as follows

Li(λ) = max
φi

Li(λ,φi) (11)

Following the same steps in the previous section, we end up

with a noisy unbiased estimate of Eq. 8

λ̂ = α+DEφi(λt)[t(xi, zi)] (12)

At each iteration, we move the global parameters a step-size

ρt (learning rate) in the direction of the noisy natural gradient.

λt+1 = (1− ρt)λt + ρtλ̂ (13)

With certain conditions on ρt, the algorithm converges

(
∑∞

t=1 ρt =∞,
∑∞

t=1 ρ
2
t <∞ ) [27].

B. Online Gaussian LDA
Gaussian LDA (GLDA), as its name suggests, is an LDA

with Gaussian components over the observations in place of

the multinational ones of LDA. Hence, it is an instance of the

family of models described in Sec III where the global, local,

observed variables and their distributions are set as follows:

• the global variables {β}Kk=1 ≡ {μ,Σ}Kk=1 are the

components in GLDA. A component is a distribu-

tion over the input in the feature space, where the

probability of an input vector x in component k,

p(x|β, k) = N(x|μk,Σk). Hence, the prior distribution

of βk is a Normal-Inverse-Wishart distribution p(μ,Σ) =∏
k NIW (μk,Σk|m,ω, s, v).

• The local variables are the component proportions

{θd}Dd=1 and the component assignments {{zd,i}Dd=1}ni=1

which index the Gaussian component that generate the

observations. Each pattern is associated with a compo-

nent proportion which is a distribution over components,

p(θ) =
∏

d Dir(θd;α). The assignments {{zd,i}Dd=1}ni=1

are indices, generated by θd, that couple components with

observations, p(zd|θ) =
∏

i θd,zd,i .
• The observations xd are the observations during a speci-

fied period of time which are assumed to be drawn from

components β selected by indices zd, p(xd|zd,μ,Σ) =∏
i N(xd,i|μzd,i

,Σzd,i).

The basic idea of GLDA is that each pattern is represented as

random mixture over latent components, where each compo-

nent is characterised by a distribution over the input observa-

tions. GLDA assumes the following generative process:

1 Draw components as follows: co-variance Σk ∼
W−1(ω, v); mean μk ∼ N(m, 1

sΣ) for k ∈ {1, ...,K}
2 Draw component proportions θd ∼ Dir(α, ..., α) for d ∈
{1, ..., D}

2.1 Draw component assignments zd,i ∼ Mult(θd) for

i ∈ {1, ..., n}

2.1.1 Draw an observation xd,i ∼ N(μzd,i
,Σzd,i)

According to Sec. III-A, each variational distribution is as-

sumed to come from the same family of the true one.

Hence, q(βk|λk) = NIW (qmk, qωk, qsk, qvk), q(θd|γd) =
Dir(γd) and q(zd,i|φd,i) = Mult(φd,i). To compute the

update equations (shown in Eq. 13) of the global variational

parameters for GLDA, we need to find the sufficient statistic

t(.) presented in Eq. 2. By writing the likelihood of GLDA in

the form of Eq. 2, we can obtain the following update:

qst+1
k = (1− ρt)qs

t
k + ρt(s+D

n∑
i=1

φk
d,i)

qvt+1
k = (1− ρt)qv

t
k + ρt(v +D

n∑
i=1

φk
d,i)

qmt+1
k = (1− ρt)

qstk
qst+1

k

qmt
k +

ρt

qst+1
k

(sm+D
n∑

i=1

φk
d,ixd,i)

qωt+1
k = (1− ρt)(qω

t
k + qstkqm

t
kqm

tT
k )− qst+1

k qmt+1
k

qmt+1T
k + ρt(ω + smmT +D

n∑
i=1

φk
d,ixd,ix

T
d,i)

(14)
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where d ∼ {1, ...D}. The local variational parameters can be

computed as follows:

φk
d,i ∝ exp

(
Ψ(γd,i)− qvk

2
(xd,i − qmk)

Tqω−1
k (xd,i − qmk)

− F

2qsk
+

1

2

( F∑
j=1

Ψ(
qvk + 1− j

2
) + log |qω−1

k | − F log π
))

γd = α+
n∑

i=1

φk
d,i (15)

where F is the dimension of the feature space. Details on how

Eq. 14 and 15 are derived can be found in [15], [28].

Having computed the main elements of the pattern recog-

nition algorithm, we move to the next section in which the

features extraction together with the pattern mining process

are described.

C. Features Extraction and Pattern Mining
The ultimate goal of the proposed approach is to provide

a lower-dimensional representation expressing patterns in the

data. To this end, the proposed approach consists of two steps:

(1) features extraction and (2) pattern mining. In fact, features

extraction is required to avoid the effects of the curse of

dimensionality when applying the pattern mining algorithm

(online GLDA). It helps reduce unnecessary redundancies in

the raw data signal and extract informative features. Although,

appliances identification is not the goal of this work, distinctive

features providing useful information to discern appliances

under use will be informative for GLDA. Such information

suggests the activity performed by the residents leading to

insight on their behaviour. In this work, features are extracted

from the electricity signal only. Data coming from the other

utilities and the sensors measurements are sampled at much

lower rate, hence it is of small size. It feeds GLDA in their

original representation.

Two main types of features have been proposed in the

literature [6] with the purpose of detecting events: steady-

state and transient event-based features. Steady state methods

relate to changing operation state of the appliance; for example

a change of steady-state active power measurement from a

high to low value can identify whether the appliance is being

turned On or Off. This kind of features can be captured with

low sampling rate. The transient methods capture transient

behaviour between steady-states; for example high frequency

noise in electrical current or voltage, as a result of an appliance

changing operation state. This type of features requires high

sampling rate. Examples of features that can define appliance

state transitions are shape, size, duration and the harmonics of

the transient waveforms. These two types of features have been

often used with supervised machine learning for appliances

identification.

On the other hand, unsupervised algorithms like the ones

discussed in Sec. II work directly on separating the power

signal of individual appliance from the aggregated signal

without preforming any sort of event detection. In contrast, our

approach comprises the feature extraction phase, however, it is

not an event detection method. We extract features that harness

the high frequency of the sampling by exploiting information

in the frequency spectrum as well as the conventional NILM

features like the well-known reactive and active power fea-

tures. Real and reactive power features have been shown to be

very useful (alone or accompanied with other features) in many

conventional non-intrusive load monitoring approaches [4],

[29]–[31]. The importance of these features or features derived

from them is that they convey information about the load of

the appliance as well as the nature of it (difference between

reactive and active power). Another advantage is that they do

not require high sampling rate and therefore expensive current

and voltage meters. However, the provided electricity data is

sampled at high rate.

In addition, to exploit the information offered with the

high sampling rate, we extract frequency domain features.

We compute the RMS spectrum power over fixed bands

of frequencies. The size and number of these bands are

provided as parameter of the electricity extraction function.

RMS spectrum power provides information about the wave-

forms. Different waveforms can characterise different types

of appliances. Hence, it is expected that the frequency domain

features will be very useful in the mining task. Adopting these

features was also inspired by the work of the researchers at

MIT as well as other research studies [9], [11], [32]–[34].

The harmonics of the signal can also uniquely characterise

non-linear loads that draw non-sinusoidal current during the

operation. They have been used in combination with real and

reactive power features [9], [35]. Detailed experiments for the

features extraction are carried out in the next section.

These features are computed over windows of given dura-

tion granularity. Together with the gas water and other sensors

data, they form a vector of observations. Specified number of

these vectors are stacked over a pattern window to be used by

the proposed algorithm (see fig. 1). Algorithm 1 summarises

the steps of the proposed method.

IV. EMPIRICAL EVALUATION

The experimental data that GLDA will be tested on along

with details about the data pre-processing stages are presented

in App. A.

In all experiments, we use the empirical Bayes method to

online point estimate the hyper-parameters from the data. The

idea is to maximise the log likelihood of the data with respect

to the hyper-parameters. Since the computation of the log

likelihood of the data is not tractable, approximation based

on the variational inference algorithm used in Sec. III-B is

employed. Following the same steps used to derive Eq. 14

and Eq. 15, the update function for the hyper-parameters can

be derived. The number of components is fixed to K = 50 We

evaluated a range of settings of the learning parameters: κ, τ0
and batch size BS on a validation set, where the parameters

κ and τ0, defined in [36], control the learning step-size ρt. We

used the data collected during the last week for validation and

testing.

In order to evaluate GLDA, we use the perplexity measure.

Perplexity is used to quantify the fit of the model to the data.
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Algorithm 1 Pattern mining for energy consumption be-

haviour

1: Input: raw-data window length, R; preprocessed-data

window length, n; number of preprocessed-data windows,

D; number of GLDA’s components, K; total number

of iterations, T ; learning rate, {ρt}Tt=0; GLDA’s hyper-

parameters, (m,ω,s,v), α.

2: Initialisation: variational parameters:

{(qm0
k, qω

0
k, qs

0
k, qv

0
k)}Kk=0.

3: for t = 0, 1, 2, ...T − 1 do
4: Read sequentially n raw data windows of length R.

5: Extract features (see Sec. III-C) for each window

6: Form windows of data points (actual input) of length n
in the new feature space ({xd,i}ni=1).

7: Initialise {γdk}Kk=1

8: repeat
9: Compute local variational parameters

{{φk
d,i}ni=1}Kk=1 (see Eq. 15)

10: Update local variational parameters {γdk}Kk=1 (see

Eq. 15)

11: until local parameters converge

12: Update global variational parameters

{(qm0
k, qω

0
k, qs

0
k, qv

0
k)}Kk=0 (see Eq. 14)

13: end for

It is defined as the reciprocal geometric mean of the inverse

marginal probability of the input in the held-out test set. Since

perplexity cannot be computed directly, a lower bound on it

is derived in a similar way to the one in [26]. This bound is

used as a proxy for the perplexity.

Moreover, to investigate the quality of the results, we study

the regularity of the mined patterns by matching them across

similar periods of time. For instance, it is expected that

similar patterns will emerge in specific hours like breakfast

in every morning, watching TV in the evening, etc. Hence, it

is interesting to understand how such patterns occur as regular

events.

Finally, to provide quantitative evaluation of the algorithm,

we propose a mapping method that reveals the specific energy

consumed for each pattern. By doing so, we can evaluate

numerically the coherence of the extracted patterns by fitting a

regression model to the energy consumption over components:

Aw = b (16)

where w is a vector expressing energy consumption associated

with components. b is a vector representing per-pattern con-

sumption and A is the matrix of the per-pattern components

proportions obtained by GLDA. This technique will also allow

numerically checking the predicted consumption against the

real consumption.

1) A- Model Fitness:
Although online GLDA converges for any valid κ, τ0 and

BS, the quality and speed of the convergence may depend on

how the learning parameters are set. We run online GLDA

TABLE I: Parameter settings
Batch size: BS 1 2 4 5
Learning factor: κ 0.9 0.9 0.9 0.9
Learning delay: τ0 1024 1024 1024 1024
Perplexity 4262700 1027100 376558 332150

on the training sets for κ ∈ {0.1, 0.3, 0.6, 0.8, 0.9}, τ0 ∈
{1, 64, 256, 1024} and BS ∈ {1, 2, 4, 5}. Table I summarises

the best settings of each batch size along with the perplexity

obtained on the test set.

The obtained results indicate that increasing the batch-size

leads to better perplexity. However, the computation complex-

ityincreases. Hence, we made a balance between model fitness

and computation by setting the batch size to 4, where the best

learning parameters are κ = 0.9 and τ = 1024.

2) B- Pattern Regularity:
Using the optimal parameters’ setting, we examine in the

following the regularity of the mined patterns. To do that, we

use the last two weeks of the data (from Thursday 18-05-

2017 23:45:22 to Thursday 01-06-2017 23:45:22) for testing.

To study the regularity of the energy consumption behaviour of

the residents, we compare the mined patterns across different

days of the testing period. These patterns are represented by

the proportions of the different components (topics) inferred

from the training data. To visualise the patterns, we plot gray-

scale images showing the probability of different components

with respect to the time. Black colour indicates probability of

the component = 0, while white colour indicates probability =

1. Figure 2 shows 14 figures split into two rows. The first row

corresponds to the week from 18-05-2017 23:45:22 to 26-05-

2017 23:45:22. The second row corresponds to the week from

26-05-2017 23:45:22 to 01-06-2017 23:45:22. Each figure

depicts the pattern over 24 hours. The figures of the same

days from different weeks are shown on the same column.

It can be clearly seen from these figures that there is regular

patterns across rows. That is, similar energy consumption

patterns appear across different weeks. Moreover, consumption

patterns across working days within the same week are similar.

On the other hand, for a specific week, the patterns over the

weekend days and Friday are quite dissimilar to the rest within

and across that week. This regularity may be caused by regular

user lifestyle leading to similar energy consumption behaviour

within and across the weeks. Such regularity is violated in

the weekend, where more random activities could take place.

Note that the difference between the patterns on 29-05-2017

(Monday) and that on 22-05-2017 (Monday) may be caused by

the fact that on the 29th of May there was a bank holiday in the

UK. Having shown that there is some regularity in the mined

patterns, it is more likely that specific energy consumption

can be associated with each component. In the next section,

we apply a regression method to map the patterns (e.i.,

components proportions) to energy consumption. Thus, the

parameters of interest are the energy consumption associated

with the components. By attaching an energy consumption

with each component, we can help validate the coherence of

the extracted patterns and do forecasting.
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Fig. 2: Emergence of patterns

3) C- Energy Mapping:
As shown in the previous section, GLDA can express the

energy consumption patterns by mixing global components

summarising data. These global components can be thought

of as a base in the space of patterns. Each component

is a distribution over a high-dimensional feature space and

understanding what it represents is not easy. Hence, we

propose to associate electricity consumption quantities to each

component. Such association is motivated by the fact that an

energy consumption pattern is normally governed by the usage

of different appliances in the house. There should be a strong

relation between components and appliances usage. Hence,

a relation between components and energy consumption is

plausible. Note that the best case scenario occurs if each

component is associated with the usage of a specific appliance.

Apart from the coherence study, associating energy consump-

tion with each component can be used to forecast the energy

consumption. This can be done through pattern forecasting

which will be investigated in future work. More details will

be given in Sec. V. We apply a simple least-square regression

method to map patterns to energy consumption, expressed as

follows:

min ||Aw − b||2 (17)

where w is the per-component energy consumption vector, b
is the per-pattern consumption vector and A is the matrix of

the per-pattern components’ proportions which is computed

by GLDA. We train the regression model on the first testing

week and run the model on the second one. Figure 3 shows

the energy consumption (in joules) along with the estimated

consumption computed using the learned per-component con-

sumption parameters.

The similarity between the estimated and computed energy

consumption demonstrates that the LDA components express

distinct usages of energy. Such distinction can be the result

of the usage of different appliances likely having distinct

energy consumption signatures. Thus, the proposed approach

produces coherent and regular patterns that reflect the energy

consumption behaviour and human activities. Note that it is

possible that different patterns (or appliance usages) may have

the same energy consumption and that is why both estimated

and computed energy consumption in Fig. 3 are not fully the

same.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach, Gaussian

LDA (GLDA), to extract patterns of the users’ consumption

behaviour from data involving different utilities (e.g, electric-

ity, water and gas) as well as some sensors measurements.

GLDA is fully unsupervised and works online which made it

efficient for big data. To analyse the performance of GLDA,

we proposed a three- step evaluation that covers: model fitness,

qualitative analysis and quantitative analysis. The experiments

show that the proposed method is capable of extracting regular

and coherent patterns that highlight energy consumption over

time.

In the future, we foresee four directions for research to

improve the obtained results and provide more features: (i)

developing online dynamic Gaussian latent Dirichlet allocation

(DGLDA) to consider the temporal dependency in the data

leading to better results and allowing forecasting, (ii) replace

the engineered features with ones extracted by a deep learning

model trained directly on the raw data to yield richer low-level

features, (iiii) develop more scalable GLDA by applying asyn-

chronous distributed GLDA which can be derived from [37]

instead of SVI and (iiii) involve active learning strategy to

query users about about ambiguous or unknown activities in

order to guide the learning process when needed [38], [39].
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