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Abstract 

 

By extending the work published at ICCS 2020 [1], in this paper we propose a method to achieve cost-effective 

3D printing of stiffened thin-shell objects. Our proposed method consists of three parts. The first part integrates 

finite element analysis, Voronoi diagram, and conformal mapping to obtain stiffener distribution. The second part 

combines finite element analysis with optimization calculations to determine the optimal sizes of stiffeners. And 
the third part introduces Monte-Carlo simulation to find a global optimum. The experiments made in this paper 

indicate that our proposed method is effective in minimizing 3D printing material consumption of stiffened thin-

shell objects.  
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Abbreviations 

 

FEA - Finite Element Analysis 
2D - Two-Dimensional 

3D - Three-Dimensional 

DKT - Discrete Kirchhoff Triangle 

FSDT - First-order Shear Deformation Theory 

LSCMs - Least Squares Conformal Maps 

 

1.   Introduction 

 

With the rise of low-cost 3D printers, 3D printing is revolutionising the way products are manufactured, not 

only in large manufacturers such as Boeing and General Electric but also with personal users and small businesses. 

As one of the fastest growing industries, it is delivering significant impacts to the manufacturing sector, global 
economy, and quality of life.  

Many different materials have been used for 3D printing, including both non-metallic and metallic materials. 

The price of desktop 3D printers has become more affordable to general customers - it has been possible to buy a 

desktop 3D printer at a price of less than £100 at the present time. Nowadays, personal users can make 3D prints 

easily with these affordable printers at their home. Apart from a lot of personal users, 3D printing has been widely 

applied in various sectors. The wide range of applications highlight the importance of minimizing the cost of 3D 

printing while satisfying the requirements of specific applications. 

In order to minimizing the cost of 3D printing, thin-shell objects have been widely used to reduce the 

consumption of 3D printing materials. Since thin-shell objects have low strength and stiffness, various methods 

have been proposed to enhance thin-shell objects. In this paper, we use stiffeners to stiffen thin-shell objects and 

propose a finite element optimization framework based on Voronoi diagram and Monte-Carlo simulation to obtain 

stiffened thin-shell objects with minimum material consumption and required strength. 
Our proposed framework achieves minimum material consumption through optimizing stiffener distribution 

and minimizing the cross-section sizes of stiffeners. In order to generate an optimal distribution of stiffeners, the 

stress field of input thin-shell objects under given loads and boundary conditions is calculated with the Finite 

Element Analysis (FEA). According to the calculated stress field, some points called seeds are placed randomly 

on the three-dimensional (3D) surface of thin-shell objects. Conformal mapping is used to map the 3D objects and 

seeds to a 2D space so that a Voronoi diagram can be generated from these mapped seeds. The generated Voronoi 

diagram is mapped back to the 3D space and the edges of the mapped Voronoi diagram represent the distribution 

of stiffeners. After that, cross-section sizes of stiffeners are optimized to minimize the volume of the stiffeners. 

Since the generation of seeds uses a uniform random process, which may not lead to a global optimal solution of 
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stiffener distribution, Monte-Carlo simulation is introduced and iterated a given number of times to avoid any 

local minimum. 

 

2.   Related work 

 
Our proposed framework is related to 3D printing, finite element analysis, structural optimization, Voronoi 

diagram, conformal maps, and Monte-Carlo simulation. We briefly review them in this section.  

3D printing The research on 3D printing is massive. Various aspects of 3D printing have been investigated in 

existing work. For example, the deformation problem was investigated in [2], the articulation of 3D printed models 

was examined in [3], mechanical movements of 3D printed objects were studied in [4, 5], and the appearance of 

3D printed models was discussed in [6, 7]. The aim of this paper is to minimize material consumption of 3D 

printed thin-shell objects. 

Finite element analysis There are enormous publications about finite element analysis. For example, the finite 

element method in solid and structures was introduced in [8]. The finite element analysis of stiffened plates was 

given in [9]. The finite element calculations of stiffened shell were presented in [10]. The vibration of stiffened 

plates was investigated with the finite element method in [11]. Stress analysis of stiffened composited plates was 

carried out in [12]. The plates and shells with geometrically linear and nonlinear problems were studied in [13]. 
And mesh distortions of plate and shell finite elements were examined in [14]. In this paper, finite element analysis 

will be used to determine stress distributions in unstiffened and stiffened thin-shell objects and their stiffeners. 

Structural optimization Various optimization methods have been developed and widely applied [15]. For 

example, tracking control of an underactuated system was optimized in [16], a new trajectory synthesis and 

optimization scheme was proposed in [17], probabilistic movement primitives were used to improve local 

trajectory optimization in [18], principles and progresses of optimization methods in machine learning were 

introduced in [19], and adaptive neural network tracking control were developed for underactuated systems in 

[20]. 

In the field of structural optimization, there are a lot of publications. Here we only briefly review some 

representative literature on optimization of 3D printed objects. Three approaches: hollowing, thickening, and strut 

insertion were introduced in [21] to obtain structurally sound and lightweight 3D prints. Thickness parameters of 
shells were optimized in [22]. The number of struts in a skin-frame structure is minimized in [23]. The material 

consumption of honeycomb-like 3D models is reduced via a hollowing optimization algorithm in [24]. Stiffened 

objects were first investigated in [25]. A method to produce optimized structures for any input surface with any 

load configurations was examined in [26]. Structural optimization will be used in this paper to optimize stiffener 

distribution and stiffener sizes of stiffened thin-shell objects.  

Voronoi diagrams Extensive research has been carried out about Voronoi diagrams and their applications. 

Applications and algorithms of centroidal Voronoi diagrams were discussed in [27]. The Voronoi diagram for 

graphs was used in [28] to analyse the structure of biological networks. Using graph Voronoi diagrams, a new 

geometric approach to graph community detection was proposed in [29]. Some new methods of constructing 

Voronoi diagrams were proposed in [30]. Based upon statistics with mean vector and covariance matrix, a Voronoi 

diagram was proposed in [31]. A Voronoi diagram was constructed in [32] to form a cloaked region and calculate 

the anchor point of the cloaked region for privacy preservation. A window-vertex-sorted triangle propagation 
algorithm was proposed in [33] to construct geodesic based Voronoi diagrams. With Voronoi diagrams, interactive 

design and manufacturing of a biomimetic bone scaffold was investigated in [34]. Using Voronoi diagrams to 

generate the centerlines of watercourses was presented in [35]. An algorithm called hexagon-based crystal growth 

was presented in [36] to extract generalized Voronoi diagrams from hexagonal grids. Through Voronoi diagrams, 

design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction was examined in [37]. A 

new parametric method of designing Voronoi-based lattice porous structures was proposed in [38]. In this paper, 

we will use Fortune’s algorithm to create Voronoi diagrams from the generated seeds. 

Conformal maps A number of studies have investigated conformal maps. Relying on certain conformal 

mappings, an explicit method was presented in [39] to map any simply connected surface onto a sphere in a manner 

of preserving angles. First order finite difference approximations of Cauchy-Riemann equations were used in [40] 

for conformal maps. An efficient circle pattern algorithm was developed in [41] for discrete conformal mappings. 

Based on complex Hilbert barycentric coordinates, a new method was presented in [42] to compute 𝐶∞ conformal 

mappings. A weighted combination of conformal maps was used in [43] to generate candidate maps between two 

genus-0 non-isometric shapes. Extremal quasiconformal mappings were specifically designed in [44] to produce 

injective mappings with minimal amount of conformal distortion. A framework was given in [45] to calculate 

harmonic and conformal mappings in the plane with some mathematical guarantees. A fast iterative algorithm was 

developed in [46] to produce conformal maps between two simply connected planar domains without prescribing 

boundary correspondence. Not using a triangle mesh, regular polygon meshes of equilateral triangles, squares and 

hexagons were used in [47] to approximate continuous conformal maps. Conformal mapping will be applied in 

this paper to achieve the mapping between 3D surface points and 2D parametric points.   
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Monte-Carlo simulation Massive publications have discussed Monte-Carlo simulations and its applications. 

For example, Monte Carlo simulations were used in [48] to calculate the solubility of natural gas components in 

ionic liquids and Selexol. A Monte-Carlo method based on the Cauchy-Crofton formula from integral geometry 

was presented in [49] to compute hypersurface areas of n-ellipsoids. Monte-Carlo simulation techniques were 

discussed in [50]. It includes the methods such as direct inversion, rejection method, and Markov chain Monte 
Carlo to sample a probability distribution function. In addition, it also contains the methods for variance reduction 

to evaluate numerical integrals using the Monte Carlo simulation. Grid-free Monte Carlo methods were used in 

[51] to solve core problems in PDE-based geometry processing efficiently and reliably. A Monte Carlo simulation 

model was developed in [52] to represent the COVID-19 spread dynamics. The Behler-Parrinello neural networks 

was introduced in [53] as an effective Hamiltonian used in the self-learning Monte Carlo method. Monte-Carlo 

methods were applied to modelling important probabilistic influences on motorsport races in [54]. Monte-Carlo 

simulation will be introduced in this paper for global optimization of stiffener distributions.  

The remaining parts of this paper are organized below. An algorithm overview is given in Section 3. The finite 

element formulation is presented in Section 4. The stiffener distribution is examined in Section 5. The size 

optimization of stiffeners is investigated in Section 6. Monte-Carlo simulation is carried out in Section 7. 

Experiments and results are given in Section 8. And Conclusion and future work are presented in Section 9.   

 
3   Algorithm overview  

  

Our proposed algorithm consists of three parts: stiffener distribution, size optimization of stiffeners, and 

Monte-Carlo simulation. Since stiffener distribution is based on random seed generation of Voronoi diagram 

guided by the calculated stress field, the obtained stiffener distribution and subsequent size optimization may not 

give a gobal optimum. In order to tackle this problem, Monte-Carlo simulation is introduced. 

As shown in Fig. 1, the algorithm starts from the first iteration of Monte-Carlo simulation. The finite element 

calculation of the thin-shell object to be stiffened is conducted to find the stress field in the object (Fig. 1(a)). 

According to the obtained stress field, Voronoi diagram seeds are randomly dispersed in the high stress regions 

(Fig. 1(b)). We define high stress regions as those with 𝑠𝑖 > 𝑝∗𝜎𝑠 . Here,  𝑠𝑖 is the stress in the 𝑖𝑡ℎ triangle of the 

model to be 3D printed, 𝑝∗ is the probability threshold, and 𝜎𝑠 is the material strength. They are elaborated in 

Subsection 5.1. The surface of the object is represented with a triangle mesh. The generated seeds are mapped to 
a 2D parametric domain. And a Voronoi diagram is created from the generated seeds, which have been mapped 

to the 2D parametric domain (Fig. 1(c)). Then, the intersecting points between the edges of Voronoi diagram and 

the edges of triangles of the object are found and mapped back to the 3D surface to determine the stiffener 

distribution (Fig. 1(d)). After that, the finite element optimization is carried out to find the optimal cross-section 

sizes of stiffeners. By doing so, the total volume of all stiffeners is minimized, and strength requirements of both 

thin shell and stiffeners are satisfied (Fig. 1(c)). Next, the algorithm checks whether all the iterations of Monte-

Carlo simulation have been completed. If yes, the algorithm stops. Otherwise, next iteration of Monte-Carlo 

simulation begins. 

                

Monte-Carlo (MC) simulation starts 

 
(a) Stress calculation 

of thin-shell objects 

 

 
(b) Voronoi diagram 

seed generation 

 

 
(c) Voronoi diagram 

creation 
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Fig. 1. Algorithm overview. 

 

4.   Finite element formulation 

 

Since 3D printed objects may have both curved surfaces and flat surfaces, we follow the method given in [8] 
by Zienkiewicz and Taylor, which treats curved shells as an assembly of flat elements called flat shell elements. 

Such a treatment makes the method applicable to both flat plates and curved shells. The stiffeners are treated as 

beam elements. In order to ensure the stiffeners and shells to have the same deformations at their junctions, the 

same displacement functions are used for both flat shell elements and beam elements. The flat shell elements are 

divided into two types: Allman’s plane stress triangle, which tackles in-plane deformations, and Discrete Kirchhoff 

triangle (DKT), which deals with lateral bending deformations. Beam elements can be placed anywhere within a 

shell element with arbitrary orientations. The von Karman’s large deflection theory is used to address the large 

deflection problem, and geometric nonlinearity is solved with an iterative solution procedure. For the sake of 

completeness, we introduce this finite element analysis in the subsections below. 

 

4.1 Kinematic equations 

 

A typical flat shell element subjected to in-plane and lateral forces will have in-plane and bending deformations. 

Here “in-plane” means that the forces and deformations are in the plane of the flat shell element, and lateral forces 

and bending deformations are perpendicular to the plane.  

We introduce the kinematics equations described in [55] by Neuyen-Van et al. and [13] by Cui et al. A local 

coordinate system 𝑥, 𝑦 and 𝑧 is used to indicate the directions of length, width, and thickness of a flat shell element, 
respectively. According to the first-order shear deformation theory (FSDT), shell kinematics is governed by mid-

plane displacements 𝑢0 𝑣0 𝑤0  and rotations 𝜃𝑥  and 𝜃𝑦 . Since the middle plane is parallel to the 𝑥 − 𝑦 

coordinate plane, all displacements and rotations at any points in the mid-plane are the functions of 𝑥 and 𝑦 only, 

i. e., 𝒖0(𝑥, 𝑦) = [𝑢0(𝑥, 𝑦) 𝑣0(𝑥, 𝑦) 𝑤0(𝑥, 𝑦)]𝑇, 𝜃𝑥 = 𝜃𝑥(𝑥, 𝑦) and 𝜃𝑦 = 𝜃𝑦(𝑥, 𝑦). The displacements at other 

points of the flat shell element are the functions of 𝑥 , 𝑦  and 𝑧 , i. e., 𝒖(𝑥, 𝑦, 𝑧) =
[𝑢(𝑥, 𝑦, 𝑧) 𝑣(𝑥, 𝑦, 𝑧) 𝑤(𝑥, 𝑦, 𝑧)]𝑇 , which can be expressed as 

𝒖(𝑥, 𝑦, 𝑧) = {

𝑢0(𝑥, 𝑦) + 𝑧𝜃𝑥(𝑥, 𝑦)
𝑣0(𝑥, 𝑦) + 𝑧𝜃𝑦(𝑥, 𝑦)

𝑤0(𝑥, 𝑦)

}                                  (1) 

where 𝑢0(𝑥, 𝑦), 𝑣0(𝑥, 𝑦) and 𝑤0(𝑥, 𝑦) are the displacements in the mid-plane of the flat shell element in the 𝑥 and 

𝑦 directions, and 𝜃𝑥 and 𝜃𝑦 are the rotations about the 𝑦 and 𝑥 axes, respectively.  

Considering the von Kármán’s large deflection assumption, the strains 𝜺 = [𝜀𝑥 𝜀𝑦 𝜀𝑥𝑦 𝜀𝑥𝑧 𝜀𝑦𝑧]𝑇 

determined by the displacements (1) can be written as 

𝜺 = [𝑢,𝑥 + 0.5𝑤,𝑥
2 𝑣,𝑦 + 0.5𝑤,𝑦

2 𝑢,𝑦 + 𝑣,𝑥 + 𝑤,𝑥𝑤,𝑦 𝜃𝑥 − 𝑤,𝑥 𝜃𝑦 − 𝑤,𝑦]
𝑇
                        (2) 

where (),𝑥 = 𝜕() 𝜕𝑥⁄  and (),𝑦 = 𝜕() 𝜕𝑦⁄ . 

Introducing Equation (1) into (2), the strains are changed into the following form 

𝜺 = [𝑢0,𝑥 + 𝑧𝜃𝑥,𝑥 + 0.5𝑤,𝑥
2 𝑣0,𝑦 + 𝑧𝜃𝑦,𝑦 + 0.5𝑤,𝑦

2  
𝑢0,𝑦 + 𝑣0,𝑥 + 𝑧𝜃𝑥,𝑦 + 𝑧𝜃𝑦,𝑥 + 𝑤,𝑥𝑤,𝑦 𝜃𝑥 − 𝑤,𝑥 𝜃𝑦 − 𝑤,𝑦]𝑇                             (3) 

The strains 𝜺 can be divided into membrane strains 𝜺𝑚, bending strains 𝜺𝑏  and shear strains 𝜺𝑠. The membrane 

strains contain both linear and nonlinear parts. If we use 𝜺𝑚
𝐿  to indicate the linear part, and 𝜺𝑚

𝑁𝐿 to denote the 

nonlinear part, the membrane strains 𝜺𝑚 can be written as 

𝜺𝑚 = 𝜺𝑚
𝐿 + 𝜺𝑚

𝑁𝐿                                                                   (4) 

where 

                                                                  𝜺𝑚
𝐿 = [𝑢0,𝑥 𝑣0,𝑦 𝑢0,𝑦 + 𝑣0,𝑥]𝑇 

𝜺𝑚
𝑁𝐿 = [0.5𝑤,𝑥

2 0.5𝑤,𝑦
2 𝑤,𝑥𝑤,𝑦]

𝑇
= 0.5𝑯𝜽                                       (5) 

Comparing equations (3) and (5), the matrix 𝑯 and the vector 𝜽 are found to be 

      𝑯 = [
𝑤,𝑥 0 𝑤,𝑦

0 𝑤,𝑦 𝑤,𝑥
]

𝑇

 

 𝜽 = [𝑤,𝑥 𝑤,𝑦]𝑇                                                                          (6) 

The bending strains 𝜺𝑏  and shear strains 𝜺𝑠 are determined by the following equations 

                                                                     𝜺𝑏 = [𝜃𝑥,𝑥 𝜃𝑦,𝑦 𝜃𝑥,𝑦 + 𝜃𝑦,𝑥]𝑇 

  𝜺𝑠 = [𝜃𝑥 − 𝑤,𝑥 𝜃𝑦 − 𝑤,𝑦]𝑇              (7) 

Comparing Equation (6) with (5) and (7), the strains 𝜺 are changed into 

𝜺 = [𝜺𝑚
𝐿 + 𝜺𝑚

𝑁𝐿 + 𝑧𝜺𝑏 𝜺𝑠]𝑇                                                   (8) 
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If we define a generalized strain vector �̄� = [𝜺𝑚 𝜺𝑏 𝜺𝑠]𝑇 and a generalized stress vector �̄� =
[𝑵 𝑴 𝑸]𝑇 with in-plane forces 𝑵 = [𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦]𝑇  , in-plane bending moments 𝑴 =
[𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦]𝑇and in-plane shear forces 𝑸 = [𝑄𝑥 𝑄𝑦]𝑇, the constitutive relationship can be formulated as 

�̄� = �̄��̄�                                                                            (9) 

The stiffness matrix �̄� in the above equation consists of the extensional stiffness �̄�𝑚 , the bending stiffness 

�̄�𝑏, and the transverse shear stiffness �̄�𝑠, i. e.,  

�̄� = [

�̄�𝑚 0 0

0 �̄�𝑏 0

0 0 �̄�𝑠

]                                         (10) 

The extensional stiffness �̄�𝑚 , the bending stiffness �̄�𝑏 and the transverse shear stiffness are determined by 

                                                                                  �̄�𝑚 =
𝐸ℎ

(1−𝜈2)
[
1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈) 2⁄

] 

                                                                                  �̄�𝑏 =
ℎ2

12
�̄�𝑚 

�̄�𝑠 =
𝜅𝐸ℎ

2(1+𝜈)
𝑰2                                                                 (11) 

where ℎ , shown in Fig. 2(b), is the thickness of the flat shell element, 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, 

𝜅 is the shear correction factor [14], and 𝑰2 is a 2 × 2 identity matrix. 

 

4.2 Formulation of flat shell elements 

 

In order to carry out the finite element analysis, we first discretize a 3D model into 𝑛𝑒 flat shell finite elements 

and define generalized displacements �̄� = [𝑢 𝑣 𝑤 𝜃𝑥 𝜃𝑦]𝑇 . If each element has 𝑛𝑝  nodes, the nodal 

displacements 𝒒𝑛  at the node 𝑛  are 𝒒𝑛 = [𝑢𝑛 𝑣𝑛 𝑤𝑛 𝜃𝑥𝑛 𝜃𝑦𝑛]𝑇 = [𝒒𝑚𝑛 𝒒𝑏𝑛]𝑇  where   𝒒𝑚𝑛 =
[𝑢𝑛 𝑣𝑛]𝑇 and   𝒒𝑏𝑛 = [𝑤𝑛 𝜃𝑥𝑛 𝜃𝑦𝑛]𝑇. The displacements at any point of the element are connected to the 

nodal displacements by 

 �̄� = ∑ 𝑵𝑛
𝑛𝑝

𝑛=1 𝒒𝑛 = ∑ 𝑁𝑛
𝑛𝑝

𝑛=1 𝑰5𝒒𝑛                                     (12) 

where 𝑵𝑛 is the matrix of shape functions 𝑁𝑛, and 𝑰5 is a 5 × 5 identity matrix.  

Substituting the above equation into Equations (5) and (7), the following strain-displacement equations are 

obtained 

                                                                            𝜺𝑚
𝐿 = ∑ 𝑩𝑚𝑛

𝐿𝑛𝑝

𝑛=1 𝒒𝑚𝑛    

                                                                            𝛆𝑏 = ∑ 𝑩𝑏𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛       

                                                                            𝛆𝑠 = ∑ 𝑩𝑠𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛  

𝜺𝑚
𝑁𝐿 = 0.5 ∑ 𝑩𝑚𝑛

𝑁𝐿𝑛𝑝

𝑛=1 𝒒𝑏𝑛 = 0.5 ∑ 𝑯𝑮𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛                        (13) 

where 

                                                                            𝑩𝑚𝑛
𝐿 = [

𝑵𝑛,𝑥 0 𝑵𝑛,𝑦

0 𝑵𝑛,𝑦 𝑵𝑛,𝑥
]

𝑇

      

                                                                            𝐆𝑛 = [
𝑵𝑛,𝑥 0 0

𝑵𝑛,𝑦 0 0
] 

                                                                            𝑩𝑏𝑛 = [

0 𝑵𝑛,𝑥 0

0 0 𝑵𝑛,𝑦

0 𝑵𝑛,𝑦 𝑵𝑛,𝑥

]              

𝐁𝑠𝑛 = [
−𝑵𝑛,𝑥 𝑵𝑛 0

−𝑵𝑛,𝑦 0 𝑵𝑛
]                                                        (14) 

We put the nodal displacements 𝒒𝑛  for all nodes in a vector, i. e., 𝒒 = [⋯ 𝒒𝑛 ⋯]𝑇 . Accordingly, the 

matrices in equations (13) and (14) are written as 𝑩𝑚
𝐿 = [⋯ 𝑩𝑚𝑛

𝐿 ⋯]𝑇 , 𝑩𝑚
𝑁𝐿 = [⋯ 𝑩𝑚𝑛

𝑁𝐿 ⋯]𝑇 , 𝑮 =
[⋯ 𝑮𝑛 ⋯]𝑇, 𝑩𝑏 = [⋯ 𝑩𝑏𝑛 ⋯]𝑇, and 𝑩𝑠 = [⋯ 𝑩𝑠𝑛 ⋯]𝑇.  

The finite element equations are derived from the weak form, i. e., the principle of virtual work. This principle 

states that the internal virtual work is equal to the external virtual work. With reference to the undeformed shell 
configuration in the total Lagrangian description, the principle of virtual work can be written as [55] 

𝛱 = ∫ (𝑵𝑇𝛿𝜺𝑚 + 𝑴𝑇𝛿𝜺𝑏 + 𝑸𝑇𝛿𝜺𝑠)
𝑉

𝑑𝑉 − 𝒇𝑇𝛿𝒒                                          (15) 

where 𝛱 is the total potential energy in the domain, ∫ (𝑵𝑇𝛿𝜺𝑚 + 𝑴𝑇𝛿𝜺𝑏 + 𝑸𝑇𝛿𝜺𝑠)
𝑉

𝑑𝑉 is the internal virtual work, 

𝒇𝑇𝛿𝒒 is the external virtual work, and 𝒇𝑇 is the nodal forces. 

In order to calculate the total potential energy, we must first calculate the variations of strain components. This 

can be obtained below from Equations (4) and (13) 

                                                                                𝛿𝜺𝑚 = 𝛿(𝜺𝑚
𝐿 + 𝜺𝑚

𝑁𝐿) = (𝑩𝑚
𝐿 + 𝑩𝑚

𝑁𝐿)𝛿𝒒    
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𝛿𝜺𝑏 = 𝑩𝑏𝛿𝒒 

𝛿𝜺𝑠 = 𝑩𝑠𝛿𝒒                                                                          (16) 

Substituting Equation (16) into (15), the equation for the principle of virtual work becomes 

𝛱 = ∫ [(𝑵𝑇(𝑩𝑚
𝐿 + 𝑩𝑚

𝑁𝐿) + 𝑴𝑇𝑩𝑏 + 𝑸𝑇𝑩𝑠)𝑑𝑉 − 𝒇𝑇]
𝑉

𝛿𝒒                                     (17) 

Equation (17) defines a geometric nonlinearity problem, which can be solved with a Newton-Raphson iteration 
procedure. To do this, Equation (17) is first linearized through 

𝛿𝛱 = 𝛿𝒒{∫ [(𝑩𝑚
𝐿 + 𝑩𝑚

𝑁𝐿)𝑇𝛿𝑵 + (𝛿𝑩𝑚
𝑁𝐿)𝑇𝑵

𝑉
+𝑩𝑏

𝑇𝛿𝑴 + 𝑩𝑠
𝑇𝛿𝑸]𝑑𝑉 − 𝒇𝑇} = 0            (18) 

The increments of the in-plane forces, in-plane bending moments, and in-plane shear forces 𝛿𝑵, 𝛿𝑴 and 𝛿𝑸 

can be obtained from Equations (9), (10) and (11) 

                                                                             𝛿𝑵 = �̄�𝑚(𝑩𝑚
𝐿 + 𝑩𝑚

𝑁𝐿)𝛿𝒒 
                                                                             𝛿𝑴 = �̄�𝑏𝑩𝑏𝛿𝒒 

𝛿𝑸 = �̄�𝑠𝑩𝑠𝛿𝒒                                                         (19) 

The integrand in the term ∫ (𝛿𝑩𝑚
𝑁𝐿)𝑇𝑵𝑑𝑉

𝑉
 can be calculated below by considering Equations (5) and (6) 

 (𝛿𝑩𝑚
𝑁𝐿)𝑇𝑵 = 𝑮𝑇𝛿𝑯𝑇𝑵 = 𝑮𝑇𝑩𝑔𝑮                                         (20) 

where  

𝑩𝑔 = [
𝑁𝑥 𝑁𝑥𝑦

𝑁𝑥𝑦 𝑁𝑦
]                                         (21) 

Substituting Equations (19) and (21) into equation (18), the integration of equation (18) leads to a tangent 

stiffness matrix below 

𝑲 = 𝑲𝐿 + 𝑲𝑁𝐿 + 𝑲𝐺                                          (22) 

where 𝑲𝐿 is the linear stiffness matrix, 𝑲𝑁𝐿 is the nonlinear stiffness matrix, and 𝑲𝐺 is the geometric stiffness 

matrix. 

If the transformation matrix from the local coordinate of a flat shell element to the global coordinate is 𝑻, the 

three stiffness matrices 𝑲𝐿, 𝑲𝑁𝐿, and 𝑲𝐺 are determined with the following equations [10] 

                                                            𝑲𝐿 = ∫ 𝑻𝑇(𝑩𝑚
𝐿

𝑉
)𝑇𝑫𝑚𝑩𝑚

𝐿 𝑻𝑑𝑉 

          𝑲𝑁𝐿 = ∫ 𝑻𝑇[(𝑩𝑚
𝐿

𝑉
)𝑇𝑫𝑚𝑩𝑚

𝑁𝐿 + (𝑩𝑚
𝑁𝐿)𝑇𝑫𝑚𝑩𝑚

𝐿 + (𝑩𝑚
𝑁𝐿)𝑇𝐃𝑚𝑩𝑚

𝑁𝐿 + 𝑩𝑏
𝑇�̄�𝑏𝑩𝑏 + 𝑩𝑠

𝑇�̄�𝑠𝑩𝑠]𝑻𝑑𝑉 

𝑲𝐺 = ∫ 𝑻𝑇𝑮
𝑉

𝑇
𝑩𝑔𝑮𝑻𝑑𝑉                                                                           (23) 

 

4.3 Formulation of stiffener elements 

 

In order to consider the contribution of stiffeners to the shell, we present the finite element equations of 

stiffeners in this subsection.  

As discussed in [12], the displacement field of the stiffener in the skew axes system 𝜉 and 𝜂  shown in Fig. 

2(a) is defined by three translations and two rotations, i. e.,  

�̄�𝑠 = [𝑢𝑠 𝑣𝑠 𝑤𝑠 𝜃𝜉
𝑠 𝜃𝜂

𝑠]
𝑇
                                               (24) 

Taking the middle plane of the shell as a reference plane for the analysis of stiffeners, the relationship between 

the local coordinates   and   of stiffeners is connected to the local coordinates x  and y  of the flat shell element 

through 

                                                                𝜉 = (𝑥 − 𝑥0) 𝑐𝑜𝑠 𝜑 + (𝑦 − 𝑦0) 𝑠𝑖𝑛 𝜑 

𝜂 = −(𝑥 − 𝑥0) 𝑠𝑖𝑛 𝜑 + (𝑦 − 𝑦0) 𝑐𝑜𝑠 𝜑                                               (25) 

                                      

 
                                      (a)                                                                                 (b) 

Fig. 2: Stiffener: (a) local coordinate system, (b) reference axis of the stiffener. 
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Solving equations (25) for 𝑥 and 𝑦, the following equations are obtained 

  𝑥 = 𝑥0 + 𝜉 𝑐𝑜𝑠 𝜑 − 𝜂 𝑠𝑖𝑛 𝜑 

𝑦 = 𝑦0 + 𝜉 𝑠𝑖𝑛 𝜑 − 𝜂 𝑐𝑜𝑠 𝜑                                                       (26) 

The deformation compatibility between the flat shell elements and stiffener elements requires the stiffeners to 

have the same displacements as the flat shell elements. This can be guaranteed by taking the shape functions of 

stiffener elements to be the same as those of flat shell elements, which leads to the following relationship between 

the local displacements of stiffeners and local displacements of flat shell elements 

𝑢𝑠 = 𝑢 𝑐𝑜𝑠 𝜑 + 𝑣 𝑠𝑖𝑛 𝜑 

                                                                       𝑣𝑠 = −𝑢 𝑠𝑖𝑛 𝜑 + 𝑣 𝑐𝑜𝑠 𝜑           
                                                                       𝑤𝑠 = 𝑤  
                                                                       𝜃𝜉

𝑠 = 𝜃𝑥 𝑐𝑜𝑠 𝜑 + 𝜃𝑦 𝑠𝑖𝑛 𝜑   

  𝜃𝜂
𝑠 = −𝜃𝑥 𝑠𝑖𝑛 𝜑 + 𝜃𝑦 𝑐𝑜𝑠 𝜑                                                           (27) 

where 𝑢, 𝑣, 𝑤 are displacements in the middle plane of the flat shell elements, and 𝜃𝑥 and 𝜃𝑦 of the flat shell 

elements are the rotations around the 𝑥 and 𝑦 axes, respectively.  

The strains 𝜺𝑠 in stiffeners can be divided into linear strains 𝜺𝑠
𝐿 and nonlinear strains 𝜺𝑠

𝑁𝐿, i. e.,  

𝜺𝑠 = 𝜺𝑠
𝐿 + 𝜺𝑠

𝑁𝐿                                                                      (28) 

where  

                                                                       𝜺𝑠
𝐿 = [𝑢,𝜉

𝑠 𝜃𝜉,𝜉
𝑠 𝜃𝜉

𝑠 − 𝑤,𝜉
𝑠 𝜃𝜂,𝜉

𝑠 ]
𝑇

 

 

𝜺𝑠
𝑁𝐿 = 0.5 [(𝑤,𝜉

𝑠 )
2

0 0 0]
𝑇

                                                  (29) 

Substituting Equation (27) into the first one of Equation (29) and following the derivation given in [11], the 

linear strains in the stiffeners are determined by 

𝜺𝑠
𝐿 = 𝑻𝑠𝜺𝑝                                                   (30) 

where 𝑻𝑠 is the transformation matrix for the stiffeners, which correlates the strains in the local coordinate of 

stiffeners to the local coordinate of flat shell elements, and  𝜺𝑝 is the strains in the mid-plane of flat shell elements, 

which are  

 𝜺𝑝 = [𝜺𝑚
𝐿 �̄�𝑏 𝜺𝑠]𝑇                                                     (31) 

In the above equations, 𝜺𝑚
𝐿  and 𝜺𝑠 are determined by equations (5) and (7). �̄�𝑏 is similar to 𝜺𝑏 in equation (7), 

but the last element in the vector has been written in the two elements, i. e.,  

�̄�𝑏 = [𝜃𝑥,𝑥 𝜃𝑦,𝑦 𝜃𝑥,𝑦 𝜃𝑦,𝑥]𝑇                                            (32) 

Since 𝜺𝑏 is changed into �̄�𝑏, the matrix 𝑩𝑏𝑛  is accordingly changed into �̄�𝑏𝑛 below 

�̄�𝑏𝑛 = [

0 0 0 0
𝑵𝑛,𝑥 0 𝑵𝑛,𝑦 0

0 𝑵𝑛,𝑦 0 𝑵𝑛,𝑥

]

𝑇

                                              (33) 

According to [9], the transformation matrix 𝑻𝑠 has the form of 

𝑻𝑠 = [𝑇1 𝑇2 𝑇3 𝑇4]𝑇                                                     (34) 

where the vectors 𝑇1, 𝑇2 , 𝑇3  and 𝑇4 are determined by the following equations 

                                             𝑇1 = [𝑐𝑜𝑠2 𝜑 𝑠𝑖𝑛2 𝜑 0.5 𝑠𝑖𝑛 2 𝜑 0 0 0 0 0 0] 
                                             𝑇2 = [0 0 0 𝑐𝑜𝑠2 𝜑 𝑠𝑖𝑛2 𝜑       0.5 𝑠𝑖𝑛 2 𝜑 0.5 𝑠𝑖𝑛 2 𝜑 0 0] 
                                             𝑇3 = [0 0 0 0 0 0 0 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜑] 

𝑇4 = [0 0 0 −0.5 𝑠𝑖𝑛 2 𝜑 0.5 𝑠𝑖𝑛 2 𝜑   𝑐𝑜𝑠2 𝜑 𝑠𝑖𝑛2 𝜑 0 0]                 (35) 

Introducing Equation (13) into (30), the strains in stiffeners are related to nodal displacements of flat shell 

elements by 

𝜺𝑠
𝐿 = [∑ 𝑻𝑠𝑩𝑚𝑛

𝐿𝑛𝑝

𝑛=1 𝒒𝑚𝑛 ∑ 𝑻𝑠�̄�𝑏𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛 ∑ 𝑻𝑠𝑩𝑠𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛]
𝑇

                           

(36) 

Using 𝑁𝑠 , 𝑀𝑠 , 𝑄𝑠  and 𝑇𝑠  to indicate the axial force, bending moment, shear force, and torsion moment, 

respectively, the generalized stresses �̄�𝑠 in stiffeners can be calculated from the strains in stiffeners through 

�̄�𝑠 = [𝑁𝑠 𝑀𝑠 𝑄𝑠 𝑇𝑠]𝑇 = �̄�𝑠�̄�𝑠
𝐿                                                   (37) 

In the above equation, �̄�𝑠 is the elasticity matrix of the stiffeners, which can be written as 

�̄�𝑠 = [�̄�1
𝑠 �̄�2

𝑠 �̄�3
𝑠 �̄�4

𝑠 ]𝑇                                                        (38) 

The elements �̄�1
𝑠, �̄�2

𝑠, �̄�3
𝑠 and �̄�4

𝑠 of the elasticity matrix �̄�𝑠 are calculated by 

                                                                          �̄�1
𝑠 = [𝐸𝑠𝐴𝑠 𝐸𝑠𝑆𝑠 0 0] 

                                                                          �̄�2
𝑠 = [𝐸𝑠𝑆𝑠 𝐸𝑠𝐼𝑠 0 0] 

                                                                          �̄�3
𝑠 = [0 0 𝑆𝑠 0] 

�̄�4
𝑠 = [0 0 0 𝐺𝑠𝐽𝑠]                                                          (39) 

where 𝐸𝑠 is Young’s modulus of the stiffener, 𝐴𝑠 is the cross-sectional area of the stiffener, 𝑆𝑠 is the first moment 

of the stiffener cross-sectional area about the reference axis, i. e., the mid-plane of the flat sheet element, 𝐼𝑠 is the 
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second moment of the stiffener cross-sectional area about the reference axis, 𝐺𝑠 is the modulus of rigidity, and 𝐽𝑠 

is the polar moment of inertia of the stiffener cross-sectional area.  

Using the same method as that for the flat shell element, and considering the transformation matrix 𝑻
 
from the 

local coordinate of a flat shell element to the global coordinate, the stiffness matrix of stiffeners from the strains 
defined by the first of Equation (29) can be obtained as 

 𝑲𝑠 = ∫ 𝑻𝑇𝑩𝑠
𝑇

𝐿𝑠
(𝑻𝑠)𝑇𝑫𝑠𝑻𝑠𝑩𝑠𝑻𝑑𝜉                                                  (40) 

Taking advantage of the chain rule 𝑤,𝜉
𝑠 = 𝑤,𝑥

𝑠 𝑥,𝜉 + 𝑤,𝑦
𝑠 𝑦,𝜉, the second of Equation (29) becomes 

𝜺𝑠
𝑁𝐿 = 0.5𝑨𝑠𝑹𝑠                                                                 (41) 

where  

𝑹𝑠 = ∑ 𝑮𝑛
𝑠𝑛𝑝

𝑛=1 𝒒𝑛                                                               (42) 

and 

𝑮𝑛
𝑠 = [0 0 0 𝑁𝑛 𝑐𝑜𝑠 𝜑 𝑁𝑛 𝑠𝑖𝑛 𝜑]                                         (43) 

With the similar treatment to that for flat shell elements and considering the transformation matrix 𝑻
 
from the 

local coordinate of a flat shell element to the global coordinate, the stiffness matrix of stiffeners from the nonlinear 

strain has the form of 

𝑲𝑠 = ∫ 𝑻𝑇𝑮𝑠
𝑇

𝐿𝑠
𝑫𝑠𝑁𝑮𝑠𝑻𝑑𝜉                                                     (44) 

where the matrix 𝑮𝑠 is obtained by assembling the vector 𝑮𝑛
𝑠 . 

After adding the stiffness matrices (40) and (43) of stiffeners to the stiffness matrix (22), we reach the following 

equation  

𝑲𝒒 = 𝒇                                                                    (45) 

 We solve the above equation to obtain all the nodal placements and determine deformations and stresses in the 

shell. Then we use the relationships between the nodal displacements of stiffeners and the displacements of the 

shell to calculate the deformations and stresses in the stiffeners.  

 

5.   Determination of stiffener distribution 

 

Determining stiffener distribution consists of 4 steps. 1) Generate seeds of Voronoi diagram. 2) Map the 3D 

surface of an object and generated seeds to a 2D parametric domain. 3) Create Voronoi diagram in the mapped 

2D parametric domain. 4) Obtain stiffener distribution from the created Voronoi diagram and map the extracted 

stiffeners from the 2D parametric domain to the 3D surface. 

 

5.1   Seed generation of Voronoi diagram 

 
In order to stiffen a thin-shell object optimally, we first specify the total iterations of Monte-Carlo simulation. 

Then, the finite element analysis is used to determine the stress field of the object subjected to given external 

forces and boundary conditions. Clearly, the regions with high stress should be stiffened with more stiffeners. To 

this aim, a given number of seeds used to create Voronoi diagram are distributed on the object through a probability 

that places more seeds in the areas with a higher stress.  

We use 𝑛𝑡 to stand for the number of triangles of the object mesh, 𝑠𝑖 for the stress of a randomly selected 

triangle 𝑡𝑖, 𝜎𝑠 for the material strength, 𝑛𝑠 for the number of expected seeds, and 𝑝∗ for the probability threshold. 

We also use 𝑠𝑖 ∕ 𝜎𝑠 to calculate the ratio of the stress 𝑠𝑖 in the 𝑖𝑡ℎ triangle over the material strength 𝜎𝑠. Since 

bigger is the ratio 𝑠𝑖 ∕ 𝜎𝑠, higher is the stress in the triangle. Therefore, we use the ratio 𝑠𝑖 ∕ 𝜎𝑠 together with the 

probability threshold 𝑝∗ to determine whether a Voronoi diagram seed is valid or not.     

First, the number 𝑛𝑠 of the expected seeds used to create a Voronoi diagram is specified. Next, a triangle 𝑡𝑖 is 

randomly selected from the total 𝑛𝑡 triangles of the object. And finally, a probability 𝑝 is randomly generated 

between 0 and 1. If the randomly generated probability 𝑝 is bigger than the probability threshold 𝑝∗ but smaller 

than the ratio 𝑠𝑖 ∕ 𝜎𝑠, the triangle is seeded and marked. After the randomly selected triangle 𝑡𝑖 has been seeded 

and marked, a new triangle is randomly selected and a new probability 𝑝 is randomly generated between 0 and 1. 

The condition 𝑝∗ < 𝑝 < 𝑠𝑖 ∕ 𝜎𝑠 is used to check whether the new triangle should be seeded and marked. This 

process is repeated until the number 𝑛𝑠 of the expected seeds are reached. The algorithm is shown below.  
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5.2   Mapping a 3D surface to a 2D domain 

 
After generating Voronoi diagram seeds on the 3D surface of a thin-shell object, the next step is to create a 

Voronoi diagram from these seeds and extract stiffeners from the created Voronoi diagram. However, directly 

creating a 3D Voronoi diagram from the generated seeds and extracting stiffeners from the created 3D Voronoi 

diagram on a 3D surface is more difficult than in a two-dimensional (2D) domain. In order to overcome the 

difficulty, we use the Least Squares Conformal Maps (LSCMs) [39] to map a 3D surface and the generated seeds 

to a 2D domain and create a 2D Voronoi diagram in the 2D domain.  

As adopted in [39], this paper uses normal characters to stand for scalars, bold characters for vectors, capital 

characters for complex numbers, bold capital characters for vector of complex numbers, and cursive fonts for 

maps and matrices. With these notations, 𝑥 is a scalar, 𝒙 = [𝑥, 𝑦]𝑇 is a vector, 𝑋 = 𝑥 + 𝑖𝑦 is a complex number, 

𝑿 = [𝑋, 𝑌]𝑇 is a vector whose components are complex numbers 𝑋 and 𝑌, and 𝒳 is a map or matrix. 

 
Fig. 3. Conformal mapping  from a 2D point (𝑢, 𝑣) to a surface point 𝑋(𝑢, 𝑣) [40]. 

 
In this paper, we use a conformal mapping to map a 3D surface and the generated seeds on the 3D surface to 

a 2D parametric domain. A conformal mapping, also called a conformal map, conformal transformation, angle-

preserving transformation, or biholomorphic map, is a transformation that preserves local angles. Such local angle 

preservation enables to map an elementary circle in the (𝑢, 𝑣) domain to an elementary circle on a surface. 

Therefore, a conformal mapping is also locally isotropic.  

The mapping 𝒳(𝑢, 𝑣) shown in Fig. 3 that maps a (𝑢, 𝑣) domain to a surface is conformal since the tangent 

vectors to the iso-𝑢 and iso-𝑣 curves passing through 𝒳(𝑢, 𝑣) are orthogonal and have the same norm for each 
(𝑢, 𝑣). This property can be mathematically written as 

       𝑁(𝑢, 𝑣)  ×  
𝜕𝒳(𝑢,𝑣)

𝜕𝑢
=

𝜕𝒳(𝑢,𝑣)

𝜕𝑣
                 (46) 

where 𝑁(𝑢, 𝑣) is the unit normal to the surface.  

For a thin-shell object represented with a triangle mesh consisting of 𝑛 vertices and 𝑛𝑡 triangles, we use 𝒯 to 

stand for the set of  𝑛𝑡  triangles and 𝒑𝒋 {1 ≤ 𝑗 ≤ 𝑛} to denote the geometric location at vertex 𝑗 of 𝑛 vertices. For 

each of the 𝑛𝑡  triangles, a local orthonormal basis is provided. The 𝑧-axis of the local orthonormal basis is in the 

normal direction of the triangle. And the coordinates of the three vertices of the triangle in its local orthonormal 

basis are (𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥3, 𝑦3). If two triangles share a edge, the local bases of two triangles are 

consistently oriented.      

In the local orthonormal basis of triangle T with an area of 𝐴𝑇, the map 𝒳: (u,v) → (𝑥, 𝑦) can be written a 

complex function 𝒳 = x(u, v) + iy(u, v) where the symbol i is an imaginary number. We use 𝒰 to indicate the 

inverse map of 𝒳.  Similarly, the inverse map 𝒰: (x, y) → (u, v) can also be written a complex function 𝒰 = u(x, 

y) + iv(x, y).  In the local orthonormal basis, Eq. (46) becomes 
𝜕𝒳

𝜕𝑢
− 𝑖

𝜕𝒳

𝜕𝑣
= 0                                  (47) 

https://mathworld.wolfram.com/Transformation.html
https://mathworld.wolfram.com/Angle.html
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According to the theorem on the derivatives of inverse functions, we obtain 

             
𝜕𝒰

𝜕𝑥
+ 𝑖

𝜕𝒰

𝜕𝑦
= 0                                   (48) 

In general, Eq. (48) cannot be strictly enforced. The violation of the conformality condition can be minimized 

in the least squares sense, which defines the following criterion 𝐶(𝑇): 

𝐶(𝑇) = ∫ |
𝜕𝒰

𝜕𝑥
+ 𝑖

𝜕𝒰

𝜕𝑦
|

2

T
𝑑𝐴 = |

𝜕𝒰

𝜕𝑥
+ 𝑖

𝜕𝒰

𝜕𝑦
|

2

𝐴𝑇                                   (49) 

Summing over all the 𝑛𝑡  triangles of the triangle mesh, the criterion to minimize the violation of the 

conformality condition can be written as 

              𝐶(𝒯) =   ∑ 𝐶(𝑇)𝑇∈𝒯                         (50) 

With the Least Squares Conformal Maps, the 3D surface of a thin-shell object to be stiffened and the generated 

seeds on the 3D surface are mapped to a 2D parametric domain.  

 

5.3   Creating Voronoi diagram 

 

Voronoi diagrams have widespread practical and theoretical applications in many fields. They are mainly 
applied in science and technology, but also in visual art  including computational geometry, city planning, 

computer graphics, epidemiology, geophysics, and meteorology etc. Some application examples are: data 

compression in image processing, nearest neighbor queries for data structure problems in computational geometry, 

optimal quadrature rules, computational morphology such as modelling how fire spreads and crystals grow, 

optimal placement of resources, business applications such as determining where to locate a store so it is no closer 

to any existing store of its kind, finite difference schemes with optimal truncation errors, cell division, territorial 

behavior of animals, optimal representation, quantization and clustering, and applications of centroidal Voronoi 

tessellations in non-Euclidean metrics.  

A Voronoi diagram is also called a Voronoi tessellation, a Voronoi decomposition, a Voronoi partition, or 

a Dirichlet tessellation. It is a partition of a plane into regions close to each of a given set of seeds (points, usually 

called sites). As shown in Fig. 4 below, if we are given a finite set of sites, i. e., points 𝑷 = {𝒑1, 𝒑2, 𝒑3, … , 𝒑𝑀}, 
the Voronoi diagram of 𝑷 is the subdivision of the plane into 𝑀 Voronoi cells 𝑹𝑖 = 𝑹(𝒑𝑖) (𝑖=1, 2, 3,…, 𝑀) so 

that any point 𝒑 lies in the cell 𝑹(𝒔𝑖) if ‖𝒑 − 𝒑𝑖‖ < ‖𝒑 − 𝒑𝑗‖ for each 𝒑𝑗 ∈ 𝑷 when 𝑖 ≠ 𝑗.  

 
Fig. 4. Voronoi diagram.  

  

With the seed generation algorithm described in Subsection 5.1, the seeds on the 3D mesh have been generated 

and shown in Fig. 8(a). These seeds are mapped to a 2D space with the mapping algorithm discussed in Subsection 

5.2. The remaining problem is how to generate a Voronoi diagram from these seeds. 
There are several different algorithms of generating Voronoi diagrams. The half plane intersection algorithm 

treats the edges of the Voronoi diagram as the segments taken from the perpendicular bisectors of the lines between 

the sites. These segments can be regarded as intersections of perpendicular bisectors, which divide the plane in 

half. The running time of the half plane intersection algorithm is O(𝑛2 log 𝑛). Fortune’s algorithm constructs a 

Voronoi diagram as a horizontal line or vertical line sweeping the set of sites. The running time of Fortune’s 

algorithm is O(𝑛 log 𝑛) . Bowyer-Watson algorithm treats a Voronoi diagram as a dual graph of Delaunay 

triangulation. It generates a Voronoi diagram by connecting the centres of all the circumcircles of Delaunay 

triangulation. The running time of Bowyer-Watson algorithm is O(𝑛 log 𝑛) to O(𝑛2). In this paper, we generate 

Voronoi diagrams by using Fortune’s algorithm to sweep a horizontal line from top to bottom as discussed below. 

Fortune’s algorithm consists of two steps. The first step is to simulate the growth of the beach line as the sweep 

line moves downwards, and the second step is to trace the paths of the breakpoints as they travel along the edges 

of the Voronoi diagram.  

Site 𝒑𝑖 

Cell 𝑹𝑖 
𝒑 

Site 𝒑
1
 

Site 𝒑
𝑀

 

https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Technology
https://en.wikipedia.org/wiki/Visual_art
https://en.wikipedia.org/wiki/Partition_of_a_set
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(a)                                             (b)                                                      (c) 

Fig. 5. The sweep line and beach line. 

 

As shown in Fig. 5, the horizontal sweep line divides a plane into a top halfplane and a bottom halfplane, and 

the x-monotonic blue beach line divides the top halfplane into two regions. The points in the region above the blue 

beach line are closer to some site 𝒑𝑖 above the sweep line than they are to the sweep line itself. And the points in 

the region below the beach line are closer to the sweep line than they are to any site above the sweep line. 

The points 𝒒 that are equidistant from the sweep line and the nearest site 𝒑𝑖 above the sweep line is a parabola. 

When the sweep line passes through a new site, a new parabola is generated as shown in Fig. 5(a). When the sweep 

line moves downwards further, the parabola becomes “fatter” as shown in Fig. 5(b). A beach line consists of a 

lower envelope of these parabolas, one for each site, as shown in Fig. 5(c).  

When two parabolas intersect, a breakpoint is generated. It is equidistant from two sites and the sweep line, 

and hence must lie on some Voronoi edge. For example, if two parabolas of sites 𝒑𝑖 and 𝒑𝑗 share a common 

breakpoint on the beach line, this breakpoint lies on the Voronoi edge between the sites 𝒑𝑖 and 𝒑𝑗 as shown in 

Fig. 6(a).  
When the sweep line moves downwards, two events occur: one is site events, and the other is circle events also 

called Voronoi vertex events.   

 
(a)                                                         (b)                                                (c) 

Fig. 6. Site event. 

 

A site event occurs whenever the horizontal sweep line passes over a site. Here we use the sweep line passing 

through the site 𝒑𝑖 to explain how a site event occurs. Before the sweep line touches the site 𝒑𝑖, the parabolic arc 

of the site 𝒑𝑗 has been generated, and is connected to the parabolic arc of the site 𝒑𝑘. The sweep line status can be 

described with a list <…, 𝒑𝑗, 𝒑𝑘, …> as shown in Fig. 6(a).  At the instant that the sweep line touches the site 𝒑𝑖, 

the associated parabolic arc of 𝒑𝑖  degenerates to a vertical ray shooting up from the site 𝒑𝑖 to the parabolic arc of 

the site 𝒑𝑗, and a new event 𝒑𝑖 will be added to the list <…, 𝒑𝑗, 𝒑𝑘, …>  as shown in Fig. 6(b). As the sweep line 

proceeds downwards, this ray widens into a parabolic arc along the beach line. As the sweep line sweeps on, the 

parabolic arc of the site 𝒑𝑖 grows wider. The parabolic arc of the site 𝒑𝑗 is split into two: one is on the left and the 

other is on the right of the parabolic arc of the site 𝒑𝑖, and the new event 𝒑𝑖 is added to list <…, 𝒑𝑗, 𝒑𝑘, …>  to 

change it into <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑗, 𝒑𝑘, …> as shown in Fig. 6(c).   
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(a)                                                          (b)                                                      (c) 

Fig. 7. Circle event. 

 

Circle events are generated from triples of sites. We use Fig. 7 to explain how a circle event is generated. As 

shown in Fig. 7(a), any three consecutive sites 𝒑𝑖, 𝒑𝑗, and 𝒑𝑘 define a circumcircle, and the small hollow circle is 

the lowest point of the circumcircle. The circumcircle contains no sites lying below the sweep line. When the 

sweep line is above the lowest point, the beach line contains the left parabolic arc of the site 𝒑𝑗, the parabolic arc 

of the site 𝒑𝑖, the right parabolic arc of the site 𝒑𝑗, and the parabolic arc of the site 𝒑𝑘, which can be described by 

the list <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑗, 𝒑𝑘, …>. At the instant when the sweep line falls to the lowest point, the circumcenter of 

the circumcircle is equidistant from all three sites 𝒑𝑖, 𝒑𝑗, and 𝒑𝑘 and from the sweep line. Therefore, it is a Voronoi 

vertex. Since all three parabolic arcs of the sites 𝒑𝑖, 𝒑𝑗, and 𝒑𝑘 pass through this circumcenter, the contribution of 

the parabolic arc from 𝒑𝑗 disappears from the beach line, i. e., the length of the right parabolic arc of the site 𝒑𝑗 

becomes zero. In order to reflect this change, the right 𝒑𝑗 in the list <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑗, 𝒑𝑘, …> is deleted as shown 

in Fig. 7(b). As the bisectors (𝒑𝑖 , 𝒑𝑗 ) and (𝒑𝑗 , 𝒑𝑘) have met each other at the Voronoi vertex, only a single 

bisector (𝒑𝑖 , 𝒑𝑘) remains. Accordingly, the triple of the consecutive sites 𝒑𝑖, 𝒑𝑗, 𝒑𝑘 on the sweep-line status is 

replaced with 𝒑𝑖, 𝒑𝑘, and the list <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑗, 𝒑𝑘, …> becomes <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑘, …>  as shown in Fig. 7(c). 

As the sweep line moves downwards, the above process is repeated to add new parabolic arcs through the site 

events and delete zeroed-length parabolic arcs through the circle events. After the sweep line completes the whole 

sweep, the Voronoi diagram of the site set 𝑷 shown in Fig. 8(a) is created and depicted in Figs. 8(b) and 8(c).   

 
(a)              (b)                 (c) 

Fig. 8. Generation of Voronoi diagram. 

 

5.4   Extracting stiffeners 

 

Having created the Voronoi diagram in 2D, the next work is to extract stiffeners from the Voronoi diagram. 

Suppose two ends of an edge of the Voronoi diagram is represented as 𝑝a and 𝑝b, respectively. And the edge 

intersects with the projected input mesh at mi (i = 1, ···, I) where I is the number of intersections as shown in Fig. 

9. 

 
Fig. 9. Stiffener extraction. 

 

The stiffener extraction step takes each edge from the Voronoi diagram. All local triangles tli are iterated to 

detect all intersections p1, p2 in all triangles where p1 stands for mi, and p2 stands for mi+1 (i=1, 2, …, I-1). In order 
to easily project 2D intersection points back to 3D, the obtained intersections p1 and p2 are encoded in area 

coordinates L1 and L2 using the local triangle tl
i. After all edges of the Voronoi diagram have been processed, all 

intersections represented in local area coordinates are mapped back to 3D coordinates. The algorithm is 

summarized in Algorithm 2. 
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6.   Size optimization of stiffeners  

 

Cost minimization of 3D printed objects can be treated as minimization of material consumption. In order to 

reduce material consumption, 3D printed objects are designed as thin shells. The required strength of thin shells 

is obtained through various enhancement structures. For thin shells stiffened with stiffeners, material consumption 

is determined by thin shells and stiffeners. In this paper, we take the wall thickness of 3D printed objects to be the 

minimum wall thickness of 3D printer. In doing so, minimization of wall thickness of shells is obtained, and 

material consumption minimization of 3D printed objects becomes volume minimization of stiffeners.  

Stiffeners with a rectangular cross-section are widely applied in various thin-shell objects. In this paper, we 

investigate how to minimize the volume of this type of stiffeners. Assuming the length of the 𝑛𝑡ℎ stiffener is 𝑙𝑛, 

and the cross-section area of the stiffener is 𝐴𝑛, the number of the total stiffeners of a stiffened object is 𝑁, the 

total volume of the stiffeners of the stiffened object is 𝑉 = ∑ 𝑙𝑛
𝑁
𝑛=1 𝐴𝑛 

The cross-section sizes of rectangular stiffeners are height ℎ and width 𝑏. For stiffeners with a rectangular 

cross-section, if 𝑁 stiffeners are required to stiffen a 3D printed thin-shell object, the volume minimization of 

stiffeners for the 3D printed thin-shell object involves 2𝑁 design variables: 𝑏𝑛, and ℎ𝑛 (n=1, 2, 3, …, N).  
Stiffened objects should satisfy strength requirement. In engineering applications, von Mises stress is widely 

used in strength evaluation when structures or objects are subjected to a complicated loading condition. It is 

defined by the following equation 

𝜎𝑣 = √
(𝜎𝑥𝑥−𝜎𝑦𝑦)2+(𝜎𝑦𝑦−𝜎𝑧𝑧)2+(𝜎𝑧𝑧−𝜎𝑥𝑥)2+6(𝜏𝑥𝑦

2 +𝜏𝑦𝑧
2 +𝜏𝑧𝑥

2 )

2
                                    (51) 

where 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜎𝑧𝑧 are three normal stresses, and 𝜏𝑥𝑦, 𝜏𝑦𝑧, and 𝜏𝑧𝑥 are three shear stresses. 

For the stiffeners with a rectangular cross-section, the total volume of the stiffeners is 𝑉 = ∑ 𝑙𝑛
𝑁
𝑛=1 ℎ𝑛𝑏𝑛 where 

𝑙𝑛  (n=1, 2, 3, …, N) are known lengths of stiffeners determined in Subsection 5.4. Minimizing the total volume 

of stiffeners can be formulated as  

arg min
ℎ𝑛,𝑏𝑛

∑ ℎ𝑛𝑏𝑛
𝑁
𝑛=1                                              (52) 

Having formulated the objective function, we formulate the optimization constraints. For thin-shell objects to 

be stiffened, the optimization constraints are: 1) user’s specified lower bound ℎ𝑛 and upper bound ℎ𝑛 of the height 

of stiffeners, 2) user’s specified lower bound 𝑏𝑛 and upper bound 𝑏𝑛 of the width of stiffeners, 3) the equivalent 

stress 𝜎𝑛
𝑠ℎ in the shell is not more than the allowable stress 𝜎𝑠, and 4) the equivalent stress 𝜎𝑛

𝑠𝑡 in the 𝑛𝑡ℎ stiffeners   

is not more than the allowable stress 𝜎𝑠. These optimization constraints can be formulated as 

                                                                           ℎ𝑛 ≤ ℎ𝑛 ≤ ℎ𝑛 

                                                                                   𝑏𝑛 ≤ 𝑏𝑛 ≤ �̅�𝑛 

𝜎𝑛
𝑠ℎ ≤  𝜎𝑠 

𝜎𝑛
𝑠𝑡 ≤ 𝜎𝑠                                             (53) 

Volume minimization is to solve Eq. (52) subjected to the optimization constraints (53) for the stiffeners with 

a rectangular cross-section. In the section of Experiments and results, we will present many examples of obtaining 

the optimal sizes ℎ𝑛 and 𝑏𝑛 together with the minimum volume of stiffeners by solving the above constrained 

optimization problem for the stiffeners with a rectangular cross-section.  
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7.   Monte-Carlo simulation-based global optimization 

 

As indicated in Algorithm 1, the seeded triangle ti and probability 𝒑 are both randomly generated from a 
uniform distribution. The stiffener distribution relies on the generated seeds from this algorithm, which may be a 

local minimum, not a global optimal solution. In order to tackle this problem, a Monte-Carlo simulation algorithm 

based on Monte-Carlo stochastic sampling is introduced.  

Monte-Carlo sampling is one of the most classic sampling methods used to solve the problems such as 

evaluation of integrals, physical simulation, optimization and so on. With this sampling algorithm, nm Monte-

Carlo simulation iterations is specified, and then the process of determining the distribution of stiffeners and size 

optimizations of stiffeners is repeated nm times with different randomly generated seeds rs to search for a global 

optimal solution.  

In this research, the number nm of Monte-Carlo simulation iterations is set to be 100. The experiment indicates 

100 Monte-Carlo simulation iterations are large enough to obtain a global optimal solution. 

 

8.   Experiments and results 

 

In this section, we introduce the implementation and parameter setting of the proposed framework, effects of 

different probability thresholds and Monte-Carlo simulation, and 3D printed objects and the stress comparisons 

before and after they are stiffened with the method proposed in this paper.  

 

8.1 Implementation and parameter setting 

 
The proposed algorithm is implemented in MATLAB with FEM calculations compiled into MEX functions 

for speed reason. The simulations are conducted on a PC with an Intel Xeon E5 CPU and 32GB memory, running 

on Windows OS. 

The minimal wall thickness allowed by the used printer is 1 mm. Therefore, both the 𝑏𝑛 and ℎ𝑛 are set to be 

1 mm. The material strength 𝜎𝑠 of the photosensitive resin used to print all the 3D objects is 42 N/mm2 according 

to the information found from the link https://uk.3dsystems.com/sites/default/files/2020-03/3d-systems-figure-4-

TOUGH-BLK-20-datasheet-usen-2020-03-16-web.pdf. Stiffeners act as beams. In order to avoid failure caused 

by a too large ratio of height to width of stiffeners, a maximum ratio of hight to width is specified. The maximum 

ratio of height to width found from the link  www.ecourses.ou.edu/cgi-bin/ebook.cgi?topic=me&chap_sec 

=other&page=lumber_US &appendix=shapes is 6 in real applications. In this paper, the upper bounds �̅�𝑛 and ℎ𝑛 

are taken to be 4 mm. When the width takes the minimum 1 mm and the height takes the maximum 4 mm, the 

maximum ratio of height to width is 4, which is less than 6 in real applications.  
 

8.2 Effect of different probability thresholds 

 

The probability threshold p* is introduced here to control the spread of the seeds over the geometry. When p* 

is set to a low value, the triangles with small probabilities will not be filtered out and marked as seeded ones, 

causing a wide spread of seeds over all triangles. On the contrary, if p* is set to a high value, triangles with the 

stress p𝜎s no more than p*𝜎s will never be selected, which guarantees the concentration of seeds around critical 
areas.  

Figure 10 shows the effect of three different probability thresholds on the generated stiffeners with a 

rectangular cross-section where Figs. 10(a), 10(b) and 10(c) are from the probability thresholds 0, 0.3, and 0.5, 

respectively. It can be seen a small p* such as p* = 0 in Fig. 10(a) leads to a more uniform distribution of seeds 

over the mesh, while a large p* such as p* = 0.5 in Fig. 10(c) drives seeds towards the areas with higher stress and 

brings in more stiffeners to enhance them. 

 
(a) p* = 0                           (b) p* = 0.3                             (c) p* = 0.5 

Fig. 10. Effect of different thresholds p* on the distribution of seeds. 

 

8.3 Effect of Monte-Carlo simulations  
 

Figure 11 shows the effect of random number generator seed rs of Monte-Carlo simulations on distributions of 

the stiffeners with a rectangular cross-section where the left, middle, and right images are from the random number 

https://uk.3dsystems.com/sites/default/files/2020-03/3d-systems-figure-4-TOUGH-BLK-20-datasheet-usen-2020-03-16-web.pdf
https://uk.3dsystems.com/sites/default/files/2020-03/3d-systems-figure-4-TOUGH-BLK-20-datasheet-usen-2020-03-16-web.pdf
http://www.ecourses.ou.edu/cgi-bin/ebook.cgi?topic=me&chap_sec%20=other&page=lumber_US%20&appendix=shapes
http://www.ecourses.ou.edu/cgi-bin/ebook.cgi?topic=me&chap_sec%20=other&page=lumber_US%20&appendix=shapes
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generator seeds 10, 20 and 30, respectively. With the same stress map and same number of seeds (ns = 35), the 

distributions of seeds in Figs. 11(a), 11(b) and 11(c) are different, leading to different Voronoi diagrams shown in 

Figs. 11(d), 11(e) and 11(f) and different stiffener distributions shown in Figs. 11(g), 11(h), and 11(i), respectively. 

 
              (a)                         (b)                           (c) 

 
                                                      (d)                             (e)                              (f) 

 
                                                          (g)                          (h)                         (i) 

Fig. 11. Effect of Monte-Carlo simulations of a Guscio. The random number generator seeds rs for each column 

are 10, 20 and 30, respectively. 

 

8.4 3D printed objects and stress comparisons 

 

With the Voronoi diagram and Monte-Carlo based finite element optimization algorithm of stiffened objects 

proposed in this paper, the minimum stiffener volumes of some stiffened objects with a rectangular cross-section 
are obtained and the stress changes in the objects with and without the optimized stiffeners are shown in Fig. 13 -

- Fig. 21, respectively. The 3D printed models stiffened with the optimized rectangular cross-section stiffeners are 

shown in Fig. 12.   

 
Fig. 12. Printed 3D objects. 

 

Table 1. Maximum stresses in unstiffened and stiffened thin-shell objects and total volume of stiffeners 

 Maximum stresses (MPa) Total volume (mm3) 

 Unstiffened Stiffened Stiffeners 

Plate 278.198 24.6426 418.5148 

Botanic 90.927 33.8706 418.856 

Snail 33.273 28.3634 84.0108 

Dome 59.028 34.3583 754.704 

Bridge 94.4982 16.8744 535.109 

Hemisphere 42.0198 31.2246 1961.93 

Guscio 43.8379 29.5158 711.483 

Lilium 52.0412 35.3578 227.294 

Leaf 54.9437 24.6426 112.512 
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Figure 13 shows the stress distributions in an unstiffened and stiffened Plate, stiffeners, and 3D printed model. 

The maximum stresses in the unstiffened and stiffened Plate and the total volume of optimized stiffeners are given 

in Table 1. In the figure, (a) depicts the stress distribution in the flat plate without stiffeners with a maximum stress 

of 278.198 MPa, (b) shows the optimized stiffeners with a total volume of 418.5148 mm3, (c) gives the stress 

distribution in the flat plate stiffened by the optimized stiffeners with a maximum stress 24.6426 MPa, and (d) is 
a photo of the 3D printed model of the stiffened plate. By applying the optimized stiffeners, the maximum stress 

reduces from 278.198 MPa to 24.6426 MPa. 

 

                        (a) Initial stress      (b) Stiffener         (c) Final stress        (d) 3D printed plate 

Fig. 13. Unstiffened and stiffened Plate. 

 

The example of a Botanic is given in Fig. 14 to show the stress distributions in an unstiffened and stiffened 

Botanic, stiffeners, and 3D printed model. The maximum stresses in the unstiffened and stiffened Botanic and the 

total volume of optimized stiffeners are given in Table 1. Fig. 14(a) shows the initial stress distribution in the 
Botanic without stiffeners with a maximum stress of 90.927 MPa, (b) shows the optimized stiffeners with a total 

volume of 418.856 mm3, (c) gives the stress distribution in the Botanic stiffened by the optimized stiffeners with 

a maximum stress 33.8706 MPa, and (d) is a photo of the 3D printed model of the stiffened Botanic. By applying 

the optimized stiffeners, the maximum stress reduces from 90.927 MPa to 33.8706 MPa. 

 
                  (a) Initial stress      (b) Stiffener           (c) Final stress     (d) 3D printed botanic 

Fig. 14. Unstiffened and stiffened Botanic. 
 

The stress fields in an unstiffened and stiffened Snail, stiffeners and 3D printed model are shown in Fig. 15. 

The maximum stresses in the unstiffened and stiffened Snail and the total volume of optimized stiffeners are given 

in Table 1. In the figure, the initial maximum stress in the Snail without any stiffeners is 33.273 MPa as shown in 

(a). After applying the stiffeners (b) with a total volume of 84.0108 mm3 to the Snail, the maximum stress shown 

in (c) drops from 33.273 MPa to 28.3634 MPa in the final printed 3D model (d). 

 
               (a) Initial stress      (b) Stiffener        (c) Final stress         (d) 3D printed snail 

Fig. 15. Unstiffened and stiffened Snail. 

 

Figure 16 shows the stress distributions in an unstiffened and stiffened Dome, stiffeners, and 3D printed object. 

The maximum stresses in the unstiffened and stiffened Dome and the total volume of optimized stiffeners are 

given in Table 1. The maximum stress 59.028 MPa in the initial stress distribution (a) without any stiffeners is 

reduced to the maximum stress 34.3583 MPa in (c) by applying the stiffened stiffeners (b) with a total volume of 

754.704 mm3. (d) is a photo of the 3D printed model of the stiffened Dome. 



17 
 

 
               (a) Initial stress     (b) Stiffeners          (c) Final stress       (d) 3D printed dome 

Fig. 16. Unstiffened and stiffened Dome. 

 

 The stress fields in an unstiffened and stiffened Bridge, stiffeners and 3D printed model are shown in Fig. 17. 

The maximum stresses in the unstiffened and stiffened Bridge and the total volume of optimized stiffeners are 

given in Table 1. In the figure, the initial maximum stress in the bridge without any stiffeners is 94.4982 MPa as 

shown in (a). After applying the stiffeners (b) with a total volume of 535.109 mm3 to the bridge, the final maximum 

stress (c) drops from 94.4982 MPa to 16.8744 MPa in the final printed 3D model (d). 

 
                  (a) Initial stress      (b) Stiffener         (c) Final stress     (d) 3D printed bridge 

Fig. 17. Unstiffened and stiffened Bridge. 
 

Figure 18 shows the stress distributions in an unstiffened and stiffened Hemisphere, stiffeners, and 3D printed 

object. The maximum stresses in the unstiffened and stiffened Hemisphere and the total volume of optimized 

stiffeners are given in Table 1. The initial stress distribution without stiffeners has a maximum stress of 42.0198 

MPa shown in (a), (b) shows the optimized stiffeners with a total volume of 1961.93 mm3, (c) gives the stress 

distribution in the Hemisphere stiffened by the optimized stiffeners with a maximum stress 31.2246 MPa, and (d) 

is a photo of the 3D printed model of the stiffened Hemisphere. The applied optimized stiffeners help to reduce to 

the maximum stress from 42.0198 MPa to 31.2246 MPa. 

 
                           (a) Initial stress          (b) Stiffener          (c) Final stress    (d) 3D printed hemisphere 

Fig. 18. Unstiffened and stiffened Hemisphere. 

 

Figure 19 shows the stress distributions in an unstiffened and stiffened Guscio, stiffeners, and 3D printed object. 

The maximum stresses in the unstiffened and stiffened Guscio and the total volume of optimized stiffeners are 

given in Table 1. The maximum stress 43.8379 MPa in the initial stress distribution (a) without any stiffeners is 

reduced to the maximum stress 29.5158 MPa in (c) by introducing the stiffeners (b) with a total volume of 711.483 

mm3. A photo of the 3D printed model of the stiffened Guscio is shown in Fig. 19(d). 

 
               (a) Initial stress    (b) Stiffener          (c) Final stress      (d) 3D printed guscio 

Fig. 19. Unstiffened and stiffened Guscio. 

 

 Figure 20 shows the stress distribution in an unstiffened and stiffened Lilium, stiffeners, and 3D printed object 

of a Lilium. The maximum stresses in the unstiffened and stiffened Lilium and the total volume of optimized 

stiffeners are given in Table 1. The initial stress distribution without stiffeners has a maximum stress of 52.0412 
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MPa shown in (a), (b) shows the optimized stiffeners with a total volume of 227.294 mm3, (c) gives the stress 

distribution in the Lilium stiffened by the optimized stiffeners with a maximum stress 35.3578 MPa, and (d) is a 

photo of the 3D printed model of the stiffened Lilium. The applied optimized stiffeners help to reduce the 

maximum stress from 52.0412 MPa to 35.3578 MPa. 

 
                  (a) Initial stress      (b) Stiffener        (c) Final stress      (d) 3D printed lilium 

Fig. 20. Unstiffened and stiffened Lilium. 
 

The stress fields in an unstiffened and stiffened Leaf, stiffeners and 3D printed object are shown in Fig. 21. 

The maximum stresses in the unstiffened and stiffened Leaf and the total volume of optimized stiffeners are given 

in Table 1. In this example, the initial maximum stress in the Leaf without any stiffeners is 54.9437 MPa as shown 

in (a). After attaching the stiffeners (b) with a total volume of 112.512 mm3 to the Leaf, the final maximum stress 

drops from 54.9437 MPa to 20.2208 MPa as depicted in (c), and the final printed 3D model is given in (d). 

 

                (a) Initial stress      (b) Stiffener         (c) Final stress         (d) 3D printed leaf 

Fig. 21. Unstiffened and stiffened Leaf. 
 

 We have also timed seed generation, Voronoi creation, stiffener extraction, and optimization calculations and 

listed the obtained time in Table 2. In the table, “Total” means the “Total time”, which is the sum of the time spent 

on seed generation, Voronoi creation, stiffener extraction, and optimization calculations.  

 

Table 2. Calculation time (milliseconds) 

Object name Total Seed generation  Voronoi diagram creation Stiffener extraction  Optimization 

Botanic 12295.659 0.454 1.334 98.471 12195.400 

Snail 8861.159 1.050 0.634 72.225 8787.250 

Dome 7007.618 0.428 0.880 115.220 6891.090 

Bridge 901.005 0.151 1.441 46.334 853.079 

Hemisphere 4404.410 0.659 1.674 120.167 4281.910 

Guscio 4855.962 0.719 0.607 60.876 4793.760 

Lilium 21755.952 1.049 0.730 138.973 21615.200 

Leaf 6656.774 0.401 0.682 120.461 6535.230 

 

 According to the data in Table 2, the optimization calculations took the most time, and seed generation took 

the least time. Among all the objects given in Table 2, the most time (21.756 seconds) was used to calculate Lilium, 

and the least time (0.901 seconds) was used to calculate Bridge. They indicate that the proposed method is very 

efficient in obtaining the minimum 3D printing material consumption of various stiffened thin-shell objects.   

 

9.   Conclusions and future work 

 

In this paper, we have developed a finite element optimization framework based on Voronoi diagram and 

Monte-Carlo simulation to minimize the material consumption of 3D printing. Our developed framework consists 

of the finite element analysis to obtain the stress distribution in thin-shell objects, random generation of seeds 
guided by the obtained stress field, using conformal mapping to map the 3D objects and generated seeds to a 2D 

parametric domain to create a Voronoi diagram for optimizing the distribution of stiffeners. Apart from optimizing 

the stiffener distribution, the cross-section sizes of stiffeners are minimized to further save materials for 3D 

printing. The Monte-Carlo simulation is introduced to optimize the seed generation and achieve a global optimal 

solution. 
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 A lot of experiments were carried out to demonstrate the effectiveness and advantages of the proposed method. 

The stress comparisons between the thin-shell objects with and without stiffeners demonstrate that thin-shell 

objects stiffened with the optimized distribution and cross-section sizes of stiffeners significantly reduce material 

consumption of 3D printed objects.  

 This paper only considers the stiffeners with a rectangular cross-section. In the future, other types of cross-

sections such as tee-shaped and I/H (double-tee) cross-sections will be investigated. In addition, this paper assumes 

that cross-section sizes of stiffeners do not change along the length of stiffeners. In fact, the cross-section sizes of 

stiffeners in high stress regions should be bigger than the cross-section sizes in low stress regions. We will 

introduce varying cross-section sizes to further minimize material consumption of stiffeners in our following work. 

A small number of the expected seeds 𝑛𝑠 will lead to a small number of stiffeners but large cross-section sizes of 

stiffeners. Oppositely, a large number of the expected seeds 𝑛𝑠 will lead to a large number of stiffeners but small 

cross-section sizes of stiffeners. There should be an optimal number of the expected seeds, which will lead to the 

minimum volume of stiffeners. In the future, we will investigate how to optimize the number of the expected seeds 

𝑛𝑠.     
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