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Abstract

The interpretation of archaeological features often requires a combined methodological

approach in order to make the most of the material record, particularly from sites where this

may be limited. In practice, this requires the consultation of different sources of information

in order to cross validate findings and combat issues of ambiguity and equifinality. However,

the application of a multiproxy approach often generates incompatible data, and might

therefore still provide ambiguous results. This paper explores the potential of a simple digital

framework to increase the explanatory power of multiproxy data by enabling the incorpo-

ration of incompatible, ambiguous datasets in a single model. In order to achieve this,

Bayesian confirmation was used in combination with decision trees. The results of phytolith

and geochemical analyses carried out on soil samples from ephemeral sites in Jordan are

used here as a case study. The combination of the two datasets as part of a single model

enabled us to refine the initial interpretation of the use of space at the archaeological sites

by providing an alternative identification for certain activity areas. The potential applications

of this model are much broader, as it can also help researchers in other domains reach an

integrated interpretation of analysis results by combining different datasets.

Introduction

The archaeological record comprises various forms of artefacts and ecofacts which, when stud-

ied in combination, offer a better interpretative understanding of past human lifeways, than

when studied in isolation. The range of archaeological material that can be studied, and the

amount of information that can be gained from it, is dependent upon the original concentra-

tion of material deposited into the archaeological record by its human inhabitants and the

state of preservation of the archaeological site itself. Ephemeral sites and/or their poor
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preservation represent a challenge that archaeologists can embrace by finding novel and inno-

vative ways to maximise the amount of information that be gained from the archaeological

record.

In recent years, the interpretation and understanding of the use of space in archaeology has

been increasingly aided by the incorporation of geoarchaeological techniques, such as geo-

chemistry, phytolith analysis, micromorphology and lipid residue analysis alongside artefac-

tual analysis [1–8]. These techniques have the advantage of considering in situ signals of

activity, which are less prone to post depositional disturbance [4, 9]. The downside, however,

is that they may produce results which are equivocal, subtle, or distinct, which can limit their

interpretation potential. Therefore, while these methods greatly increase our understanding of

archaeological sites, their interpretative value is greater when used in combination as a multi-

proxy approach than in isolation [2].

Inconsistencies in the type of results produced by different techniques and their resulting

data structure, however, often do not favour their incorporation within a single comprehensive

statistical model [10, 11]. For example, while phytolith data is recorded in count form and may

be further aggregated into several categories representing plant genus, plant parts or weight of

phytolith material per gram, measurements of geochemical elements are often recorded in

parts per million, producing continuous data. Many geoarchaeological techniques produce

complex, high dimensional data which are difficult to interpret in relation to one another. The

results of multiple analysis techniques are therefore often quantitatively analysed separately

even when they are used within a combined methodology, and then described side by side to

form a qualitative synthesis [7, 11–15]. One way to approach this issue is through standardiza-

tion and normalization of the data prior to their integration in multivariate statistics [16–18].

However, while the scale of the data is brought to the same, continuous level, very different

phenomena are measured which do not necessarily all translate well into a continuous scale.

This paper offers a new approach to integrate analysis results from multiple sources of

information through the application of machine learning algorithms alongside other statistical

and traditional analytical methods within a single quantitative framework. It is different to pre-

vious ones in that a hypothesis, or the probability of an interpretation, can be quantitatively

addressed by the incorporation of almost any type of information. Its use is illustrated through

a case study where a combination of geochemistry and phytolith analysis was used to aid the

identification of activity areas in ephemeral archaeological sites.

The two datasets were combined by means of Bayesian confirmation to examine whether

such a combination is likely to enhance the predictive power of the techniques compared to

their use in isolation. Bayesian confirmation is derived from Bayes’ theorem, which is used to

deduce properties about a population, or model a probability estimate for unobserved events,

based on a priori information [19–21]. By extension of this, Bayesian confirmation combines

prior information about a population with new evidence gathered through observation or

experiment. The evidence is used to either support or contradict a hypothesis. In effect, the

confirmation of a hypothesis occurs when the posterior probability (the updated probability of

the hypothesis following the consideration of new evidence) exceeds the prior probability (the

probability of the hypothesis before the incorporation of new evidence), and the greater the

difference–the greater the confirmation [20].

In our case, Bayesian confirmation was particularly useful since it enables combining infor-

mation from different types of data once we “translate” the results into a form that is meaning-

ful within a probability model. In order to do so, decision trees are used to classify the data.

Classification or decision tree algorithms assign variables to discrete classes through binary

recursive partitioning. This process splits data into subgroups based on values of predictor var-

iables in order to predict how data will behave based on the current observations [22].
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Decision trees are very suitable for “translating” the results of various analysis techniques into

conditional probabilities since they divide the data into pre-defined meaningful categories,

providing both a way to examine the nature of each sample and an indication of the overall

likelihood of a correct classification. This numerical output, in itself a probability, is used as an

input for the amount of probability that is either added to or deduced from the prior probabil-

ity in the model based on Bayesian confirmation.

By applying a framework combining Bayesian statistics and decision tree algorithms, we

aim to maximise the information that can be gained from archaeological data and combine the

continuous and discrete datasets produced by the two analysis techniques in an effective way.

Bayesian confirmation is suitable for this task since it allows one to deal with uncertainty by

means of allocating a probability to a particular outcome. Seeing as it is not possible to observe

past human behaviour as it takes place, or rely on repetition of experiments, it is not possible

to truly test the accuracy of archaeological interpretation. What is possible, however, is to pro-

vide it with numerical probability based on multiple sources of evidence. The more evidence

pointing towards a particular scenario, the more weight it receives. In this way, we can add a

quantitative likelihood to our qualitative interpretation of archaeological features.

Case study

Geochemical and phytolith data from Wadi el-Jilat sites

Fieldwork at Wadi el-Jilat (Fig 1) was part of a series of excavations in the Azraq Basin during

the 1980s. The project aimed to provide new insights into settlement and subsistence in the

steppe and desert regions of the Levant during the period when sedentism, agriculture and

pastoralism were first developing in the more fertile regions of the Levant and more generally

around the “Fertile Crescent” of South-West Asia [23]. The vast majority of Neolithic build-

ings at Wadi el-Jilat are circular or oval semi-subterranean constructions, with upright slabs

forming the fragile external walls, which often enclosed shallow deposits. Many of these struc-

tures had internal divisions, hearths and other features such as benches or storage bins [23,

p.40-1]. Nevertheless, unlike contemporary sites in moister regions of the Levant, which pres-

ent substantial architectural remains, the Neolithic settlements at Wadi el-Jilat left traces of

somewhat ‘flimsy’ structures. These, in combination with the faunal evidence, hint towards a

seasonal occupation, as is the case with many ephemeral structures used today by modern

nomadic populations [24–28].

The ephemeral nature and long abandonment of these sites hindered the interpretation of

the past use of space by their inhabitants, requiring additional means to confirm the initial

identification of activity areas in the field. To that end, eighteen samples from the Pre-Pottery

Neolithic B (PPNB) site of Wadi el-Jilat 7 (WJ7) and thirty-one soil samples from the Early

Late Neolithic (ELN) site of Wadi el-Jilat 13 (WJ13) were analysed for their phytolith and geo-

chemical soil signatures as part of a study into the potential of a dual geochemical-phytolith

methodology to aid the interpretation of ephemeral archaeological sites [15, 29]. The soil sam-

ples were chosen to represent a range of occupation deposits with the aim of comparing

between soil signatures across various context categories (described in Table 1). WJ13 pro-

vided a suitable case study for the application of Bayesian inference to aid the interpretation of

archaeological data, because unlike the neighbouring site of WJ7, the results of the geochemi-

cal and phytolith analyses did not entirely comply with the division into the context categories

defined in the field.

Geochemistry data. Within an archaeological context, soil chemistry is used to link pat-

terns of enrichment or depletion of certain chemical elements in the soil to past human occu-

pation [30, p.36]. The application of geochemistry to archaeological sites is often used to locate
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Fig 1. Location of the Wadi el-Jilat sites. A close up of the Wadi el-Jilat gorge includes an overview of the individual site locations.

https://doi.org/10.1371/journal.pone.0248261.g001
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and delineate settlements, refuse areas, graves, agricultural plots and production areas. It can

also be applied on a site level to obtain a better understanding of stratigraphy and sedimentol-

ogy, or help interpret the distribution of activity areas and features [29, 30]. The geochemical

analysis at the Wadi el-Jilat sites (WJ) was performed using a Thermo Scientific Niton XL 3t

Goldd+ (geometrically optimised large area drift detector) handheld XRF (X-ray fluorescence)

analyser. The geochemical interpretation in this study focused on the following chemical ele-

ments, measured in parts per million (PPM): aluminium (Al), calcium (Ca), iron (Fe), potas-

sium (K), magnesium (Mg), chlorine (Cl), manganese (Mn), phosphorus (P), strontium (Sr),

titanium (Ti), sulphur (S), zinc (Zn), chromium (Cr), and zirconium (Zr) (see 48 for an over-

view of the geochemical analysis protocol).

The site of WJ7 did not appear to show any remarkable trends when comparing the enrich-

ment of individual chemical elements across context categories (for detailed overview of geo-

chemical results see 47 or 49). The site of WJ13 did portray more variation in enrichment of

chemical elements between context categories, but to a limited degree. The most prominent

distinction between activities appeared to be represented at this site through P, levels of which

were increased in all anthropogenic contexts in comparison to the background samples,

noticeably mostly in the posthole samples (Fig 2). This could be explained by leaching of P

downwards, but then one would expect to see a similar pattern in the other Wadi el-Jilat sites,

which is not the case [29]. There is a slight elevation of K and Mg in the hearths, and of Mn in

activity areas (Fig 2). These trends are similar to observations made at ethnographic sites in a

related study [11].

Contrary to the visibility of enrichment of individual elements across context categories,

the 3D biplot created for the principal component analysis (PCA) for WJ7 provided a better

result than the one produced for WJ13, explaining 89% and 72% of variance respectively, and

presenting better clustering into the excavator’s context categories (Figs 3 and 4). The geo-

chemical variables that drive most of the variance within the PCA for the site of WJ7 (Fig 3)

seem to correspond, at least partly, with the elements that were found to indicate anthropo-

genic input in earlier studies, mainly Mg, Fe, S, P, K, Ca and Cl (Table 2 provides an overview

of chemical elements found at the sites of Wadi el-Jilat and their suggested association with

anthropogenic anomalies in earlier studies). The geochemical elements driving the variance

for the PCA biplots created for the site of WJ13, however, do not correspond as well with find-

ings from previous studies (Fig 4). While still relying on a few anthropogenic indicators which

were found to be relevant in other studies (Fe, K, Mg, Ca, P, and Cl), much of the variance is

driven by chemical elements which are not considered to be significant anthropogenic indica-

tors (Ti, Si, Al, Zr, Nb, Rb and V). WJ7 and WJ13 portray different patterns of enrichment of

geochemical and phytolith soil signatures which might suggest a difference in their occupation

Table 1. Categories of soil samples from Wadi el-Jilat sites used for the geochemical and phytolith analysis in this

study.

Categories used in this

study:

Explanation:

Deposit General deposit, fills within and between buildings

Activity area Locus rich in bone and lithic material

Hearth Deposit consisting of ashy sediment

Compact ashy fill Compact fill containing traces of ash

Bedrock feature Posthole or other man made pits in bedrock

Other Features that do not fit the previous categories, this category mainly consists of

pits and bins

Background Background sample taken from the vicinity of the site

https://doi.org/10.1371/journal.pone.0248261.t001
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sequences, their use, the influence of local taphonomic processes, or alternatively the degree of

successful identification of their features in the field (which influences the division of soil sam-

ples into suitable context categories).

Phytolith data. The word phytolith in archaeological context generally refers to opal or

amorphous silica representations of plant cell structures, of either single cells or conjoined

cells [6, 37]. Single-celled phytoliths can be classified according to their morphologies, which

often link to different plant parts (for example husks or leaves) and can thereby indicate pat-

terns of plant use (such as plant-processing). In addition, both multi- and single-celled phyto-

liths can distinguish between two groups of plants: monocotyledons (monocots) and

dicotyledons (dicots–here we use the term according to the pre 1990s definition to mean non-

monocotyledon) [38, 39]. By adding up the information from a variety of phytolith forms and

morphologies within a sample, a profile of plant use at a site can be created.

The extraction of phytoliths from the WJ soil samples was carried out using the dry ashing

method [40]. The names of the phytolith types followed the International Code for Phytolith

Nomenclature [41]. In addition to phytoliths, diatoms and sponge spicules were recorded. The

phytolith database included the morphological categories used in the counting sheets and

additional variables calculated from the raw data: dicot, monocot, single-cell, multi-cell,

Fig 2. Average measurements in ppm for all samples within WJ13 per context category for the following chemical elements: (A) P, (B) K, (C) Mg and (D) Mn.

https://doi.org/10.1371/journal.pone.0248261.g002
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Panicoideae, Pooideae, Chloridoideae, Arundinoideae, Palmaceae, Hordeum sp., Triticum sp.,

leaf, leaf/husk, leaf/stem, husk, awn, weight percent of extracted phytoliths, and number of

phytoliths per gram of original sediment processed (for a complete overview of the phytolith

analysis and recording methodology see 47).

Fig 3. PCA biplot for the geochemical results, WJ7. The first component is driven by Mg, Si, Ti, Fe, S, Zr, K and P,

and the second component by Ca, Sr and Rb. The third component is driven by Cl.

https://doi.org/10.1371/journal.pone.0248261.g003

Fig 4. PCA biplot for the geochemical results, WJ13. The first component is driven by Ti, Si, Fe, K, Al, Zr and Nb. The second

component is driven by Mg, Ba, Sr and Ca, and the third by Cr, P, Rb, Cl and negatively by V.

https://doi.org/10.1371/journal.pone.0248261.g004
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The results of the phytolith analysis at Wadi el-Jilat revealed only very subtle patterns of dif-

ferentiation between activity areas within the sites, while the background samples were clearly

different to the on-site material. A high monocot to dicot ratio, an abundance of grass husks

and a high weight percent and number of phytoliths per gram all appear to be associated with

anthropogenic activity at the Neolithic sites [29]. The phytolith analysis results at WJ7 demon-

strate the most variability in context categories. While all contexts show an increase of mono-

cots in relation to the background samples, the categories ‘activity area’ and ‘compact ashy fill’

(which probably reflect hearths) contain the highest concentrations of these. The two context

categories show resemblance when it comes to plant parts, containing the largest amounts of

husk material in relation to the other context categories (Fig 5).

The enrichment of silica aggregate material at the bedrock features, hearths and deposits of

WJ13 might also indicate a high anthropogenic input, albeit of a different kind (Fig 5). Silica

aggregate is considered to be derived from woody material, and could indicate the presence of

wood or charcoal within these features [42, 43]. Nevertheless, when comparing the results

among the different context categories, the individual phyolith trends at WJ13 do not portray

the expected anthropogenic enrichment input identified for WJ7 and other similar sites [7, 8,

29, 44–46]. The PCA 3D biplots created for the phytolith results at the WJ sites do portray

some clustering, but to a limited degree (Figs 6 and 7). As with the results of the geochemical

analysis, the second and third components represent less of the overall variance but demon-

strate better clustering of context categories than the first two components.

Methods and results

Decision trees

Decision trees were used in this study to understand and visualise how well the quantitative

data from phytolith and geochemical samples are categorised into the pre-defined activity

Table 2. Associations between chemical elements and anthropogenic related activities found in earlier studies

and, where applicable, anomalies found at the Wadi el-Jilat sites [after 29, p.271-7).

Chemical

element

Associated activity in previous studies Associated activity in this study

P Hearths, animal dung [11]; food preparation and

consumption [31–33], burning and food storage [34],

refuse areas [31], excrements [33], Byres [35], Meat [36]

General anthropogenic occupation (all

WJ sites), bedrock features (WJ13)

Mg Hearths, animal dung [11]; wood ash [5], cooking

hearths, food preparation and consumption [31], Meat

[36]

Hearths (WJ13)

Ca Hearths [11, 31], food storage and preparation [33, 34],

lime use? [5]

General anthropogenic occupation (all

WJ sites)

K Hearths, animal dung [11]; wood ash [5], cooking

hearths, food preparation and consumption [31]

Hearths (WJ13)

Mn Hearths/burning [11, 34], vegetable [36] Activity areas (WJ13)

S Hearths, animal dung [11] Hearths and bedrock features (WJ7)

Sr Hearths [11, 35], excrements and food preparation [33],

Lime use? [5]

Slight elevations in hearths (all WJ sites)

Cl Animal dung, hearths, animal pens [11]

Fe Background [11]; Craft production (high levels in

combination with burning) [34], burning [33]

Ti Background [11, 34]

Al Background [11, 34]

Cr Not measured in previous studies Bedrock features (WJ7, WJ26)

https://doi.org/10.1371/journal.pone.0248261.t002
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areas, and which variables are important within this classification. Decision tree algorithms

assign variables to discrete classes through binary recursive partitioning, a process which splits

data into subgroups based on values of predictor variables.

The decision trees were created in Weka 3.6.13, a software package with a range of classifi-

cation and prediction machine learning algorithms. The J48 classifier was used in this analysis,

a decision tree classification algorithm based on a top-down recursive divide-and-conquer

mechanism [22, 47, 48]. An attribute is selected for the top (root) node, and a branch is created

for each possible attribute value. The process splits the instances into subsets (one for each

branch). The process is repeated recursively for each branch until all instances have the same

class. The desired outcome is the smallest possible decision tree with pure nodes.

There are many different possibilities for carrying out a similar classification which would

result in similar outcomes–a classification into pre-defined categories with the associated

probabilities of a successful classification which are needed as input for the Bayesian calcula-

tion (which is described in the following section). However, the J48 classifier produces a well

pruned tree, meaning that a particular probability of classification will be conservatively esti-

mated [49]. This conservative estimate is useful when used as evidence in Bayesian confirma-

tion to prevent over inflation of final, posterior, probability estimates.

In our case, each soil sample was identified in the field as a particular activity type, based on

the excavators’ interpretation of the relevant locus/context (Table 1). The data for each sample,

including a context category and the results of the soil analyses (see description of datasets

above), provided the input for the decision tree algorithm. The values for the chemical

Fig 5. A) Ratio of monocot to dicot per context category at WJ7; B) Plant part ratio per context category at WJ7; C)

Silica aggregate and phytolith count ratio per context category at WJ13.

https://doi.org/10.1371/journal.pone.0248261.g005

Fig 6. PCA biplot for the phytolith results, WJ7. The first component is driven by monocots, unidentified and degraded

phytoliths, leaf, leaf/stem, Pooideae and single-cell phytoliths. The second component is driven by weight percent, Chloridoideae

and negatively by burnt phytoliths. The third component is driven by Panicoideae, leaf/husk and weight percent.

https://doi.org/10.1371/journal.pone.0248261.g006
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elements measured in the sample, or the properties of the phytoliths, were examined to create

a series of decisions according to the splitting variables (e.g. > or < 2079 PPM of phosphorus

in the sample) chosen by the algorithm to best classify the maximum number of samples as per

the excavators initial judgement (i.e. the identification of context in the field). The analysis

provided a classification tree which can be visualised, and reported the amount of cases which

were ‘correctly’ and ‘incorrectly’ classified according to the set parameters, i.e. samples which

resemble the general trends observed within their context category.

The Weka decision trees created for the geochemistry results show a reliance on P, Si, Fe,

Ca and S in distinguishing the clusters of the context categories for both sites (Figs 8 and 10).

As with the PCA results, the decision trees created for WJ7 were more successful in clustering

the data according to the context categories than the ones produced for WJ13, reflecting a

clearer splitting process and higher percentage of correctly classified cases (Figs 8–10).

When plotting decision trees based on the phytolith analysis results, similar branching

complexities can be seen as the ones created for the results of the geochemical analysis. The

decision tree created for WJ7 had a higher amount of correctly classified cases than the one

created for WJ13 (46%) and produced the purest divisions; Panicoideae and diatoms were

used to differentiate between the background, deposit and posthole categories (Fig 10). The

decision tree created for the phytolith results of WJ13 (Fig 9) stands in sharp contrast to it,

with only 21% of cases correctly classified and extensive splitting required to produce nodes.

The lower amount of correctly classified cases and high degree of branching in the decision

trees of WJ13 suggest that the context categories used in the analysis, or the division of samples

to these, does not correspond well with the phytolith and geochemical data for this site. The

high degree of branching also demonstrates why the J48 classifier was preferred in this analy-

sis, as it produces a well pruned tree–other methods would create more complex trees.

Fig 7. PCA biplot for the phytolith results, WJ13. The first component is driven by the variables monocots, leaf and

leaf/stem, the second is negatively driven by dicots and single-cell phytoliths. The third component is driven by

number of phytoliths per gram and multi-cell phytoliths.

https://doi.org/10.1371/journal.pone.0248261.g007
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Bayesian calculation

The model applied to the data combines information from the excavator’s classification, the

geochemistry and the phytolith analysis to provide an overall estimate of certainty in the classi-

fication of an activity area. Essentially, where both geochemistry and phytolith analysis results

agree with the excavator’s classification, the certainty of the excavator’s classification increases.

Where there is disagreement, if certainty falls below the prior probability (set according to

excavator’s classification), then the classification is reconsidered (Fig 11).

Fig 8. Decision tree created for WJ13 based on the geochemical results, including the categories: Deposit, hearth, bedrock feature, activity area, fill and background.

38% of cases were correctly classified. The numbers within each subset (or tree node) represent the amount of instances that are found within the subset. In cases where

two numbers appear within the tree node, the first number indicates the ‘correct’ instances and the second reflects the ‘incorrect’ instances falling within the subset (i.e.

samples having categories which agree or disagree with the category represented in the node). The numbers appearing between the tree nodes and the variables represent

the splitting point, i.e. the value that split the instances according to those containing values of this variable that are smaller, larger or are equal to this number.

https://doi.org/10.1371/journal.pone.0248261.g008
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Fig 10. Decision trees created for WJ7 based on the geochemical analysis (left) and phytolith counts (59% and 46% of cases correctly classified, respectively). The

numbers within each subset (or tree node) represent the amount of instances that are found within the subset. In cases where two numbers appear within the tree node,

the first number indicates the ‘correct’ instances and the second reflects the ‘incorrect’ instances falling within the subset (i.e. samples having categories which agree or

disagree with the category represented in the node). The numbers appearing between the tree nodes and the variables represent the splitting point, i.e. the value that split

the instances according to those containing values of this variable that are smaller, larger or are equal to this number.

https://doi.org/10.1371/journal.pone.0248261.g010

Fig 9. Decision tree created for WJ13 based on the phytolith results, including the categories: Deposit, hearth, bedrock feature, activity area, fill and background.

21% of cases were correctly classified. The numbers within each subset (or tree node) represent the amount of instances that are found within the subset. In cases where

two numbers appear within the tree node, the first number indicates the ‘correct’ instances and the second reflects the ‘incorrect’ instances falling within the subset (i.e.

samples having categories which agree or disagree with the category represented in the node). The numbers appearing between the tree nodes and the variables represent

the splitting point, i.e. the value that split the instances according to those containing values of this variable that are smaller, larger or are equal to this number.

https://doi.org/10.1371/journal.pone.0248261.g009
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Fig 11. Flowchart illustrating the use of decision trees and Bayesian calculation to combine the results of the soil analyses.

https://doi.org/10.1371/journal.pone.0248261.g011
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Within the application of the model based on Bayesian confirmation in this study, the prior

probability reflects expert opinion. It was set at 0.5, providing an ‘uniformed prior’. The focus

of this study was the addition of evidence from the geoarchaeological sources of information,

and no attempt was made at estimating the certainty of the initial identification in the field.

However, this input may vary in future studies. It may be that the expert opinion is given

higher or lower weight, or perhaps that certain context categories, which are easier to identify,

receive a higher prior probability while other categories, which are difficult to distinguish in

the field, are attributed a lower prior probability (for example 0.7, or 0.4). Future studies might

therefore choose to incorporate different prior probabilities for certain types of context catego-

ries within the model, based on the expected certainty of their initial identification.

The following equation was used:

Ppost ¼ Pexc þ f½ð1 � PexcÞ� faðPexc�PgeoÞ þ bðPexc�PphytÞg�=ng;

where Ppost is the final certainty of the classification, Pexc is the excavator’s certainty (the prior

probability, set at 0.5 in this study), Pgeo and Pphyt are the probabilities associated with overall

correct classification from the decision trees (see description of results in previous section)

and a and b are set to 1 when there is an agreement between excavator and decision tree classi-

fication and -1 where there is disagreement. n is the number of extra pieces of evidence used

beyond excavator’s classification, in this case 2. This approach has previously been successfully

used in environmental studies to apply a Bayesian statistical framework to remaining uncer-

tainty from a prior evaluation of probability, or to decrease certainty of a prior evaluation if

new evidence disagrees [50, 51].

The equation was used as an excel function to calculate the probability of a correct identifi-

cation of activity area in the field for each of the WJ13 samples. This was achieved by manually

examining the values of the relevant splitting variable for both the geochemical and phytolith

results based decision trees for each sample. Table 3 contains a list of the results of the applica-

tion of the model to the samples from WJ13. In cases where there was a disagreement between

the results of either the geoarchaeological or phytolith analyses, or both, an alternative context

category was sought in line with the decision trees. This resulted in the reclassification of cer-

tain samples (Table 3).

The PCA 3D biplots below (Fig 12) visually illustrate the change in definition of activity for

some of the samples following the reclassification of the results. Three samples were re-catego-

rized as hearths, two as activity areas, and two posthole samples were reclassified as deposits.

The new biplot portrays clearer clusters of context categories, especially when it comes to the

hearth context category. The category ‘other’ now appears to share the same characteristics

with the latter, and some of the features classified under this category, such as bins and pits

(Table 1), might therefore reflect hearth locations which were not identified as such in the

field.

The improved clustering of samples shown in the PCA scatterplot is not surprising, as the

reclassification was based on the soil analysis results incorporated into the model. The increase

of clustering was not the goal of this calculation. The PCA biplots merely demonstrate the

changes in classification of the samples according to the geochemical and phytolith analyses

results. In this way, the soil analyses can be combined and used as an additional indication or

identification of archaeological features, guiding the archaeological interpretation of activity

areas after excavation.

To illustrate how the reclassification of samples would change the interpretation of the use

of space at the site, the location of the samples analysed in this study are presented with their

associated context category before and after the application of the Bayesian model. Within the
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Table 3. Overview of the classification of samples from WJ13 in the field, the results of the application of the probability model, and proposed reclassification

based on the results of the geochemical and phytolith analyses. The prior probability was set at 0.5, the weight of the results of the geochemical and phytolith analyses

was set at 0.38 and 0.21 (respectively) to reflect the amount of correctly classified cases in the decisions trees.

Sample Context Prior
probability

Geochemical results
weight

Phytolith results
weight

Both
agree

Geochemical results
disagree

Phytolith results
disagree

Neither
agree

Alternative
category�

WJ13 5a

3

Deposit 0.5 0.38 0.21 0.47875 Other

WJ13 7a

5

Deposit 0.5 0.38 0.21 0.42625 Hearth

WJ13 8 8 Deposit 0.5 0.38 0.21 0.47875 Other

WJ13 16a

13

Deposit 0.5 0.38 0.21 0.57375

WJ13 20b Deposit 0.5 0.38 0.21 0.42625 Other

WJ13 25

19

Deposit 0.5 0.38 0.21 0.42625 Deposit 2

WJ13 50a

30

Deposit 0.5 0.38 0.21 0.57375

WJ13 53a

32

Deposit 0.5 0.38 0.21 0.57375

WJ13 56b

40

Deposit 0.5 0.38 0.21 0.57375

WJ13 62a

40

Deposit 0.5 0.38 0.21 0.57375

WJ13 70a

38

Deposit 0.5 0.38 0.21 0.57375

WJ13 71b

80

Deposit 0.5 0.38 0.21 0.57375

WJ13 83a

46

Deposit 0.5 0.38 0.21 0.52125 Deposit 2/hearth

WJ13 10a

9

Other 0.5 0.38 0.21 0.47875 Hearth

WJ13 22

17

Other 0.5 0.38 0.21 0.52125 Deposit

WJ13 47

29

Other 0.5 0.38 0.21 0.47875 Hearth

WJ13 52a

31

Other 0.5 0.38 0.21 0.57375

WJ13 57a

33

Other 0.5 0.38 0.21 0.52125 Activity area

WJ13 15a

12

Activity

area

0.5 0.38 0.21 0.57375

WJ13 45a

46

Activity

area

0.5 0.38 0.21 0.57375

WJ13 59a

31

Activity

area

0.5 0.38 0.21 0.57375

WJ13 66b

39

Activity

area

0.5 0.38 0.21 0.57375

WJ13 12

12

Hearth 0.5 0.38 0.21 0.57375

WJ13 18

13

Hearth 0.5 0.38 0.21 0.57375

WJ13 22

14

Hearth 0.5 0.38 0.21 0.52125 Deposit

WJ13 24

20

Posthole 0.5 0.38 0.21 0.52125 Deposit/bedrock

2

(Continued)
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plan of WJ13 showing the early and middle phases of occupation, the change is reflected in a

broadening of a section of ‘activity area’ at the north-eastern end of the building, and two fea-

tures at the south-western end of it now fall under the category ‘other’ (mainly representing

pits and bins) instead of ‘deposit’ (Fig 13). The changes in the late occupation phase mainly

concern the addition of external hearths to the building instead of the categories ‘deposit’ and

‘other’ (Fig 14).

Discussion

This paper explored the use of a digital framework consisting of classification algorithms and

Bayesian confirmation to integrate output from diverse analysis methods and sources of infor-

mation. The principal behind this methodology is to translate the data into a form where they

can be brought to the same level, so that information can be extracted that either supports or

contradicts a particular hypothesis.

The case study presented here illustrates how such a framework can help maximise the

information gained through analysis techniques when dealing with ambiguity in their inter-

pretation. Although WJ13 and WJ7 share a similar environmental and historical setting, and

are adjacent to one another, the results of the geochemical and phytolith analyses were not as

straightforward in interpreting the use of space at WJ13 as with WJ7. The data produced for

the latter site exhibits a clear classification into distinguishable context categories when exam-

ined through PCA—mainly due to the geochemical input, while the geochemical and phytolith

analysis of WJ13 hints towards very subtle spatial trends and produced less straightforward

PCA biplots. The decision trees created for the two sites tell the same story, those produced for

WJ7 depict a compact tree and clear division into context categories, while the output trees for

WJ13 portray extensive branching reflecting significantly lower classification success. It might

be that the short-lived nature and relative simplicity of a structured occupation sequence of

WJ7 contributed to the ease of its interpretation, while the relatively complex sequence of

occupation at WJ13 made its interpretation less straightforward [15].

Because of the complexity, ambiguity and incompatibility of the geochemistry and phytolith

analysis results for WJ13, additional means of data analysis were necessary for utilising these

data to aid the interpretation of spatial trends at WJ13. Decision trees provided probabilities

related to the success of classification into the pre-defined context categories, indicated how

well these describe the data, and identified the key variables that split the data into context

Table 3. (Continued)

Sample Context Prior
probability

Geochemical results
weight

Phytolith results
weight

Both
agree

Geochemical results
disagree

Phytolith results
disagree

Neither
agree

Alternative
category�

WJ13 85

54

Posthole 0.5 0.38 0.21 0.57375

WJ13 90a

56

Posthole 0.5 0.38 0.21 0.57375

WJ13 92a

57

Posthole 0.5 0.38 0.21 0.52125 Deposit/bedrock

2

WJ13 96

59

Posthole 0.5 0.38 0.21 0.57375

WJ13 104

65

Posthole 0.5 0.38 0.21 0.57375

� The number 2 indicates cases where the suggested reclassification falls under the same context category according to the decision tree, but within a different node. In

cases where the geochemical and phytolith results suggest different alternative categories, two reclassification options are provided (respectively).

https://doi.org/10.1371/journal.pone.0248261.t003
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Fig 12. A) PCA biplot for WJ13 based on the geochemical analysis results; B) PCA biplot for WJ13 based on the geochemical analysis

results after the change in the categories of some of the samples after the application of the Bayesian based model.

https://doi.org/10.1371/journal.pone.0248261.g012
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Fig 13. A plan of early and middle phases at Wadi el-Jilat 13, before (top) and after (bottom) the reclassification of

samples.

https://doi.org/10.1371/journal.pone.0248261.g013
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Fig 14. A plan of late phase at Wadi el-Jilat 13, before (top) and after (bottom) the reclassification of samples.

https://doi.org/10.1371/journal.pone.0248261.g014
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categories. This overview enabled the identification of typical signatures for specific activity

areas, and made the division of each sample into a context category based on the results of the

soil analysis possible.

The model based on Bayesian confirmation relied on this information in order to test and

reclassify specific samples into the context group they resembled most by considering multiple

sources of evidence. It could potentially incorporate any number of additional results to com-

plement those of the geochemical and phytolith analyses. Several samples seemed to fit well

within the pre-defined context category allocated to them, while others were reclassified

according to the decision trees. While the process of testing which category each sample fits

best was carried out manually in this study, it may be automated in future studies if necessary,

for example when a large number of samples or sources of information is considered.

This manner of combining information from various sources of information within a single

model, where they are considered independently from each other, carries much potential for

aiding interpretation of ambiguous features in general. The application of this model to the

samples from WJ13 illustrates that the use of even one type of additional evidence may improve

the original interpretation of the use of space at a site, but that the certainty of the new identifi-

cation increases when another method is added. In this sense, the difference in the type of data

achieved from the two analysis techniques makes the identification of activity areas more con-

vincing. The phytolith analysis, for example, reflects patterns of plant use, while the geochemis-

try is related to various signals of activities such as burning and animal husbandry. If both of

these different sources point towards a confirmation or rejection of the initial interpretation of

a context category, it is more compelling than is the case with more closely related sources of

information (such as phytoliths and macrobotanical remains for example).

Overall, the reclassification of the WJ13 samples resulted in a reduction of the more common,

general context categories ‘deposit’ and ‘other’ in favour of more specific context categories such

as the ‘hearth’ and ‘activity area’ categories. It could be that these context categories are more diffi-

cult to identify in the field in some cases, while the phytolith and geochemical traces in the soil

provide additional microscopic means to distinguish them. On the other hand, it is not possible to

determine which interpretation is more accurate; the original identification in the field or the one

based on the results of the phytolith and geochemical analyses, since the reclassification according

to the model merely reflects the latter. The model refines the initial interpretation of activity areas

by using the analyses results as either supporting or contradicting evidence. The ‘correct’ level of

classification was low in our case, which means that the geoarchaeological results did not have a

large effect on the final probabilities. Had the decision trees predicted 90% of cases correctly, they

would have had a greater influence on the final probability. Weak classification success would

result in a greater weighting on the classifier’s results, and vice versa.

Nevertheless, it is encouraging to observe that when plotted against the plan of the site, the

reclassification of samples does not seem to be spatially random. Clearer spatial clusters of the

categories ‘activity area’, ‘hearth’ and ‘other’ were formed after the change. This suggests that

the model was successful in identifying and applying valid indicators of activity areas in the

geochemistry and phytolith data, which appear to provide a meaningful alternative interpreta-

tion of space at the site. Future studies could help establish the value of the approach presented

in this paper for interpreting different types of sites and identify other applications–such as

testing contradicting sources of evidence, or its use for archaeological prospection.

Conclusions

While increasingly used to aid archaeological interpretation, scientific analysis techniques

often generate results which are equivocal, subtle or distinct, and therefore difficult to relate
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back to past human behaviour. A multiproxy approach can help combat issues of equifinality

and ambiguity, but produces incompatible results due to differences in the level of measure-

ment of various sources of information.

By exploring a new way to combine multiproxy data, this research aimed to maximise the

information gained from sites which are difficult to interpret. Rather than trying to find

“hard” archaeological evidence, the approach taken in this study was to bridge the gap between

the scientific methods used and the ambiguity inherent in archaeological data. This required

fitting, or scaling down, hard methods to soft data, which was enabled by the use of decision

trees and Bayesian inference. By allowing for expert opinion to contribute to the outcome of

the model, and dealing with the uncertainty typical to archaeological data, such models may

provide a useful tool for the incorporation of the wide range of sources of information that

archaeologists must consider while interpreting ancient human behaviour. The potential appli-

cations of this model are broader than archaeology, as any field seeking to incorporate expert

opinion with additional sources of information could benefit from its application.

Supporting information

S1 File. Geochemical and phytolith data for WJ7 and WJ13 relied on for the analysis in

this paper, in a format used as input for the WEKA decision trees.
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17. Pető Á, Kenéz Á, Prunner AC, Lisztes-Szabó Z. Activity area analysis of a Roman period semi-subterra-

nean building by means of integrated archaeobotanical and geoarchaeological data. Vegetation History

and Archaeobotany. 2015; 24: 101–120.

18. Rondelli B, Lancelotti C, Madella M, Pecci A, Balbo A, Ruiz Pérez J, et al. Anthropic activity markers
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