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Abstract—The skeleton, or medial axis, is an important attribute of 2D shapes. The disk B-spline
curve (DBSC) is a skeleton-based parametric freeform 2D region representation, which is defined
in B-spline form. The DBSC describes not only a 2D region, which is suitable for describing
heterogeneous materials in the region, but also the center curve (skeleton) of the region
explicitly, which is suitable for animation, simulation and recognition. In addition to being useful
for error estimation of the B-spline curve, the DBSC can be used in designing and animating
freeform 2D regions. Despite increasing DBSC applications, its theory and fundamentals have
not been thoroughly investigated. In this paper, we discuss several fundamental properties and
algorithms, such as the de Boor algorithm for DBSCs. We first derive the explicit evaluation and
derivatives formulas at arbitrary points of a 2D region (interior and boundary) represented by a
DBSC and then provide heterogeneous object representation. We also introduce modeling and
interactive heterogeneous object design methods for a DBSC, which consolidates DBSC theory
and supports its further applications.

Index Terms: Disk B-Spline Curves; Skeleton;
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IN THE COMPUTER GRAPHICS COMMUNITY,
2D region representation is fundamental and
widely used in 2D animation, nonphotorealistic
rendering (NPR) and geographical information
systems. Discrete points and linear and parametric
outline representations are most commonly used
for 2D region representation. In [1], the inter-
val Bézier curve was proposed to bound errors,
while the disk Bézier curves were discussed in
[2]. The disk Bézier curves are similar to the
interval Bézier curve [1] but use disks instead of
rectangles. Lin and Rokne [2] tried to assemble a
disk B-spline by imposing conditions on two disk
Bézier curves. They confined it to a special case
where r0 = r1 = · · · = rn = r = const. Even
for this special case, the conditions were compli-
cated and difficult, if not impossible, to extend
to higher degree cases. The two representations
above are only regarded as parametric curves with
error tolerances. We generalized the disk Bézier
curve to a disk B-spline curve (DBSC) by directly
defining the disk B-spline [3][4], which automat-
ically maintains the p−1 ( p is the degree of the
curve) continuity between two curve pieces and
the infinite continuity inside each piece. We used
DBSC to directly represent and model freeform
2D regions instead of using raster images [5] or
their outlines [6].

The skeleton is an object’s important attribute.
However, for almost all object representations,
their skeletons are not directly represented but
computed. However, in general, the computation
of the medial axis transformation (MAT) is ex-
tremely complicated. In a DBSC, the skeleton
is explicitly represented. Therefore, a DBSC can
describe both the freeform 2D region and its
skeleton. Given these advantages, DBSCs have
been used to represent strokes in sketching [7],
brushstrokes [8], Chinese calligraphy [9], 2D an-
imation [10][11][12], and nonphotorealistic ren-
dering [13]. A few papers have discussed the use
of DBSC algorithms for extension [14], blending
[15], fitting [16], intersection [17] and physically
based simulations [18].

Heterogeneous object (HE object) modeling
is paramount for natural object representation
[19], such as tissue modeling, physically based
anisotropic simulation [20], and additive man-
ufacturing [21]. However, a 2D region is usu-

ally represented by its contours. Therefore, it
only describes homogeneous objects. As DBSC
can describe arbitrary points in a 2D region,
it is suitable for representing HE objects. With
its elegant mathematical definition, a DBSC is
endowed with preeminent properties that make
geometric operations of models based on DBSCs
easy to implement. Therefore, DBSC represen-
tation has been applied to various areas, such as
nonphotorealistic rendering [3], 2D modeling and
animation in computer-assisted cel animation [4].
However, to the best of our knowledge, the theory
and fundamentals of DBSCs have not yet been
completely investigated. This is the focus of this
paper. In addition to the fundamental properties of
DBSCs, we derive explicit evaluation and deriva-
tive formulas for DBSCs, which include those on
the boundary and arbitrary points inside a DBSC.
We also provide basic modeling algorithms based
on a DBSC, such as interpolation, approximation,
deformation. Furthermore, we provide a repre-
sentation method for HE objects in a DBSC
and present an interactive design approach for
HE objects. This paper provides the following
contributions:

1) We provide a comprehensive discussion of
fundamental DBSC properties and algo-
rithms (Sec.2), such as the de Boor algo-
rithm for DBSCs. And we derive explicit
evaluations and derivative formulas on the
boundary and at arbitrary points inside a
2D region represented by a DBSC (Sec.3).
These benefit further developments and ap-
plications of DBSC.

2) We provide HE object representation on a
DBSC and develop an interactive HE object
design method. This lays the foundation for
HE object simulation and additive manufac-
turing using a DBSC (Sec.4).

FUNDAMENTALS OF A DBSC
This section introduces the definitions, funda-

mental properties and algorithms for a DBSC.

Definitions of a DBSC Disk Geometry
Disk Geometry
A disk in the plane is defined as < C; r >≡

{x ∈ R2 | ‖x− C‖ ≤ r, C ∈ R2, r ∈ R+}.
Here C is the center of the disk and r is the
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radius. For disks, the following operations are
defined:

• For an arbitrary real number, a < C, r >=
〈aC, |a|r〉.

• < C1, r1 > + < C2, r2 >=< C1 + C2, r1 + r2〉.
Therefore, any finite summation can be de-

fined as:
n∑

i=1
ai 〈Ci, ri〉 =

n∑
i=1
〈aiCi, |ai| ri〉 =〈

n∑
i=1

aiCi,
n∑

i=1
|ai| ri

〉
. For more information on

disk geometry, please refer to [2].
DBSC Definition
Let Ni,p(t) be the i-th B-spline basis of

degree p with knot vector [t0, . . . , tm] =
{a, . . . , a,︸ ︷︷ ︸

p

tp+1, . . . , tm−p−1, b, . . . , b︸ ︷︷ ︸
p

}, where

m = n + p + 1. Then, the disk B-spline Curve
(DBSC) is defined as:

< D > (t) =
n∑

i=0

Ni,p(t) < Pi; ri > (1)

where Pi are the control points and ri are the
control radii. The DBSC represents a 2D region.
For the detailed properties on a B-spline basis,
please refer to [22]. As

< D > (t) =
n∑

i=0
Ni,p(t) < Pi; ri >

=
n∑

i=0
< Ni,p(t)Pi;Ni,p(t)ri >

=<
n∑

i=0
Ni,p(t)Pi;

n∑
i=0

Ni,p(t)ri >

DBSC can be viewed as two parts: one is the
center curve c(t) =

∑n
i=0Ni,p(t)Pi, which is a

B-spline curve, and the other is the radius func-
tion r(t) =

∑n
i=0Ni,p(t)ri, which is a B-spline

scalar function. Owing to the perfect symmetry
property of disks, the curve c(t) constructed from
the centers of disks is exactly the skeleton of the
2D region represented by the DBSC, as shown
in Figure 1. Most properties and algorithms can
be obtained by applying the B-spline curve and
function to these two parts of the disk B-spline
curve.
Properties

Affine invariance: An affine transformation is
applied to the DBSC by applying it to the control
points and radii. The affine invariance property
for B-spline curves is derived from the partition

property of unity of Ni,p(t), i.e.,
n∑

i=0
Ni,p(t)=1.

(a) Open curve

(b) Closed curve

Figure 1: A disk B-spline curve: the 2D region
(yellow) is represented by the DBSC; the curve

(black) is the center curve; the polyline (dot
line) and the circles (red) represent the control

polygons and radii.

Differentiability: A disk B-spline curve of
degree p is at least Cp−k at a knot of multiplicity
k and infinitely differentiable in the interior of
knot intervals.

Local modification scheme: Moving Pi or
modifying ri changes < D > (t) only in the
interval of [ui,ui+p+1].

Convex hull property: The region repre-
sented by a disk B-spline is contained by the
convex hull of those circles of radius ri centered
at Pi.
As Ni,p(t) ≥ 0 and

∑n
i=0Ni,p(t) = 1, for ∀t,

< D > (t) ⊆ conv {< Pi; ri >}ni=0. Here,
conv denotes a convex hull.

Topological property: From a topological
viewpoint, the 2D region (white) represented by
a DBSC without self-intersection is homotopic to
its center curve (black), as shown in Figure 1.
However, if self-intersection exists, the topologi-
cal property is not maintained, as shown in
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Figure 2.

Figure 2: The center curve (black) is not
homotopic to the 2D region (yellow) when there

exist self-intersections.

Evaluation and Derivatives of DBSC
For a DBSC, most algorithms can be im-

plemented by applying corresponding algorithms
in the B-spline curve and function to the center
curve and radius function, such as degree eleva-
tion, knot insertion, shape modification, transfor-
mation, etc. The following will discuss the eval-
uations and derivatives of a DBSC by extending
the de Boor Algorithm to a DBSC.

De Boor Algorithm for DBSC: The
de Boor Algorithm for a B-spline can be
extended by applying it to the center curve
and radius of a DBSC. Suppose a DBSC
< D > (t) =

∑n
i=0Ni,p(t) < Pi; ri > , with

knot vector [t0, . . . , tm] = {a, . . . , a︸ ︷︷ ︸
p

, tp+1, . . . ,

tm−p−1, b, . . . , b︸ ︷︷ ︸
p

}, where m = n+ p+ 1.

Let t ∈ [tj, tj+1] , j = 0, 1, . . . ,m− 1,

λk
i (t) =

t− ti
ti+p−k − ti

, k = 1, 2, . . . , p− 1 (2)

P k
i (t)

=


Pi , k = 0

λk
i (t)P k−1

i (t)+
(
1− λk

i (t)
)
P k−1

i−1 (t),
k = 1, 2, . . . , p− 1

(3)

rki (t)

=


ri , k = 0

λk
i (t)rk−1i (t) +

(
1− λk

i (t)
)
rk−1i−1 (t),

k = 1, 2, . . . , p− 1

(4)

〈D〉 (t)=
∑j

i=j−p+k+1Ni,p−k(t)
〈
P k

i , r
k
i

〉
,

k = 1, 2, . . . , p− 1. When k=p− 1, 〈D〉 (t)=

Nj,1(t)
〈
P p−1

j , rp−1j

〉
=
〈
P p−1

j , rp−1j

〉
.

If these disks
〈
P k

j , r
k
j

〉
, k = 0, 1, . . . , p and〈

P p−k
j−k , r

p−k
j−k

〉
, k = 0, 1, . . . , p − 1 are regarded

as new control disks in the interval, DBSC is then
subdivided at the parameter t.

DBSC Derivatives: The derivatives of a
DBSC with respect to the parameter t can be
computed as:

< D′ > (t)

=

n∑
i=0

N ′i,p(t) < Pi; ri >

= p

(
n−1∑
i=0

Ni+1,p−1(t)
< Pi+1; ri+1 >

ti+p+1 − ti+1

)

− p

(
n∑

i=0

Ni+1,p−1(t)
〈Pi; ri〉

ti+p+1 − ti+1

)

= p

(
n∑

i=0

Ni+1,p−1(t)
< Pi+1; ri+1 >−< Pi; ri >

ti+p+1−ti+1

)

= p

(
n−1∑
i=0

Ni+1,p−1(t)

〈
Pi+1−Pi

ti+p+1−ti+1
;

ri+1−ri
ti+p+1−ti+1

〉)

= p

(
n−1∑
i=0

Ni+1,p−1(t) < Qi;Ri >

)
(5)

here Qi = Pi+1−Pi

ti+p+1−ti+1
;Ri = ri+1−ri

ti+p+1−ti+1
. Higher

derivatives can be achieved similarly.
Other algorithms, such as degree elevation and

knot insertion, can be obtained by applying the
corresponding algorithms of the B-spline curve
and function to the skeleton curve and radius
function of the DBSC, respectively.

EVALUATION OF BOUNDARY AND
INTERIOR

We will give implicit method and explicit
formulas on boundary and interior.

Implicit Evaluations
To compute the boundary of a region repre-

sented by a DBSC, we can regard the boundary
as the envelope of a one-parameter family of
circles. For any t, with the center at x(t) =∑n

i=0Ni,p(t)xi and y(t) =
∑n

i=0Ni,p(t)yi, the
radius r(t) =

∑n
i=0Ni,p(t)ri; then

(x− x(t))2 + (y − y(t))2 − (r(t))2 = 0 (6)

According to the envelope theorem [23],
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{
F (x, y, t) = 0
∂F (x,y,t)

∂t
= 0

, we have

(x−x(t))x′(t)+(y−y(t))y′(t)+r(t)r′(t) = 0
(7)

For any t, we can compute x(t), y(t), r(t) and
their derivatives x′(t), y′(t), r′(t) according to
de Boor Algorithms for B-spline curves.
Let X = x−x(t), Y = y−y(t), C = r(t), D =
x′(t), E = y′(t), and F = r′(t); we can
obtain the following equation group of a circle

and line intersection:
{

X2 + Y 2 = C2

DX + EY = −CF
By solving the equation group, we obtain{

X = −CDF±CE
√
D2+E2−F 2

D2+E2

Y = −CEF∓CD
√
D2+E2−F 2

D2+E2

(8)

where D2 + E2 − F 2 ≥ 0, i.e., (x′(t))
2

+
(y′(t))

2 ≥ (r′(t))
2.

For a point inside the 2D region represented
by a DBSC, we use a parameter u that varies
linearly from the corresponding point on the
skeleton to the boundary, i.e., when u = 0, the
point is on skeleton; u = 1, the point is on the
boundary, and 0 < u < 1, the point is between
the skeleton point and the boundary point. There-
fore, equation 6 becomes (x − x(t))2 + (y −
y(t))2 − u2(r(t))2 = 0, equation 7 becomes
(x−x(t))x′(t)+(y−y(t))y′(t)+u2r(t)r′(t) =
0. Similarly, through solving the equation group,
we obtain the interior point.

Explicit Boundary Evaluations
Here, we derive explicit formulas for comput-

ing points on the boundary of a DBSC and their
differentials.

Computing points on the boundary of
DBSC: The boundary can be explicitly repre-
sented by rewriting equation 8 as follows:

b±(t) =

(
x(t)
y(t)

)
+

r

x′2 + y′2

[
±
√
x′2 + y′2 − r′2

(
−y′
x′

)
−r′

(
x′

y′

)]
(9)

Here b± represents the upper boundary and the
lower boundary.

When a DBSC is open and the radius at its

end is not zero, the end part is an arc whose center
is the end point of the center curve. The start and
end points on the arc can then be computed from
the envelope computation above. Therefore, any
point on the boundary of the disk B-spline region
can be obtained.

Boundary differentials: Applying the deriva-
tive to equation 9 gives the tangents on the
boundary as follows:
The upper part:

b′+ =
(
1− r′2

x′2+y′2 − r
√

1− r′2

x′2+y′2
y′′3x′−x′′3y′

(x′2+y′2)2

−r r′′(x′2+y′2)−r′(x′x′′+y′y′′)
(x′2+y′2)2

)(
x′(t)
y′(t)

)
+

(
r′
√

x′2+y′2−r′2

x′2+y′2 +
rr′(y′′3x′−x′′3y′)

(x′2+y′2)
5
2

+
2rr′2(x′x′′+y′y′′)−r′r′′(x′2+y′2)

(x′2+y′2)2
√

x′2+y′2−r′2

)(
−y′(t)
x′(t)

)
(10)

The lower part:

b′− =
(
1− r′2

x′2+y′2 + r
√

1− r′2

x′2+y′2
y′′3x′−x′′3y′

(x′2+y′2)2

−r r′′(x′2+y′2)−r′(x′x′′+yy′′)
(x′2+y′2)2

)(
x′(t)
y′(t)

)
+

(
−r′
√

x′2+y′2−r′2

x′2+y′2 +
rr′(y′′3x′−x′′3y′)

(x′2+y′2)
5
2

− 2rr′2(x′x′′+y′y′′)−r′r′′(x′2+y′2)
(x′2+y′2)2

√
x′2+y′2−r′2

)(
−y′(t)
x′(t)

)
(11)

The normal can be obtained by rotating the tan-
gent at 90◦. Figure 3 illustrates the tangents and
normals on the boundary of a DBSC.

Figure 3: Illustration of tangents(red) and
normals(blue) on the boundary of a DBSC.

Explicit Evaluation of Arbitrary Points inside a
DBSC

Here, we derive explicit formulas for com-
puting arbitrary points on a DBSC and their
differentials.
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Computing points inside a DBSC: We de-
note an arbitrary point inside the 2D region of a
DBSC as P (t, u), where t is the parameter of the
DBSC, and u is the parameter that represents the
point that varies linearly from the corresponding
point on the skeleton to the boundary. Then, an
arbitrary point inside a DBSC can be represented
as

P±(t,u) =

(
x(t)
y(t)

)
+ ur

x′2+y′2

[
±
√

x′2 + y′2 − u2r′2
(
−y′

x′

)
−ur′

(
x′

y′

)]
(12)

Here, P±(t,u) describes arbitrary points inside
the 2D region represented by a DBSC as shown
in Figure 4.

Figure 4: The boundary and variable offsets.

Differentials of Arbitrary Points inside
DBSC: As a DBSC represents a 2D region, we
can compute the properties of arbitrary points
inside the region. Here, we provide the partial
differentials according to parameters t and u.
The partial differential of parameter t obtained
by applying the derivative to equation 12 is as
follows:
The upper part:

P ′+t =
(
1− r′2

x′2+y′2−ur
√

1− u2r′2

x′2+y′2
y′′3x′−x′′3y′

(x′2+y′2)2

−ur u2r′′(x′2+y′2)−ur′(x′x′′+y′y′′)
(x′2+y′2)2

)(
x′

y′

)
+

(
ur′
√

x′2+y′2−u2r′2

x′2+y′2 +
u2rr′(y′′3x′−x′′3y′)

(x′2+y′2)
5
2

+
2u3rr′2(x′x′′+y′y′′)−u2r′r′′(x′2+y′2)

(x′2+y′2)2
√

x′2+y′2−u2r′2

)(
−y′
x′

)
(13)

The lower part:

P ′−t =
(
1− u2r′2

x′2+y′2 +r
√

1− u2r′2

x′2+y′2
y′′3x′−x′′3y′

(x′2+y′2)2

−ur ur′′(x′2+y′2)−ur′(x′x′′+y′y′′)
(x′2+y′2)2

)(
x′

y′

)
+

(
−ur′
√

x′2+y′2−u2r′2

x′2+y′2 +
u2rr′(y′′3x′−x′′3y′)

(x′2+y′2)
5
2

− 2u3rr′2(x′x′′+y′y′′)−u2r′r′′(x′2+y′2)
(x′2+y′2)2

√
x′2+y′2−u2r′2

)(
−y′
x′

)
(14)

The partial differential with respect to the
parameter u can be computed by applying the
derivative to equation 12 at u:

P±u = r
x′2+y′2

[
±
√
x′2 + y′2 − u2r′2

(
−y′
x′

)
−ur′

(
x′

y′

)]
− ur

x′2+y′2[
± ur′2√

x′2+y′2−u2r′2

(
−y′
x′

)
+ r′

(
x′

y′

)]
=

±r(x′2+y′2 −2u2r′2)
(x′2+y′2)

√
x′2+y′2−u2r′2

(
−y′
x′

)
− 2urr′

x′2+y′2

(
x′

y′

)
(15)

According to equations 14 and 15, we can ob-
tain partial differentials of arbitrary points inside
a DBSC, as shown in Figure 5.

Figure 5: Illustration of Partial differentials of
arbitrary points inside DBSC (red:along

parameter t, and blue along parameter u).

MODELING METHODS
In geometric modeling, the three fundamental

modeling methods are interpolation, approxima-
tion, and deformation. Here, we introduce these
methods to a DBSC.

Interpolation
We can use the cubic B-spline interpolation

method to interpolate the center curve and the B-
spline scalar function method to interpolate the
radius in a disk B-spline curve.
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Given a group of points Qi, i = 0, . . . , n
on the central curve and their corresponding
radii di, a disk B-spline curve whose cen-
ter curve passes these data points Qi and
whose control radius is di can be obtained
by interpolation. The knot vector is deter-
mined through its accumulated chord length{

t0 = 0
ti = ti−1 + |Qi −Qi−1| , i = 1, 2, . . . , n

and knot vector

T =[t0, t0, t0, t0, t1, t2, . . . , tn−1, tn, tn, tn, tn]
(16)

The interpolated DBSC is

D(t) =
n+2∑
i=0

Ni,3(t) 〈Pi, ri〉
Then,

n+2∑
i=0

Ni,3 (tj) Pi =Qj

n+2∑
i=0

Ni,3 (tj) ri =dj

, j=0, 1, 2, . . . , n

Through adding end constraint conditions, the
DBSC can be obtained by solving the linear
equation group. The curve can be either closed
or open. Figure 6 shows a few examples.

Approximation
Here, we can use the cubic B-spline curve ap-

proximation method and B-spline scalar function
approximation method to obtain the disk B-spline
curve approximation.

Given a group of points Qi, i = 0, . . . ,m,
and their corresponding radii di, a DBSC whose
center curve approximates these data points Qi

and whose radii are di can be obtained by ap-
proximation.

The knot vector is determined same as equa-
tion 16. The approximated DBSC D(t) =∑n

i=0Ni,3(t) 〈Pi, ri〉. Then, the approximation is
regarded as the following optimization problem:

f = min
pi,ri

m∑
j=0

∥∥∥∥∥
n∑

i=0

Ni,3(tj)Pi−Qj

∥∥∥∥∥
2

+

∥∥∥∥∥
n∑

i=0

Ni,3(tj)ri−dj

∥∥∥∥∥
2


By solving the optimization, the DBSC is
obtained. Figure 7 is an example illustrating the
approximation result.

(a) Data points & radii(represented by disks)

(b) Centerline & outlines

(c) Region

Figure 6: Interpolation
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Figure 7: Approximation

Deformation
A new shape can be generated by deformation

to a disk B-spline curve by applying deformation
to its center curve and scaling its control radius
function, as shown in Figure 8.

(a) Original shape

(b) Deformed shape

Figure 8: Deformation

Note that the deformation here is only based
on geometry. As a DBSC can describe HE ob-
jects, physically anisotropic simulations can be
implemented in the future.

HETEROGENEOUS OBJECT MODEL
As a DBSC describes a 2D region, we can

define different attributes at each point, i.e., we
can represent HE objects on a DBSC.

HE object representation
A 2D region is usually represented by its

contour, which only describes homogeneous ob-
jects. However, as a DBSC can represent arbitrary
points in a 2D region, it is suitable to describe
natural objects with various heterogeneous at-
tributes, such as heterogeneous materials, various
physics attributes, textures, and fields. Therefore,
HE objects with diverse attributes can be mod-
eled. Here, we provide a representation method
for HE objects as follows with definition as

p = (pg, pm)
pg = (x, y) ∈ Ω ⊂ R2

pm = (a1, a2, . . . ak) ∈ Rk

(17)

where p is a HE object, pg is an arbitrary point
on a DBSC, and pm are the attributes on the
point. Obviously, pg is a DBSC. According to 12,
pg = p(t, u). To keep the geometry and attributes
consistent, we still use the B-spline form for the
attributes pm, i.e., the attributes on the DBSC are
determined by these attributes on control disks
blended by the B-spline basis. We regard the
DBSC as a single parameter blending of control
disks. For each disk, we use a polar coordinate
system, i.e., (ρ, θ). For each point pg = p(t, u),

ρ = ‖P (t, u)− c(t)‖
θ = arccos

(
P (t,u)−c(t)
‖P (t,u)−c(t)‖ ,

c′(t)

‖c′(t)‖

)
here, c(t) is the corresponding point on the skele-
ton. Therefore, we have the attributes on the point
as

pm(t, u) = (a1(t, u), a2(t, u), . . . ak(t, u)) =
n∑

i=0

Ni,p(t)Ai(ρ, θ)

(18)
where Ai(ρ, θ), i = 0, 1, . . . , n are the attributes
on control disks.

Interactive HE object design
Designing a HE object is a challenging prob-

lem. Here, we provide interactive HE object mod-
eling methods.

Efficient tessellation: Based on the compu-
tation above, we can obtain a group of points
inside a DBSC at any resolution. By linking these
corresponding points, the 2D region is tessellated,
as shown in Figure 9. With tessellation, rendering
and attribute mapping can be implemented.
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Figure 9: Tessellation of the region represented
by a DBSC

Attribute mapping: After tessellation, an at-
tribute mapping technique can be directly applied.
For the purpose of visualization, we use different
colors to indicate different attributes. Various
patterns and styles can be generated by attribute
mapping, as shown in Figures 10 and 11 (here
we display various attributes by colors).

(a) Triangulation (b) Attribute mapping

Figure 10: Triangulating and attribute mapping
DBSC

Figure 11: Various styles of brushstrokes

Interactive HE object design: To apply at-
tributes on each control disk of a DBSC, users
can design various attributes (display by colors),
i.e., HE objects based on a DBSC. According to
equation 18, the attributes on a DBSC can be
controlled through the attributes on control disks,
as shown in Figure 12.

One advantage of these HE objects is that
users can design different HE objects by adjusting
the attributes on the control disks interactively.
Another advantage is that the attributes on a
DBSC remain consistent when users change a
shape represented by the DBSC by adjusting its
control points and radii, as shown in Figure 13
(display by colors).

MODELING RESULTS AND
CONCLUSIONS

The DBSC presented in this paper is of a
general nature and is a skeleton-based parametric
representation of a 2D region; i.e., the DBSC
describes the center curve (skeleton) of the region
directly. It can be used not only in bounding error
calculations but also as a geometric model for

9



representing and modeling 2D freeform regions.
The examples in Figure 14 and 15 demonstrate
the powerful modeling capabilities of a DBSC.

(a) HE object generation by defining attributes of
control disks

(b) HE object generation by changing attributes of
control disks

Figure 12: Interactive HE object design by
defining control disks’ attributes (display by

colors)

Compared with other approaches, such as mesh
or contour approaches, a DBSC has a number of
advantages, including the following:

• Solid mathematical fundamentals
• Precise evaluation
• Flexibility in manipulations and deformations
• Representation of both a 2D region and its

skeleton
• More compact dataset than discrete or linear

representations when defining a freeform 2D
region.

• Representation of an HE object on a DBSC.

(a) Deforming 2D shape from Figure 12(a)

(b) Deforming 2D shape from Figure 12(b)

Figure 13: The attributes remain consistent
when the 2D shape changes with control points

and radii

Figure 14: HE object model

10



(a) Chinese calligraphy

(b) Chinese painting

(c) Portrait

Figure 15: Models of disk B-spline curves

In this paper, we have discussed the funda-
mental properties and algorithms of DBSC and
derived explicit evaluations and derivative for-
mulas on arbitrary points of a DBSC. We have
also presented fundamental modeling methods for
DBSCs, such as interpolation, approximation and
deformation. Moreover, we have provided a novel
representation of HE objects and implemented an
interactive heterogeneous object design method.
These results will lay a solid foundation for
further research on DBSC .

By defining specific attributes on the region,
such as a scalar field and vector field, DBSC
representation will have wide and deep applica-
tions in various areas such as nonphotorealistic
rendering, 2D modeling, computer-assisted cel
animation, and medical imaging. Further research
is needed in the future on the heterogeneous
object simulation, additional modeling methods,
HE object design and simulation methods based
on disk B-splines, and bioprinting.
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