
1

Voronoi diagram and Monte-Carlo simulation based finite

element optimization for cost-effective 3D printing

A.Z. Zheng2*, S.J. Bian2, E. Chaudhry1, J. Chang1, H. Haron3, L.H. You1, and J.J. Zhang1

1 The National Center for Computer Animation, Bournemouth University, UK
2 Humain Ltd, UK

3 Department of Computer Science, Universiti Teknologi Malaysia, Malaysia

Abstract

By extending the work published at ICCS 2020 [1], in this paper we propose a method to achieve cost-effective

3D printing of stiffened thin-shell objects. Our proposed method consists of three parts. The first part integrates

finite element analysis, Voronoi diagram, and conformal mapping to obtain stiffener distribution. The second part

combines finite element analysis with optimization calculations to determine the optimal sizes of stiffeners. And
the third part introduces Monte-Carlo simulation to find a global optimum. The experiments made in this paper

indicate that our proposed method is effective in minimizing 3D printing material consumption of stiffened thin-

shell objects.

Keywords: Stiffened objects, 3D printing, Voronoi diagram, finite element optimization, Monte-Carlo simulation

Abbreviations

FEA - Finite Element Analysis
2D - Two-Dimensional

3D - Three-Dimensional

DKT - Discrete Kirchhoff Triangle

FSDT - First-order Shear Deformation Theory

LSCMs - Least Squares Conformal Maps

1. Introduction

With the rise of low-cost 3D printers, 3D printing is revolutionising the way products are manufactured, not

only in large manufacturers such as Boeing and General Electric but also with personal users and small businesses.

As one of the fastest growing industries, it is delivering significant impacts to the manufacturing sector, global
economy, and quality of life.

Many different materials have been used for 3D printing, including both non-metallic and metallic materials.

The price of desktop 3D printers has become more affordable to general customers - it has been possible to buy a

desktop 3D printer at a price of less than £100 at the present time. Nowadays, personal users can make 3D prints

easily with these affordable printers at their home. Apart from a lot of personal users, 3D printing has been widely

applied in various sectors. The wide range of applications highlight the importance of minimizing the cost of 3D

printing while satisfying the requirements of specific applications.

In order to minimizing the cost of 3D printing, thin-shell objects have been widely used to reduce the

consumption of 3D printing materials. Since thin-shell objects have low strength and stiffness, various methods

have been proposed to enhance thin-shell objects. In this paper, we use stiffeners to stiffen thin-shell objects and

propose a finite element optimization framework based on Voronoi diagram and Monte-Carlo simulation to obtain

stiffened thin-shell objects with minimum material consumption and required strength.
Our proposed framework achieves minimum material consumption through optimizing stiffener distribution

and minimizing the cross-section sizes of stiffeners. In order to generate an optimal distribution of stiffeners, the

stress field of input thin-shell objects under given loads and boundary conditions is calculated with the Finite

Element Analysis (FEA). According to the calculated stress field, some points called seeds are placed randomly

on the three-dimensional (3D) surface of thin-shell objects. Conformal mapping is used to map the 3D objects and

seeds to a 2D space so that a Voronoi diagram can be generated from these mapped seeds. The generated Voronoi

diagram is mapped back to the 3D space and the edges of the mapped Voronoi diagram represent the distribution

of stiffeners. After that, cross-section sizes of stiffeners are optimized to minimize the volume of the stiffeners.

Since the generation of seeds uses a uniform random process, which may not lead to a global optimal solution of

2

stiffener distribution, Monte-Carlo simulation is introduced and iterated a given number of times to avoid any

local minimum.

2. Related work

Our proposed framework is related to 3D printing, finite element analysis, structural optimization, Voronoi

diagram, conformal maps, and Monte-Carlo simulation. We briefly review them in this section.

3D printing The research on 3D printing is massive. Various aspects of 3D printing have been investigated in

existing work. For example, the deformation problem was investigated in [2], the articulation of 3D printed models

was examined in [3], mechanical movements of 3D printed objects were studied in [4, 5], and the appearance of

3D printed models was discussed in [6, 7]. The aim of this paper is to minimize material consumption of 3D

printed thin-shell objects.

Finite element analysis There are enormous publications about finite element analysis. For example, the finite

element method in solid and structures was introduced in [8]. The finite element analysis of stiffened plates was

given in [9]. The finite element calculations of stiffened shell were presented in [10]. The vibration of stiffened

plates was investigated with the finite element method in [11]. Stress analysis of stiffened composited plates was

carried out in [12]. The plates and shells with geometrically linear and nonlinear problems were studied in [13].
And mesh distortions of plate and shell finite elements were examined in [14]. In this paper, finite element analysis

will be used to determine stress distributions in unstiffened and stiffened thin-shell objects and their stiffeners.

Structural optimization Various optimization methods have been developed and widely applied [15]. For

example, tracking control of an underactuated system was optimized in [16], a new trajectory synthesis and

optimization scheme was proposed in [17], probabilistic movement primitives were used to improve local

trajectory optimization in [18], principles and progresses of optimization methods in machine learning were

introduced in [19], and adaptive neural network tracking control were developed for underactuated systems in

[20].

In the field of structural optimization, there are a lot of publications. Here we only briefly review some

representative literature on optimization of 3D printed objects. Three approaches: hollowing, thickening, and strut

insertion were introduced in [21] to obtain structurally sound and lightweight 3D prints. Thickness parameters of
shells were optimized in [22]. The number of struts in a skin-frame structure is minimized in [23]. The material

consumption of honeycomb-like 3D models is reduced via a hollowing optimization algorithm in [24]. Stiffened

objects were first investigated in [25]. A method to produce optimized structures for any input surface with any

load configurations was examined in [26]. Structural optimization will be used in this paper to optimize stiffener

distribution and stiffener sizes of stiffened thin-shell objects.

Voronoi diagrams Extensive research has been carried out about Voronoi diagrams and their applications.

Applications and algorithms of centroidal Voronoi diagrams were discussed in [27]. The Voronoi diagram for

graphs was used in [28] to analyse the structure of biological networks. Using graph Voronoi diagrams, a new

geometric approach to graph community detection was proposed in [29]. Some new methods of constructing

Voronoi diagrams were proposed in [30]. Based upon statistics with mean vector and covariance matrix, a Voronoi

diagram was proposed in [31]. A Voronoi diagram was constructed in [32] to form a cloaked region and calculate

the anchor point of the cloaked region for privacy preservation. A window-vertex-sorted triangle propagation
algorithm was proposed in [33] to construct geodesic based Voronoi diagrams. With Voronoi diagrams, interactive

design and manufacturing of a biomimetic bone scaffold was investigated in [34]. Using Voronoi diagrams to

generate the centerlines of watercourses was presented in [35]. An algorithm called hexagon-based crystal growth

was presented in [36] to extract generalized Voronoi diagrams from hexagonal grids. Through Voronoi diagrams,

design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction was examined in [37]. A

new parametric method of designing Voronoi-based lattice porous structures was proposed in [38]. In this paper,

we will use Fortune’s algorithm to create Voronoi diagrams from the generated seeds.

Conformal maps A number of studies have investigated conformal maps. Relying on certain conformal

mappings, an explicit method was presented in [39] to map any simply connected surface onto a sphere in a manner

of preserving angles. First order finite difference approximations of Cauchy-Riemann equations were used in [40]

for conformal maps. An efficient circle pattern algorithm was developed in [41] for discrete conformal mappings.

Based on complex Hilbert barycentric coordinates, a new method was presented in [42] to compute 𝐶∞ conformal

mappings. A weighted combination of conformal maps was used in [43] to generate candidate maps between two

genus-0 non-isometric shapes. Extremal quasiconformal mappings were specifically designed in [44] to produce

injective mappings with minimal amount of conformal distortion. A framework was given in [45] to calculate

harmonic and conformal mappings in the plane with some mathematical guarantees. A fast iterative algorithm was

developed in [46] to produce conformal maps between two simply connected planar domains without prescribing

boundary correspondence. Not using a triangle mesh, regular polygon meshes of equilateral triangles, squares and

hexagons were used in [47] to approximate continuous conformal maps. Conformal mapping will be applied in

this paper to achieve the mapping between 3D surface points and 2D parametric points.

3

Monte-Carlo simulation Massive publications have discussed Monte-Carlo simulations and its applications.

For example, Monte Carlo simulations were used in [48] to calculate the solubility of natural gas components in

ionic liquids and Selexol. A Monte-Carlo method based on the Cauchy-Crofton formula from integral geometry

was presented in [49] to compute hypersurface areas of n-ellipsoids. Monte-Carlo simulation techniques were

discussed in [50]. It includes the methods such as direct inversion, rejection method, and Markov chain Monte
Carlo to sample a probability distribution function. In addition, it also contains the methods for variance reduction

to evaluate numerical integrals using the Monte Carlo simulation. Grid-free Monte Carlo methods were used in

[51] to solve core problems in PDE-based geometry processing efficiently and reliably. A Monte Carlo simulation

model was developed in [52] to represent the COVID-19 spread dynamics. The Behler-Parrinello neural networks

was introduced in [53] as an effective Hamiltonian used in the self-learning Monte Carlo method. Monte-Carlo

methods were applied to modelling important probabilistic influences on motorsport races in [54]. Monte-Carlo

simulation will be introduced in this paper for global optimization of stiffener distributions.

The remaining parts of this paper are organized below. An algorithm overview is given in Section 3. The finite

element formulation is presented in Section 4. The stiffener distribution is examined in Section 5. The size

optimization of stiffeners is investigated in Section 6. Monte-Carlo simulation is carried out in Section 7.

Experiments and results are given in Section 8. And Conclusion and future work are presented in Section 9.

3 Algorithm overview

Our proposed algorithm consists of three parts: stiffener distribution, size optimization of stiffeners, and

Monte-Carlo simulation. Since stiffener distribution is based on random seed generation of Voronoi diagram

guided by the calculated stress field, the obtained stiffener distribution and subsequent size optimization may not

give a gobal optimum. In order to tackle this problem, Monte-Carlo simulation is introduced.

As shown in Fig. 1, the algorithm starts from the first iteration of Monte-Carlo simulation. The finite element

calculation of the thin-shell object to be stiffened is conducted to find the stress field in the object (Fig. 1(a)).

According to the obtained stress field, Voronoi diagram seeds are randomly dispersed in the high stress regions

(Fig. 1(b)). We define high stress regions as those with 𝑠𝑖 > 𝑝∗𝜎𝑠 . Here, 𝑠𝑖 is the stress in the 𝑖𝑡ℎ triangle of the

model to be 3D printed, 𝑝∗ is the probability threshold, and 𝜎𝑠 is the material strength. They are elaborated in

Subsection 5.1. The surface of the object is represented with a triangle mesh. The generated seeds are mapped to
a 2D parametric domain. And a Voronoi diagram is created from the generated seeds, which have been mapped

to the 2D parametric domain (Fig. 1(c)). Then, the intersecting points between the edges of Voronoi diagram and

the edges of triangles of the object are found and mapped back to the 3D surface to determine the stiffener

distribution (Fig. 1(d)). After that, the finite element optimization is carried out to find the optimal cross-section

sizes of stiffeners. By doing so, the total volume of all stiffeners is minimized, and strength requirements of both

thin shell and stiffeners are satisfied (Fig. 1(c)). Next, the algorithm checks whether all the iterations of Monte-

Carlo simulation have been completed. If yes, the algorithm stops. Otherwise, next iteration of Monte-Carlo

simulation begins.

Monte-Carlo (MC) simulation starts

(a) Stress calculation

of thin-shell objects

(b) Voronoi diagram

seed generation

(c) Voronoi diagram

creation

(d) Stiffener distribution

determination

(e) Size optimization

of stiffeners

MC
simulation

finishes?

Stop Yes

No

4

Fig. 1. Algorithm overview.

4. Finite element formulation

Since 3D printed objects may have both curved surfaces and flat surfaces, we follow the method given in [8]
by Zienkiewicz and Taylor, which treats curved shells as an assembly of flat elements called flat shell elements.

Such a treatment makes the method applicable to both flat plates and curved shells. The stiffeners are treated as

beam elements. In order to ensure the stiffeners and shells to have the same deformations at their junctions, the

same displacement functions are used for both flat shell elements and beam elements. The flat shell elements are

divided into two types: Allman’s plane stress triangle, which tackles in-plane deformations, and Discrete Kirchhoff

triangle (DKT), which deals with lateral bending deformations. Beam elements can be placed anywhere within a

shell element with arbitrary orientations. The von Karman’s large deflection theory is used to address the large

deflection problem, and geometric nonlinearity is solved with an iterative solution procedure. For the sake of

completeness, we introduce this finite element analysis in the subsections below.

4.1 Kinematic equations

A typical flat shell element subjected to in-plane and lateral forces will have in-plane and bending deformations.

Here “in-plane” means that the forces and deformations are in the plane of the flat shell element, and lateral forces

and bending deformations are perpendicular to the plane.

We introduce the kinematics equations described in [55] by Neuyen-Van et al. and [13] by Cui et al. A local

coordinate system 𝑥, 𝑦 and 𝑧 is used to indicate the directions of length, width, and thickness of a flat shell element,
respectively. According to the first-order shear deformation theory (FSDT), shell kinematics is governed by mid-

plane displacements 𝑢0 𝑣0 𝑤0 and rotations 𝜃𝑥 and 𝜃𝑦 . Since the middle plane is parallel to the 𝑥 − 𝑦

coordinate plane, all displacements and rotations at any points in the mid-plane are the functions of 𝑥 and 𝑦 only,

i. e., 𝒖0(𝑥, 𝑦) = [𝑢0(𝑥, 𝑦) 𝑣0(𝑥, 𝑦) 𝑤0(𝑥, 𝑦)]𝑇, 𝜃𝑥 = 𝜃𝑥(𝑥, 𝑦) and 𝜃𝑦 = 𝜃𝑦(𝑥, 𝑦). The displacements at other

points of the flat shell element are the functions of 𝑥 , 𝑦 and 𝑧 , i. e., 𝒖(𝑥, 𝑦, 𝑧) =
[𝑢(𝑥, 𝑦, 𝑧) 𝑣(𝑥, 𝑦, 𝑧) 𝑤(𝑥, 𝑦, 𝑧)]𝑇 , which can be expressed as

𝒖(𝑥, 𝑦, 𝑧) = {

𝑢0(𝑥, 𝑦) + 𝑧𝜃𝑥(𝑥, 𝑦)
𝑣0(𝑥, 𝑦) + 𝑧𝜃𝑦(𝑥, 𝑦)

𝑤0(𝑥, 𝑦)

} (1)

where 𝑢0(𝑥, 𝑦), 𝑣0(𝑥, 𝑦) and 𝑤0(𝑥, 𝑦) are the displacements in the mid-plane of the flat shell element in the 𝑥 and

𝑦 directions, and 𝜃𝑥 and 𝜃𝑦 are the rotations about the 𝑦 and 𝑥 axes, respectively.

Considering the von Kármán’s large deflection assumption, the strains 𝜺 = [𝜀𝑥 𝜀𝑦 𝜀𝑥𝑦 𝜀𝑥𝑧 𝜀𝑦𝑧]𝑇

determined by the displacements (1) can be written as

𝜺 = [𝑢,𝑥 + 0.5𝑤,𝑥
2 𝑣,𝑦 + 0.5𝑤,𝑦

2 𝑢,𝑦 + 𝑣,𝑥 + 𝑤,𝑥𝑤,𝑦 𝜃𝑥 − 𝑤,𝑥 𝜃𝑦 − 𝑤,𝑦]
𝑇
 (2)

where (),𝑥 = 𝜕() 𝜕𝑥⁄ and (),𝑦 = 𝜕() 𝜕𝑦⁄ .

Introducing Equation (1) into (2), the strains are changed into the following form

𝜺 = [𝑢0,𝑥 + 𝑧𝜃𝑥,𝑥 + 0.5𝑤,𝑥
2 𝑣0,𝑦 + 𝑧𝜃𝑦,𝑦 + 0.5𝑤,𝑦

2
𝑢0,𝑦 + 𝑣0,𝑥 + 𝑧𝜃𝑥,𝑦 + 𝑧𝜃𝑦,𝑥 + 𝑤,𝑥𝑤,𝑦 𝜃𝑥 − 𝑤,𝑥 𝜃𝑦 − 𝑤,𝑦]𝑇 (3)

The strains 𝜺 can be divided into membrane strains 𝜺𝑚, bending strains 𝜺𝑏 and shear strains 𝜺𝑠. The membrane

strains contain both linear and nonlinear parts. If we use 𝜺𝑚
𝐿 to indicate the linear part, and 𝜺𝑚

𝑁𝐿 to denote the

nonlinear part, the membrane strains 𝜺𝑚 can be written as

𝜺𝑚 = 𝜺𝑚
𝐿 + 𝜺𝑚

𝑁𝐿 (4)

where

 𝜺𝑚
𝐿 = [𝑢0,𝑥 𝑣0,𝑦 𝑢0,𝑦 + 𝑣0,𝑥]𝑇

𝜺𝑚
𝑁𝐿 = [0.5𝑤,𝑥

2 0.5𝑤,𝑦
2 𝑤,𝑥𝑤,𝑦]

𝑇
= 0.5𝑯𝜽 (5)

Comparing equations (3) and (5), the matrix 𝑯 and the vector 𝜽 are found to be

 𝑯 = [
𝑤,𝑥 0 𝑤,𝑦

0 𝑤,𝑦 𝑤,𝑥
]

𝑇

 𝜽 = [𝑤,𝑥 𝑤,𝑦]𝑇 (6)

The bending strains 𝜺𝑏 and shear strains 𝜺𝑠 are determined by the following equations

 𝜺𝑏 = [𝜃𝑥,𝑥 𝜃𝑦,𝑦 𝜃𝑥,𝑦 + 𝜃𝑦,𝑥]𝑇

 𝜺𝑠 = [𝜃𝑥 − 𝑤,𝑥 𝜃𝑦 − 𝑤,𝑦]𝑇 (7)

Comparing Equation (6) with (5) and (7), the strains 𝜺 are changed into

𝜺 = [𝜺𝑚
𝐿 + 𝜺𝑚

𝑁𝐿 + 𝑧𝜺𝑏 𝜺𝑠]𝑇 (8)

5

If we define a generalized strain vector �̄� = [𝜺𝑚 𝜺𝑏 𝜺𝑠]𝑇 and a generalized stress vector �̄� =
[𝑵 𝑴 𝑸]𝑇 with in-plane forces 𝑵 = [𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦]𝑇 , in-plane bending moments 𝑴 =
[𝑀𝑥 𝑀𝑦 𝑀𝑥𝑦]𝑇and in-plane shear forces 𝑸 = [𝑄𝑥 𝑄𝑦]𝑇, the constitutive relationship can be formulated as

�̄� = �̄��̄� (9)

The stiffness matrix �̄� in the above equation consists of the extensional stiffness �̄�𝑚 , the bending stiffness

�̄�𝑏, and the transverse shear stiffness �̄�𝑠, i. e.,

�̄� = [

�̄�𝑚 0 0

0 �̄�𝑏 0

0 0 �̄�𝑠

] (10)

The extensional stiffness �̄�𝑚 , the bending stiffness �̄�𝑏 and the transverse shear stiffness are determined by

 �̄�𝑚 =
𝐸ℎ

(1−𝜈2)
[
1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈) 2⁄

]

 �̄�𝑏 =
ℎ2

12
�̄�𝑚

�̄�𝑠 =
𝜅𝐸ℎ

2(1+𝜈)
𝑰2 (11)

where ℎ , shown in Fig. 2(b), is the thickness of the flat shell element, 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio,

𝜅 is the shear correction factor [14], and 𝑰2 is a 2 × 2 identity matrix.

4.2 Formulation of flat shell elements

In order to carry out the finite element analysis, we first discretize a 3D model into 𝑛𝑒 flat shell finite elements

and define generalized displacements �̄� = [𝑢 𝑣 𝑤 𝜃𝑥 𝜃𝑦]𝑇 . If each element has 𝑛𝑝 nodes, the nodal

displacements 𝒒𝑛 at the node 𝑛 are 𝒒𝑛 = [𝑢𝑛 𝑣𝑛 𝑤𝑛 𝜃𝑥𝑛 𝜃𝑦𝑛]𝑇 = [𝒒𝑚𝑛 𝒒𝑏𝑛]𝑇 where 𝒒𝑚𝑛 =
[𝑢𝑛 𝑣𝑛]𝑇 and 𝒒𝑏𝑛 = [𝑤𝑛 𝜃𝑥𝑛 𝜃𝑦𝑛]𝑇. The displacements at any point of the element are connected to the

nodal displacements by

 �̄� = ∑ 𝑵𝑛
𝑛𝑝

𝑛=1 𝒒𝑛 = ∑ 𝑁𝑛
𝑛𝑝

𝑛=1 𝑰5𝒒𝑛 (12)

where 𝑵𝑛 is the matrix of shape functions 𝑁𝑛, and 𝑰5 is a 5 × 5 identity matrix.

Substituting the above equation into Equations (5) and (7), the following strain-displacement equations are

obtained

 𝜺𝑚
𝐿 = ∑ 𝑩𝑚𝑛

𝐿𝑛𝑝

𝑛=1 𝒒𝑚𝑛

 𝛆𝑏 = ∑ 𝑩𝑏𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛

 𝛆𝑠 = ∑ 𝑩𝑠𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛

𝜺𝑚
𝑁𝐿 = 0.5 ∑ 𝑩𝑚𝑛

𝑁𝐿𝑛𝑝

𝑛=1 𝒒𝑏𝑛 = 0.5 ∑ 𝑯𝑮𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛 (13)

where

 𝑩𝑚𝑛
𝐿 = [

𝑵𝑛,𝑥 0 𝑵𝑛,𝑦

0 𝑵𝑛,𝑦 𝑵𝑛,𝑥
]

𝑇

 𝐆𝑛 = [
𝑵𝑛,𝑥 0 0

𝑵𝑛,𝑦 0 0
]

 𝑩𝑏𝑛 = [

0 𝑵𝑛,𝑥 0

0 0 𝑵𝑛,𝑦

0 𝑵𝑛,𝑦 𝑵𝑛,𝑥

]

𝐁𝑠𝑛 = [
−𝑵𝑛,𝑥 𝑵𝑛 0

−𝑵𝑛,𝑦 0 𝑵𝑛
] (14)

We put the nodal displacements 𝒒𝑛 for all nodes in a vector, i. e., 𝒒 = [⋯ 𝒒𝑛 ⋯]𝑇 . Accordingly, the

matrices in equations (13) and (14) are written as 𝑩𝑚
𝐿 = [⋯ 𝑩𝑚𝑛

𝐿 ⋯]𝑇 , 𝑩𝑚
𝑁𝐿 = [⋯ 𝑩𝑚𝑛

𝑁𝐿 ⋯]𝑇 , 𝑮 =
[⋯ 𝑮𝑛 ⋯]𝑇, 𝑩𝑏 = [⋯ 𝑩𝑏𝑛 ⋯]𝑇, and 𝑩𝑠 = [⋯ 𝑩𝑠𝑛 ⋯]𝑇.

The finite element equations are derived from the weak form, i. e., the principle of virtual work. This principle

states that the internal virtual work is equal to the external virtual work. With reference to the undeformed shell
configuration in the total Lagrangian description, the principle of virtual work can be written as [55]

𝛱 = ∫ (𝑵𝑇𝛿𝜺𝑚 + 𝑴𝑇𝛿𝜺𝑏 + 𝑸𝑇𝛿𝜺𝑠)
𝑉

𝑑𝑉 − 𝒇𝑇𝛿𝒒 (15)

where 𝛱 is the total potential energy in the domain, ∫ (𝑵𝑇𝛿𝜺𝑚 + 𝑴𝑇𝛿𝜺𝑏 + 𝑸𝑇𝛿𝜺𝑠)
𝑉

𝑑𝑉 is the internal virtual work,

𝒇𝑇𝛿𝒒 is the external virtual work, and 𝒇𝑇 is the nodal forces.

In order to calculate the total potential energy, we must first calculate the variations of strain components. This

can be obtained below from Equations (4) and (13)

 𝛿𝜺𝑚 = 𝛿(𝜺𝑚
𝐿 + 𝜺𝑚

𝑁𝐿) = (𝑩𝑚
𝐿 + 𝑩𝑚

𝑁𝐿)𝛿𝒒

6

𝛿𝜺𝑏 = 𝑩𝑏𝛿𝒒

𝛿𝜺𝑠 = 𝑩𝑠𝛿𝒒 (16)

Substituting Equation (16) into (15), the equation for the principle of virtual work becomes

𝛱 = ∫ [(𝑵𝑇(𝑩𝑚
𝐿 + 𝑩𝑚

𝑁𝐿) + 𝑴𝑇𝑩𝑏 + 𝑸𝑇𝑩𝑠)𝑑𝑉 − 𝒇𝑇]
𝑉

𝛿𝒒 (17)

Equation (17) defines a geometric nonlinearity problem, which can be solved with a Newton-Raphson iteration
procedure. To do this, Equation (17) is first linearized through

𝛿𝛱 = 𝛿𝒒{∫ [(𝑩𝑚
𝐿 + 𝑩𝑚

𝑁𝐿)𝑇𝛿𝑵 + (𝛿𝑩𝑚
𝑁𝐿)𝑇𝑵

𝑉
+𝑩𝑏

𝑇𝛿𝑴 + 𝑩𝑠
𝑇𝛿𝑸]𝑑𝑉 − 𝒇𝑇} = 0 (18)

The increments of the in-plane forces, in-plane bending moments, and in-plane shear forces 𝛿𝑵, 𝛿𝑴 and 𝛿𝑸

can be obtained from Equations (9), (10) and (11)

 𝛿𝑵 = �̄�𝑚(𝑩𝑚
𝐿 + 𝑩𝑚

𝑁𝐿)𝛿𝒒
 𝛿𝑴 = �̄�𝑏𝑩𝑏𝛿𝒒

𝛿𝑸 = �̄�𝑠𝑩𝑠𝛿𝒒 (19)

The integrand in the term ∫ (𝛿𝑩𝑚
𝑁𝐿)𝑇𝑵𝑑𝑉

𝑉
 can be calculated below by considering Equations (5) and (6)

 (𝛿𝑩𝑚
𝑁𝐿)𝑇𝑵 = 𝑮𝑇𝛿𝑯𝑇𝑵 = 𝑮𝑇𝑩𝑔𝑮 (20)

where

𝑩𝑔 = [
𝑁𝑥 𝑁𝑥𝑦

𝑁𝑥𝑦 𝑁𝑦
] (21)

Substituting Equations (19) and (21) into equation (18), the integration of equation (18) leads to a tangent

stiffness matrix below

𝑲 = 𝑲𝐿 + 𝑲𝑁𝐿 + 𝑲𝐺 (22)

where 𝑲𝐿 is the linear stiffness matrix, 𝑲𝑁𝐿 is the nonlinear stiffness matrix, and 𝑲𝐺 is the geometric stiffness

matrix.

If the transformation matrix from the local coordinate of a flat shell element to the global coordinate is 𝑻, the

three stiffness matrices 𝑲𝐿, 𝑲𝑁𝐿, and 𝑲𝐺 are determined with the following equations [10]

 𝑲𝐿 = ∫ 𝑻𝑇(𝑩𝑚
𝐿

𝑉
)𝑇𝑫𝑚𝑩𝑚

𝐿 𝑻𝑑𝑉

 𝑲𝑁𝐿 = ∫ 𝑻𝑇[(𝑩𝑚
𝐿

𝑉
)𝑇𝑫𝑚𝑩𝑚

𝑁𝐿 + (𝑩𝑚
𝑁𝐿)𝑇𝑫𝑚𝑩𝑚

𝐿 + (𝑩𝑚
𝑁𝐿)𝑇𝐃𝑚𝑩𝑚

𝑁𝐿 + 𝑩𝑏
𝑇�̄�𝑏𝑩𝑏 + 𝑩𝑠

𝑇�̄�𝑠𝑩𝑠]𝑻𝑑𝑉

𝑲𝐺 = ∫ 𝑻𝑇𝑮
𝑉

𝑇
𝑩𝑔𝑮𝑻𝑑𝑉 (23)

4.3 Formulation of stiffener elements

In order to consider the contribution of stiffeners to the shell, we present the finite element equations of

stiffeners in this subsection.

As discussed in [12], the displacement field of the stiffener in the skew axes system 𝜉 and 𝜂 shown in Fig.

2(a) is defined by three translations and two rotations, i. e.,

�̄�𝑠 = [𝑢𝑠 𝑣𝑠 𝑤𝑠 𝜃𝜉
𝑠 𝜃𝜂

𝑠]
𝑇
 (24)

Taking the middle plane of the shell as a reference plane for the analysis of stiffeners, the relationship between

the local coordinates and of stiffeners is connected to the local coordinates x and y of the flat shell element

through

 𝜉 = (𝑥 − 𝑥0) 𝑐𝑜𝑠 𝜑 + (𝑦 − 𝑦0) 𝑠𝑖𝑛 𝜑

𝜂 = −(𝑥 − 𝑥0) 𝑠𝑖𝑛 𝜑 + (𝑦 − 𝑦0) 𝑐𝑜𝑠 𝜑 (25)

 (a) (b)

Fig. 2: Stiffener: (a) local coordinate system, (b) reference axis of the stiffener.

𝜃𝜉

𝑦
𝑥

𝑌

𝜃𝜂

𝜉

𝜂
𝜑

(𝑥0, 𝑦0)

(𝑥, 𝑦)

𝜉

𝜂
ℎ 2⁄

𝑒

ℎ𝑛

𝑋

Shell middle

surface, i. e.,

reference axis

of the stiffener

 Shell is

approximated

by flat shell

elements

Stiffener Centroidal axis

of the stiffener

 𝑏𝑛

7

Solving equations (25) for 𝑥 and 𝑦, the following equations are obtained

 𝑥 = 𝑥0 + 𝜉 𝑐𝑜𝑠 𝜑 − 𝜂 𝑠𝑖𝑛 𝜑

𝑦 = 𝑦0 + 𝜉 𝑠𝑖𝑛 𝜑 − 𝜂 𝑐𝑜𝑠 𝜑 (26)

The deformation compatibility between the flat shell elements and stiffener elements requires the stiffeners to

have the same displacements as the flat shell elements. This can be guaranteed by taking the shape functions of

stiffener elements to be the same as those of flat shell elements, which leads to the following relationship between

the local displacements of stiffeners and local displacements of flat shell elements

𝑢𝑠 = 𝑢 𝑐𝑜𝑠 𝜑 + 𝑣 𝑠𝑖𝑛 𝜑

 𝑣𝑠 = −𝑢 𝑠𝑖𝑛 𝜑 + 𝑣 𝑐𝑜𝑠 𝜑
 𝑤𝑠 = 𝑤
 𝜃𝜉

𝑠 = 𝜃𝑥 𝑐𝑜𝑠 𝜑 + 𝜃𝑦 𝑠𝑖𝑛 𝜑

 𝜃𝜂
𝑠 = −𝜃𝑥 𝑠𝑖𝑛 𝜑 + 𝜃𝑦 𝑐𝑜𝑠 𝜑 (27)

where 𝑢, 𝑣, 𝑤 are displacements in the middle plane of the flat shell elements, and 𝜃𝑥 and 𝜃𝑦 of the flat shell

elements are the rotations around the 𝑥 and 𝑦 axes, respectively.

The strains 𝜺𝑠 in stiffeners can be divided into linear strains 𝜺𝑠
𝐿 and nonlinear strains 𝜺𝑠

𝑁𝐿, i. e.,

𝜺𝑠 = 𝜺𝑠
𝐿 + 𝜺𝑠

𝑁𝐿 (28)

where

 𝜺𝑠
𝐿 = [𝑢,𝜉

𝑠 𝜃𝜉,𝜉
𝑠 𝜃𝜉

𝑠 − 𝑤,𝜉
𝑠 𝜃𝜂,𝜉

𝑠]
𝑇

𝜺𝑠
𝑁𝐿 = 0.5 [(𝑤,𝜉

𝑠)
2

0 0 0]
𝑇

 (29)

Substituting Equation (27) into the first one of Equation (29) and following the derivation given in [11], the

linear strains in the stiffeners are determined by

𝜺𝑠
𝐿 = 𝑻𝑠𝜺𝑝 (30)

where 𝑻𝑠 is the transformation matrix for the stiffeners, which correlates the strains in the local coordinate of

stiffeners to the local coordinate of flat shell elements, and 𝜺𝑝 is the strains in the mid-plane of flat shell elements,

which are

 𝜺𝑝 = [𝜺𝑚
𝐿 �̄�𝑏 𝜺𝑠]𝑇 (31)

In the above equations, 𝜺𝑚
𝐿 and 𝜺𝑠 are determined by equations (5) and (7). �̄�𝑏 is similar to 𝜺𝑏 in equation (7),

but the last element in the vector has been written in the two elements, i. e.,

�̄�𝑏 = [𝜃𝑥,𝑥 𝜃𝑦,𝑦 𝜃𝑥,𝑦 𝜃𝑦,𝑥]𝑇 (32)

Since 𝜺𝑏 is changed into �̄�𝑏, the matrix 𝑩𝑏𝑛 is accordingly changed into �̄�𝑏𝑛 below

�̄�𝑏𝑛 = [

0 0 0 0
𝑵𝑛,𝑥 0 𝑵𝑛,𝑦 0

0 𝑵𝑛,𝑦 0 𝑵𝑛,𝑥

]

𝑇

 (33)

According to [9], the transformation matrix 𝑻𝑠 has the form of

𝑻𝑠 = [𝑇1 𝑇2 𝑇3 𝑇4]𝑇 (34)

where the vectors 𝑇1, 𝑇2 , 𝑇3 and 𝑇4 are determined by the following equations

 𝑇1 = [𝑐𝑜𝑠2 𝜑 𝑠𝑖𝑛2 𝜑 0.5 𝑠𝑖𝑛 2 𝜑 0 0 0 0 0 0]
 𝑇2 = [0 0 0 𝑐𝑜𝑠2 𝜑 𝑠𝑖𝑛2 𝜑 0.5 𝑠𝑖𝑛 2 𝜑 0.5 𝑠𝑖𝑛 2 𝜑 0 0]
 𝑇3 = [0 0 0 0 0 0 0 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜑]

𝑇4 = [0 0 0 −0.5 𝑠𝑖𝑛 2 𝜑 0.5 𝑠𝑖𝑛 2 𝜑 𝑐𝑜𝑠2 𝜑 𝑠𝑖𝑛2 𝜑 0 0] (35)

Introducing Equation (13) into (30), the strains in stiffeners are related to nodal displacements of flat shell

elements by

𝜺𝑠
𝐿 = [∑ 𝑻𝑠𝑩𝑚𝑛

𝐿𝑛𝑝

𝑛=1 𝒒𝑚𝑛 ∑ 𝑻𝑠�̄�𝑏𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛 ∑ 𝑻𝑠𝑩𝑠𝑛
𝑛𝑝

𝑛=1 𝒒𝑏𝑛]
𝑇

(36)

Using 𝑁𝑠 , 𝑀𝑠 , 𝑄𝑠 and 𝑇𝑠 to indicate the axial force, bending moment, shear force, and torsion moment,

respectively, the generalized stresses �̄�𝑠 in stiffeners can be calculated from the strains in stiffeners through

�̄�𝑠 = [𝑁𝑠 𝑀𝑠 𝑄𝑠 𝑇𝑠]𝑇 = �̄�𝑠�̄�𝑠
𝐿 (37)

In the above equation, �̄�𝑠 is the elasticity matrix of the stiffeners, which can be written as

�̄�𝑠 = [�̄�1
𝑠 �̄�2

𝑠 �̄�3
𝑠 �̄�4

𝑠]𝑇 (38)

The elements �̄�1
𝑠, �̄�2

𝑠, �̄�3
𝑠 and �̄�4

𝑠 of the elasticity matrix �̄�𝑠 are calculated by

 �̄�1
𝑠 = [𝐸𝑠𝐴𝑠 𝐸𝑠𝑆𝑠 0 0]

 �̄�2
𝑠 = [𝐸𝑠𝑆𝑠 𝐸𝑠𝐼𝑠 0 0]

 �̄�3
𝑠 = [0 0 𝑆𝑠 0]

�̄�4
𝑠 = [0 0 0 𝐺𝑠𝐽𝑠] (39)

where 𝐸𝑠 is Young’s modulus of the stiffener, 𝐴𝑠 is the cross-sectional area of the stiffener, 𝑆𝑠 is the first moment

of the stiffener cross-sectional area about the reference axis, i. e., the mid-plane of the flat sheet element, 𝐼𝑠 is the

8

second moment of the stiffener cross-sectional area about the reference axis, 𝐺𝑠 is the modulus of rigidity, and 𝐽𝑠

is the polar moment of inertia of the stiffener cross-sectional area.

Using the same method as that for the flat shell element, and considering the transformation matrix 𝑻

from the

local coordinate of a flat shell element to the global coordinate, the stiffness matrix of stiffeners from the strains
defined by the first of Equation (29) can be obtained as

 𝑲𝑠 = ∫ 𝑻𝑇𝑩𝑠
𝑇

𝐿𝑠
(𝑻𝑠)𝑇𝑫𝑠𝑻𝑠𝑩𝑠𝑻𝑑𝜉 (40)

Taking advantage of the chain rule 𝑤,𝜉
𝑠 = 𝑤,𝑥

𝑠 𝑥,𝜉 + 𝑤,𝑦
𝑠 𝑦,𝜉, the second of Equation (29) becomes

𝜺𝑠
𝑁𝐿 = 0.5𝑨𝑠𝑹𝑠 (41)

where

𝑹𝑠 = ∑ 𝑮𝑛
𝑠𝑛𝑝

𝑛=1 𝒒𝑛 (42)

and

𝑮𝑛
𝑠 = [0 0 0 𝑁𝑛 𝑐𝑜𝑠 𝜑 𝑁𝑛 𝑠𝑖𝑛 𝜑] (43)

With the similar treatment to that for flat shell elements and considering the transformation matrix 𝑻

from the

local coordinate of a flat shell element to the global coordinate, the stiffness matrix of stiffeners from the nonlinear

strain has the form of

𝑲𝑠 = ∫ 𝑻𝑇𝑮𝑠
𝑇

𝐿𝑠
𝑫𝑠𝑁𝑮𝑠𝑻𝑑𝜉 (44)

where the matrix 𝑮𝑠 is obtained by assembling the vector 𝑮𝑛
𝑠 .

After adding the stiffness matrices (40) and (43) of stiffeners to the stiffness matrix (22), we reach the following

equation

𝑲𝒒 = 𝒇 (45)

 We solve the above equation to obtain all the nodal placements and determine deformations and stresses in the

shell. Then we use the relationships between the nodal displacements of stiffeners and the displacements of the

shell to calculate the deformations and stresses in the stiffeners.

5. Determination of stiffener distribution

Determining stiffener distribution consists of 4 steps. 1) Generate seeds of Voronoi diagram. 2) Map the 3D

surface of an object and generated seeds to a 2D parametric domain. 3) Create Voronoi diagram in the mapped

2D parametric domain. 4) Obtain stiffener distribution from the created Voronoi diagram and map the extracted

stiffeners from the 2D parametric domain to the 3D surface.

5.1 Seed generation of Voronoi diagram

In order to stiffen a thin-shell object optimally, we first specify the total iterations of Monte-Carlo simulation.

Then, the finite element analysis is used to determine the stress field of the object subjected to given external

forces and boundary conditions. Clearly, the regions with high stress should be stiffened with more stiffeners. To

this aim, a given number of seeds used to create Voronoi diagram are distributed on the object through a probability

that places more seeds in the areas with a higher stress.

We use 𝑛𝑡 to stand for the number of triangles of the object mesh, 𝑠𝑖 for the stress of a randomly selected

triangle 𝑡𝑖, 𝜎𝑠 for the material strength, 𝑛𝑠 for the number of expected seeds, and 𝑝∗ for the probability threshold.

We also use 𝑠𝑖 ∕ 𝜎𝑠 to calculate the ratio of the stress 𝑠𝑖 in the 𝑖𝑡ℎ triangle over the material strength 𝜎𝑠. Since

bigger is the ratio 𝑠𝑖 ∕ 𝜎𝑠, higher is the stress in the triangle. Therefore, we use the ratio 𝑠𝑖 ∕ 𝜎𝑠 together with the

probability threshold 𝑝∗ to determine whether a Voronoi diagram seed is valid or not.

First, the number 𝑛𝑠 of the expected seeds used to create a Voronoi diagram is specified. Next, a triangle 𝑡𝑖 is

randomly selected from the total 𝑛𝑡 triangles of the object. And finally, a probability 𝑝 is randomly generated

between 0 and 1. If the randomly generated probability 𝑝 is bigger than the probability threshold 𝑝∗ but smaller

than the ratio 𝑠𝑖 ∕ 𝜎𝑠, the triangle is seeded and marked. After the randomly selected triangle 𝑡𝑖 has been seeded

and marked, a new triangle is randomly selected and a new probability 𝑝 is randomly generated between 0 and 1.

The condition 𝑝∗ < 𝑝 < 𝑠𝑖 ∕ 𝜎𝑠 is used to check whether the new triangle should be seeded and marked. This

process is repeated until the number 𝑛𝑠 of the expected seeds are reached. The algorithm is shown below.

9

5.2 Mapping a 3D surface to a 2D domain

After generating Voronoi diagram seeds on the 3D surface of a thin-shell object, the next step is to create a

Voronoi diagram from these seeds and extract stiffeners from the created Voronoi diagram. However, directly

creating a 3D Voronoi diagram from the generated seeds and extracting stiffeners from the created 3D Voronoi

diagram on a 3D surface is more difficult than in a two-dimensional (2D) domain. In order to overcome the

difficulty, we use the Least Squares Conformal Maps (LSCMs) [39] to map a 3D surface and the generated seeds

to a 2D domain and create a 2D Voronoi diagram in the 2D domain.

As adopted in [39], this paper uses normal characters to stand for scalars, bold characters for vectors, capital

characters for complex numbers, bold capital characters for vector of complex numbers, and cursive fonts for

maps and matrices. With these notations, 𝑥 is a scalar, 𝒙 = [𝑥, 𝑦]𝑇 is a vector, 𝑋 = 𝑥 + 𝑖𝑦 is a complex number,

𝑿 = [𝑋, 𝑌]𝑇 is a vector whose components are complex numbers 𝑋 and 𝑌, and 𝒳 is a map or matrix.

Fig. 3. Conformal mapping from a 2D point (𝑢, 𝑣) to a surface point 𝑋(𝑢, 𝑣) [40].

In this paper, we use a conformal mapping to map a 3D surface and the generated seeds on the 3D surface to

a 2D parametric domain. A conformal mapping, also called a conformal map, conformal transformation, angle-

preserving transformation, or biholomorphic map, is a transformation that preserves local angles. Such local angle

preservation enables to map an elementary circle in the (𝑢, 𝑣) domain to an elementary circle on a surface.

Therefore, a conformal mapping is also locally isotropic.

The mapping 𝒳(𝑢, 𝑣) shown in Fig. 3 that maps a (𝑢, 𝑣) domain to a surface is conformal since the tangent

vectors to the iso-𝑢 and iso-𝑣 curves passing through 𝒳(𝑢, 𝑣) are orthogonal and have the same norm for each
(𝑢, 𝑣). This property can be mathematically written as

 𝑁(𝑢, 𝑣) ×
𝜕𝒳(𝑢,𝑣)

𝜕𝑢
=

𝜕𝒳(𝑢,𝑣)

𝜕𝑣
 (46)

where 𝑁(𝑢, 𝑣) is the unit normal to the surface.

For a thin-shell object represented with a triangle mesh consisting of 𝑛 vertices and 𝑛𝑡 triangles, we use 𝒯 to

stand for the set of 𝑛𝑡 triangles and 𝒑𝒋 {1 ≤ 𝑗 ≤ 𝑛} to denote the geometric location at vertex 𝑗 of 𝑛 vertices. For

each of the 𝑛𝑡 triangles, a local orthonormal basis is provided. The 𝑧-axis of the local orthonormal basis is in the

normal direction of the triangle. And the coordinates of the three vertices of the triangle in its local orthonormal

basis are (𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥3, 𝑦3). If two triangles share a edge, the local bases of two triangles are

consistently oriented.

In the local orthonormal basis of triangle T with an area of 𝐴𝑇, the map 𝒳: (u,v) → (𝑥, 𝑦) can be written a

complex function 𝒳 = x(u, v) + iy(u, v) where the symbol i is an imaginary number. We use 𝒰 to indicate the

inverse map of 𝒳. Similarly, the inverse map 𝒰: (x, y) → (u, v) can also be written a complex function 𝒰 = u(x,

y) + iv(x, y). In the local orthonormal basis, Eq. (46) becomes
𝜕𝒳

𝜕𝑢
− 𝑖

𝜕𝒳

𝜕𝑣
= 0 (47)

https://mathworld.wolfram.com/Transformation.html
https://mathworld.wolfram.com/Angle.html

10

According to the theorem on the derivatives of inverse functions, we obtain

𝜕𝒰

𝜕𝑥
+ 𝑖

𝜕𝒰

𝜕𝑦
= 0 (48)

In general, Eq. (48) cannot be strictly enforced. The violation of the conformality condition can be minimized

in the least squares sense, which defines the following criterion 𝐶(𝑇):

𝐶(𝑇) = ∫ |
𝜕𝒰

𝜕𝑥
+ 𝑖

𝜕𝒰

𝜕𝑦
|

2

T
𝑑𝐴 = |

𝜕𝒰

𝜕𝑥
+ 𝑖

𝜕𝒰

𝜕𝑦
|

2

𝐴𝑇 (49)

Summing over all the 𝑛𝑡 triangles of the triangle mesh, the criterion to minimize the violation of the

conformality condition can be written as

 𝐶(𝒯) = ∑ 𝐶(𝑇)𝑇∈𝒯 (50)

With the Least Squares Conformal Maps, the 3D surface of a thin-shell object to be stiffened and the generated

seeds on the 3D surface are mapped to a 2D parametric domain.

5.3 Creating Voronoi diagram

Voronoi diagrams have widespread practical and theoretical applications in many fields. They are mainly
applied in science and technology, but also in visual art including computational geometry, city planning,

computer graphics, epidemiology, geophysics, and meteorology etc. Some application examples are: data

compression in image processing, nearest neighbor queries for data structure problems in computational geometry,

optimal quadrature rules, computational morphology such as modelling how fire spreads and crystals grow,

optimal placement of resources, business applications such as determining where to locate a store so it is no closer

to any existing store of its kind, finite difference schemes with optimal truncation errors, cell division, territorial

behavior of animals, optimal representation, quantization and clustering, and applications of centroidal Voronoi

tessellations in non-Euclidean metrics.

A Voronoi diagram is also called a Voronoi tessellation, a Voronoi decomposition, a Voronoi partition, or

a Dirichlet tessellation. It is a partition of a plane into regions close to each of a given set of seeds (points, usually

called sites). As shown in Fig. 4 below, if we are given a finite set of sites, i. e., points 𝑷 = {𝒑1, 𝒑2, 𝒑3, … , 𝒑𝑀},
the Voronoi diagram of 𝑷 is the subdivision of the plane into 𝑀 Voronoi cells 𝑹𝑖 = 𝑹(𝒑𝑖) (𝑖=1, 2, 3,…, 𝑀) so

that any point 𝒑 lies in the cell 𝑹(𝒔𝑖) if ‖𝒑 − 𝒑𝑖‖ < ‖𝒑 − 𝒑𝑗‖ for each 𝒑𝑗 ∈ 𝑷 when 𝑖 ≠ 𝑗.

Fig. 4. Voronoi diagram.

With the seed generation algorithm described in Subsection 5.1, the seeds on the 3D mesh have been generated

and shown in Fig. 8(a). These seeds are mapped to a 2D space with the mapping algorithm discussed in Subsection

5.2. The remaining problem is how to generate a Voronoi diagram from these seeds.
There are several different algorithms of generating Voronoi diagrams. The half plane intersection algorithm

treats the edges of the Voronoi diagram as the segments taken from the perpendicular bisectors of the lines between

the sites. These segments can be regarded as intersections of perpendicular bisectors, which divide the plane in

half. The running time of the half plane intersection algorithm is O(𝑛2 log 𝑛). Fortune’s algorithm constructs a

Voronoi diagram as a horizontal line or vertical line sweeping the set of sites. The running time of Fortune’s

algorithm is O(𝑛 log 𝑛) . Bowyer-Watson algorithm treats a Voronoi diagram as a dual graph of Delaunay

triangulation. It generates a Voronoi diagram by connecting the centres of all the circumcircles of Delaunay

triangulation. The running time of Bowyer-Watson algorithm is O(𝑛 log 𝑛) to O(𝑛2). In this paper, we generate

Voronoi diagrams by using Fortune’s algorithm to sweep a horizontal line from top to bottom as discussed below.

Fortune’s algorithm consists of two steps. The first step is to simulate the growth of the beach line as the sweep

line moves downwards, and the second step is to trace the paths of the breakpoints as they travel along the edges

of the Voronoi diagram.

Site 𝒑𝑖

Cell 𝑹𝑖
𝒑

Site 𝒑
1

Site 𝒑
𝑀

https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Technology
https://en.wikipedia.org/wiki/Visual_art
https://en.wikipedia.org/wiki/Partition_of_a_set

11

(a) (b) (c)

Fig. 5. The sweep line and beach line.

As shown in Fig. 5, the horizontal sweep line divides a plane into a top halfplane and a bottom halfplane, and

the x-monotonic blue beach line divides the top halfplane into two regions. The points in the region above the blue

beach line are closer to some site 𝒑𝑖 above the sweep line than they are to the sweep line itself. And the points in

the region below the beach line are closer to the sweep line than they are to any site above the sweep line.

The points 𝒒 that are equidistant from the sweep line and the nearest site 𝒑𝑖 above the sweep line is a parabola.

When the sweep line passes through a new site, a new parabola is generated as shown in Fig. 5(a). When the sweep

line moves downwards further, the parabola becomes “fatter” as shown in Fig. 5(b). A beach line consists of a

lower envelope of these parabolas, one for each site, as shown in Fig. 5(c).

When two parabolas intersect, a breakpoint is generated. It is equidistant from two sites and the sweep line,

and hence must lie on some Voronoi edge. For example, if two parabolas of sites 𝒑𝑖 and 𝒑𝑗 share a common

breakpoint on the beach line, this breakpoint lies on the Voronoi edge between the sites 𝒑𝑖 and 𝒑𝑗 as shown in

Fig. 6(a).
When the sweep line moves downwards, two events occur: one is site events, and the other is circle events also

called Voronoi vertex events.

(a) (b) (c)

Fig. 6. Site event.

A site event occurs whenever the horizontal sweep line passes over a site. Here we use the sweep line passing

through the site 𝒑𝑖 to explain how a site event occurs. Before the sweep line touches the site 𝒑𝑖, the parabolic arc

of the site 𝒑𝑗 has been generated, and is connected to the parabolic arc of the site 𝒑𝑘. The sweep line status can be

described with a list <…, 𝒑𝑗, 𝒑𝑘, …> as shown in Fig. 6(a). At the instant that the sweep line touches the site 𝒑𝑖,

the associated parabolic arc of 𝒑𝑖 degenerates to a vertical ray shooting up from the site 𝒑𝑖 to the parabolic arc of

the site 𝒑𝑗, and a new event 𝒑𝑖 will be added to the list <…, 𝒑𝑗, 𝒑𝑘, …> as shown in Fig. 6(b). As the sweep line

proceeds downwards, this ray widens into a parabolic arc along the beach line. As the sweep line sweeps on, the

parabolic arc of the site 𝒑𝑖 grows wider. The parabolic arc of the site 𝒑𝑗 is split into two: one is on the left and the

other is on the right of the parabolic arc of the site 𝒑𝑖, and the new event 𝒑𝑖 is added to list <…, 𝒑𝑗, 𝒑𝑘, …> to

change it into <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑗, 𝒑𝑘, …> as shown in Fig. 6(c).

𝒑𝑖

beach

line

points 𝒒

sweep line

𝒑
𝑖

𝒑
𝑖

𝒑
𝑗

𝒑
𝑘
 𝒑

𝑘
 𝒑

𝑘

𝒑
𝑗
 𝒑

𝑗

𝒑
𝑖

𝒑
𝑖

Prior to event

< ⋯ 𝒑
𝑗
𝒑

𝑘
⋯ >

At the event After the event
< ⋯ 𝒑

𝑗
𝒑

𝑖
𝒑

𝑗
𝒑

𝑘
⋯ >

𝒑𝑖
⇧

< ⋯ 𝒑
𝑗
𝒑

𝑘
⋯ >

12

(a) (b) (c)

Fig. 7. Circle event.

Circle events are generated from triples of sites. We use Fig. 7 to explain how a circle event is generated. As

shown in Fig. 7(a), any three consecutive sites 𝒑𝑖, 𝒑𝑗, and 𝒑𝑘 define a circumcircle, and the small hollow circle is

the lowest point of the circumcircle. The circumcircle contains no sites lying below the sweep line. When the

sweep line is above the lowest point, the beach line contains the left parabolic arc of the site 𝒑𝑗, the parabolic arc

of the site 𝒑𝑖, the right parabolic arc of the site 𝒑𝑗, and the parabolic arc of the site 𝒑𝑘, which can be described by

the list <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑗, 𝒑𝑘, …>. At the instant when the sweep line falls to the lowest point, the circumcenter of

the circumcircle is equidistant from all three sites 𝒑𝑖, 𝒑𝑗, and 𝒑𝑘 and from the sweep line. Therefore, it is a Voronoi

vertex. Since all three parabolic arcs of the sites 𝒑𝑖, 𝒑𝑗, and 𝒑𝑘 pass through this circumcenter, the contribution of

the parabolic arc from 𝒑𝑗 disappears from the beach line, i. e., the length of the right parabolic arc of the site 𝒑𝑗

becomes zero. In order to reflect this change, the right 𝒑𝑗 in the list <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑗, 𝒑𝑘, …> is deleted as shown

in Fig. 7(b). As the bisectors (𝒑𝑖 , 𝒑𝑗) and (𝒑𝑗 , 𝒑𝑘) have met each other at the Voronoi vertex, only a single

bisector (𝒑𝑖 , 𝒑𝑘) remains. Accordingly, the triple of the consecutive sites 𝒑𝑖, 𝒑𝑗, 𝒑𝑘 on the sweep-line status is

replaced with 𝒑𝑖, 𝒑𝑘, and the list <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑗, 𝒑𝑘, …> becomes <…, 𝒑𝑗, 𝒑𝑖, 𝒑𝑘, …> as shown in Fig. 7(c).

As the sweep line moves downwards, the above process is repeated to add new parabolic arcs through the site

events and delete zeroed-length parabolic arcs through the circle events. After the sweep line completes the whole

sweep, the Voronoi diagram of the site set 𝑷 shown in Fig. 8(a) is created and depicted in Figs. 8(b) and 8(c).

(a) (b) (c)

Fig. 8. Generation of Voronoi diagram.

5.4 Extracting stiffeners

Having created the Voronoi diagram in 2D, the next work is to extract stiffeners from the Voronoi diagram.

Suppose two ends of an edge of the Voronoi diagram is represented as 𝑝a and 𝑝b, respectively. And the edge

intersects with the projected input mesh at mi (i = 1, ···, I) where I is the number of intersections as shown in Fig.

9.

Fig. 9. Stiffener extraction.

The stiffener extraction step takes each edge from the Voronoi diagram. All local triangles tli are iterated to

detect all intersections p1, p2 in all triangles where p1 stands for mi, and p2 stands for mi+1 (i=1, 2, …, I-1). In order
to easily project 2D intersection points back to 3D, the obtained intersections p1 and p2 are encoded in area

coordinates L1 and L2 using the local triangle tl
i. After all edges of the Voronoi diagram have been processed, all

intersections represented in local area coordinates are mapped back to 3D coordinates. The algorithm is

summarized in Algorithm 2.

𝒑
𝑗

𝒑
𝑘

𝒑
𝑖
 𝒑

𝑖
 𝒑

𝑖

𝒑
𝑗

𝒑
𝑗

𝒑
𝑘
 𝒑

𝑘

Prior to event At the event After the event
< ⋯ 𝒑

𝑗
𝒑

𝑖
𝒑

𝑗
𝒑

𝑘
⋯ > × < ⋯ 𝒑

𝑗
𝒑

𝑖
𝒑

𝑘
⋯ > < ⋯ 𝒑

𝑗
𝒑

𝑖
𝒑

𝑗
𝒑

𝑘
⋯ >

new

bisector

13

6. Size optimization of stiffeners

Cost minimization of 3D printed objects can be treated as minimization of material consumption. In order to

reduce material consumption, 3D printed objects are designed as thin shells. The required strength of thin shells

is obtained through various enhancement structures. For thin shells stiffened with stiffeners, material consumption

is determined by thin shells and stiffeners. In this paper, we take the wall thickness of 3D printed objects to be the

minimum wall thickness of 3D printer. In doing so, minimization of wall thickness of shells is obtained, and

material consumption minimization of 3D printed objects becomes volume minimization of stiffeners.

Stiffeners with a rectangular cross-section are widely applied in various thin-shell objects. In this paper, we

investigate how to minimize the volume of this type of stiffeners. Assuming the length of the 𝑛𝑡ℎ stiffener is 𝑙𝑛,

and the cross-section area of the stiffener is 𝐴𝑛, the number of the total stiffeners of a stiffened object is 𝑁, the

total volume of the stiffeners of the stiffened object is 𝑉 = ∑ 𝑙𝑛
𝑁
𝑛=1 𝐴𝑛

The cross-section sizes of rectangular stiffeners are height ℎ and width 𝑏. For stiffeners with a rectangular

cross-section, if 𝑁 stiffeners are required to stiffen a 3D printed thin-shell object, the volume minimization of

stiffeners for the 3D printed thin-shell object involves 2𝑁 design variables: 𝑏𝑛, and ℎ𝑛 (n=1, 2, 3, …, N).
Stiffened objects should satisfy strength requirement. In engineering applications, von Mises stress is widely

used in strength evaluation when structures or objects are subjected to a complicated loading condition. It is

defined by the following equation

𝜎𝑣 = √
(𝜎𝑥𝑥−𝜎𝑦𝑦)2+(𝜎𝑦𝑦−𝜎𝑧𝑧)2+(𝜎𝑧𝑧−𝜎𝑥𝑥)2+6(𝜏𝑥𝑦

2 +𝜏𝑦𝑧
2 +𝜏𝑧𝑥

2)

2
 (51)

where 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜎𝑧𝑧 are three normal stresses, and 𝜏𝑥𝑦, 𝜏𝑦𝑧, and 𝜏𝑧𝑥 are three shear stresses.

For the stiffeners with a rectangular cross-section, the total volume of the stiffeners is 𝑉 = ∑ 𝑙𝑛
𝑁
𝑛=1 ℎ𝑛𝑏𝑛 where

𝑙𝑛 (n=1, 2, 3, …, N) are known lengths of stiffeners determined in Subsection 5.4. Minimizing the total volume

of stiffeners can be formulated as

arg min
ℎ𝑛,𝑏𝑛

∑ ℎ𝑛𝑏𝑛
𝑁
𝑛=1 (52)

Having formulated the objective function, we formulate the optimization constraints. For thin-shell objects to

be stiffened, the optimization constraints are: 1) user’s specified lower bound ℎ𝑛 and upper bound ℎ𝑛 of the height

of stiffeners, 2) user’s specified lower bound 𝑏𝑛 and upper bound 𝑏𝑛 of the width of stiffeners, 3) the equivalent

stress 𝜎𝑛
𝑠ℎ in the shell is not more than the allowable stress 𝜎𝑠, and 4) the equivalent stress 𝜎𝑛

𝑠𝑡 in the 𝑛𝑡ℎ stiffeners

is not more than the allowable stress 𝜎𝑠. These optimization constraints can be formulated as

 ℎ𝑛 ≤ ℎ𝑛 ≤ ℎ𝑛

 𝑏𝑛 ≤ 𝑏𝑛 ≤ �̅�𝑛

𝜎𝑛
𝑠ℎ ≤ 𝜎𝑠

𝜎𝑛
𝑠𝑡 ≤ 𝜎𝑠 (53)

Volume minimization is to solve Eq. (52) subjected to the optimization constraints (53) for the stiffeners with

a rectangular cross-section. In the section of Experiments and results, we will present many examples of obtaining

the optimal sizes ℎ𝑛 and 𝑏𝑛 together with the minimum volume of stiffeners by solving the above constrained

optimization problem for the stiffeners with a rectangular cross-section.

14

7. Monte-Carlo simulation-based global optimization

As indicated in Algorithm 1, the seeded triangle ti and probability 𝒑 are both randomly generated from a
uniform distribution. The stiffener distribution relies on the generated seeds from this algorithm, which may be a

local minimum, not a global optimal solution. In order to tackle this problem, a Monte-Carlo simulation algorithm

based on Monte-Carlo stochastic sampling is introduced.

Monte-Carlo sampling is one of the most classic sampling methods used to solve the problems such as

evaluation of integrals, physical simulation, optimization and so on. With this sampling algorithm, nm Monte-

Carlo simulation iterations is specified, and then the process of determining the distribution of stiffeners and size

optimizations of stiffeners is repeated nm times with different randomly generated seeds rs to search for a global

optimal solution.

In this research, the number nm of Monte-Carlo simulation iterations is set to be 100. The experiment indicates

100 Monte-Carlo simulation iterations are large enough to obtain a global optimal solution.

8. Experiments and results

In this section, we introduce the implementation and parameter setting of the proposed framework, effects of

different probability thresholds and Monte-Carlo simulation, and 3D printed objects and the stress comparisons

before and after they are stiffened with the method proposed in this paper.

8.1 Implementation and parameter setting

The proposed algorithm is implemented in MATLAB with FEM calculations compiled into MEX functions

for speed reason. The simulations are conducted on a PC with an Intel Xeon E5 CPU and 32GB memory, running

on Windows OS.

The minimal wall thickness allowed by the used printer is 1 mm. Therefore, both the 𝑏𝑛 and ℎ𝑛 are set to be

1 mm. The material strength 𝜎𝑠 of the photosensitive resin used to print all the 3D objects is 42 N/mm2 according

to the information found from the link https://uk.3dsystems.com/sites/default/files/2020-03/3d-systems-figure-4-

TOUGH-BLK-20-datasheet-usen-2020-03-16-web.pdf. Stiffeners act as beams. In order to avoid failure caused

by a too large ratio of height to width of stiffeners, a maximum ratio of hight to width is specified. The maximum

ratio of height to width found from the link www.ecourses.ou.edu/cgi-bin/ebook.cgi?topic=me&chap_sec

=other&page=lumber_US &appendix=shapes is 6 in real applications. In this paper, the upper bounds �̅�𝑛 and ℎ𝑛

are taken to be 4 mm. When the width takes the minimum 1 mm and the height takes the maximum 4 mm, the

maximum ratio of height to width is 4, which is less than 6 in real applications.

8.2 Effect of different probability thresholds

The probability threshold p* is introduced here to control the spread of the seeds over the geometry. When p*

is set to a low value, the triangles with small probabilities will not be filtered out and marked as seeded ones,

causing a wide spread of seeds over all triangles. On the contrary, if p* is set to a high value, triangles with the

stress p𝜎s no more than p*𝜎s will never be selected, which guarantees the concentration of seeds around critical
areas.

Figure 10 shows the effect of three different probability thresholds on the generated stiffeners with a

rectangular cross-section where Figs. 10(a), 10(b) and 10(c) are from the probability thresholds 0, 0.3, and 0.5,

respectively. It can be seen a small p* such as p* = 0 in Fig. 10(a) leads to a more uniform distribution of seeds

over the mesh, while a large p* such as p* = 0.5 in Fig. 10(c) drives seeds towards the areas with higher stress and

brings in more stiffeners to enhance them.

(a) p* = 0 (b) p* = 0.3 (c) p* = 0.5

Fig. 10. Effect of different thresholds p* on the distribution of seeds.

8.3 Effect of Monte-Carlo simulations

Figure 11 shows the effect of random number generator seed rs of Monte-Carlo simulations on distributions of

the stiffeners with a rectangular cross-section where the left, middle, and right images are from the random number

https://uk.3dsystems.com/sites/default/files/2020-03/3d-systems-figure-4-TOUGH-BLK-20-datasheet-usen-2020-03-16-web.pdf
https://uk.3dsystems.com/sites/default/files/2020-03/3d-systems-figure-4-TOUGH-BLK-20-datasheet-usen-2020-03-16-web.pdf
http://www.ecourses.ou.edu/cgi-bin/ebook.cgi?topic=me&chap_sec%20=other&page=lumber_US%20&appendix=shapes
http://www.ecourses.ou.edu/cgi-bin/ebook.cgi?topic=me&chap_sec%20=other&page=lumber_US%20&appendix=shapes

15

generator seeds 10, 20 and 30, respectively. With the same stress map and same number of seeds (ns = 35), the

distributions of seeds in Figs. 11(a), 11(b) and 11(c) are different, leading to different Voronoi diagrams shown in

Figs. 11(d), 11(e) and 11(f) and different stiffener distributions shown in Figs. 11(g), 11(h), and 11(i), respectively.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Fig. 11. Effect of Monte-Carlo simulations of a Guscio. The random number generator seeds rs for each column

are 10, 20 and 30, respectively.

8.4 3D printed objects and stress comparisons

With the Voronoi diagram and Monte-Carlo based finite element optimization algorithm of stiffened objects

proposed in this paper, the minimum stiffener volumes of some stiffened objects with a rectangular cross-section
are obtained and the stress changes in the objects with and without the optimized stiffeners are shown in Fig. 13 -

- Fig. 21, respectively. The 3D printed models stiffened with the optimized rectangular cross-section stiffeners are

shown in Fig. 12.

Fig. 12. Printed 3D objects.

Table 1. Maximum stresses in unstiffened and stiffened thin-shell objects and total volume of stiffeners

 Maximum stresses (MPa) Total volume (mm3)

 Unstiffened Stiffened Stiffeners

Plate 278.198 24.6426 418.5148

Botanic 90.927 33.8706 418.856

Snail 33.273 28.3634 84.0108

Dome 59.028 34.3583 754.704

Bridge 94.4982 16.8744 535.109

Hemisphere 42.0198 31.2246 1961.93

Guscio 43.8379 29.5158 711.483

Lilium 52.0412 35.3578 227.294

Leaf 54.9437 24.6426 112.512

16

Figure 13 shows the stress distributions in an unstiffened and stiffened Plate, stiffeners, and 3D printed model.

The maximum stresses in the unstiffened and stiffened Plate and the total volume of optimized stiffeners are given

in Table 1. In the figure, (a) depicts the stress distribution in the flat plate without stiffeners with a maximum stress

of 278.198 MPa, (b) shows the optimized stiffeners with a total volume of 418.5148 mm3, (c) gives the stress

distribution in the flat plate stiffened by the optimized stiffeners with a maximum stress 24.6426 MPa, and (d) is
a photo of the 3D printed model of the stiffened plate. By applying the optimized stiffeners, the maximum stress

reduces from 278.198 MPa to 24.6426 MPa.

 (a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed plate

Fig. 13. Unstiffened and stiffened Plate.

The example of a Botanic is given in Fig. 14 to show the stress distributions in an unstiffened and stiffened

Botanic, stiffeners, and 3D printed model. The maximum stresses in the unstiffened and stiffened Botanic and the

total volume of optimized stiffeners are given in Table 1. Fig. 14(a) shows the initial stress distribution in the
Botanic without stiffeners with a maximum stress of 90.927 MPa, (b) shows the optimized stiffeners with a total

volume of 418.856 mm3, (c) gives the stress distribution in the Botanic stiffened by the optimized stiffeners with

a maximum stress 33.8706 MPa, and (d) is a photo of the 3D printed model of the stiffened Botanic. By applying

the optimized stiffeners, the maximum stress reduces from 90.927 MPa to 33.8706 MPa.

 (a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed botanic

Fig. 14. Unstiffened and stiffened Botanic.

The stress fields in an unstiffened and stiffened Snail, stiffeners and 3D printed model are shown in Fig. 15.

The maximum stresses in the unstiffened and stiffened Snail and the total volume of optimized stiffeners are given

in Table 1. In the figure, the initial maximum stress in the Snail without any stiffeners is 33.273 MPa as shown in

(a). After applying the stiffeners (b) with a total volume of 84.0108 mm3 to the Snail, the maximum stress shown

in (c) drops from 33.273 MPa to 28.3634 MPa in the final printed 3D model (d).

 (a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed snail

Fig. 15. Unstiffened and stiffened Snail.

Figure 16 shows the stress distributions in an unstiffened and stiffened Dome, stiffeners, and 3D printed object.

The maximum stresses in the unstiffened and stiffened Dome and the total volume of optimized stiffeners are

given in Table 1. The maximum stress 59.028 MPa in the initial stress distribution (a) without any stiffeners is

reduced to the maximum stress 34.3583 MPa in (c) by applying the stiffened stiffeners (b) with a total volume of

754.704 mm3. (d) is a photo of the 3D printed model of the stiffened Dome.

17

 (a) Initial stress (b) Stiffeners (c) Final stress (d) 3D printed dome

Fig. 16. Unstiffened and stiffened Dome.

 The stress fields in an unstiffened and stiffened Bridge, stiffeners and 3D printed model are shown in Fig. 17.

The maximum stresses in the unstiffened and stiffened Bridge and the total volume of optimized stiffeners are

given in Table 1. In the figure, the initial maximum stress in the bridge without any stiffeners is 94.4982 MPa as

shown in (a). After applying the stiffeners (b) with a total volume of 535.109 mm3 to the bridge, the final maximum

stress (c) drops from 94.4982 MPa to 16.8744 MPa in the final printed 3D model (d).

 (a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed bridge

Fig. 17. Unstiffened and stiffened Bridge.

Figure 18 shows the stress distributions in an unstiffened and stiffened Hemisphere, stiffeners, and 3D printed

object. The maximum stresses in the unstiffened and stiffened Hemisphere and the total volume of optimized

stiffeners are given in Table 1. The initial stress distribution without stiffeners has a maximum stress of 42.0198

MPa shown in (a), (b) shows the optimized stiffeners with a total volume of 1961.93 mm3, (c) gives the stress

distribution in the Hemisphere stiffened by the optimized stiffeners with a maximum stress 31.2246 MPa, and (d)

is a photo of the 3D printed model of the stiffened Hemisphere. The applied optimized stiffeners help to reduce to

the maximum stress from 42.0198 MPa to 31.2246 MPa.

 (a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed hemisphere

Fig. 18. Unstiffened and stiffened Hemisphere.

Figure 19 shows the stress distributions in an unstiffened and stiffened Guscio, stiffeners, and 3D printed object.

The maximum stresses in the unstiffened and stiffened Guscio and the total volume of optimized stiffeners are

given in Table 1. The maximum stress 43.8379 MPa in the initial stress distribution (a) without any stiffeners is

reduced to the maximum stress 29.5158 MPa in (c) by introducing the stiffeners (b) with a total volume of 711.483

mm3. A photo of the 3D printed model of the stiffened Guscio is shown in Fig. 19(d).

 (a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed guscio

Fig. 19. Unstiffened and stiffened Guscio.

 Figure 20 shows the stress distribution in an unstiffened and stiffened Lilium, stiffeners, and 3D printed object

of a Lilium. The maximum stresses in the unstiffened and stiffened Lilium and the total volume of optimized

stiffeners are given in Table 1. The initial stress distribution without stiffeners has a maximum stress of 52.0412

18

MPa shown in (a), (b) shows the optimized stiffeners with a total volume of 227.294 mm3, (c) gives the stress

distribution in the Lilium stiffened by the optimized stiffeners with a maximum stress 35.3578 MPa, and (d) is a

photo of the 3D printed model of the stiffened Lilium. The applied optimized stiffeners help to reduce the

maximum stress from 52.0412 MPa to 35.3578 MPa.

 (a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed lilium

Fig. 20. Unstiffened and stiffened Lilium.

The stress fields in an unstiffened and stiffened Leaf, stiffeners and 3D printed object are shown in Fig. 21.

The maximum stresses in the unstiffened and stiffened Leaf and the total volume of optimized stiffeners are given

in Table 1. In this example, the initial maximum stress in the Leaf without any stiffeners is 54.9437 MPa as shown

in (a). After attaching the stiffeners (b) with a total volume of 112.512 mm3 to the Leaf, the final maximum stress

drops from 54.9437 MPa to 20.2208 MPa as depicted in (c), and the final printed 3D model is given in (d).

 (a) Initial stress (b) Stiffener (c) Final stress (d) 3D printed leaf

Fig. 21. Unstiffened and stiffened Leaf.

 We have also timed seed generation, Voronoi creation, stiffener extraction, and optimization calculations and

listed the obtained time in Table 2. In the table, “Total” means the “Total time”, which is the sum of the time spent

on seed generation, Voronoi creation, stiffener extraction, and optimization calculations.

Table 2. Calculation time (milliseconds)

Object name Total Seed generation Voronoi diagram creation Stiffener extraction Optimization

Botanic 12295.659 0.454 1.334 98.471 12195.400

Snail 8861.159 1.050 0.634 72.225 8787.250

Dome 7007.618 0.428 0.880 115.220 6891.090

Bridge 901.005 0.151 1.441 46.334 853.079

Hemisphere 4404.410 0.659 1.674 120.167 4281.910

Guscio 4855.962 0.719 0.607 60.876 4793.760

Lilium 21755.952 1.049 0.730 138.973 21615.200

Leaf 6656.774 0.401 0.682 120.461 6535.230

 According to the data in Table 2, the optimization calculations took the most time, and seed generation took

the least time. Among all the objects given in Table 2, the most time (21.756 seconds) was used to calculate Lilium,

and the least time (0.901 seconds) was used to calculate Bridge. They indicate that the proposed method is very

efficient in obtaining the minimum 3D printing material consumption of various stiffened thin-shell objects.

9. Conclusions and future work

In this paper, we have developed a finite element optimization framework based on Voronoi diagram and

Monte-Carlo simulation to minimize the material consumption of 3D printing. Our developed framework consists

of the finite element analysis to obtain the stress distribution in thin-shell objects, random generation of seeds
guided by the obtained stress field, using conformal mapping to map the 3D objects and generated seeds to a 2D

parametric domain to create a Voronoi diagram for optimizing the distribution of stiffeners. Apart from optimizing

the stiffener distribution, the cross-section sizes of stiffeners are minimized to further save materials for 3D

printing. The Monte-Carlo simulation is introduced to optimize the seed generation and achieve a global optimal

solution.

19

 A lot of experiments were carried out to demonstrate the effectiveness and advantages of the proposed method.

The stress comparisons between the thin-shell objects with and without stiffeners demonstrate that thin-shell

objects stiffened with the optimized distribution and cross-section sizes of stiffeners significantly reduce material

consumption of 3D printed objects.

 This paper only considers the stiffeners with a rectangular cross-section. In the future, other types of cross-

sections such as tee-shaped and I/H (double-tee) cross-sections will be investigated. In addition, this paper assumes

that cross-section sizes of stiffeners do not change along the length of stiffeners. In fact, the cross-section sizes of

stiffeners in high stress regions should be bigger than the cross-section sizes in low stress regions. We will

introduce varying cross-section sizes to further minimize material consumption of stiffeners in our following work.

A small number of the expected seeds 𝑛𝑠 will lead to a small number of stiffeners but large cross-section sizes of

stiffeners. Oppositely, a large number of the expected seeds 𝑛𝑠 will lead to a large number of stiffeners but small

cross-section sizes of stiffeners. There should be an optimal number of the expected seeds, which will lead to the

minimum volume of stiffeners. In the future, we will investigate how to optimize the number of the expected seeds

𝑛𝑠.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This research is supported by the PDE-GIR project that has received funding from the European Union Horizon

2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No 778035.

References

[1] A.Z. Zheng, S.J. Bian, E. Chaudhry, J. Chang, H. Haron, L.H. You, J.J. Zhang, Minimizing material

consumption of 3D printing with stress-guided optimization, V. V. Krzhizhanovskaya et al. (Eds.): ICCS

2020, Lecture Notes in Computer Science 12141 (2020) 588-603.

[2] M. Skouras, B. Thomaszewski, S. Coros, B. Bickel, M. Gross, Computational design of actuated

deformable characters, ACM Transactions on Graphics 32(4) (2013) 82:1-9.
[3] J. Calì, D.A. Calian, C. Amati, R. Kleinberger, A. Steed, J. Kautz, T. Weyrich, 3D-printing of non-

assembly, articulated models, ACM Transactions on Graphics 31(6) (2012) 130:1-8.

[4] L. Zhu, W. Xu, J. Snyder, Y. Liu, G. Wang, B. Guo, Motion-guided mechanical toy modeling, ACM

Transactions on Graphics 31(6) (2012) 127:1-10.

[5] S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R.W. Sumner, W. Matusik, B. Bickel,

Computational design of mechanical characters, ACM Transactions on Graphics 32(4) (2013) 83:1-12.

[6] Y. Dong, J. Wang, F. Pellacini, X. Tong, B. Guo, Fabricating spatially varying subsurface scattering, ACM

Transactions on Graphics 29(4) (2010) 62:1-10.

[7] D. Chen, D.I. Levin, P. Didyk, P. Sitthi-Amorn, W. Matusik, Spec2Fab: a reducer-tuner model for

translating specifications to 3D prints, ACM Transactions on Graphics 32(4) (2013) 135:1-9.

[8] O.C. Zienkiewicz, R.L. Taylor, The finite element method for solid and structural mechanics, Elsevier
2005.

[9] D.V. Rao, A.H. Sheikh, M. Mukhopadhyay, A finite element large displacement analysis of stiffened

plates, Computers & Structures 47(6) (1993) 987-993.

[10] A. Samanta, M. Mukhopadhyay, Finite element large deflection static analysis of shallow and deep

stiffened shells, Finite Elements in Analysis and Design 33(3) (1999) 187-208.

[11] A. Samanta, M. Mukhopadhyay, Free vibration analysis of stiffened shells by the finite element technique,

European Journal of Mechanics-A/Solids 23(1) (2004) 159-179.

[12] R. Ojeda, B.G. Prusty, N. Lawrence, G. Thomas, A new approach for the large deflection finite element

analysis of isotropic and composite plates with arbitrary orientated stiffeners, Finite Elements in Analysis

and Design 43(13) (2007) 989-1002.

[13] X.Y. Cui, G.R. Liu, G.Y. Li, X. Zhao, T. Nguyen-Thoi, G.Y. Sun, A smoothed finite element method
(SFEM) for linear and geometrically nonlinear analysis of plates and shells, Computer Modeling in

Engineering and Sciences 28(2) (2008) 109-125.

[14] H. Nguyen-Van, N. Nguyen-Hoai, T. Chau-Dinh, T. Tran-Cong, Large deflection analysis of plates and

cylindrical shells by an efficient four-node flat element with mesh distortions, Acta Mechanica 226(8)

(2015) 2693-2713.

https://www.researchgate.net/journal/1526-1492_Computer_Modeling_in_Engineering_and_Sciences
https://www.researchgate.net/journal/1526-1492_Computer_Modeling_in_Engineering_and_Sciences

20

[15] G. R. Sinha, Modern Optimization Methods for Science, Engineering and Technology, IOP Publishing Ltd, 2020.

[16] P. Liu, H. Yu, S. Cang, Optimized adaptive tracking control for an underactuated vibro-driven capsule

system, Nonlinear Dynamics 94 (2018) 1803-1817.

[17] P. Liu, H. Yu, S. Cang, Trajectory synthesis and optimization of an underactuated microrobotic system

with dynamic constraints and couplings, International Journal of Control, Automation and Systems 16(5)
(2018) 2373-2383.

[18] R.B.A. Shyam, P. Lightbody, G. Das, P. Liu, S. Gomez-Gonzalez, G. Neumann, Improving local trajectory

optimisation using probabilistic movement primitives, Proceedings of the 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Macau (China), 2019, pp. 2666-2671.

[19] S. Sun, Z. Cao, H. Zhu, J. Zhao, A survey of optimization methods from a machine learning perspective,

IEEE Transactions on Cybernetics 50(8) (2020) 3668-3681.

[20] P. Liu, H. Yu, S. Cang, Adaptive neural network tracking control for underactuated systems with matched

and mismatched disturbances, Nonlinear Dynamics 98 (2019) 1447-1464.

[21] O. Stava, J. Vanek, B. Benes, N. Carr, R. Měch, Stress relief: improving structural strength of 3D printable

objects, ACM Transactions on Graphics 31(4) (2012) 48:1-11.

[22] H. Zhao, W. Xu, K. Zhou, Y. Yang, X. Jin, H. Wu, Stress‐constrained thickness optimization for shell

object fabrication, Computer Graphics Forum 36(6) (2017) 368-380.
[23] W. Wang, T.Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, X. Liu, Cost-effective printing

of 3D objects with skin-frame structures. ACM Transactions on Graphics 32(6) (2013) 177:1-10.

[24] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-Or, B. Chen, Build-to-

last: strength to weight 3D printed objects, ACM Transactions on Graphics 33(4) (2014) 97:1-10.

[25] W. Li, A. Zheng, L.H. You, X.S. Yang, J.J. Zhang, L. Liu, Rib‐reinforced shell structure, Computer

Graphics Forum 36(7) (2017) 15-27.

[26] F. Gil-Ureta, N. Pietroni, D. Zorin, Structurally optimized shells, arXiv preprint arXiv:1904.12240 (2019)

1-17.

[27] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: Applications and algorithms, SIAM

Review 41(4) (1999) 637-676.

[28] M. Zivanica, O. Daescua, A. Kurdiab, S.R. Goodman, The Voronoi diagram for graphs and its application
in the Sickle Cell Disease research, Journal of Computational Science 3(5) (2012) 335-343.

[29] D. Deritei, Z.I. Lázár, I. Papp, F. Járai-Szabó, R. Sumi, L. Varga, E.R. Regan, M. Ercsey-Ravasz,

Community detection by graph Voronoi diagrams, New Journal of Physics 16 (2014) 063007:1-16.

[30] S. Li, L. Zhang, P. Li, D. Chen, New methods for the construction of Voronoi diagram and the nearest

neighbor query, The 9th International Forum on Strategic Technology (IFOST), Cox’s Bazar, Bangladesh,

October 21-23, 2014, pp. 255-258.

[31] S. Kang, A generic statistics-based tessellation method of Voronoi diagram, Journal of Systems Science

and Information 3(6) (2015) 568-576.

[32] H. Long, S. Zhang, J. Wang, C.-K. Lin, J.-J. Cheng, Privacy preserving method based on Voronoi diagram

in mobile crowd computing, International Journal of Distributed Sensor Networks 13(10) (2017) 1-8.

[33] Y. Qin, H. Yu, J.J. Zhang, Fast and memory-efficient Voronoi diagram construction on triangle meshes,

Computer Graphics Forum 36(5) (2017) 93-104.
[34] M. Fantini, M. Curto, Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold

for morphological characterization, International Journal on Interactive Design and Manufacturing 12

(2018) 585-596.

[35] E. Lewandowicz, P. Flisek, A method for generating the centerline of an elongated polygon on the example

of a watercourse, International Journal of Geo-Information 9(5) (2020) 1-20.

[36] F. Tang, X. You, X. Zhang, K. Li, Hexagon-based generalized Voronoi diagrams generation for path

planning of intelligent agents, Mathematical Problems in Engineering 5750739 (2020) 1-13.

[37] Y. Du, H. Liang, D. Xie, N. Mao, J. Zhao, Z. Tian, C. Wang, L. Shen, Design and statistical analysis of

irregular porous scaffolds for orthopedic reconstruction based on Voronoi tessellation and fabricated via

selective laser melting (SLM), Materials Chemistry and Physics 239 (2020) 121968:1-9.

[38] H.-Y. Lei, J.-R. Li, Z.-J. Xu, Q.-H. Wang, Parametric design of Voronoi-based lattice porous structures,
Materials and Design 191 (2020) 108607:1-10.

[39] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, M. Halle, Conformal surface

parameterization for texture mapping, IEEE Transactions on Visualization and Computer Graphics 6(2)

(2000) 181-189.

[40] B. Lévy, S. Petitjean, N. Ray, J. Maillot, Least squares conformal maps for automatic texture atlas

generation, ACM Transactions on Graphics 21(3) (2002) 362-371.

[41] L. Kharevych, B. Springborn, P. Schröder, Discrete conformal mappings via circle patterns, ACM

Transactions on Graphics 25(2) (2006) 412-438.

21

[42] O. Weber, C. Gotsman, Controllable conformal maps for shape deformation and interpolation. ACM

Transactions on Graphics 29(4) (2010) 78:1-11.

[43] V.G. Kim, Y. Lipman, T. Funkhouser, Blended intrinsic maps, ACM Transactions on Graphics 30 (2011)

79:1-12.

[44] O. Weber, A. Myles, D. Zorin, Computing extremal quasiconformal maps, Computer Graphics Forum 31
(2012) 1679-1689.

[45] R. Chen, O. Weber, Bounded distortion harmonic mappings in the plane, ACM Transactions on Graphics

34(4) (2015) 73:1-12.

[46] A. Segall, M. Ben-Chen, Iterative closest conformal maps between planar domains, Computer Graphics

Forum 35(5) (2016) 33-40.

[47] R., Chen, C. Gotsman, Approximating planar conformal maps using regular polygonal meshes, Computer

Graphics Forum 36 (2017) 629-642.

[48] M. Ramdin, Q. Chen, S.P. Balaji, J.M. Vicent-Luna, A.Torres-Knoop, D. Dubbeldam, S. Calero, T.W. de

Loos, T.J.H. Vlugt, Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo

simulation, Journal of Computational Science 15 (2016) 74-80.

[49] K.E. Khaldi, E.G. Saleeby, On the tangent model for the density of lines and a Monte Carlo method for

computing hypersurface area, Monte Carlo Methods and Applications 23(1) (2017) 13-20.
[50] J. Qinag, Monte Carlo simulation techniques, Proceedings of the 2018 CERN-Accelerator-School Course

on Numerical Methods for Analysis, Design and Modelling of Particle Accelerators, Thessaloniki,

(Greece), 2018, pp. 1-11.

[51] R. Sawhney, K. Crane, Monte Carlo geometry processing: a grid-free approach to PDE-based methods on

volumetric domains, ACM Transactions on Graphics 39(4) (2020) 123:1-18.

[52] G. Xie, A novel Monte Carlo simulation procedure for modelling COVID-19 spread over time, Scientific

Reports 10 (2020) 13120.

[53] Y. Nagai, M. Okumura, A. Tanaka, Self-learning Monte Carlo method with Behler-Parrinello neural

networks, Physical Review B 101 (2020) 115111.

[54] A. Heilmeier, M. Graf, J. Betz, M. Lienkamp, Application of Monte Carlo methods to consider probabilistic

effects in a race simulation for circuit motorsport, Applied Sciences 10(12) (2020) 4229:1-21.
[55] H. Neuyen-Van, N. Neuyen-Hoai, T. Chau-Dunh, T. Tran-Cong, Large deflection analysis of plates and

cylindrical shells by an efficient four-node flat element with mesh distortions, Acta Mechanica 226 (2015)

2693-2713.

Anzong Zheng is a R & D engineer at Humain Ltd, UK. He received his BSc and MSc degree from

Tianjin University, China and a PhD degree from National Centre for Computer Animation,

Bournemouth University, UK. His current interests are physics-based simulations, differential

geometry processing, skinning and realistic face animation.

Shaojun Bian is currently a software engineer in HUMAIN Limited. She received her PhD degree

from the National Centre for Computer Animation, Bournemouth University, UK. She received her

BSc degree from China University of Petroleum and MSc degree from Ocean University of China.

She worked as a research associate on the Knowledge Transfer Partnership between Bournemouth

University and HUMAIN Limited from 19/02/2018 to 18/02/2020, awarded the highest grade of

"Outstanding" by the KTP Grading Panel for its achievement in meeting KTP's Objectives. Her research interests

include computer vision, deep learning, computer graphics, computer animation and geometric modelling.

Ehtzaz Chaudhry is a researcher at the National Centre for Computer Animation, Bournemouth

University, UK. He received his BSc, MSc degree in Computer Science, another MSc degree from the

University of Westminster, UK and a PhD degree from Bournemouth University, UK. Dr Chaudhry's
research interests are in Computer Graphics, Character Animation, Geometric modelling, ODE-Based

Dynamic Skin Deformation, VR/AR and Games.

Jian Chang is Professor at the National Centre for Computer Animation, Bournemouth University. He

received his Ph.D. degree in computer graphics in 2007 at the National Centre for Computer Animation,

Bournemouth University. His research focuses on physically based modelling, motion synthesis, virtual

reality, and novel HCI (eye tracking, gesture control and haptic).

Habibollah Haron is a Professor in Soft Computing, Universiti Teknologi Malaysia (UTM). He has

held various administrative positions including being the Head of Department of Department of

Modelling and Industrial Computing and Department of Computer Science before assuming the post

of Deputy Dean (Academic), Faculty of Computing. During his tenure, he was in charge of proposing

https://www.sciencedirect.com/science/journal/18777503
https://www.nature.com/srep
https://www.nature.com/srep

22

new curriculum and revising existing curriculum for bachelor and master program, managing and facilitate his

academic staff for pursuing studies and preparing research proposal, and advising students on academic matters.

He has taught various courses at the faculty including industrial computing related courses example robotic,

automation, programming languages and computational mathematic related subject at both undergraduate and

postgraduate levels. He also supervises both Master and PhD students in related fields. He has been written few
books and Editor for few conference proceeding, Editorial Board and Reviewer of various journals related to the

computer science, and has been appointed as keynote speaker for various conferences. His research interests

include optimization in various domain such as medical problems, manufacturing, robotic and image processing.

He has also project leader for various research projects at university, national and international level. Currently he

is attached to the UTM Applied Industrial Analytics (ALIAS) research group.

Lihua You is Professor at the National Centre for Computer Animation, Bournemouth University, UK.

He received his Ph.D. degree from Chongqing University, China, and another Ph.D. degree from

Bournemouth University, UK. His current research interests are in computer graphics, computer

animation, and geometric modelling.

Jian Jun Zhang is Professor of Computer Graphics at the National Centre for Computer Animation,
Bournemouth University, UK where he leads the National Research Centre. He is also a co-founder

of the UK’s Centre for Digital Entertainment, funded by the Engineering and Physical Sciences

Research Council. His research focuses on 3D virtual human modelling, animation, simulation and

immersive technology.

